Sample records for accelerated oil recovery

  1. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery

    PubMed Central

    Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We

  2. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  3. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  4. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery

    PubMed Central

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051

  5. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    PubMed

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  6. Recovery rates, enhanced oil recovery and technological limits

    PubMed Central

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-01

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR. PMID:24298076

  7. Recovery rates, enhanced oil recovery and technological limits.

    PubMed

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.

  8. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less

  9. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  10. Novel approaches to microbial enhancement of oil recovery.

    PubMed

    Kryachko, Yuriy

    2018-01-20

    Microbially enhanced oil recovery (MEOR) was shown to be feasible in a number of laboratory experiments and field trials. However, it has not been widely used in the oil industry because necessary conditions cannot always be easily established in an oil reservoir. Novel approaches to MEOR, which are based on newly discovered biosurfactant-mediated MEOR-mechanisms, are discussed in this review. Particularly, the possibility of combining MEOR with chemical enhancement of oil recovery in heterogeneous oil reservoirs, which involves rock surface wettability shifts and emulsion inversions, is discussed. In wider (centimeter/millimeter-scale) rock pores, the activity of (bio)surfactants and microbial cells attached to oil may allow releasing trapped oil blobs through oil-in-water emulsification. After no more oil can be emulsified, the addition of alkali or surfactants, which turn rock surface oil-wet, may help release oil droplets trapped in narrow (micrometer-scale) pores through coalescence of the droplets and water-in-oil emulsification. Experiments demonstrating the possibility of (bio)surfactant-mediated enhancement of immiscible gas-driven oil recovery are also reviewed. Interestingly, very low (bio)surfactant concentrations were shown to be needed for enhancement of immiscible gas-driven oil recovery. Some possible side effects of MEOR, such as unintended bioplugging and microbially influenced corrosion (MIC), are discussed as well. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  12. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.

    PubMed

    Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia

    2012-10-01

    A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Zhang, Julien

    2015-12-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  14. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; S.K. Maudgalya; R. Knapp

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1more » if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  15. Accelerated recovery after cardiac operations.

    PubMed

    Kaplan, Mehmet; Kut, Mustafa Sinan; Yurtseven, Nurgul; Cimen, Serdar; Demirtas, Mahmut Murat

    2002-01-01

    The accelerated-recovery approach, involving early extubation, early mobility, decreased duration of intensive care unit stay, and decreased duration of hospitalization has recently become a controversial issue in cardiac surgery. We investigated timing of extubation, length of intensive care unit stay, and duration of hospitalization in 225 consecutive cardiac surgery patients. Of the 225 patients, 139 were male and 86 were female; average age was 49.73 +/- 16.95 years. Coronary artery bypass grafting was performed in 127 patients; 65 patients underwent aortic and/or mitral or pulmonary valvular operations; 5 patients underwent valvular plus coronary artery operations; and in 28 patients surgical interventions for congenital anomalies were carried out. The accelerated-recovery approach could be applied in 169 of the 225 cases (75.11%). Accelerated-recovery patients were extubated after an average of 3.97 +/- 1.59 hours, and the average duration of stay in the intensive care unit was 20.93 +/- 2.44 hours for these patients. Patients were discharged if they met all of the following criteria: hemodynamic stability, cooperativeness, ability to initiate walking exercises within wards, lack of pathology in laboratory investigations, and psychological readiness for discharge. Mean duration of hospitalization for accelerated-recovery patients was 4.24 +/- 0.75 days. Two patients (1.18%) who were extubated within the first 6 hours required reintubation. Four patients (2.36%) who were sent to the wards returned to intensive care unit due to various reasons and 6 (3.55%) of the discharged patients were rehospitalized. Approaches for decreasing duration of intubation, intensive care unit stay and hospitalization may be applied in elective and uncomplicated cardiac surgical interventions with short duration of aortic cross-clamping and cardiopulmonary bypass, without risking patients. Frequencies of reintubation, return to intensive care unit, and rehospitalization are quite

  16. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  17. Microbial enhanced oil recovery: Entering the log phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research andmore » development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.« less

  18. Microbial enhanced oil recovery and wettability research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is amore » significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.« less

  19. Effect of ultrasound on oil recovery from crude oil containing sludge.

    PubMed

    He, Shilong; Tan, Xicheng; Hu, Xin; Gao, Yingxin

    2018-01-16

    To recover oil from crude oil containing sludge is still a research hot topic from the view of sustainability, in which ultrasonic has been proven to be an efficient and environment friendly technique. However, the effect of sludge characteristic on ultrasonic-assisted oil recovery efficiency is little known. In this study, the analysis of variance (ANOVA) was conducted based on six types of crude oily sludge with hydrophilicity and lipophilicity separately and five different ultrasonic operation factors (ultrasonic power (A), frequency (B), time (C), initial temperature (D) and pH (E)). The results showed that the oil recovery efficiency was mainly affected by the ultrasonic power and hydrophilicity of sludge (the highest 92% of oil recovery rate was achieved with the ultrasonic power of 240 W and hydrophilic sludge). Moreover, the wettability, decreased average particle size and increased specific surface area of sludge were found after ultrasonic treatment. Besides, changes in the oil component, such as the decrease of asphaltenes along with an increase of saturates, were also further observed. Therefore, the findings in this study can provide technical support for the practical application of ultrasonic technology in different kinds of oily sludge treatment.

  20. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  1. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    NASA Astrophysics Data System (ADS)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  2. Economic analysis of secondary and enhanced oil recovery techniques in Wyoming

    NASA Astrophysics Data System (ADS)

    Kara, Erdal

    This dissertation primarily aims to theoretically analyze a firm's optimization of enhanced oil recovery (EOR) and carbon dioxide sequestration under different social policies and empirically analyze the firm's optimization of enhanced oil recovery. The final part of the dissertation empirically analyzes how geological factors and water injection management influence oil recovery. The first chapter builds a theoretical model to analyze economic optimization of EOR and geological carbon sequestration under different social policies. Specifically, it analyzes how social policies on sequestration influence the extent of oil operations, optimal oil production and CO2 sequestration. The theoretical results show that the socially optimal policy is a subsidy on the net CO2 sequestration, assuming negative net emissions from EOR. Such a policy is expected to increase a firm's total carbon dioxide sequestration. The second chapter statistically estimates the theoretical oil production model and its different versions. Empirical results are not robust over different estimation techniques and not in line with the theoretical production model. The last part of the second chapter utilizes a simplified version of theoretical model and concludes that EOR via CO2 injection improves oil recovery. The final chapter analyzes how a contemporary oil recovery technology (water flooding of oil reservoirs) and various reservoir-specific geological factors influence oil recovery in Wyoming. The results show that there is a positive concave relationship between cumulative water injection and cumulative oil recovery and also show that certain geological factors affect the oil recovery. Moreover, the curvature of the concave functional relationship between cumulative water injection and oil recovery is reservoir-specific due to heterogeneities among different reservoirs.

  3. Impacts, recovery rates, and treatment options for spilled oil in marshes.

    PubMed

    Michel, Jacqueline; Rutherford, Nicolle

    2014-05-15

    In a review of the literature on impacts of spilled oil on marshes, 32 oil spills and field experiments were identified with sufficient data to generate recovery curves and identify influencing factors controlling the rate of recovery. For many spills, recovery occurred within 1-2 growing seasons, even in the absence of any treatment. Recovery was longest for spills with the following conditions: Cold climate; sheltered settings; thick oil on the marsh surface; light refined products with heavy loading; oils that formed persistent thick residues; and intensive treatment. Recovery was shortest for spills with the following conditions: Warm climate; light to heavy oiling of the vegetation only; medium crude oils; and less-intensive treatment. Recommendations are made for treatment based on the following oiling conditions: Free-floating oil on the water in the marsh; thicker oil (>0.5 cm) on marsh surface; thinner oil (<0.5 cm) on marsh surface; heavy oil loading on vegetation; and light to moderate oil loading on vegetation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Aerobic microbial enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to takemore » place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.« less

  5. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.

  6. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Qualified enhanced oil recovery costs. 1.43-4... TAXES Credits Against Tax § 1.43-4 Qualified enhanced oil recovery costs. (a) Qualifying costs—(1) In... “qualified enhanced oil recovery costs” if the amounts are paid or incurred with respect to an asset which is...

  7. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  8. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.

    PubMed

    Chávez-Miyauchi, Tomás E; Firoozabadi, Abbas; Fuller, Gerald G

    2016-03-08

    Injection of optimized chemistry water in enhanced oil recovery (EOR) has gained much interest in the past few years. Crude oil-water interfaces can have a viscoelastic character affected by the adsorption of amphiphilic molecules. The brine concentration as well as surfactants may strongly affect the fluid-fluid interfacial viscoelasticity. In this work we investigate interfacial viscoelasticity of two different oils in terms of brine concentration and a nonionic surfactant. We correlate these measurements with oil recovery in a glass-etched flow microchannel. Interfacial viscoelasticity develops relatively fast in both oils, stabilizing at about 48 h. The interfaces are found to be more elastic than viscous. The interfacial elastic (G') and viscous (G″) moduli increase as the salt concentration decreases until a maximum in viscoelasticity is observed around 0.01 wt % of salt. Monovalent (Na(+)) and divalent (Mg(2+)) cations are used to investigate the effect of ion type; no difference is observed at low salinity. The introduction of a small amount of a surfactant (100 ppm) increases the elasticity of the crude oil-water interface at high salt concentration. Aqueous solutions that give the maximum interface viscoelasticity and high salinity brines are used to displace oil in a glass-etched "porous media" micromodel. Pressure fluctuations after breakthrough are observed in systems with high salt concentration while at low salt concentration there are no appreciable pressure fluctuations. Oil recovery increases by 5-10% in low salinity brines. By using a small amount of a nonionic surfactant with high salinity brine, oil recovery is enhanced 10% with no pressure fluctuations. Interface elasticity reduces the snap-off of the oil phase, leading to reduced pressure fluctuations. This study sheds light on significance of interface viscoelasticity in oil recovery by change in salt concentration and by addition of a small amount of a nonionic surfactant.

  9. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony R. Kovscek

    2003-04-01

    This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanismsmore » by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.« less

  10. Double-wall tubing for oil recovery

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Carroll, W. F.; Jaffee, L. D.; Stimpson, L. D.

    1980-01-01

    Insulated double-wall tubing designed for steam injection oil recovery makes process more economical and allows deeper extension of wells. Higher quality wet steam is delivered through tubing to oil deposits with significant reductions in heat loss to surrounding rock allowing greater exploitation of previously unworkable reservoirs.

  11. Shoreline oiling effects and recovery of salt marsh macroinvertebrates from the Deepwater Horizon Oil Spill

    PubMed Central

    Fleeger, John W.; Bourgoin, Stefan M.; Mendelssohn, Irving A.; Lin, Qianxin; Hou, Aixin

    2017-01-01

    Salt marshes in northern Barataria Bay, Louisiana, USA were oiled, sometimes heavily, in the aftermath of the Deepwater Horizon oil spill. Previous studies indicate that fiddler crabs (in the genus Uca) and the salt marsh periwinkle (Littoraria irrorata) were negatively impacted in the short term by the spill. Here, we detail longer-term effects and recovery from moderate and heavy oiling over a 3-year span, beginning 30 months after the spill. Although neither fiddler crab burrow density nor diameter differed between oiled and reference sites when combined across all sampling events, these traits differed among some individual sampling periods consistent with a pattern of lingering oiling impacts. Periwinkle density, however, increased in all oiling categories and shell-length groups during our sampling period, and periwinkle densities were consistently highest at moderately oiled sites where Spartina alterniflora aboveground biomass was highest. Periwinkle shell length linearly increased from a mean of 16.5 to 19.2 mm over the study period at reference sites. In contrast, shell lengths at moderately oiled and heavily oiled sites increased through month 48 after the spill, but then decreased. This decrease was associated with a decline in the relative abundance of large adults (shell length 21–26 mm) at oiled sites which was likely caused by chronic hydrocarbon toxicity or oil-induced effects on habitat quality or food resources. Overall, the recovery of S. alterniflora facilitated the recovery of fiddler crabs and periwinkles. However, our long-term record not only indicates that variation in periwinkle mean shell length and length-frequency distributions are sensitive indicators of the health and recovery of the marsh, but agrees with synoptic studies of vegetation and infaunal communities that full recovery of heavily oiled sites will take longer than 66 months. PMID:28828273

  12. Shoreline oiling effects and recovery of salt marsh macroinvertebrates from the Deepwater Horizon Oil Spill.

    PubMed

    Deis, Donald R; Fleeger, John W; Bourgoin, Stefan M; Mendelssohn, Irving A; Lin, Qianxin; Hou, Aixin

    2017-01-01

    Salt marshes in northern Barataria Bay, Louisiana, USA were oiled, sometimes heavily, in the aftermath of the Deepwater Horizon oil spill. Previous studies indicate that fiddler crabs (in the genus Uca ) and the salt marsh periwinkle ( Littoraria irrorata) were negatively impacted in the short term by the spill. Here, we detail longer-term effects and recovery from moderate and heavy oiling over a 3-year span, beginning 30 months after the spill. Although neither fiddler crab burrow density nor diameter differed between oiled and reference sites when combined across all sampling events, these traits differed among some individual sampling periods consistent with a pattern of lingering oiling impacts. Periwinkle density, however, increased in all oiling categories and shell-length groups during our sampling period, and periwinkle densities were consistently highest at moderately oiled sites where Spartina alterniflora aboveground biomass was highest. Periwinkle shell length linearly increased from a mean of 16.5 to 19.2 mm over the study period at reference sites. In contrast, shell lengths at moderately oiled and heavily oiled sites increased through month 48 after the spill, but then decreased. This decrease was associated with a decline in the relative abundance of large adults (shell length 21-26 mm) at oiled sites which was likely caused by chronic hydrocarbon toxicity or oil-induced effects on habitat quality or food resources. Overall, the recovery of S. alterniflora facilitated the recovery of fiddler crabs and periwinkles. However, our long-term record not only indicates that variation in periwinkle mean shell length and length-frequency distributions are sensitive indicators of the health and recovery of the marsh, but agrees with synoptic studies of vegetation and infaunal communities that full recovery of heavily oiled sites will take longer than 66 months.

  13. Oil recovery method using high water content oil-external micellar dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.; Roszelle, W.O.; Svaldi, M.A.

    1971-10-19

    A high water content oil-external micellar dispersion (containing 55 percent to about 90 percent water) was developed for enhanced oil recovery. The micellar slug contained petroleum sulfonate (molecular weight averaged at about 350 to about 525), hydrocarbon, water and cosurfactant. The micellar slug was driven by a mobility buffer slug, which consisted of No. 530 Pusher, fusel oil and the residue Palestine water (420 ppm TDS) from the Palestine water reservoir in Palestine, Illinois. Fired Berea sandstone cores (porosity near 20 percent) were saturated with water (18,000 ppm sodium chloride), flooded with sweet black crude oil from Henry lease inmore » Illinois (7 cp at 72/sup 0/F), and waterflooded with water from Henry lease (18,000 ppm TDS). A maximum recovery of 11.5 percent of oil in place was recovered by 2 percent pore volume of a micellar dispersion containing petroleum sulfonate (MW 406), 70 percent by volume distilled water, and p-hexanol.« less

  14. A Sugar-Based Gelator for Marine Oil-Spill Recovery.

    PubMed

    Vibhute, Amol M; Muvvala, Venkatanarayana; Sureshan, Kana M

    2016-06-27

    Marine oil spills constitute an environmental disaster with severe adverse effects on the economy and ecosystem. Phase-selective organogelators (PSOGs), molecules that can congeal oil selectively from oil-water mixtures, have been proposed to be useful for oil-spill recovery. However, a major drawback lies in the mode of application of the PSOG to an oil spill spread over a large area. The proposed method of using carrier solvents is impractical for various reasons. Direct application of the PSOG as a solid, although it would be ideal, is unknown, presumably owing to poor dispersion of the solid through the oil. We have designed five cheap and easy-to-make glucose-derived PSOGs that disperse in the oil phase uniformly when applied as a fine powder. These gelators were shown to selectively congeal many oils, including crude oil, from oil-water mixtures to form stable gels, which is an essential property for efficient oil-spill recovery. We have demonstrated that these PSOGs can be applied aerially as a solid powder onto a mixture of crude oil and sea water and the congealed oil can then be scooped out. Our innovative mode of application and low cost of the PSOG offers a practical solution to oil-spill recovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less

  16. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  17. Caffeine accelerates recovery from general anesthesia

    PubMed Central

    Wang, Qiang; Fong, Robert; Mason, Peggy; Fox, Aaron P.

    2013-01-01

    General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients. PMID:24375022

  18. Nanostructured systems for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  19. Study on Dynamic Characteristics of Microbial Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Shi, Fang; Qin, Wuying; Yan, Jing

    2018-01-01

    With the rapid development of economy, the demand for oil is increasing day by day. MEOR has the advantages of low cost and no pollution to the environment, attracted widespread attention. In this paper, the dynamic characteristics of microbial enhanced oil recovery were studied by laboratory experiments. The result showed that all the microbial flooding recovery rate could reach more than 5%, and the total recovery could reach more than 35% and if the injection period of microbial composite system was advanced, the whole oil displacement process could be shortened and the workload would be reduced.

  20. [Accelerated postoperative recovery after colorectal surgery].

    PubMed

    Alfonsi, P; Schaack, E

    2007-01-01

    Accelerated recovery programs are clinical pathways which outline the stages, and streamline the means, and techniques aiming toward the desired end a rapid return of the patient to his pre-operative physical and psychological status. Recovery from colo-rectal surgery may be slowed by the patient's general health, surgical stress, post-surgical pain, and post-operative ileus. Both surgeons and anesthesiologists participate throughout the peri-operative period in a clinical pathway aimed at minimizing these delaying factors. Key elements of this pathway include avoidance of pre-operative colonic cleansing, early enteral feeding, and effective post-operative pain management permitting early ambulation (usually via thoracic epidural anesthesia). Pre-operative information and motivation of the patient is also a key to the success of this accelerated recovery program. Studies of such programs have shown decreased duration of post-operative ileus and hospital stay without an increase in complications or re-admissions. The elements of the clinical pathway must be regularly re-evaluated and updated according to local experience and published data.

  1. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  2. Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.

    PubMed

    Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong

    2017-11-16

    In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.

  3. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

  4. The Application Of Microbial Enhanced Oil Recovery On Unconventional Oil: A Field Specific Approach

    NASA Astrophysics Data System (ADS)

    Goodman, Sean; Millar, Andrew; Allison, Heather; McCarthy, Alan

    2014-05-01

    A substantial amount of the world's recoverable oil reserves are made from unconventional or heavy resources. However, great difficulty has been had in recovering this oil after primary and secondary recovery methods have been employed. Therefore, tertiary methods such as microbial enhanced oil recovery (MEOR) have been employed. MEOR involves the use of bacteria and their metabolic products to alter the oil properties or rock permeability within a reservoir in order to promote the flow of oil. Although MEOR has been trialed in the past with mixed outcomes, its feasibility on heavier oils has not been demonstrated. The aim of this study is to show that MEOR can be successfully applied to unconventional oils. By using an indigenous strain of bacteria isolated from a reservoir of interest and applied to field specific microcosms, we will look into the effect of these bacteria compared to variant inoculums to identify which mechanisms of action the bacteria are using to improve recovery. Using this information, we will be able to identify genes of interest and groups of bacteria that may be beneficial for MEOR and look accurately identify favorable bacteria within a reservoir.

  5. Improving Understanding of the Chemical Mechanism of Oil Recovery from Oil-Wet Carbonate Reservoirs: AN Experimental Approach

    NASA Astrophysics Data System (ADS)

    Purswani, P.; Karpyn, Z.

    2017-12-01

    Chemical tuning of injecting brine has found great success in improving oil recovery from oil-wet rocks. In particular, the importance of Mg2+, Ca2+, and SO42- ions has been identified as critical for incremental oil recovery via multi-ion exchange mechanism of wettability alteration. To improve understanding of this underlying mechanism and, to evaluate the individual contribution of these ions towards improving oil recovery, a series of waterflood experiments with varying ion composition were performed at 90 oC. Characterization techniques like zeta potential (ZP), contact angle measurements and trace element analysis were performed to evaluate the surface interactions taking place among the rock samples, brine solution, and the crude oil. ZP measurements highlight the affinity of Mg2+, Ca2+, and SO42- ions towards the rock surface in chemically tuned brines (CTBs), where, an increase in the magnitude of ZP was seen with an increase in the concentration of each of these ions. Oil recovery measurements showed an increase in oil recovery for all the CTBs compared to seawater. Relative permeability estimations and contact angle measurements showed corresponding trends of increasing water-wetness. Maximum recovery of 75.47% original oil in place (OOIP) was observed for the brine with increased Mg2+ ion concentration due to higher activity of Mg2+ ions. Lower recovery of 63.58% OOIP was seen for the brine with increased Ca2+ ion concentration due to lower activity of Ca2+ ions, and further lower recovery of 58.59% OOIP was seen for the brine with increased SO42- ion concentration due to the possible precipitation of these ions on the rock surface. These surface reactions were confirmed through the ionic analysis of the effluent brine during each waterflooding experiment. These results help understand the importance of chemical tuning of brines towards improving oil recovery and provides experimental insight into the chemical reactions that occur during this process.

  6. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... tangible property is used directly in a qualified enhanced oil recovery project and is essential to the... gas and water from the oil after it is produced are used directly in the project and are essential to... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Qualified enhanced oil recovery costs. 1.43-4...

  7. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... tangible property is used directly in a qualified enhanced oil recovery project and is essential to the... gas and water from the oil after it is produced are used directly in the project and are essential to... 26 Internal Revenue 1 2012-04-01 2012-04-01 false Qualified enhanced oil recovery costs. 1.43-4...

  8. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... tangible property is used directly in a qualified enhanced oil recovery project and is essential to the... gas and water from the oil after it is produced are used directly in the project and are essential to... 26 Internal Revenue 1 2013-04-01 2013-04-01 false Qualified enhanced oil recovery costs. 1.43-4...

  9. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  10. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less

  11. Polymer-Coated Nanoparticles for Reversible Emulsification and Recovery of Heavy Oil.

    PubMed

    Qi, Luqing; Song, Chen; Wang, Tianxiao; Li, Qilin; Hirasaki, George J; Verduzco, Rafael

    2018-06-05

    Heavy crude oil has poor solubility and a high density, making recovery and transport much more difficult and expensive than for light crude oil. Emulsifiers can be used to produce low viscosity oil-in-water emulsions for recovery and transport, but subsequent demulsification can be challenging. Here, we develop and implement interfacially active, pH-responsive polymer-coated nanoparticles (PNPs) to reversibly stabilize, recover, and break oil/water emulsions through variation of solution pH. Silica particles with poly(2-(dimethylamino)ethyl methacrylate) (DMAEMA) chains covalently grafted to the surface are prepared although a reversible addition fragmentation chain transfer grafting-through technique. The resulting DMAEMA PNPs can stabilize emulsions of high viscosity Canadian heavy oil at PNP concentrations as low as 0.1 wt % and at neutral pH. The performance of the DMAEMA PNPs exceeds that of DMAEMA homopolymer additives, which we attribute to the larger size and irreversible adsorption of DMAEMA PNPs to the oil/water interface. After recovery, the emulsion can be destabilized by the addition of acid to reduce pH, resulting in separation and settling of the heavy oil from the aqueous phase. Recovery of more than 10 wt % of the crude heavy oil-in-place is achieved by flooding with aqueous solution of 0.1 wt % DMAEMA PNPs without any additional surfactant or chemical. This work demonstrates the applicability of PNPs as surface active materials for enhanced oil recovery processes and for heavy oil transport.

  12. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  13. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true The enhanced oil recovery credit-general rules. 1... INCOME TAXES Credits Against Tax § 1.43-1 The enhanced oil recovery credit—general rules. (a) Claiming the credit—(1) In general. The enhanced oil recovery credit (the “credit”) is a component of the...

  14. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system havemore » been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.« less

  15. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munroe, Norman

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) atmore » the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and

  16. Oil recovery from refinery oily sludge via ultrasound and freeze/thaw.

    PubMed

    Zhang, Ju; Li, Jianbing; Thring, Ronald W; Hu, Xuan; Song, Xinyuan

    2012-02-15

    The effective disposal of oily sludge generated from the petroleum industry has received increasing concerns, and oil recovery from such waste was considered as one feasible option. In this study, three different approaches for oil recovery were investigated, including ultrasonic treatment alone, freeze/thaw alone and combined ultrasonic and freeze/thaw treatment. The results revealed that the combined process could achieve satisfactory performance by considering the oil recovery rate and the total petroleum hydrocarbon (TPH) concentrations in the recovered oil and wastewater. The individual impacts of five different factors on the combined process were further examined, including ultrasonic power, ultrasonic treatment duration, sludge/water ratio in the slurry, as well as bio-surfactant (rhamnolipids) and salt (NaCl) concentrations. An oil recovery rate of up to 80.0% was observed with an ultrasonic power of 66 W and an ultrasonic treatment duration of 10 min when the sludge/water ratio was 1:2 without the addition of bio-surfactant and salt. The examination of individual factors revealed that the addition of low concentration of rhamnolipids (<100mg/L) and salt (<1%) to the sludge could help improve the oil recovery from the combined treatment process. The experimental results also indicated that ultrasound and freeze/thaw could promote the efficiency of each other, and the main mechanism of oil recovery enhancement using ultrasound was through enhanced desorption of petroleum hydrocarbons (PHCs) from solid particles. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gasmore » produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.« less

  18. Chemically evolving systems for oil recovery enhancement in heavy oil deposits

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.

  19. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery.

    PubMed

    Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan

    2013-11-01

    The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    PubMed

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-06

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  1. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  2. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  3. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  4. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  5. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  6. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    PubMed

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  7. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    NASA Astrophysics Data System (ADS)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  8. Performance experimental investigation of novel multifunctional nanohybrids on enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Gharibshahi, Reza; Jafari, Arezou; Omidkhah, Mohammadreza; Nezhad, Javad Razavi

    2018-01-01

    The unique characteristics of materials at the nanoscale make them a good candidate to use in the enhanced oil recovery (EOR) processes. Therefore, in this study, the effect of functionalized multi-walled carbon nanotube/silica nanohybrids on the oil recovery factor is investigated experimentally and nanofluids were injected into a glass micromodel for the first time. The nanohybrids synthesized by using sol-gel method. Micromodels as microscale apparatuses considered as 2D porous medium. Because they enable visual observation of phase displacement behavior at the pore scale. Distillated water used as the dispersion medium of nanoparticles for nanofluids preparation. A series of runs designed for flooding operations included water injection, carbon nanotube/water injection and two nanohybrids with different weight of MWCNT to the overall weight of the nanohybrid structure (10% and 70%) into the distilled water. Also, the oil recovery factor was considered as the goal parameter to compare the results. It has been found that functionalized multi-walled carbon nanotube/silica nanohybrids have a great potential in enhanced oil recovery processes. Results showed that addition of nanohybrids into distillate water causes enhancement of sweep efficiency. In other words, the fingering effect decreases and higher surface of porous medium is in contact with the injected fluid. So the higher amount of oil can produce from the porous medium consequently. By injecting nanofluid with 0.1 wt. % of carbon nanotube, the oil recovery factor increases about 11 % in comparison with water injection alone. Also by increasing the weight of MWCNT to the overall weight of the nanohybrid structure from 10% to 70%, the oil recovery factor increases from 35% to 39%.

  9. Biosurfactant and enhanced oil recovery

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  10. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  11. Microfluidic and micro-core methods for enhanced oil recovery and carbon storage applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Phong

    Injection of CO2 into the subsurface, for both storage and oil recovery, is an emerging strategy to mitigate atmospheric CO2 emissions and associated climate change. In this thesis microfluidic and micro-core methods were developed to inform combined CO2-storage and oil recovery operations and determine relevant fluid properties. Pore scale studies of nanoparticle stabilized CO2-in-water foam and its application in oil recovery to show significant improvement in oil recovery rate with different oils from around the world (light, medium, and heavy). The CO2 nanoparticle-stabilized CO2 foams generate a three-fold increase in oil recovery (an additional 15% of initial oil in place) as compared to an otherwise similar CO2 gas flood. Nanoparticle-stabilized CO2 foam flooding also results in significantly smaller oil-in-water emulsion sizes. All three oils show substantial additional oil recovery and a positive reservoir homogenization effect. A supporting microfluidic approach is developed to quantify the minimum miscibility pressure (MMP) -- a critical parameter for combined CO 2 storage and enhanced oil recovery. The method leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. In terms of speed, a pressure scan for a single minimum miscibility pressure measurement required less than 30 min, in stark contrast to days or weeks with existing rising bubble and slimtube methods. In practice, subsurface geology also interacts with injected CO 2. Commonly carbonate dissolution results in pore structure, porosity, and permeability changes. These changes are measured by x-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium. This work leverages established advantages of

  12. Uncertainty Quantification for CO2-Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Middleton, R.; Bauman, J.; Viswanathan, H.; Fessenden-Rahn, J.; Pawar, R.; Lee, S.

    2013-12-01

    CO2-Enhanced Oil Recovery (EOR) is currently an option for permanently sequestering CO2 in oil reservoirs while increasing oil/gas productions economically. In this study we have developed a framework for understanding CO2 storage potential within an EOR-sequestration environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. By coupling a EOR tool--SENSOR (CEI, 2011) with a uncertainty quantification tool PSUADE (Tong, 2011), we conduct an integrated Monte Carlo simulation of water, oil/gas components and CO2 flow and reactive transport in the heterogeneous Morrow formation to identify the key controlling processes and optimal parameters for CO2 sequestration and EOR. A global sensitivity and response surface analysis are conducted with PSUADE to build numerically the relationship among CO2 injectivity, oil/gas production, reservoir parameters and distance between injection and production wells. The results indicate that the reservoir permeability and porosity are the key parameters to control the CO2 injection, oil and gas (CH4) recovery rates. The distance between the injection and production wells has large impact on oil and gas recovery and net CO2 injection rates. The CO2 injectivity increases with the increasing reservoir permeability and porosity. The distance between injection and production wells is the key parameter for designing an EOR pattern (such as a five (or nine)-spot pattern). The optimal distance for a five-spot-pattern EOR in this site is estimated from the response surface analysis to be around 400 meters. Next, we are building the machinery into our risk assessment framework CO2-PENS to utilize these response surfaces and evaluate the operation risk for CO2 sequestration and EOR at this site.

  13. Emulsions in porous media: From single droplet behavior to applications for oil recovery.

    PubMed

    Perazzo, Antonio; Tomaiuolo, Giovanna; Preziosi, Valentina; Guido, Stefano

    2018-06-01

    Emulsions are suspensions of droplets ubiquitous in oil recovery from underground reservoirs. Oil is typically trapped in geological porous media where emulsions are either formed in situ or injected to elicit oil mobilization and thus enhance the amount of oil recovered. Here, we briefly review basic concepts on geometrical and wetting features of porous media, including thin film stability and fluids penetration modes, which are more relevant for oil recovery and oil-contaminated aquifers. Then, we focus on the description of emulsion flow in porous media spanning from the behaviour of single droplets to the collective flow of a suspension of droplets, including the effect of bulk and interfacial rheology, hydrodynamic and physico-chemical interactions. Finally, we describe the particular case of emulsions used in underground porous media for enhanced oil recovery, thereby discussing some perspectives of future work. Although focused on oil recovery related topics, most of the insights we provide are useful towards remediation of oil-contaminated aquifers and for a basic understanding of emulsion flow in any kind of porous media, such as biological tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  15. MORICE--new technology for mechanical oil recovery in ice infested waters.

    PubMed

    Jensen, Hans V; Mullin, Joseph V

    2003-01-01

    Mechanical oil recovery in ice infested waters (MORICE) was initiated in 1995 to develop technology for the recovery of oil spills in ice. It has been a multinational effort involving Norwegian, Canadian, American and German organizations and researchers. Through a stepwise approach with the development organized in six separate phases, laboratory tests and field experiments have been conducted to study various ideas and concepts, and to refine the ideas that were considered to have the best potential for removing oil in ice. Put together in one unit, these concepts included ice processing equipment and two alternative oil recovery units installed on a work platform. In January 2002, the final oil and ice testing with MORICE concepts was conducted at the Ohmsett test facility in Leonardo, New Jersey. The unit has been referred to as a harbor version to indicate the size and operating conditions, but the concepts could be scaled up to increase the capacity of oil and ice processing. For heavier ice conditions it would also be necessary to increase the overall strength.

  16. Influence of relative permeabilities on chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Destefanis, M. F.; Savioli, G. B.

    2011-05-01

    The main objective of chemical flooding is to mobilize the trapped oil remaining after a secondary recovery by waterflooding. This purpose is achieved by lowering the oil-water interfacial tension and producing partial miscibility between both phases. The chemical partition among phases (phase behavior) influences all other physical properties. In particular, it affects residual saturations determining relative permeability curves. Relative permeabilities rule the flow of each phase through the porous medium, so they play an essential role in oil recovery. Therefore, in this work we study the influence of relative permeabilities on the behavior of a surfactant-polymer flooding for the three different types of phase behavior. This analysis is performed applying the 3D compositional numerical simulator UTCHEM developed at the University of Texas at Austin. From the examples studied, we conclude that the influence of relative permeabilities depends on the type of phase behavior, i.e., as microemulsion relative permeability decreases, oil recovery increases for Types II(+) and III while slightly decreases for Type II(-). Moreover, a better displacement efficiency is observed for Types II(+) and III, because they behave similarly to a miscible displacement.

  17. [Study on effect of oil-bearing solution environment of Caryophylli Flos and other traditional Chinese medicines on system flux and oil recovery rate].

    PubMed

    Fan, Wen-Ling; Guo, Li-Wei; Lin, Ying; Shen, Jie; Cao, Gui-Ping; Zhu, Yun; Xu, Min; Yang, Lei

    2013-10-01

    The membrane enrichment process of traditional Chinese medicine volatile oil is environmental friendly and practical, with a good application prospect. In this article, oil-bearing solutions of eight traditional Chinese medicines, namely Caryophylli Flos, Schizonepetae Herba, Eupatorii Herb, Acori Talarinowii Rhizoma, Magnoliae Flos, Chrysanthemum indicum, Cyperi Rhizoma and Citri Reticulatae Pericarpium Viride, were taken as the experimental system. Under unified conditions (membrane: PVDF-14W, temperature: 40 degreeC, pressure: 0. 1 MPa, membrane surface speed: 150 r min- 1), trans-membrane was conducted for above eight oil-bearing solutions to explore the effect of their oil-bearing solution environment on system flux and oil recovery rate. The results showed that systems with smaller pH had a lower flux, without significant effect on oil recovery rate. Greater differences between the surface tension of solutions and that of pure water contributed to a lower oil recovery rate. The conductivity had no notable effect on membrane enrichment process. Systems with high turbidity had a lower flux, without remarkable effect on oil recovery rat. Heavy oils showed lower flux than light ones, but with a slightly higher oil recovery rat. Systems with higher viscosity had a lower flux than those with lower viscosity. Except for Magnoliae Flos volatile oil, all of the remaining volatile oils showed a much higher oil recovery rat than systems with high viscosity. The above results could provide data support and theoretical basis for the industrialization of membrane enrichment volatile oil technology.

  18. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  19. Starting up microbial enhanced oil recovery.

    PubMed

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  20. Carbon dioxide enhanced oil recovery performance according to the literature

    USGS Publications Warehouse

    Olea, Ricardo A.

    2017-07-17

    IntroductionThe need to increase the efficiency of oil recovery and environmental concerns are bringing to prominence the use of carbon dioxide (CO2) as a tertiary recovery agent. Assessment of the impact of flooding with CO2 all eligible reservoirs in the United States not yet undergoing enhanced oil recovery (EOR) requires making the best possible use of the experience gained in 40 years of applications. Review of the publicly available literature has located relevant CO2-EOR information for 53 units (fields, reservoirs, pilot areas) in the United States and 17 abroad.As the world simultaneously faces an increasing concentration of CO2 in the atmosphere and a higher demand for fossil fuels, the CO2-EOR process continues to gain popularity for its efficiency as a tertiary recovery agent and for the potential for having some CO2 trapped in the subsurface as an unintended consequence of the enhanced production (Advanced Resources International and Melzer Consulting, 2009). More extensive application of CO2-EOR worldwide, however, is not making it significantly easier to predict the exact outcome of the CO2 flooding in new reservoirs. The standard approach to examine and manage risks is to analyze the intended target by conducting laboratory work, running simulation models, and, finally, gaining field experience with a pilot test. This approach, though, is not always possible. For example, assessment of the potential of CO2-EOR at the national level in a vast country such as the United States requires making forecasts based on information already available.Although many studies are proprietary, the published literature has provided reviews of CO2-EOR projects. Yet, there is always interest in updating reports and analyzing the information under new perspectives. Brock and Bryan (1989) described results obtained during the earlier days of CO2-EOR from 1972 to 1987. Most of the recovery predictions, however, were based on intended injections of 30 percent the size of

  1. Zeta potential in oil-brine-sandstone system and its role in oil recovery during controlled salinity waterflooding

    NASA Astrophysics Data System (ADS)

    Li, S.; Jackson, M.

    2017-12-01

    Wettability alteration is widely recognised as a primary role in improved oil recovery (IOR) during controlled salinity waterflooding (CSW) by modifying brine composition. The change of wettability of core sample depends on adsorption of polar oil compounds into the mineral surface which influences its surface charge density and zeta potential. It has been proved that zeta potentials can be useful to quantify the wettability and incremental oil recovery in natural carbonates. However, the study of zeta potential in oil-brine-sandstone system has not investigated yet. In this experimental study, the zeta potential is used to examine the controlled salinity effects on IOR in nature sandstone (Doddington) aged with two types of crude oils (Oil T and Oil D) over 4 weeks at 80 °C. Results show that the zeta potential measured in the Oil T-brine-sandstone system following primary waterflooding decreases compared to that in fully water saturation, which is consistent with the negative oil found in carbonates study, and IOR response during secondary waterflooding using diluted seawater was observed. In the case of negative oil, the injected low salinity brine induces a more repulsive electrostatic force between the mineral-brine interface and oil-brine interface, which results in an increase disjoining pressure and alters the rock surface to be more water-wet. For Oil D with a positive oil-brine interface, the zeta potential becomes more positive compared to that under single phase condition. The conventional waterflooding fails to observe the IOR in Oil D-brine-sandstone system due to a less repulsive electrostatic force built up between the two interfaces. After switching the injection brine from low salinity brine to formation brine, the IOR was observed. Measured zeta potentials shed some light on the mechanism of wettability alteration in the oil-brine-sandstone system and oil recovery during CSW.

  2. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  3. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  4. Modeling of the Temperature Field Recovery in the Oil Pool

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.

    2018-05-01

    This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).

  5. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    PubMed

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  6. Effects of a dual-pump crude-oil recovery system, Bemidji, Minnesota, USA

    USGS Publications Warehouse

    Delin, Geoffrey N.; Herkelrath, William N.

    2014-01-01

    A crude-oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual-pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved-oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil-phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.

  7. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the anticipated use in a project or activity is a reasonable method. (b) Costs defined—(1) Qualified... used in the tertiary recovery method. Therefore, the storage tank is used directly in the project and... qualified tertiary recovery method. As part of the enhanced oil recovery project, K drills injection wells...

  8. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    PubMed

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. The Prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet.

    PubMed

    González, Manuel; Uriarte, Adolfo; Pozo, Rogelio; Collins, Michael

    2006-01-01

    On 19th November 2002, the oil tanker Prestige (containing 77,000 tonnes of heavy fuel no. 2 (M100)) sank in 3500 m of water, off the coast of northwestern Spain. Intermittent discharge of oil from the stricken tanker, combined with large-scale sea surface dispersion, created a tracking and recovery problem. Initially, conventional oil recovery approaches were adopted, close to the wreck. With time and distance from the source, the oil dispersed dramatically and became less viscous. Consequently, a unique monitoring, prediction and data dissemination system was established, based upon the principles of 'operational oceanography'; this utilised in situ tracked buoys and numerical (spill trajectory) modelling outputs, in combination with remote sensing (satellite sensors and visual observation). Overall, wind effects on the surface waters were found to be the most important mechanism controlling the smaller oil slick movements. The recovery operation involved up to 180 fishing boats, 9-30 m in length. Such labour-intensive recovery of the oil (21,000 tonnes, representing an unprecedented ratio of 6.6 tonnes at sea, per tonne recovered on land) continued over a 10 month period. The overall recovery at sea, by the fishing vessels, represented 63% of the total oil recovered at sea; this compares to only 37% recovered by specialised 'counter- pollution' vessels.

  11. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  12. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production

    NASA Astrophysics Data System (ADS)

    Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.

    2015-07-01

    Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with

  13. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding

    NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-11-01

    Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly, and an enormous progress in the application of nanotechnology in this area is to be expected. The nanotechnology has been widely used in several other industries, and the interest in the oil industry is increasing. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery, and it is chosen as an alternative method to unlock the remaining oil resources and applied as a new enhanced oil recovery method in last decade. This paper therefore focuses on the reviews of the application of nanotechnology in chemical flooding process in oil recovery and reviews the applications of nanomaterials for improving oil recovery that have been proposed to explain oil displacement by polymer flooding within oil reservoirs, and also this paper highlights the research advances of polymer in oil recovery. Nanochemical flooding is an immature method from an application point of view.

  14. The effects of fractional wettability on microbial enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Armstrong, R. T.

    2011-12-01

    Microbial enhanced oil recovery (MEOR) is a tertiary oil recovery technology that has had inconsistent success at the field-scale, while lab-scale experiments are mostly successful. One potential reason for these inconsistencies is that the efficacy of MEOR in fractional-wet systems is unknown. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (that lower interfacial tension via biosurfactant production) into fractional-wet cores containing residual oil. Fractional-wet cores tested were 50%, 25%, and 0% oil-wet and two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with x-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR and wettability effects. Results indicate that during MEOR the larger residual oil blobs in mostly fractional-wet pores and residual oil held under relatively low capillary pressures were the main fractions recovered, while residual oil blobs in purely oil-wet pores remained in place. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44% and 80%; the highest AOR values were observed in the most oil-wet system.

  15. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir

  16. Distribution and Recovery of Crude Oil in Various Types of Porous Media and Heterogeneity Configurations

    NASA Astrophysics Data System (ADS)

    Tick, G. R.; Ghosh, J.; Greenberg, R. R.; Akyol, N. H.

    2015-12-01

    A series of pore-scale experiments were conducted to understand the interfacial processes contributing to the removal of crude oil from various porous media during surfactant-induced remediation. Effects of physical heterogeneity (i.e. media uniformity) and carbonate soil content on oil recovery and distribution were evaluated through pore scale quantification techniques. Additionally, experiments were conducted to evaluate impacts of tetrachloroethene (PCE) content on crude oil distribution and recovery under these same conditions. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was likely responsible for mobilization and recovery of lighter fractions of crude oil. Corresponding increases in viscous forces were insufficient to initiate and maintain the displacement of the heavy crude oil in more homogeneous porous media systems during surfactant flushing. Interestingly, higher relative recoveries of heavy oil fractions were observed within more heterogeneous porous media indicating that wettability may be responsible for controlling mobilization in these systems. Compared to the "pure" crude oil experiments, preliminary results show that crude oil with PCE produced variability in oil distribution and recovery before and after each surfactant-flooding event. Such effects were likely influenced by viscosity and interfacial tension modifications associated with the crude-oil/solvent mixed systems.

  17. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, Jill S.

    2002-01-29

    The objectives of this five-year project were: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding.

  18. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding

    NASA Astrophysics Data System (ADS)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-06-01

    This study aims to investigate the influence of carbon nanotubes based nanofluid on interfacial tension and oil recovery efficiency. Practically multi-walled carbon nanotubes were successfully synthesized using chemical vapour deposition technique and characterized using X-ray diffraction and Field Emission Scanning Electron microscope in order to understand its structure, shape, and morphology. Nanofluids are one of the interesting new agents for enhanced oil recovery (EOR) that can change the reservoir rock-fluid properties in terms of interfacial tension and wettability. In this work, different concentration of carbon nanotubes based fluids were prepared and the effect of each concentration on surface tension was determined using pendant drop method. After specifying the optimum concentration of carbon nanotubes based nanofluid, core flooding experiment was conducted by two pore volume of brine and two pore volume of nanofluid and then oil recovery factor was calculated. The results show that carbon nanotubes can bring in additional recovery factor of 18.57% in the glass bead sample. It has been observed that nanofluid with high surface tension value gives higher recovery. It was found that the optimum value of concentration is 0.3 wt% at which maximum surface tension of 33.46 mN/m and oil recovery factor of 18.57% was observed. This improvement in recovery factor can be recognized due to interfacial tension reduction and wettability alteration.

  19. Microbial enhancement of oil recovery: Recent advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendeesmore » from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.« less

  20. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    PubMed

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  1. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding

    PubMed Central

    Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan

    2016-01-01

    Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified. PMID:27876833

  2. Surfactant based enhanced oil recovery mediated by naturally occurring microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-01-01

    Oil recovery experiments using Bacillus licheniformis JF-2 and a sucrose based nutrient were performed using Berea sandstone cores ranging in permeability from 85 to 510 md (0.084 to 0.503 {mu}m{sup 2}). Bacillus licheniformis JF-2, a surfactant producing microorganism isolated from an oilfield environment, is nonpathogenic and will not reduce sulfate. Oil recovery efficiencies (E{sub r}) for four different crude oils ranging from 19.1 to 38.1{degrees}API (0.9396 to 0.8343 g/cm{sup 3}) varied from 2.8 to 42.6% of the waterflood residual oil. Injection of cell-free'' supernatants resulted in E{sub r} values from 7.0 to 16.4%. Microbially-mediated systems reduced interfacial tension (IFT) aboutmore » 20 mN/m for four different crude oils. Following microbial flood experimentation microorganisms were distributed throughout the core (110 md (0.109 {mu}m{sup 2}) Berea sandstone) with a predominance of cells located near the outlet end. 34 refs., 6 figs., 7 tabs.« less

  3. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    PubMed

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  4. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  5. Decomposition of PCBs in transformer oil using an electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung

    2012-07-01

    Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.

  6. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiedemann, H.A.

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  7. 26 CFR 1.43-2 - Qualified enhanced oil recovery project.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Qualified enhanced oil recovery project. 1.43-2 Section 1.43-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME... the tertiary recovery method; or (ii) Test or experimental injections. (2) Example. The following...

  8. 26 CFR 1.43-2 - Qualified enhanced oil recovery project.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Qualified enhanced oil recovery project. 1.43-2 Section 1.43-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME... the tertiary recovery method; or (ii) Test or experimental injections. (2) Example. The following...

  9. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less

  10. Essays on carbon policy and enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil

  11. Polymer as permeability modifier in porous media for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Parsa, Shima; Weitz, David

    2017-11-01

    We use confocal microscopy to directly visualize the changes in morphology and mobilization of trapped oil ganglia within a 3D micromodel of porous media upon polymer flooding. Enhanced oil recovery is achieved in polymer flooding with large molecular weight at concentrations close or higher than a critical concentration of polymer. We also measure the fluctuations of the velocity of the displacing fluid and show that the velocities change upon polymer flooding in the whole medium. The changes in the fluid velocities are heterogeneous and vary in different pores, hence only providing enough pressure gradient across a few of the trapped oil ganglia and mobilize them. Our measurements show that polymer flooding is an effective method for enhancing oil recovery due to retention of polymer on the solid surfaces and changing the resistances of the available paths to water.

  12. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, R.

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core andmore » linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.« less

  13. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

  14. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davey, R.A.; Lappin-Scott, H.

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducingmore » the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.« less

  15. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    PubMed

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

  16. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    USGS Publications Warehouse

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  17. The impact of oil burning on kraft recovery furnace SO sub 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Someshwar, A.V.; Pinkerton, J.E.; Caron, A.L.

    1991-04-01

    Auxiliary fossil fuel, either natural gas or fuel oil, is burned in kraft recovery furnaces during furnace startups and shutdowns, furnace upsets, and periods of substantially reduced rates of black liquor firing. The efficiency of sulfur capture and retention during normal operation of a kraft recovery furnace is inherently high. Consequently, not all the SO{sub 2} from occasional burning of sulfur-containing fuel oil in the furnace would be expected to end up in the stack gases. However, the extent to which such SO{sub 2} is captured by the alkali fume generation processes has not been well documented. In this paper,more » the authors examines the impact that burning oil in kraft recovery furnaces has on the SO{sub 2} emissions. The work included analyses of long-term SO{sub 2} data from a continuous emission monitoring system (CEMS) obtained for four furnaces that burned medium sulfur fuel oil as auxiliary fuel. It also included tests conducted on four furnaces in which varying amounts of oil were co-fired with black liquor.« less

  18. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.

    PubMed

    Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz

    2016-02-01

    This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.

  19. Response to heavy, non-floating oil spilled in a Great Lakes river environment: a multiple-lines-of-evidence approach for submerged oil assessment and recovery

    USGS Publications Warehouse

    Dollhopf, Ralph H.; Fitzpatrick, Faith A.; Kimble, Jeffrey W.; Capone, Daniel M.; Graan, Thomas P.; Zelt, Ronald B.; Johnson, Rex

    2014-01-01

    The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, MI in July 2010 is one of the largest freshwater oil spills in North American history. The unprecedented scale of impact and massive quantity of oil released required the development and implementation of new approaches for detection and recovery. At the onset of cleanup, conventional recovery techniques were employed for the initially floating oil and were successful. However, volatilization of the lighter diluent, along with mixing of the oil with sediment during flooded, turbulent river conditions caused the oil to sink and collect in natural deposition areas in the river. For more than three years after the spill, recovery of submerged oil has remained the predominant operational focus of the response. The recovery complexities for submerged oil mixed with sediment in depositional areas and long-term oil sheening along approximately 38 miles of the Kalamazoo River led to the development of a multiple-lines-of-evidence approach comprising six major components: geomorphic mapping, field assessments of submerged oil (poling), systematic tracking and mapping of oil sheen, hydrodynamic and sediment transport modeling, forensic oil chemistry, and net environmental benefit analysis. The Federal On-Scene Coordinator (FOSC) considered this information in determining the appropriate course of action for each impacted segment of the river. New sources of heavy crude oils like diluted bitumen and increasing transportation of those oils require changes in the way emergency personnel respond to oil spills in the Great Lakes and other freshwater ecosystems. Strategies to recover heavy oils must consider that the oils may suspend or sink in the water column, mix with fine-grained sediment, and accumulate in depositional areas. Early understanding of the potential fate and behavior of diluted bitumen spills when combined with timely, strong conventional recovery methods can

  20. Method for recovery of petroleum oil from confining structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, R.H.

    1969-09-02

    Injected ammonia spontaneously reacts with the acid content of heavy crude petroleum oil to produce ammonium soaps in situ. The soaps cause an oil-in-water emulsion to be formed in the presence of reservoir (or flood) water, reducing the effective viscosity of the crude oil. If the ammonia slug is followed by steam, an advancing emulsion barrier is created by the thermal decomposition of part of the emulsion, freeing ammonia which can then react with additional crude in advance of the emulsion. Packs of 20-30 mesh Ottawa sand were saturated with water, flooded with Tulare crude oil from North Midway fieldmore » in California (high specific gravity), and waterflooded. A slug of 5.71 percent PV of 17 N ammonium hydroxide followed by water gave a total oil recovery of about 90 percent of the original oil.« less

  1. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    PubMed

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  2. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery

    PubMed Central

    Zhao, Jin

    2017-01-01

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25–40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle–surfactant hybrid flooding process. PMID:29308190

  3. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  4. Harlequin duck population recovery following the 'Exxon Valdez' oil spill: Progress, process and constraints

    USGS Publications Warehouse

    Esler, Daniel N.; Bowman, Timothy D.; Trust, Kimberly A.; Ballachey, Brenda E.; Dean, Thomas A.; Jewett, Stephen C.; O'Clair, Charles E.

    2002-01-01

    Following the 1989 'Exxon Valdez' oil spill in Prince William Sound, Alaska, we studied the status of recovery of harlequin duck Histrionicus histrionicus populations during 1995 to 1998. We evaluated potential constraints on full recovery, including (1) exposure to residual oil; (2) food limitation; and (3) intrinsic demographic limitations on population growth rates. In this paper, we synthesize the findings from our work and incorporate information from other harlequin duck research and monitoring programs to provide a comprehensive evaluation of the response of this species to the 'Exxon Valdez' spill. We conclude that harlequin duck populations had not fully recovered by 1998. Furthermore, adverse effects continued as many as 9 yr after the oil spill, in contrast to the conventional paradigm that oil spill effects on bird populations are short-lived. These conclusions are based on the findings that (1) elevated cytochrome P450 (CYP1A) induction on oiled areas indicated continued exposure to oil in 1998; (2) adult female winter survival was lower on oiled than unoiled areas during 1995 to 1998; (3) fall population surveys by the Alaska Department of Fish and Game indicated numerical declines in oiled areas during 1995 to 1997; and (4) densities on oiled areas in 1996 and 1997 were lower than expected using models that accounted for effects of habitat attributes. Based on hypothesized links between oil contamination and demography, we suggest that harlequin duck population recovery was constrained primarily by continued oil exposure. Full population recovery will also be delayed by the time necessary for intrinsic population growth to allow return to pre-spill numbers following cessation of residual oil spill effects. Although not all wildlife species were affected by the 'Exxon Valdez' oil spill, and some others may have recovered quickly from any effects, harlequin duck life history characteristics and benthic, nearshore feeding habits make them susceptible to

  5. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Ryan T.; Wildenschild, Dorthe

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columnsmore » were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.« less

  6. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    PubMed

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles.

  7. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ andmore » in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future

  8. Potential of wheat bran to promote indigenous microbial enhanced oil recovery.

    PubMed

    Zhan, Yali; Wang, Qinghong; Chen, Chunmao; Kim, Jung Bong; Zhang, Hongdan; Yoza, Brandon A; Li, Qing X

    2017-06-01

    Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO 3 and NH 4 H 2 PO 4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (A n -) and anaerobic (A 0 -) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, A n - and early A 0 -stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A 0 -stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.

  9. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR)

    PubMed Central

    Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid

  10. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).

    PubMed

    Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for

  11. Microbial enhancement of oil recovery: Recent advances. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendeesmore » from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.« less

  12. Modeling for the allocation of oil spill recovery capacity considering environmental and economic factors.

    PubMed

    Ha, Min-Jae

    2018-01-01

    This study presents a regional oil spill risk assessment and capacities for marine oil spill response in Korea. The risk assessment of oil spill is carried out using both causal factors and environmental/economic factors. The weight of each parameter is calculated using the Analytic Hierarchy Process (AHP). Final regional risk degrees of oil spill are estimated by combining the degree and weight of each existing parameter. From these estimated risk levels, oil recovery capacities were determined with reference to the recovery target of 7500kl specified in existing standards. The estimates were deemed feasible, and provided a more balanced distribution of resources than existing capacities set according to current standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  14. An extended model for ultrasonic-based enhanced oil recovery with experimental validation.

    PubMed

    Mohsin, Mohammed; Meribout, Mahmoud

    2015-03-01

    This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  16. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). Ifmore » MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  17. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.

    PubMed

    Han, L; Liu, P; Peng, Y; Lin, J; Wang, Q; Ma, Y

    2014-07-01

    The interfacial tension of rhamnolipids and their applications in enhanced oil recovery are dependent on their chemical structures and compositions. To improve their performances of interfacial tension and enhanced oil recovery, the engineered strategies were applied to produce novel rhamnolipids with different chemical structures and compositions. By introducing different key genes for rhamnolipid biosynthesis, Escherichia coli was firstly constructed to produce rhamnolipids that showed different performances in interfacial tension from those from Pseudomonas aeruginosa due to the different fatty acyl compositions. Then, the mutant RhlBs were created by directed evolution and subsequent site-directed mutagenesis and resulted in the production of the novel rhamnolipids with the different performances in interfacial tension as well as enhanced oil recovery. Lastly, computational modelling elucidates that the single amino acid mutation at the position 168 in RhlB would change the volume of binding pocket for substrate and thus affect the selectivity of rhamnolipid formation in E. coli. The novel rhamnolipids that showed the improved performances of interfacial tension and the potential different applications in enhanced oil recovery were successfully produced by engineered E. coli. This study proved that the combination of metabolic engineering and protein engineering is an important engineered strategy to produce many novel metabolites in micro-organisms. © 2014 The Society for Applied Microbiology.

  18. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.

    PubMed

    Mohammadian, Erfan; Junin, Radzuan; Rahmani, Omeid; Idris, Ahmad Kamal

    2013-02-01

    Due to partial understanding of mechanisms involved in application of ultrasonic waves as enhanced oil recovery method, series of straight (normal), and ultrasonic stimulated water-flooding experiments were conducted on a long unconsolidated sand pack using ultrasonic transducers. Kerosene, vaseline, and SAE-10 (engine oil) were used as non-wet phase in the system. In addition, a series of fluid flow and temperature rise experiments were conducted using ultrasonic bath in order to enhance the understanding about contributing mechanisms. 3-16% increase in the recovery of water-flooding was observed. Emulsification, viscosity reduction, and cavitation were identified as contributing mechanisms. The findings of this study are expected to increase the insight to involving mechanisms which lead to improving the recovery of oil as a result of application of ultrasound waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Application of Sodium Ligno Sulphonate as Surfactant in Enhanced Oil Recovery and Its Feasibility Test for TPN 008 Oil

    NASA Astrophysics Data System (ADS)

    Prakoso, N. I.; Rochmadi; Purwono, S.

    2018-04-01

    One of enhanced oil recovery (EOR) methods is using surfactants to reduce the interfacial tension between the injected fluid and the oil in old reservoir. The most important principle in enhanced oil recovery process is the dynamic interaction of surfactants with crude oil. Sodium ligno sulphonate (SLS) is a commercial surfactant and already synthesized from palm solid waste by another researcher. This work aimed to apply SLS as a surfactant for EOR especially in TPN 008 oil from Pertamina Indonesia. In its application as an EOR’s surfactant, SLS shall be passed feasibility test like IFT, thermal stability, compatibility, filtration, molecular weight, density, viscosity and pH tests. The feasibility test is very important for a preliminary test prior to another advanced test. The results demonstrated that 1% SLS solution in formation water (TPN 008) had 0.254 mN/M IFT value and was also great in thermal stability, compatibility, filtration, molecular weight, viscosity and pH test.

  20. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Geologic input to enhanced oil recovery project planning in south Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, N.L.; Ellis, D.; Heward, A.P.

    1986-05-01

    South Oman clastic reservoirs contain a combined stock-tank oil in place of more than 1.9 billion m/sup 3/ of predominantly heavy oil distributed in almost 40 fields of varying size. Successful early application of such enhanced oil recovery (EOR) methods as steam flood, polymer drive, and steam soak could realize undiscounted incremental recoveries of 244 million m/sup 3/ of oil. Target oil is contained in three reservoir intervals with distinct characteristics relevant to EOR. (1) The Cambrian-Ordovician Haima Group is a thick monotonous sequence of continental and coastal sands; major problems are steam-rock reactions, recovery factors, effective kv/kh (ratio ofmore » vertical to horizontal permeability), and aquifer strength. (2) The Permian-Carboniferous Al Khlata Formation is a glacial package showing severe heterogeneity, strong permeability anisotropy, and poor predictability. (3) The Permian Gharif Formation is a coastal to fluvial sequence with isolated and multilayer channel sands, smectitic clays, and anomalous primary production performance. Several EOR pilot projects are either ongoing or in preparation as part of a longer term EOR strategy. Geologic input is important at four essential stages of pilot planning: initial project ranking, optimization of pilot location, definition of pilot size, and predictive/history match simulations. Each stage is illustrated using a specific project example from south Oman to show the diverse geologic and logistic problems of the area. Although geologic aspects are highlighted, EOR project planning in south Oman is multidisciplinary, with integration being aided by a dedicated EOR coordination department.« less

  2. Chemical enhanced oil recovery (EOR) activities in Indonesia: How it's future

    NASA Astrophysics Data System (ADS)

    Abdurrahman, Muslim

    2017-05-01

    Enhanced oil recovery (EOR) is a proven method for increasing oil production in many oil fields in the world. Huge oil remaining in the reservoir after primary and secondary recovery stage are the main reason for developing EOR methods. Approximately of 49.50 billion barrels oil as a candidate for EOR activities in Indonesia. This present study focuses on the chemical EOR activities involved surfactant and polymer. This research based on pertinent information from various resources such as journal papers, conference papers, and report from the government. Based on this information, this paper explain in detail the progress of each project and it shows the potential oil field employ chemical EOR in the near future. Generally, the EOR activities can be categorized into two phases such as preliminary study phase and field implementation phase. In the preliminary study, the activities simply involve experimental and/or simulation works. Following the preliminary is the field implementation phase which can be categorized into three phases such as field trial, pilot project, and full-scale. In fact, several activities have been conducted by Lemigas (government oil and gas research center), Institut Teknologi Bandung, Institut Pertanian Bogor. These activities focused on laboratory and simulation work. Those institutions have been developing the chemical formula collaborating with oil companies for applying the EOR method in their oil fields. Currently, status of chemical EOR activities include 5 oil fields under pilot project and 12 oil fields under field trial. There are 7 oil fields applying surfactant, 4 oil fields by alkaline-surfactant-polymer (ASP), 2 oil fields by polymer, 1 oil field by surfactant polymer (SP), and 1 oil field by caustic. According to this information, we will have insight knowledge about the EOR current activities, the main issues, future activities on chemical EOR in Indonesia. Moreover, this study can became the preliminary information for

  3. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; N. Youssef; T. Fincher

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. Themore » surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the

  4. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  5. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  6. Caffeine accelerates recovery from general anesthesia via multiple pathways.

    PubMed

    Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng

    2017-09-01

    Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that

  7. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    PubMed Central

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  8. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    PubMed

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  9. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    PubMed

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    PubMed

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  11. Sea otter population status and the process of recovery from the 1989 'Exxon Valdez' oil spill

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.; Dean, T.A.; Fukuyama, Allan K.; Jewett, S.C.; McDonald, L.; Monson, Daniel H.; O'Clair, Charles E.; VanBlaricom, G.R.

    2002-01-01

    Sea otter Enhydra lutris populations were severely affected by the 1989 'Exxon Valdez' oil spill in western Prince William Sound, AK, and had not fully recovered by 2000. Here we present results of population surveys and incorporate findings from related studies to identify current population status and factors affecting recovery. Between 1993 and 2000, the number of sea otters in the spill-area of Prince William Sound increased by about 600 to nearly 2700. However, at Knight Island, where oil exposure and sea otter mortality in 1989 was most severe, no increase has been observed. Sea otter reproduction was not impaired, and the age and sex composition of captured otters are consistent with both intrinsic reproduction and immigration contributing to recovery. However, low resighting rates of marked otters at Knight Island compared to an unoiled reference area, and high proportions of young otters in beach cast carcasses through 1998, suggest that the lack of recovery was caused by relatively poor survival or emigration of potential recruits. Significantly higher levels of cytochrome P4501A (CYP1A), a biomarker of hydrocarbons, were found in sea otters at Knight Island from 1996 to 1998 compared to unoiled Montague Island, implicating oil effects in the lack of recovery at Knight Island. Delayed recovery does not appear to be directly related to food limitation. Although food availability was relatively low at both oiled and unoiled areas, we detected significant increases in sea otter abundance only at Montague Island, a finding inconsistent with food as a principal limiting factor. Persistent oil in habitats and prey provides a source of continued oil exposure and, combined with relatively low prey densities, suggests a potential interaction between oil and food. However, sea otters foraged more successfully at Knight Island and young females were in better condition than those at Montague Island. We conclude that progress toward recovery of sea otters in Prince

  12. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    PubMed

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  13. Sonochemical approaches to enhanced oil recovery.

    PubMed

    Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Altunina, Lyubov K; Gerasin, Artyom S; Pashin, Dmitriy M; Mason, Timothy J

    2015-07-01

    Oil production from wells reduces with time and the well becomes uneconomic unless enhanced oil recovery (EOR) methods are applied. There are a number of methods currently available and each has specific advantages and disadvantages depending on conditions. Currently there is a big demand for new or improved technologies in this field, the hope is that these might also be applicable to wells which have already been the subject of EOR. The sonochemical method of EOR is one of the most promising methods and is important in that it can also be applied for the treatment of horizontal wells. The present article reports the theoretical background of the developed sonochemical technology for EOR in horizontal wells; describes the requirements to the equipment needed to embody the technology. The results of the first field tests of the technology are reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    NASA Astrophysics Data System (ADS)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  15. Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Puneeth, S. B.; Kim, Young Ho; Goel, Sanket

    2017-02-01

    As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.

  16. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery

    PubMed Central

    2017-01-01

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10–2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion. PMID:29093612

  17. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    PubMed

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  18. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  19. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  20. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  1. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    PubMed

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dataset on experimental investigation of gum arabic coated alumina nanoparticles for enhanced recovery of nigerian medium crude oil.

    PubMed

    Orodu, Oyinkepreye D; Orodu, Kale B; Afolabi, Richard O; Dafe, Eboh A

    2018-08-01

    The dataset in this article are related to an experimental Enhanced Oil Recovery (EOR) scheme involving the use of dispersions containing Gum Arabic coated Alumina Nanoparticles (GCNPs) for Nigerian medium crude oil. The result contained in the dataset showed a 7.18% (5 wt% GCNPs), 7.81% (5 wt% GCNPs), and 5.61% (3 wt% GCNPs) improvement in the recovery oil beyond the water flooding stage for core samples A, B, and C respectively. Also, the improvement in recovery of the medium crude oil by the GCNPs dispersions when compared to Gum Arabic polymer flooding was evident in the dataset.

  4. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals.

    PubMed

    Pedraza-de la Cuesta, Susana; Keijzers, Lore; van der Wielen, Luuk A M; Cuellar, Maria C

    2018-04-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim.

  5. Optimizing the recovery efficiency of Finnish oil combating vessels in the Gulf of Finland using Bayesian Networks.

    PubMed

    Lehikoinen, Annukka; Luoma, Emilia; Mäntyniemi, Samu; Kuikka, Sakari

    2013-02-19

    Oil transport has greatly increased in the Gulf of Finland over the years, and risks of an oil accident occurring have risen. Thus, an effective oil combating strategy is needed. We developed a Bayesian Network (BN) to examine the recovery efficiency and optimal disposition of the Finnish oil combating vessels in the Gulf of Finland (GoF), Eastern Baltic Sea. Four alternative home harbors, five accident points, and ten oil combating vessels were included in the model to find the optimal disposition policy that would maximize the recovery efficiency. With this composition, the placement of the oil combating vessels seems not to have a significant effect on the recovery efficiency. The process seems to be strongly controlled by certain random factors independent of human action, e.g. wave height and stranding time of the oil. Therefore, the success of oil combating is rather uncertain, so it is also important to develop activities that aim for preventing accidents. We found that the model developed is suitable for this type of multidecision optimization. The methodology, results, and practices are further discussed.

  6. Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells.

    PubMed

    Ghasemi Naghdi, Forough; Schenk, Peer M

    2016-10-01

    Solvent-free microalgal lipid recovery is highly desirable for safer, more sustainable and more economical microalgal oil production. Dispersed air flotation and centrifugation were evaluated for the ability to separate oil and debris from a slurry mixture of osmotically fractured Chaetoceros muelleri cells with and without utilizing collectors. Microalgal oil partially phase-separated as a top layer and partially formed an oil-in-water emulsion. Although collectors, such as sodium dodecyl sulphate enhanced selective flotation, by just adjusting the pH and cell concentration of the mixture, up to 78% of the lipids were recovered in the froth. Using centrifugation of fractured microalgal slurry resulted in removal of 60% cell debris and up to 68.5% of microalgal oil was present in the supernatant. Both methods, centrifugation and flotation provided options for separation of microalgal oil from C. muelleri slurry with similar fatty acid recoveries of 57% and 60%, respectively. Copyright © 2016. Published by Elsevier Ltd.

  7. Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method.

    PubMed

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2014-09-01

    In the present study, it is aimed to identify, a low cost sorbent for the recovery of oil from oil-in-water emulsion using biopolymers such as chitin and chitosan. Chitin has the greater adsorption capacity than chitosan due to its hydrophobic nature. The characterizations of chitin and chitosan were done using FTIR, SEM, EDAX, XRD, TGA and DSC techniques. Under batch equilibrium mode, a systematic study was performed to optimize the various equilibrium parameters viz., contact time, pH, dosage, initial concentration of oil, and temperature. The adsorption process reached equilibrium at 40 min of contact time and the percentage removal of oil was found to be higher (90%) in the acidic medium. The Freundlich and Langmuir models were applied to describe the equilibrium isotherms and the isotherm constants were calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to find out the nature of the sorption mechanism. The kinetic studies were investigated with reaction-based and diffusion-based models. The suitable mechanism for the removal of oil has been established. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Simultaneous recovery and desulfurization of bitumen from oil sand using ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Kamal, Wan Mohamad Ikhwan bin Wan; Akazawa, Nobuyuki; Kato, Takahiro; Sugawara, Katsuyasu

    2018-07-01

    Oil sand contains bitumen, which includes a high percentage of sulfur. Before using bitumen as a fuel, it must be recovered from oil sand and desulfurized. Currently, bitumen is recovered from oil sand using hot water (<100 °C), and sulfur is removed via hydrodesulfurization (>300 °C). Both of these processes consume significant amounts of energy. In this study, we demonstrate the simultaneous recovery and desulfurization of bitumen from oil sand using oxidative desulfurization with ultrasonic irradiation and tetrahydrofuran at 20 °C. We successfully recovered 88% of the bitumen from oil sand and removed 42% of the sulfur from the bitumen.

  9. Transportation infrastructure asset damage cost recovery correlated with shale oil/gas recovery operations in Louisiana : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-10-01

    Due to shale oil/gas recovery : operations, a large number : of truck trips on Louisiana : roadways are required for : transporting equipment and : materials to and from the : recovery sites. As a result, : roads and bridges that were : designed for ...

  10. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateralmore » wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of

  11. CO 2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO 2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO 2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO 2 flooding.

  12. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    PubMed

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  13. Storage quality of walnut oil containing lycopene during accelerated oxidation.

    PubMed

    Xie, Chaonan; Ma, Zheng Feei; Li, Fang; Zhang, Hongxia; Kong, Lingming; Yang, Zhipan; Xie, Weifeng

    2018-04-01

    The purpose of investigation was to assess the effect of lycopene on the peroxide value, acid value, fatty acids, total phenolic content and ferric-reducing antioxidant power of walnut oil. Walnut oil was extracted from Xinjiang walnut variety using cold pressing method. Our study reported that after 45 days of accelerated oxidation at 60 °C (Schaal oven test), 0.005% lycopene exhibited the greatest antioxidant effect than other addition levels of lycopene. Therefore, under ambient storage conditions, the shelf-life of walnut oil could be extended up to 16 months by 0.005% lycopene. Moreover, 0.005% lycopene added to walnut oil had a significantly higher content of saturated fatty acid, unsaturated fatty acid, total phenol, reducing ability of the polar and non-polar components than the blank sample (walnut oil without any addition of lycopene). In conclusion, lycopene improved the quality of walnut oil because of its antioxidant effect against lipid oxidation.

  14. Micro-Employees Employment, Enhanced Oil-Recovery Improvement

    NASA Astrophysics Data System (ADS)

    Allahtavakoli, M.; Allahtavakoli, Y.

    2009-04-01

    Employment of Micro-organisms, as profitable micro-employees in improvement of Enhanced Oil Recovery (EOR), leads us to a famous method named "MEOR". Applying micro-organisms in MEOR makes it more lucrative than other EOR ways because feeding these micro-employees is highly economical and their metabolic processes require some cheap food-resources such as molasses. In addition, utilizing the local micro-organism in reservoirs will reduce the costs effectively; Furthermore these micro-organisms are safety and innocuous to some extent. In MEOR, the micro-organisms are always employed for two purposes, "Restoring pressure to reservoir" and "Decreasing Oil-Viscosity". As often as more, the former is achievable by In-Situ Mechanism or by applying the micro-organisms producing Biopolymers and the latter is also reachable by applying the micro-organisms producing Bio-surfactants. This paper as a proposal which was propounded to National Iranian Oil Company (NIOC) is an argument for studying and reviewing "Interaction between Micro-organisms and Reservoir physiochemical properties", "Biopolymer producers and Bio-Surfactant Producers", "In-Situ Mechanism", "Proposed Methods in MEOR" and their limitations.

  15. Use of water-external micellar dispersions in oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-04-14

    A water-external micellar dispersion followed by a mobility buffer and a water drive were used for enhanced oil recovery. Field Berea sandstone cores (19.6 percent porosity, 387 md permeability) were saturated with brine (16,500 ppM sodium chloride), flooded with crude oil from the Henry lease in Illinois (viscosity of 5.9 cp at 72/sup 0/F, specific gravity of 0.833), and waterflooded with water from Henry lease (17,210 ppM TDS). The micellar dispersion followed by the mobility buffer produced 99.6 percent of the oil in the core. The micellar slug contained ammonium petroleum sulfonate (MW 450), Henry crude oil, isopropanol, nonyl phenol,more » sodium hydroxide, and water from the Palestine water reservoir in Palestine, Illinois (412 ppM TDS). No. 530 Pusher, ammonium thiocyanate, isopropanol, and Palestine water were in the mobility buffer.« less

  16. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacialmore » tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  17. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  18. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, Jill S.

    1999-07-01

    The objective of this five-year project are: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the second year of this project we have tested the generality of the proposed mechanisms by which crude oil components can alter wetting. Using these mechanisms, we have begun a program of characterizing crude oils with respectmore » to their wettability altering potential. Wettability assessment has been improved by replacing glass with mica as a standard surface material and crude oils have been used to alter wetting in simple square glass capillary tubes in which the subsequent imbibition of water can be followed visually.« less

  19. Secondary oil recovery from selected Carter sandstone oilfields, Black Warrior Basin, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.C.

    1993-04-15

    The objectives of this secondary oil recovery project involving the Carter sandstone in northwest Alabama are: (1) To increase the ultimate economic recovery of oil from the Carter reservoirs, thereby increasing domestic reserves and lessening US dependence on foreign oil; (2) To extensively model, test, and monitor the reservoirs so their management is optimized; and (3) To assimilate and transfer the information and results gathered to other US oil companies to encourage them to attempt similar projects. Start-up water injection began on 0 1/12/93 at the Central Bluff Field, and daily operations began on 01/13/93. These operations include monitoring wellheadmore » pressures at the injector and two producers, and injection water treatment. Water injection was running 200-300 bbl/day at the end of February. Once the unit is pressured-up well testing will be performed. Unitization was approved on 03/01/93.b. For the North Fairview Field correlations and log analyses were used to determine the fluid and rock properties. A summary of these properties is included in Table 1. The results of the log analysis were used to construct the hydrocarbon pore volume map shown on Figure 1. The map was planimetered to determine original oil-in-place (OOIP) values and the hydrocarbon pore volume by tract. The OOIP summed over an tracts by this method is 824.7 Mbbl (Figure 2). Original oil-in-place was also calculated directly: two such independent calculations gave 829.4 Mbbl (Table 1) and 835.6 Mbbl (Table 2). Thus, the three estimates of OOIP are within one percent. The approximately 88% of OOIP remaining provides an attractive target for secondary recovery. Injection start-up is planned for mid-June.« less

  20. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  1. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologicmore » sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.« less

  2. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    PubMed

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  3. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    PubMed

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  4. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  5. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes inmore » the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.« less

  6. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or

  7. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  8. Thin liquid films in improved oil recovery from low-salinity brine

    DOE PAGES

    Myint, Philip C.; Firoozabadi, Abbas

    2015-03-19

    Low-salinity waterflooding is a relatively new method for improved oil recovery that has generated much interest. It is generally believed that low-salinity brine alters the wettability of oil reservoir rocks towards a wetting state that is optimal for recovery. The mechanism(s) by which the wettability alteration occurs is currently an unsettled issue. This study reviews recent studies on wettability alteration mechanisms that affect the interactions between the brine/oil and brine/rock interfaces of thin brine films that wet the surface of reservoir rocks. Of these mechanisms, we pay particular attention to double-layer expansion, which is closely tied to an increase inmore » the thickness and stability of the thin brine films. Our review examines studies on both sandstones and carbonate rocks. We conclude that the thin-brine-film mechanisms provide a good qualitative, though incomplete, picture of this very complicated problem. Finally, we give suggestions for future studies that may help provide a more quantitative and complete understanding of low-salinity waterflooding.« less

  9. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    PubMed Central

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  10. Interfacial activity in alkaline flooding enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical speciesmore » in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.« less

  11. Preparation and Investigation of Foaming Amphiphilic Fluorinated Nanoparticles for Enhanced Oil Recovery.

    PubMed

    Wang, Keliang; Wang, Gang; Lu, Chunjing; Pei, Cuiying; Wang, Ying

    2017-12-08

    Amphiphilic nanoparticles have attracted increasing interest as Pickering emulsifiers owing to the combined advantages of both traditional surfactants and homogeneous particles. Here, foaming amphiphilic fluorinated nanoparticles were prepared for enhanced oil recovery by the toposelective surface modification method. The structure and properties of amphiphilic nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, a laser diffraction method, fluorescence microscopy, a pendant drop tensiometer, and foamscan. It was found that the amphiphilic fluorinated nanoparticles exhibited significant interfacial activity at the air-water interface and generated stabilized aqueous foams against coalescence and drainage even in the absence of surfactants. When the particle concentration reached 0.6 wt %, the adsorption of the amphiphilic nanoparticles at the interface was saturated and the equilibrium surface tension dropped to around 32.7 mN/m. When the particle concentration reached 0.4 wt %, the Gibbs stability criterion was fulfilled. The amphiphilic nanoparticles foam system has a better plugging capacity and enhanced oil recovery capacity. The results obtained provide fundamental insights into the understanding of the self-assembly behavior and foam properties of amphiphilic fluorinated nanoparticles and further demonstrate the future potential of the amphiphilic nanoparticles used as colloid surfactants for enhanced oil recovery applications.

  12. Preparation and Investigation of Foaming Amphiphilic Fluorinated Nanoparticles for Enhanced Oil Recovery

    PubMed Central

    Wang, Keliang; Lu, Chunjing; Pei, Cuiying; Wang, Ying

    2017-01-01

    Amphiphilic nanoparticles have attracted increasing interest as Pickering emulsifiers owing to the combined advantages of both traditional surfactants and homogeneous particles. Here, foaming amphiphilic fluorinated nanoparticles were prepared for enhanced oil recovery by the toposelective surface modification method. The structure and properties of amphiphilic nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, a laser diffraction method, fluorescence microscopy, a pendant drop tensiometer, and foamscan. It was found that the amphiphilic fluorinated nanoparticles exhibited significant interfacial activity at the air–water interface and generated stabilized aqueous foams against coalescence and drainage even in the absence of surfactants. When the particle concentration reached 0.6 wt %, the adsorption of the amphiphilic nanoparticles at the interface was saturated and the equilibrium surface tension dropped to around 32.7 mN/m. When the particle concentration reached 0.4 wt %, the Gibbs stability criterion was fulfilled. The amphiphilic nanoparticles foam system has a better plugging capacity and enhanced oil recovery capacity. The results obtained provide fundamental insights into the understanding of the self-assembly behavior and foam properties of amphiphilic fluorinated nanoparticles and further demonstrate the future potential of the amphiphilic nanoparticles used as colloid surfactants for enhanced oil recovery applications. PMID:29292747

  13. Microbial enhanced oil recovery research. Final report, Annex 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization.more » In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.« less

  14. Hydrogen sulfide accelerates the recovery of kidney tubules after renal ischemia/reperfusion injury.

    PubMed

    Han, Sang Jun; Kim, Jee In; Park, Jeen-Woo; Park, Kwon Moo

    2015-09-01

    Progression of acute kidney injury to chronic kidney disease (CKD) is associated with inadequate recovery of damaged kidney. Hydrogen sulfide (H2S) regulates a variety of cellular signals involved in cell death, differentiation and proliferation. This study aimed to identify the role of H2S and its producing enzymes in the recovery of kidney following ischemia/reperfusion (I/R) injury. Mice were subjected to 30 min of bilateral renal ischemia. Some mice were administered daily NaHS, an H2S donor, and propargylglycine (PAG), an inhibitor of the H2S-producing enzyme cystathionine gamma-lyase (CSE), during the recovery phase. Cell proliferation was assessed via 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. Ischemia resulted in decreases in CSE and cystathionine beta-synthase (CBS) expression and activity, and H2S level in the kidney. These decreases did not return to sham level until 8 days after ischemia when kidney had fibrotic lesions. NaHS administration to I/R-injured mice accelerated the recovery of renal function and tubule morphology, whereas PAG delayed that. Furthermore, PAG increased mortality after ischemia. NaHS administration to I/R-injured mice accelerated tubular cell proliferation, whereas it inhibited interstitial cell proliferation. In addition, NaHS treatment reduced post-I/R superoxide formation, lipid peroxidation, level of GSSG/GSH and Nox4 expression, whereas it increased catalase and MnSOD expression. Our findings demonstrate that H2S accelerates the recovery of I/R-induced kidney damage, suggesting that the H2S-producing transsulfuration pathway plays an important role in kidney repair after acute injury. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. Investigation of certain physical-chemical features of oil recovery by an optimized alkali-surfactant-foam (ASF) system.

    PubMed

    Hosseini-Nasab, S M; Zitha, P L J

    2017-01-01

    The objective of this study is to discover a synergistic effect between foam stability in bulk and micro-emulsion phase behaviour to design a high-performance chemical system for an optimized alkaline-surfactant-foam (ASF) flooding for enhanced oil recovery (EOR). The focus is on the interaction of ASF chemical agents with oil in the presence and absence of a naphthenic acid component and in situ soap generation under bulk conditions. To do so, the impact of alkalinity, salinity, interfacial tension (IFT) reduction and in situ soap generation was systematically studied by a comprehensive measurement of (1) micro-emulsion phase behaviour using a glass tube test method, (2) interfacial tension and (3) foam stability analysis. The presented alkali-surfactant (AS) formulation in this study lowered IFT between the oil and aqueous phases from nearly 30 to 10 -1 -10 -3  mN/m. This allows the chemical formulation to create considerably low IFT foam flooding with a higher capillary number than conventional foam for displacing trapped oil from porous media. Bulk foam stability tests demonstrated that the stability of foam diminishes in the presence of oil with large volumes of in situ soap generation. At lower surface tensions (i.e. larger in situ soap generation), the capillary suction at the plateau border is smaller, thus uneven thinning and instabilities of the film might happen, which will cause acceleration of film drainage and lamellae rupture. This observation could also be interpreted by the rapid spreading of oil droplets that have a low surface tension over the lamella. The spreading oil, by augmenting the curvature radius of the bubbles, decreases the surface elasticity and surface viscosity. Furthermore, the results obtained for foam stability in presence of oil were interpreted in terms of phenomenological theories of entering/spreading/bridging coefficients and lamella number.

  16. Development of epoxide compound from kapok oil for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Anam, M. K.; Supranto; Murachman, B.; Purwono, S.

    2017-06-01

    Epoxide compound is made by reacting Kapok Oil with acetic acid and hydrogen peroxide with in situ method. The epoxidation reaction was varied at temperatures of 60 °C, 70 °C and 80 °C, while the time of reaction time was varied at 15 minutes, 30 minutes, 60 minutes and 90 minutes. The reaction rate coefficient for the epoxide was obtained as {\\boldsymbol{k}}{\\boldsymbol{=}}{{124}}{\\boldsymbol{,}}{{82}} {{\\exp }} {\\boldsymbol{\\bigg(}}\\frac{{\\boldsymbol-}{{24}}{\\boldsymbol{,}}{{14}}}{{\\boldsymbol{R}}{\\boldsymbol{T}}}{\\boldsymbol{\\bigg)}}. The addition of the epoxide compound 0.5 w/w in the formulation of SLS was able to reduce the IFT value up to 9.95 x 10-2 m N/m. The addition of co-surfactant (1-octanol) was varied between 0.1 and 0.4 of the total mass of the main formulation (SLS + epoxide + water formation). The smallest interfacial tension value is obtained on the addition of co-surfactants as much as 0.2 w/w, with the IFT value is 2.43 x 10-3 m N/m. The effectiveness of the chemicals was tested through micro displacement using artificial porous medium. The experimental results show that some chemicals developed in the laboratory can be used as EOR chemicals. The oil displacement experiments show that as much as 20 to 80 of remaining oil can be recovered by flooding it with the chemicals. The results also show that the oil recovery depends on type of chemicals and chemical concentration.

  17. Application of accelerator sources for pulsed neutron logging of oil and gas wells

    NASA Astrophysics Data System (ADS)

    Randall, R. R.

    1985-05-01

    Dresser Atlas introduced the first commercial pulsed neutron oil well log in the early 1960s. This log had the capability of differentiating oil from salt water in a completed well. In the late 1970s the first continuous carbon/oxygen (C/O) log capable of differentiating oil from fresh water was introduced. The sources used in these commercial logs are radial geometry deuterium-tritium reaction devices with Cockcroft-Walton voltage multipliers providing the accelerator voltage. The commercial logging tools using these accelerators are comprised of scintillators detectors, power supplies, line drivers and receivers, and various timing and communications electronics. They are used to measure either the time decay or energy spectra of neutron-induced gamma events. The time decay information is useful in determining the neutron capture cross section, and the energy spectra is used to characterize inelastic neutron events.

  18. Phase Recovery Acceleration of Quantum-Dot Semiconductor Optical Amplifiers by Optical Pumping to Quantum-Well Wetting Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-11-01

    We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.

  19. Accelerated recovery from sevoflurane anesthesia with isocapnic hyperpnoea.

    PubMed

    Katznelson, Rita; Minkovich, Leonid; Friedman, Zeev; Fedorko, Ludvik; Beattie, W Scott; Fisher, Joseph A

    2008-02-01

    Isocapnic hyperpnoea (IH) reduces recovery time from isoflurane anesthesia in animals and humans. We studied the effect of IH on the emergence profile of sevoflurane-anesthetized patients by comparing postoperative recovery variables in patients administered IH (IH group) to those recovered in the customary fashion (control group). We enrolled 30 ASA I-III patients undergoing elective gynecological surgery. Induction and maintenance of anesthesia were standardized with a protocol consisting of fentanyl, propofol, rocuronium, and sevoflurane in air/O2. Patients were randomly assigned to control (C) or IH groups at the end of the surgery. We recorded time intervals from discontinuing sevoflurane to recovery milestones. Time to tracheal extubation was much shorter in the IH group compared with group C (6.2 +/- 2.1 vs 12.3 +/- 3.8 min, respectively, P < 0.01). The IH group also had shorter times to initiation of spontaneous ventilation (4.2 +/- 1.7 vs 6.5 +/- 3.8 min, P = 0.047), eye opening (5.5 +/- 1.4 vs 13.3 +/- 4.4 min, P < 0.01), bispectral index value >75 (3.9 +/- 1.1 vs 8.8 +/- 3.7 min, P < 0.01), leaving operating room (7.7 +/- 2.0 vs 15.3 +/- 3.4 min, P < 0.01), and eligibility for postanesthetic care unit discharge (67.2 +/- 19.3 vs 90.6 +/- 20.0 min, P < 0.01). IH accelerates recovery from sevoflurane anesthesia and shortens operating room and postanesthetic care unit stay.

  20. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    PubMed

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  1. Local and Global Impacts of Carbon Capture and Storage Combined with Enhanced Oil Recovery in Four Depleted Oil Fields, Kern County, California

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Jordan, P. D.; Goodell, J. A.; Harrington, K.; Jameson, S.

    2015-12-01

    Depleted oil reservoirs are attractive targets for geologic carbon storage (GCS) because they possess proven trapping mechanisms and large amounts of data pertaining to production and reservoir geometry. In addition, CO2 enhanced oil recovery (EOR) can improve recovery of the remaining oil at recovery factors of 6 to 20% of original oil in place in appropriate reservoirs. CO2 EOR increases the attractiveness of depleted oil and gas reservoirs as a starting point for CCS because the CO2 becomes a commodity that can be purchased by field operators for EOR purposes thereby offsetting the costs of CO2 capture at the power plant. In California, Kern County contains the largest oil reservoirs and produces 76% of California's oil. Most of the production at depths suitable for CCS combined with CO2 EOR comes from three reservoirs: the Vedder and Temblor formations and the Stevens Sandstone of the Monterey Formation. These formations were evaluated for GCS and CO2 EOR potential at the North and South Coles Levee (Stevens Sandstone), Greeley (Vedder) and McKittrick (Temblor) fields. CO2 EOR could be expected to produce an additional 150 million bbls of oil. The total storage space created by pre- and post-EOR fluid production for all three reservoirs is approximately 104 million metric tons (MMT). Large fixed sources in California produce 156 MMT/yr of CO2, and sources in Kern County produce 26 MMT/yr (WESTCARB, 2012). Therefore, the fields could store about four years of local large fixed source emissions and about two thirds of statewide emissions. However, from a global perspective, burning the additional oil produced by CO2 EOR would generate an additional 65 MMT of CO2 if not captured. This would result in a net reduction of greenhouse gas of only 39 MMT rather than the full 104 MMT. If the water produced along with the oil recovered during CO2 EOR operations is not reinjected into the reservoir, the storage space could be much higher.

  2. [Effects of Oil Pollutants on the Performance of Marine Benthonic Microbial Fuel Cells and Its Acceleration of Degradation].

    PubMed

    Meng, Yao; Fu, Yu-bin; Liang, Sheng-kang; Chen, Wei; Liu, Zhao-hui

    2015-08-01

    Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.

  3. Sleeper stretch accelerates recovery of glenohumeral internal rotation after pitching.

    PubMed

    Reuther, Katherine E; Larsen, Ryan; Kuhn, Pamela D; Kelly, John D; Thomas, Stephen J

    2016-12-01

    The natural time course for recovery of glenohumeral internal rotation (IR) loss after a throwing episode is unknown. In addition, the effect of the sleeper stretch on the time course for recovery of motion after a throwing episode has never been investigated. Therefore, the objectives of this study were to (1) to determine the natural time course for spontaneous recovery of IR after a throwing episode and (2) to evaluate the effect of the sleeper stretch on the time course for recovery of IR after a throwing episode. The study participants were 17 male high school baseball pitchers (aged 17.7 ± 0.9 years). A crossover designed was used over a 2-week period. For week 1, glenohumeral IR and external rotation (ER) were evaluated in the dominant shoulder 1 day before a throwing episode and at 2 hours, 1 day, 2 days, 3 days, 4 days, and 5 days after pitching. During week 2, participants completed a sleeper stretch protocol before measurements. The natural time course of spontaneous recovery for IR after a throwing episode was 4 days. Stretching reduced the time course of recovery for IR to 2 days. A sleeper stretch program for high school baseball pitchers can accelerate the recovery of commonly observed IR loss and also may mitigate the cumulative effects observed over the course of a season. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark B. Murphy

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  5. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.

    PubMed

    Sarafzadeh, Pegah; Hezave, Ali Zeinolabedini; Ravanbakhsh, Moosa; Niazi, Ali; Ayatollahi, Shahab

    2013-05-01

    Microbial enhanced oil recovery (MEOR) process utilizes microorganisms or their metabolites to mobilize the trapped oil in the oil formation after primary and secondary oil recovery stages. MEOR technique is considered as more environmentally friendly and low cost process. There are several identified mechanisms for more oil recovery using MEOR processes however; wettability alteration and interfacial tension (IFT) reduction are the important ones. Enterobacter Cloacae, a facultative bio-surfactant producer bacterium, was selected as a bacterial formulation due to its known performance on IFT reduction and wettability alteration. To quantify the effects of these two mechanisms, different tests including oil spreading, in situ and ex situ core flooding, wettability measurement (Amott), IFT, viscosity and pH measurements were performed. The obtained results revealed that the experimental procedure used in this study was able to quantitatively identify the individual effects of both mechanisms on the ultimate microbial oil recovery. The results demonstrated considerable effects of both mechanisms on the tertiary oil recovery; however after a proper shut in time period, more tertiary oil was recovered because of wettability alteration mechanism. Finally, SEM images taken from the treated cores showed biofilm formation on the rock pore surfaces, which is responsible for rock surface wettability alteration. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Morphological Variation and Recovery Mechanism of Residual Crude Oil by Biosurfactant from Indigenous Bacteria: Macro- and Pore-Scale Experimental Investigations.

    PubMed

    Song, Zhi-Yong; Han, Hong-Yan; Zhu, Wei-Yao

    2015-06-01

    Microbial enhanced oil recovery (MEOR) is being used more widely, and the biological contributions involved in MEOR need to be identified and quantified for the improvement of field applications. Owing to the excellent interfacial activity and the wide distribution of producing strains in oil reservoirs, lipopeptides have proved to be an essential part of the complex mechanisms in MEOR. In this study, crude lipopeptides were produced by a strain isolated from an indigenous community in an oil reservoir. It was found that crude lipopeptides can effectively reduce the IFT (interfacial tension) to 10(-1)~10(-2) mN/m under high salinity without forming stable emulsions, and the wettability of natural sandstone can be enhanced (Amott index, from 0.36 to 0.48). The results of core flooding experiments indicate that an additional 5.2% of original oil in place can be recovered with a 9.5% reduction of injection pressure. After the shut-in period, the wettability of the core, the reduction of injection pressure, and the oil recovery can be improved to 0.63, 16.2% and 9.6%, respectively. In the microscopic flooding experiments, the crude oil in membrane, cluster, and throat states contribute nearly 90% in total of the additional oil recovery, and the recovery of membranestate oil was significantly enhanced by 93.3% after shut in. Based on the results in macro and pore scale, the IFT reduction and the wettability alteration are considered primary contributors to oil recovery, while the latter was more dominant after one shut-in period.

  7. Oil recovery test using bio surfactants of indigenous bacteria in variation concentration of carbon source

    NASA Astrophysics Data System (ADS)

    Yudono, B.; Purwaningrum, W.; Estuningsih, S. P.; Kaffah, S.

    2017-05-01

    Recovery tests of crude oil by using bio surfactant of indigenous bacteria Pseudomonas peli, Pseudomonas citronellolis, Burkholderia glumae and Bacillus firmus. The bio surfactants were prepared with the variation concentrations of molasses carbon source; 0, 5, 10, 15, 20, and 25 %. The results showed that 10 g samples, which concentration 18.64% TPH could be dissolved in the bio surfactant 10%. Optimally in the molasses carbon source concentrations for each bacterium at 5, 10, 20 and 15 % with oil recovery as much as 31.92, 17.65, 22.32, and 14.38 % respectively. Oil components which extracted by bio surfactant were analyzed by using GLC (Gas Liquid Chromatography). The bio surfactants of Pseudomonas peli could dissolve oil fraction temperatures; 139.85; 144.69; 149.98; 1.55.03: 174.22 °C, Pseudomonas citronellolis could dissolve oil fraction temperatures; 139.13; 142.64;147.99; 155.03; 159.85; 164.50 °C, Burkholderia glumae could dissolve oil fraction temperatures 144.69; 149.98; 155.03; 159.85; 164.50 °C, and Bacillus firmus could dissolve oil fraction temperatures; 149.98; 155.03; 158.46; 164.50 °C.

  8. Motor recovery monitoring using acceleration measurements in post acute stroke patients.

    PubMed

    Gubbi, Jayavardhana; Rao, Aravinda S; Fang, Kun; Yan, Bernard; Palaniswami, Marimuthu

    2013-04-16

    Stroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment. A novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients. We have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen's overall agreement of 0.91 (with excellent κ coefficient of 0.76). A wireless accelerometer based 'hot stroke' monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability.

  9. Motor recovery monitoring using acceleration measurements in post acute stroke patients

    PubMed Central

    2013-01-01

    Background Stroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment. Method A novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients. Results We have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen’s overall agreement of 0.91 (with excellent κ coefficient of 0.76). Conclusion A wireless accelerometer based ‘hot stroke’ monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability. PMID:23590690

  10. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    NASA Astrophysics Data System (ADS)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  11. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    PubMed Central

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  12. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  13. Evidence-based perianesthesia care: accelerated postoperative recovery programs.

    PubMed

    Pasero, Chris; Belden, Jan

    2006-06-01

    Prolonged stress response after surgery can cause numerous adverse effects, including gastrointestinal dysfunction, muscle wasting, impaired cognition, and cardiopulmonary, infectious, and thromboembolic complications. These events can delay hospital discharge, extend convalescence, and negatively impact long-term prognosis. Recent advances in perioperative management practices have allowed better control of the stress response and improved outcomes for patients undergoing surgery. At the center of the current focus on improved outcomes are evidence-based fast-track surgical techniques and what is commonly referred to as "accelerated postoperative recovery programs." These programs require a multidisciplinary, coordinated effort, and nurses are essential to their successful implementation.

  14. Reclamation after oil and gas development does not speed up succession or plant community recovery in big sagebrush ecosystems in Wyoming

    USGS Publications Warehouse

    Rottler, Caitlin M.; Burke, Ingrid C.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.

    2018-01-01

    Article for intended outlet: Restoration Ecology. Abstract: Reclamation is an application of treatment(s) following a disturbance to promote succession and accelerate the return of target conditions. Previous studies have framed reclamation in the context of succession by studying its effectiveness in re-establishing late-successional plant communities. Re-establishment of these plant communities is especially important and potentially challenging in regions such as drylands and shrub steppe ecosystems where succession proceeds slowly. Dryland shrub steppe ecosystems are frequently associated with areas rich in fossil-fuel energy sources, and as such the need for effective reclamation after disturbance from fossil-fuel-related energy development is great. Past research in this field has focused primarily on coal mines; few researchers have studied reclamation after oil and gas development. To address this research gap and to better understand the effect of reclamation on rates of succession in dryland shrub steppe ecosystems, we sampled oil and gas wellpads and adjacent undisturbed big sagebrush plant communities in Wyoming, USA and quantified the extent of recovery for major functional groups on reclaimed and unreclaimed (recovered via natural succession) wellpads relative to the undisturbed plant community. Reclamation increased the rate of recovery for all forb and grass species as a group and for perennial grasses, but did not affect other functional groups. Rather, analyses comparing recovery to environmental variables and time since wellpad abandonment showed that recovery of other groups were affected primarily by soil texture and time since wellpad abandonment. This is consistent with studies in other ecosystems where reclamation has been implemented, suggesting that reclamation may not help re-establish late-successional plant communities more quickly than they would re-establish naturally.

  15. Numerical investigation of complex flooding schemes for surfactant polymer based enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir

    2015-11-01

    Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  16. Timelines and mechanisms of wildlife population recovery following the Exxon Valdez oil spill

    NASA Astrophysics Data System (ADS)

    Esler, Daniel; Ballachey, Brenda E.; Matkin, Craig; Cushing, Daniel; Kaler, Robert; Bodkin, James; Monson, Daniel; Esslinger, George; Kloecker, Kim

    2018-01-01

    Research and monitoring activities over the 28 years since the T/V Exxon Valdez ran aground and spilled oil into Prince William Sound, Alaska have led to an improved understanding of how wildlife populations were damaged, as well as the mechanisms and timelines of recovery. A key finding was that for some species, such as harlequin ducks and sea otters, chronic oil spill effects persisted for at least two decades and were a larger influence on population dynamics over the long term than acute effects of the spill. These data also offer insights into population variation resulting from factors other than the oil spill. For example, while many seabirds experienced direct and indirect effects of the spill, population trajectories of some piscivorous birds, including pigeon guillemots and marbled murrelets, were linked to long-term environmental changes independent of spill effects. Another species, killer whales, suffered population declines due to acute spill effects that have not been resolved despite lack of chronic direct effects, representing a novel pathway of long-term injury. The observed variation in mechanisms and timelines of recovery is linked to species specific life history and natural history traits, and thus may be useful for predicting population recovery for other species following other spills.

  17. Timelines and mechanisms of wildlife population recovery following the Exxon Valdez oil spill

    USGS Publications Warehouse

    Esler, Daniel N.; Ballachey, Brenda E.; Matkin, Craig O.; Cushing, Daniel; Kaler, Robert; Bodkin, James L.; Monson, Daniel; Esslinger, George G.; Kloecker, Kimberly A.

    2018-01-01

    Research and monitoring activities over the 28 years since the T/V Exxon Valdez ran aground and spilled oil into Prince William Sound, Alaska have led to an improved understanding of how wildlife populations were damaged, as well as the mechanisms and timelines of recovery. A key finding was that for some species, such as harlequin ducks and sea otters, chronic oil spill effects persisted for at least two decades and were a larger influence on population dynamics over the long term than acute effects of the spill. These data also offer insights into population variation resulting from factors other than the oil spill. For example, while many seabirds experienced direct and indirect effects of the spill, population trajectories of some piscivorous birds, including pigeon guillemots and marbled murrelets, were linked to long-term environmental changes independent of spill effects. Another species, killer whales, suffered population declines due to acute spill effects that have not been resolved despite lack of chronic direct effects, representing a novel pathway of long-term injury. The observed variation in mechanisms and timelines of recovery is linked to species specific life history and natural history traits, and thus may be useful for predicting population recovery for other species following other spills.

  18. Alkaline flooding for enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weightmore » concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.« less

  19. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Kegang; Zeng, Zhengwen; He, Jun

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improvemore » the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.« less

  20. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  1. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  2. Harlequin duck (Histrionicus histrionicus) perspective: Harlequin duck population recovery following the Exxon Valdez oil spill: Progress, process, and constraints

    USGS Publications Warehouse

    Esler, Daniel N.; Bowman, Timothy D.; Trust, Kimberly A.; Ballachey, Brenda E.; Dean, Thomas A.; Jewett, Stephen C.; O'Clair, Charles E.; Holland-Bartels, Leslie E.

    2002-01-01

    Following the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, we studied the status of recovery of harlequin duck (Histrionicus histrionicus) populations during 1995-1998. We evaluated potential constraints to full recovery, including (1) exposure to residual oil, (2) food limitation, and (3) intrinsic demographic limitations on population growth rates. In this paper, we synthesize the findings from our work and incorporate information from other harlequin duck research and monitoring programs to provide a comprehensive evaluation of the response of this species to the Exxon Valdez oil spill. We conclude that harlequin duck populations had not fully recovered by 1998. Furthermore, adverse effects continued as many as 9 years after the oil spill, in contrast to the conventional paradigm that oil spill effects on bird populations are short-lived. These conclusions are based on the findings that (1) elevated cytochrome P450 induction on oiled areas indicated continued exposure to oil in 1998, (2) adult female winter survival was lower on oiled than unoiled areas during 1995-1998, (3) fall population surveys by the Alaska Department of Fish and Game indicated numerical declines in oiled areas during 1995-1997, and (4) densities on oiled areas in 1996 and 1997 were lower than expected using models that accounted for effects of habitat attributes. Based on hypothesized links between oil contamination and demography, we suggest that harlequin duck population recovery was constrained primarily by continued oil exposure. Full population recovery also will be delayed by the time necessary for intrinsic population growth to allow return to pre-spill numbers following cessation of residual oil spill effects. Although not all wildlife species were affected by the Exxon Valdez oil spill, and some others may have recovered quickly from any effects, harlequin duck life history characteristics and benthic, nearshore feeding habits make them susceptible to both initial

  3. Feasibility and Outcome of an Accelerated Recovery Protocol in Asian Adolescent Idiopathic Scoliosis Patients.

    PubMed

    Chan, Chris Yin Wei; Loo, Shweh Fern; Ong, Jun Yin; Lisitha, Kulathunga Arachchige; Hasan, M Shahnaz; Lee, Chee Kean; Chiu, Chee Kidd; Kwan, Mun Keong

    2017-12-15

    A prospective cohort study. The aim of this study was to determine the feasibility of an accelerated recovery protocol for Asian adolescent idiopathic scoliosis (AIS) patients undergoing posterior spinal fusion (PSF). There has been successful implementation of an accelerated recovery protocol for AIS patients undergoing PSF in the western population. No similar studies have been reported in the Asian population. Seventy-four AIS (65 F, 9 M) patients scheduled for PSF surgery were recruited. The accelerated protocol encompasses preoperative regime, preoperative day of surgery counseling, intraoperative strategies, an accelerated postoperative rehabilitation and pain management regime. All patients were operated using a dual attending surgeon strategy. Outcome measures included pain scores at five time intervals, length of stay, and detailed recovery milestones. Any complications or readmissions during the first 4 months postoperative period were recorded. Mean duration of operation was 2.2 ± 0.3 hours with a mean blood loss of 824.3 ± 418.2 mL. No patients received allogenic blood transfusion. The mean length of stay was 3.6 ± 0.6 days. Surgical wound pain score was 6.4 ± 2.1 at 12 hours, which reduced to 5.0 ± 2.0 at 60 hours. Abdominal pain peaked at 36 hours with pain scores 2.4 ± 2.9. First liquid intake was at 5.2 ± 7.5 hours, urinary catheter removal at 18.7 ± 4.8 hours, sitting up at 20.6 ± 9.1 hours, ambulation at 27.2 ± 0.5 hours, consumption of solid food at 32.2 ± 0.5 hours, first flatus at 39.0 ± 0.7 hours, and first bowel movement at 122.1 ± 2.0 hours. The complication rate was 1.4% due to superficial wound infection with one patient failed to comply with the accelerated protocol. An accelerated recovery protocol following PSF for AIS is feasible without increasing the complication or readmission rates. The total length of stay was 3.6 days and this is comparable

  4. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    NASA Astrophysics Data System (ADS)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  5. Growth history of oil reserves in major California oil fields during the twentieth century

    USGS Publications Warehouse

    Tennyson, Marilyn E.

    2005-01-01

    Oil reserves in 12 of California's 52 giant fields (fields with estimated recovery > 100 million barrels of oil) have continued to appreciate well past the age range at which most fields cease to show significant increases in ultimate recovery. Most of these fields were discovered between 1890 and 1920 and grew to volumes greater than 500 million barrels in their first two decades. Growth of reserves in these fields accelerated in th e1950s and 1960s and is mostly explained by application of secondary and tertiary recovery technicques, primarily waterflooding and thermal recovery. The remaining three-fourths of California's giant fields show a pattern of growth in which fields cease to grow significantly by 20-30 years following recovery. virtually all of these fields have estimated ultimate recoveries less than about 500 million barrels and most are in the 100-200 million barrel range. Three of six offshore giant fields, all discovered between 1966 and 1981, have shown decreases in their estimated ultimate sizes within about the first decade after production began, presumably because production volumes ailed to match initial projections. The data suggest that: 1. Only fields that attain an estimated ultimate size of several hundred million barrels shortly after discovery and have geologic characterisics that make them suceptible to advanced recovery techniques are likely to show substantial late growth. 2. Offshore fields are less likely to show significant growth, probably because projections based on modern seismic reflection and reservoir test data are unlikely to underestimate the volume of oil in the field. 3. Secondary and tertiary recovery programs rather than field extensions or new pool discoveries are responsible for most of the significant growth of reserves in California. 4. field size data collected ove rmany decades provide a more comprehensive context for inferring reasons for reserve appreciation than shorter data series such as the Oil and Gas

  6. Ability of lithium to accelerate the recovery of granulopoiesis after subacute radiation injury.

    PubMed

    Gallicchio, V S; Chen, M G; Watts, T D

    1984-01-01

    Lithium stimulates granulopoietic recovery after mice are exposed to 2 Gy. By examining the hematopoietic inductive microenvironment (HIM) using the stromal colony assay, we demonstrate here that lithium, during the two weeks after irradiation, produced less stromal colony suppression than was observed from the irradiated controls. Recovery peaked by day 19 and returned to normal by day 28. This response was also observed in splenic derived stroma. Furthermore, stroma from lithium-irradiated animals supported the in vitro growth of granulocyte-macrophage colonies (CFU-GM) greater than observed from irradiated controls. These data suggest lithium accelerates granulopoietic recovery by first providing for a completely reconstituted and functional HIM.

  7. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  8. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.

    PubMed

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-08-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil-gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×10 5  Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas

  9. A new look at liming as an approach to accelerate recovery from acidic deposition effects

    USGS Publications Warehouse

    Lawrence, Gregory B.; Burns, Douglas A.; Murray, Karen

    2016-01-01

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment.

  10. A new look at liming as an approach to accelerate recovery from acidic deposition effects.

    PubMed

    Lawrence, Gregory B; Burns, Douglas A; Riva-Murray, Karen

    2016-08-15

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment. Published by Elsevier B.V.

  11. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  12. [Accelerated recovery program after hip fracture surgery].

    PubMed

    Rasmussen, Sten; Kristensen, Billy B; Foldager, Susanne; Myhrmann, Lis; Kehlet, Henrik

    2002-12-30

    A multimodal approach to minimise the effect of the surgical stress response can reduce complications and hospital stay after abdominal surgery and hip arthroplasty. The aim of the study was to assess the results of a well-defined rehabilitation programme after hip fracture. In an open intervention study, we entered 200 consecutive patients with hip fracture allowing full weight-bearing after operative treatment. The effect of a revised, optimised perioperative care programme with continuous epidural analgesia, early oral nutrition, oxygen supplementation, restricted volume and transfusion therapy, and intensive physiotherapy and mobilisation was assessed (n = 100) and compared with the conventional perioperative treatment programme before the intervention (n = 100). The median age was 82 (56-96) years in the control group and 82 (63-101) years in the accelerated multimodal perioperative treatment group. The median hospital stay was reduced from 21 (range 1-162, mean 32) to 11 (range 1-100, mean 17) days. The total use of days in hospital was reduced from 3211 to 1667. There were fewer complications, whereas the need for home care after discharge was unchanged. An accelerated clinical pathway with focus on pain relief, oral nutrition, and rehabilitation may reduce hospital stay and improve recovery after hip fracture.

  13. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    DOE R&D Accomplishments Database

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  14. Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marsh.

    PubMed

    Zengel, Scott; Weaver, Jennifer; Wilder, Susan L; Dauzat, Jeff; Sanfilippo, Chris; Miles, Martin S; Jellison, Kyle; Doelling, Paige; Davis, Adam; Fortier, Barret K; Harris, James; Panaccione, James; Wall, Steven; Nixon, Zachary

    2018-01-15

    In-situ burning of oiled marshes is a cleanup method that can be more effective and less damaging than intrusive manual and mechanical methods. In-situ burning of oil spills has been examined for several coastal marsh types; however, few published data are available for Phragmites australis marshes. Following an estimated 4200gallon crude oil spill and in-situ burn in a Phragmites tidal freshwater marsh at Delta National Wildlife Refuge (Mississippi River Delta, Louisiana), we examined vegetation impacts and recovery across 3years. Oil concentrations in marsh soils were initially elevated in the oiled-and-burned sites, but were below background levels within three months. Oiling and burning drastically affected the marsh vegetation; the formerly dominant Phragmites, a non-native variety in our study sites, had not fully recovered by the end of our study. However, overall vegetation recovery was rapid and local habitat quality in terms of native plants, particularly Sagittaria species, and wildlife value was enhanced by burning. In-situ burning appears to be a viable response option to consider for future spills in marshes with similar plant species composition, hydrogeomorphic settings, and oiling conditions. In addition, likely Phragmites stress from high water levels and/or non-native scale insect damage was also observed during our study and has recently been reported as causing widespread declines or loss of Phragmites stands in the Delta region. It remains an open question if these stressors could lead to a shift to more native vegetation, similar to what we observed following the oil spill and burn. Increased dominance by native plants may be desirable as local patches, but widespread loss of Phragmites, even if replaced by native species, could further acerbate coastal erosion and wetland loss, a major concern in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. DOE tallies Class III oil recovery field projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-25

    Here are details from midterm proposals submitted as part of the US Department of Energy's Class 3 oil recovery field demonstration candidate projects. All of the proposals emphasize dissemination of project details so that the results, if successful, can be applied widely in similar reservoirs. Project results will also be fed into a national petroleum technology transfer network. The proposals include: Gulf of Mexico, Gulf coast, offshore California, a California thermal, immiscible CO[sub 2], produced/potable water, microbial EOR, California diatomite, West Texas Spraberry field, and other Permian Basin fields.

  16. On the use of sodium lignosulphonate for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Azis, M. M.; Rachmadi, H.; Wintoko, J.; Yuliansyah, A. T.; Hasokowati, W.; Purwono, S.; Rochmadi, W.; Murachman, B.

    2017-05-01

    There has been large interest to utilize oil reservoirs in Indonesia by using Enhanced Oil Recovery (EOR) processes. Injection of surfactant as a part of chemical injection technique in EOR is known to aid the mobility and reduction in surface tension. One potential surfactant for EOR application is Sodium Lignosulphonate (SLS) which can be made from various sources particularly empty fruit bunch of oil palm and black liquor from kraft pulp production. Here, we will discuss a number of methods for SLS production which includes lignin isolation techniques and sulphonation reaction. The use of SLS alone as EOR surfactant, however, is often not feasible as the Interfacial Tension (IFT) value of SLS is typically above the order of 10-3 dyne/cm which is mandated for EOR application. Hence, brief discussion on SLS formulation screening is provided which illustrates an extensive labwork experience during the SLS development in our lab.

  17. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    NASA Astrophysics Data System (ADS)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  18. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, Prof. P.

    2002-03-04

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  19. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR).

    PubMed

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3) mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  20. Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, James; Smith, Steven; Kurz, Bethany

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO 2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand themore » nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO 2 and oil mobility within tight oil formation samples, 2) the determination of CO 2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO 2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO 2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM

  1. Accelerated Recovery Within Standardized Recovery Pathways After Esophagectomy: A Prospective Cohort Study Assessing the Effects of Early Discharge on Outcomes, Readmissions, Patient Satisfaction, and Costs.

    PubMed

    Schmidt, Henner M; El Lakis, Mustapha A; Markar, Sheraz R; Hubka, Michal; Low, Donald E

    2016-09-01

    After esophagectomy, some patients exceed targeted discharge goal within enhanced recovery after surgery programs. This study reviews the demographics, outcomes, cost, readmission rates, and patient satisfaction for the accelerated recovery (AR) group. Between 2010 and 2013, 137 consecutive esophagectomy patients were compared according to the length of hospital stay: AR 5 to 6 days, targeted recovery (TR) 7 to 8 days, and delayed recovery (DR) 9 days or more. The AR patients increased from 3% to 46% during the study period. The AR patients were younger, but all groups were comparable regarding comorbidities (Charlson, American Society of Anesthesiologists, and Eastern Cooperative Oncology Group score), cancer stage, and treatment approach. The AR patients were more likely to have neoadjuvant therapy, shorter operations, and less blood loss. The DR patients were more likely to have complications (40% AR versus 45% TR versus 90% DR, p < 0.001). Inhospital and 90-day mortality was 1.5%. All AR patients were discharged home (100% AR versus 87% TR versus 63% DR, p < 0.001), and 30-day readmission rates were comparable between groups (14% AR versus 19% TR versus 5% DR, p = 0.122). Overall mean costs ($38,385 AR versus $41,607 TR versus $61,199 DR, p < 0.001) as well as readmission costs ($7,470 AR versus $27,695 TR versus $33,398 DR, p = 0.202) were lower in the AR group. Patient satisfaction scores were comparable between groups. Accelerated recovery is achievable in a significant proportion of patients undergoing esophagectomy. Accelerated recovery is associated with decreased treatment costs but does not lead to increased readmissions or decreased patient satisfaction. Enhanced recovery after surgery programs should be designed to accommodate patients appropriate for AR. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.

    PubMed

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Lai, Hangxian; Wang, Ping

    2016-10-03

    Lipopeptides are known as promising microbial surfactants and have been successfully used in enhancing oil recovery in extreme environmental conditions. A biosurfactant-producing strain, Bacillus atrophaeus 5-2a, was recently isolated from an oil-contaminated soil in the Ansai oilfield, Northwest China. In this study, we evaluated the crude oil removal efficiency of lipopeptide biosurfactants produced by B. atrophaeus 5-2a and their feasibility for use in microbial enhanced oil recovery. The production of biosurfactants by B. atrophaeus 5-2a was tested in culture media containing eight carbon sources and nitrogen sources. The production of a crude biosurfactant was 0.77 g L -1 and its surface tension was 26.52 ± 0.057 mN m -1 in a basal medium containing brown sugar (carbon source) and urea (nitrogen source). The biosurfactants produced by the strain 5-2a demonstrated excellent oil spreading activity and created a stable emulsion with paraffin oil. The stability of the biosurfactants was assessed under a wide range of environmental conditions, including temperature (up to 120 °C), pH (2-13), and salinity (0-50 %, w/v). The biosurfactants were found to retain surface-active properties under the extreme conditions. Additionally, the biosurfactants were successful in a test to simulate microbial enhanced oil recovery, removing 90.0 and 93.9 % of crude oil adsorbed on sand and filter paper, respectively. Fourier transform infrared spectroscopy showed that the biosurfactants were a mixture of lipopeptides, which are powerful biosurfactants commonly produced by Bacillus species. The study highlights the usefulness of optimization of carbon and nitrogen sources and their effects on the biosurfactants production and further emphasizes on the potential of lipopeptide biosurfactants produced by B. atrophaeus 5-2a for crude oil removal. The favorable properties of the lipopeptide biosurfactants make them good candidates for application in the bioremediation of oil

  3. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.

    PubMed

    Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen

    2015-08-01

    Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.

  4. Harlequin Duck population injury and recovery dynamics following the 1989 Exxon Valdez oil spill.

    PubMed

    Iverson, Samuel A; Esler, Daniel

    2010-10-01

    The 1989 Exxon Valdez oil spill caused significant injury to wildlife populations in Prince William Sound, Alaska, USA. Harlequin Ducks (Histrionicus histrionicus) were particularly vulnerable to the spill and have been studied extensively since, leading to one of the most thorough considerations of the consequences of a major oil spill ever undertaken. We compiled demographic and survey data collected since the spill to evaluate the timing and extent of mortality using a population model. During the immediate aftermath of the spill, we estimated a 25% decrease in Harlequin Duck numbers in oiled areas. Survival rates remained depressed in oiled areas 6-9 years after the spill and did not equal those from unoiled areas until at least 11-14 years later. Despite a high degree of site fidelity to wintering sites, immigration was important for recovery dynamics, as the relatively large number of birds from habitats outside the spill zone provided a pool of individuals to facilitate numerical increases. On the basis of these model inputs and assumptions about fecundity rates for the species, we projected a timeline to recovery of 24 years under the most-likely combination of variables, with a range of 16 to 32 years for the best-case and worst-case scenarios, respectively. Our results corroborate assertions from other studies that the effects of spilled oil on wildlife can be expressed over much longer time frames than previously assumed and that the cumulative mortality associated with chronic exposure to residual oil may actually exceed acute mortality, which has been the primary concern following most oil spills.

  5. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    PubMed Central

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  6. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    PubMed

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  7. Understanding the role of brine ionic composition on oil recovery by assessment of wettability from colloidal forces.

    PubMed

    Alshakhs, Mohammed J; Kovscek, Anthony R

    2016-07-01

    The impact of injection brine salinity and ionic composition on oil recovery has been an active area of research for the past 25years. Evidence from laboratory studies and field tests suggests that implementing certain modifications to the ionic composition of the injection brine leads to greater oil recovery. The role of salinity modification is attributed to its ability to shift wettability of a rock surface toward water wetness. The amount of trapped oil released depends on the nature of rock, oil, and brine surface interactions. Reservoir rocks exhibit different affinities to fluids. Carbonates show stronger adsorption of oil films as opposed to the strongly water-wet and mixed-wet sandstones. The concentration of divalent ions and total salinity of the injection brine are other important factors to consider. Accordingly, this paper provides a review of laboratory and field studies of the role of brine composition on oil recovery from carbonaceous rock as well as rationalization of results using DLVO (Derjaguin, Landau, Verwey and Overbeek) theory of surface forces. DLVO evaluates the contribution of each component of the oil/brine/rock system to the wettability. Measuring zeta potential of each pair of surfaces by a charged particle suspension method is used to estimate double layer forces, disjoining pressure, and contact-angle. We demonstrate the applicability of the DLVO approach by showing a comprehensive experimental study that investigates the effect of divalent ions in carbonates, and uses disjoining pressure results to rationalize observations from core flooding and direct contact-angle measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Natural and accelerated recovery from brain damage: experimental and theoretical approaches.

    PubMed

    Andersen, Richard A; Schieber, Marc H; Thakor, Nitish; Loeb, Gerald E

    2012-03-01

    The goal of the Caltech group is to gain insight into the processes that occur within the primate nervous system during dexterous reaching and grasping and to see whether natural recovery from local brain damage can be accelerated by artificial means. We will create computational models of the nervous system embodying this insight and explain a variety of clinically observed neurological deficits in human subjects using these models.

  9. Economic Implementation and Optimization of Secondary Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary D. Brock

    The St Mary West Barker Sand Unit (SMWBSU or Unit) located in Lafayette County, Arkansas was unitized for secondary recovery operations in 2002 followed by installation of a pilot injection system in the fall of 2003. A second downdip water injection well was added to the pilot project in 2005 and 450,000 barrels of saltwater has been injected into the reservoir sand to date. Daily injection rates have been improved over initial volumes by hydraulic fracture stimulation of the reservoir sand in the injection wells. Modifications to the injection facilities are currently being designed to increase water injection rates formore » the pilot flood. A fracture treatment on one of the production wells resulted in a seven-fold increase of oil production. Recent water production and increased oil production in a producer closest to the pilot project indicates possible response to the water injection. The reservoir and wellbore injection performance data obtained during the pilot project will be important to the secondary recovery optimization study for which the DOE grant was awarded. The reservoir characterization portion of the modeling and simulation study is in progress by Strand Energy project staff under the guidance of University of Houston Department of Geosciences professor Dr. Janok Bhattacharya and University of Texas at Austin Department of Petroleum and Geosystems Engineering professor Dr. Larry W. Lake. A geologic and petrophysical model of the reservoir is being constructed from geophysical data acquired from core, well log and production performance histories. Possible use of an outcrop analog to aid in three dimensional, geostatistical distribution of the flow unit model developed from the wellbore data will be investigated. The reservoir model will be used for full-field history matching and subsequent fluid flow simulation based on various injection schemes including patterned water flooding, addition of alkaline surfactant-polymer (ASP) to the

  10. Impact and Recovery of Ecologically and Hydrologically Diverse Wetlands after the BP Deepwater Horizon Oil Spill in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ustin, S.; Khanna, S.; Shapiro, K.; Santos, M. J.

    2015-12-01

    April 20, 2010 marked the start of the British Petroleum Deepwater Horizon Oil Spill, the largest oil spill in US history, which contaminated the coastal wetland ecosystems along the northern Gulf of Mexico. We used NASA airborne AVIRIS imagery and field surveys to determine the impact and recovery of three ecologically and hydrologically diverse ecosystems after the oil spill using data acquired in 2010, 2011 and 2012. This was the largest campaign attempted at that time, collecting 456 AVIRIS flightlines between 6 May and 4 Oct., 2010, many covering the coastal region impacted by the oil spill. We investigated Barataria Bay (an intertidal saltmarsh ecosystem, predominantly a Spartina-Juncus meadow), East Bird's Foot (the most botanically diverse wetland, is an intermediate/freshwater marsh, fed by the Mississippi River), and Chandeleur Islands (barrier islands surrounded by tidal mangrove shrublands). A comparison of the three sites showed variable impacts from the oil and differential ecosystem recoveries. Mangroves around the Chanderleur Islands were the most adversely affected by the oil spill and showed the least recovery after a year, based on spectral changes characteristic of stressed vegetation. East Bird's Foot freshwater marshes were minimally affected by the spill and it is likely that the Mississippi outflow resulted in little crude oil reaching these shorelines. A zonal analysis of Barataria Bay revealed that oil primarily impacted the intertidal zone along shorelines that faced the Gulf, with little impact of the oil after an average distance of 20m inland, approximately the height of the highest high tides. Although recovery of the saltgrass meadow was robust during the first year after the spill, it was also variable, with the 5m zone immediately inland from the shoreline showing the least recovery. Hurricane Isaac in 2012, although a mild category 1 hurricane, adversely impacted the saltgrass meadows along the shorelines that were recovering from

  11. Poor recovery from a pulmonary exacerbation does not lead to accelerated FEV1 decline.

    PubMed

    Sanders, Don B; Li, Zhanhai; Zhao, Qianqian; Farrell, Philip M

    2017-07-29

    Patients with CF treated for pulmonary exacerbations (PEx) may experience faster subsequent declines in FEV 1 . Additionally, incomplete recovery to baseline FEV 1 occurs frequently following PEx treatment. Whether accelerated declines in FEV 1 are preceded by poor PEx recovery has not been studied. Using 2004 to 2011 CF Foundation Patient Registry data, we randomly selected one PEx among patients ≥6years of age with no organ transplantations, ≥12months of data before and after the PEx, and ≥1 FEV 1 recorded within the 6months before and 3months after the PEx. We defined poor PEx recovery as the best FEV 1 in the 3months after the PEx <90% of the best FEV 1 in the 6months before the PEx. We calculated mean (95% CI) hazard ratios (HR) of having >5% predicted/year FEV 1 decline and poor PEx recovery using multi-state Markov models. From 13,954 PEx, FEV 1 declines of >5% predicted/year were more likely to precede poor spirometric recovery, HR 1.17 (1.08, 1.26), in Markov models adjusted for age and sex. Non-Responders were less likely to have a subsequent fast FEV 1 decline, HR 0.41 (0.37, 0.46), than patients who recovered to >90% of baseline FEV 1 following PEx treatment. Accelerated declines in FEV 1 are more likely to precede a PEx with poor recovery than to occur in the following year. Preventing or halting declines in FEV 1 may also have the benefit of preventing PEx episodes. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  12. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery.

    PubMed

    Periasamy, Arun Prakash; Wu, Wen-Ping; Ravindranath, Rini; Roy, Prathik; Lin, Guan-Lin; Chang, Huan-Tsung

    2017-01-30

    Polyurethane dish-washing (PU-DW) sponges are functionalized sequentially with polyethylenimine (PEI) and graphene oxide (GO) to form PEI/reduced graphene oxide (RGO) PU-DW sponges. The PEI/RGO PU-DW sponge consists of PEI/RGO sheets having numerous pores, with diameters ranging from 236 to 254nm. To further enhance hydrophobicity and absorption capacity of oil, PEI/RGO PU-DW sponge is further coated with 20% phenyltrimethoxysilane (PTMOS). The PTMOS/PEI/RGO PU-DW sponge absorbs various oils within 20s, with maximum absorption capacity values of 880% and 840% for bicycle chain oil and motorcycle engine oil, respectively. The absorbed oils were released completely by squeezing or immersed in hexane. The PTMOS/PEI/RGO PU-DW sponge efficiently separates oil/water mixtures through a flowing system. Having the advantages of faster absorption rate, reusability, and low cost, the PTMOS/PEI/RGO PU-DW sponge holds great potential as a superabsorbent for efficient removal and recovery of oil spills as well as for the separation of oil/water mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  14. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  15. Recovery of a subtropical rocky shore is not yet complete, four years after a moderate sized oil spill.

    PubMed

    Finlayson, Kimberly; Stevens, Tim; Arthur, James Michael; Rissik, David

    2015-04-15

    Little is known about the recovery trajectory from small to moderate spills (<1000 t), particularly in the sub-tropics. On 11 March 2009 the MV Pacific Adventurer spilt 270 t of bunker fuel oil 13 km off Moreton Island, Australia, impacting wetlands, sandy beaches and rocky shores. This study examines the recovery of the rocky shore community four years after the spill. Results indicate that recovery on Moreton Island is taking longer than the 3-4 years suggested by the literature. The upper shore is recovering faster than the mid shore and is nearly recovered while the mid shore is still in the recovery process. These results indicate that small to moderate sized spills can have environmental impacts on par with much larger spills and emphasizes the need for a clear definition of a recovery endpoint. Long term studies are required to gain a full understanding of trajectories of recovery after oil spill impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Oil recovery by imbibition in low-permeability chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuiec, L.; Bourbiaux, B.; Kalaydjian, F.

    1994-09-01

    This paper describes experimental studies of spontaneous imbibition of oil by water in a low-permeability outcrop chalk. At constant and high interfacial tension (IFT), the importance of capillary forces and the existence of a predominantly countercurrent mechanism were established. Additional experiments were performed to investigate the influence of length and of various boundary conditions. In another investigation the authors modified the IFT at the sample boundary by using pairs of conjugate phases of the n-hexane/ethanol/brine ternary system. Final recovery increased when IFT was lowered. They give a numerical interpretation for this last result.

  17. Proficiency feasibility of multi-walled carbon nanotubes in the presence of polymeric surfactant on enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi

    2018-01-01

    Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.

  18. Study on the Reutilization of Clear Fracturing Flowback Fluids in Surfactant Flooding with Additives for Enhanced Oil Recovery (EOR)

    PubMed Central

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10−3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical. PMID:25409507

  19. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  20. Long Term, Operational Monitoring Of Enhanced Oil Recovery In Harsh Environments With INSAR

    NASA Astrophysics Data System (ADS)

    Sato, S.; Henschel, M. D.

    2012-01-01

    Since 2004, MDA GSI has provided ground deformation measurements for an oil field in northern Alberta, Canada using InSAR technology. During this period, the monitoring has reliably shown the slow rise of the oil field due to enhanced oil recovery operations. The InSAR monitoring solution is essentially based on the observation of point and point-like targets in the field. Ground conditions in the area are almost continuously changing (in their reflectivity characteristics) making it difficult to ob- serve coherent patterns from the ground. The extended duration of the oil operations has allowed us to continue InSAR monitoring and transition from RADARSAT-1 to RADARSAT-2. With RADARSAT-2 and the enhancement of the satellite resolution capability has provided more targets of opportunity as identified by a differential coherence method. This poster provides an overview of the long term monitoring of the oil field in northern Alberta, Canada.

  1. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery.

    PubMed

    He, Jian; Zhao, Hangyuan; Li, Xiaolei; Su, Dong; Zhang, Fengrui; Ji, Huiming; Liu, Rui

    2018-03-15

    Bacterial cellulose aerogels/silica aerogels (BCAs/SAs) are prepared using three-dimensional self-assembled BC skeleton as reinforcement and methyltriethoxysilane derived silica aerogels as filler through vacuum infiltration and freeze drying. The BCAs/SAs possess a hierarchical cellular structure giving them superelasticity and recyclable compressibility. The BCAs/SAs can bear a compressive strain up to 80% and recover their original shapes after the release of the stress. The BCAs/SAs exhibit super-hydrophobicity with a contact angle of 152° and super-oleophilicity resulting from the methyl groups on the surface of silica aerogel filler. This endows the BCAs/SAs outstanding oil absorbing capability with the quality factor Q from 8 to 14 for organic solvents and oils. Moreover, the absorbed oil can be retrieved by mechanically squeezed with a recovery of 88% related to the superelastic ability of the composites. In addition, the oil absorbing of BS/SAs could be well maintained with the quality factor Q about 11 for gasoline after harsh conditional treatment down to -200 °C and up to 300 °C. Such outstanding elastic and oleophilic properties make the BC/SAs tremendous potential for applications of oil absorbing, recovery and oil-water separation. Copyright © 2017. Published by Elsevier B.V.

  2. Magnet design for the splitter/combiner regions of CBETA, the Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crittendon, J. A.; Burke, D. C.; Fuentes, Y. L.P.

    2017-01-06

    The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams.more » The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.« less

  3. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction.

    PubMed

    Quitain, Armando T; Oro, Kazuyuki; Katoh, Shunsaku; Moriyoshi, Takashi

    2006-09-01

    Recovery of the oil components of okara by ethanol-modified supercritical carbon dioxide extraction was investigated at 40-80 degrees C temperature and 12-30 MPa pressure. In a typical run (holding period of 2 h, continuous flow extraction of 5 h), results indicated that the oil component could be best obtained with a recovery of 63.5% at relatively low temperature of 40 degrees C and mild pressure of 20 MPa in the presence of 10 mol% EtOH as entrainer. Based on gas chromatography-mass spectrometry (GC-MS) analysis, the extracts consisted mainly of fatty acids and phytosterols, and traces of decadienal. Folin-Ciocalteau estimates of total phenols showed that addition of EtOH as entrainer increased the yield and the amount of phenolic compounds in the extracts. The amounts of two primary soy isoflavones, genistein and daidzein, in the extracts also increased with increasing amount of EtOH.

  4. Oil spill modeling in the southeastern Mediterranean Sea in support of accelerated offshore oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Brenner, Steve

    2015-12-01

    Since the discovery of major reserves in the Israeli exclusive economic zone (EEZ) 6 years ago, exploration and drilling for natural gas and oil have proceeded at an accelerated pace. As part of the licensing procedure for drilling, an environmental impact assessment and an emergency response plan must be presented to the authorities, which include several prespecified oil spill simulations. In this study, the MEDSLIK oil spill model has been applied for this purpose. The model accounts for time-dependent advection, dispersion, and physiochemical weathering of the surface slick. It is driven by currents produced by high-resolution dynamic downscaling of ocean reanalysis data and winds extracted from global atmospheric analyses. Worst case scenarios based on 30-day well blowouts under four sets of environmental conditions were simulated for wells located at 140, 70, and 20 km off the coast of central Israel. For the well furthest from the coast, the amount of oil remaining in the surface slick always exceeds the amount deposited on the coast. For the mid-distance well, the cases were evenly split. For the well closest to the coast, coastal deposition always exceeds the oil remaining in the slick. Additional simulations with the wind switched off helped highlight the importance of the wind in evaporation of the oil and in transporting the slick toward the southeastern coast.

  5. Thermotropic nanostructured gels with complex hierarchical structure and two gelling components for water shut-off and enhance of oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.

  6. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  7. Modeling and simulation of multiphase multicomponent multiphysics porous media flows in the context of chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir; Fluids Team

    2015-11-01

    One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  8. CO 2 water-alternating-gas injection for enhanced oil recovery: Optimal well controls and half-cycle lengths

    DOE PAGES

    Chen, Bailian; Reynolds, Albert C.

    2018-03-11

    We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less

  9. CO 2 water-alternating-gas injection for enhanced oil recovery: Optimal well controls and half-cycle lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bailian; Reynolds, Albert C.

    We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less

  10. Molecular design of high performance zwitterionic liquids for enhanced heavy-oil recovery processes.

    PubMed

    Martínez-Magadán, J M; Cartas-Rosado, A R; Oviedo-Roa, R; Cisneros-Dévora, R; Pons-Jiménez, M; Hernández-Altamirano, R; Zamudio-Rivera, L S

    2018-03-01

    Branched gemini zwitterionic liquids, which contain two zwitterionic moieties of linked quaternary-ammonium and carboxylate groups, are proposed as chemicals to be applied in the Enhanced Oil Recovery (EOR) from fractured carbonate reservoirs. The zwitterionic moieties are bridged between them through an alkyl chain containing 12 ether groups, and each zwitterionic moiety has attached a long alkyl tail including a CC double bond. A theoretical molecular mechanism over which EOR could rest, consisting on both the disaggregation of heavy oil and the reservoir-rock wettability alteration, was suggested. Results show that chemicals can both reduce the viscosity and remove heavy-oil molecules from the rock surface. Copyright © 2018. Published by Elsevier Inc.

  11. Relevance of Linear Stability Results to Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Ding, Xueru; Daripa, Prabir

    2012-11-01

    How relevant can the results based on linear stability theory for any problem for that matter be to full scale simulation results? Put it differently, is the optimal design of a system based on linear stability results is optimal or even near optimal for the complex nonlinear system with certain objectives of interest in mind? We will address these issues in the context of enhanced oil recovery by chemical flooding. This will be based on an ongoing work. Supported by Qatar National Research Fund (a member of the Qatar Foundation).

  12. Noble Gas signatures of Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  13. Prolonged recovery of sea otters from the Exxon Valdez oil spill? A re-examination of the evidence.

    PubMed

    Garshelis, David L; Johnson, Charles B

    2013-06-15

    Sea otters (Enhydra lutris) suffered major mortality after the Exxon Valdez oil spill in Prince William Sound, Alaska, 1989. We evaluate the contention that their recovery spanned over two decades. A model based on the otter age-at-death distribution suggested a large, spill-related population sink, but this has never been found, and other model predictions failed to match empirical data. Studies focused on a previously-oiled area where otter numbers (~80) stagnated post-spill; nevertheless, post-spill abundance exceeded the most recent pre-spill count, and population trends paralleled an adjacent, unoiled-lightly-oiled area. Some investigators posited that otters suffered chronic effects by digging up buried oil residues while foraging, but an ecological risk assessment indicated that exposure levels via this pathway were well below thresholds for toxicological effects. Significant confounding factors, including killer whale predation, subsistence harvests, human disturbances, and environmental regime shifts made it impossible to judge recovery at such a small scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    PubMed

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    NASA Astrophysics Data System (ADS)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  16. Enhanced oil recovery using flash-driven steamflooding

    DOEpatents

    Roark, Steven D.

    1990-01-01

    The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.

  17. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery.

    PubMed

    Mei, Feng; Lehmann-Horn, Klaus; Shen, Yun-An A; Rankin, Kelsey A; Stebbins, Karin J; Lorrain, Daniel S; Pekarek, Kara; A Sagan, Sharon; Xiao, Lan; Teuscher, Cory; von Büdingen, H-Christian; Wess, Jürgen; Lawrence, J Josh; Green, Ari J; Fancy, Stephen Pj; Zamvil, Scott S; Chan, Jonah R

    2016-09-27

    Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination.

  19. Environmental Impacts and Recovery After the Hebei Spirit Oil Spill in Korea.

    PubMed

    Yim, U H; Khim, J S; Kim, M; Jung, J-H; Shim, W J

    2017-07-01

    The Hebei Spirit oil spill (HSOS) on December 7, 2007 was the worst oil spill recorded in Korea, with the release of approximately 10,900 tons of crude oil and 375 km of coastline polluted along the west coast of Korea. Cleanup operation was conducted by official and contract responders as well as volunteers for massive oil containment and removal of heavy accumulations of stranded oil. Together with the oil cleanup, a long-term environmental impact assessment (EIA) of the HSOS was initiated based on the Marine Environmental Management Act, which covers oil contamination in a multimedia environment, toxic effects on organisms, and ecosystem injury. This review summarizes the long-term monitoring results of HSOS EIA focused on (1) pollution status of seawater, sediment, and bivalves, (2) ecotoxicological effects, and (3) ecosystem recovery. Overall, concentrations of petroleum hydrocarbons in the environment indicated that their concentrations were well down to at or near background or pre-spill contamination levels at most sites after 1 year. The potential toxic effects of residual oils in sediments have decreased to background levels in most coastal areas of Taean. The entire ecosystem in the most affected area of the Taean coasts appear to be considerably, but not fully, recovered at present, namely after 8 years of the HSOS. The presence of lingering oil and elevated contamination levels at several sites still require continuous long-term monitoring.

  20. Accelerated Neuronal Cell Recovery from Botulinum Neurotoxin Intoxication by Targeted Ubiquitination

    PubMed Central

    Kuo, Chueh-Ling; Oyler, George A.; Shoemaker, Charles B.

    2011-01-01

    Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop ‘targeted F-box’ (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only VH (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable. PMID:21629663

  1. Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination.

    PubMed

    Kuo, Chueh-Ling; Oyler, George A; Shoemaker, Charles B

    2011-01-01

    Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop 'targeted F-box' (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only V(H) (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable.

  2. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    PubMed

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  3. Evaluation of the North Stanley Polymer Demonstration Project. [Tertiary oil recovery; polymer-enhanced waterflooding; Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpole, K.J.; Hill, C.J.

    1983-02-01

    A review of the performance of the North Stanley Polymer Demonstration Project has been completed. The objective of the cost-project was to evaluate the technical efficiency and economic feasibility of polymer-enhanced waterflooding as a tertiary recovery process in a highly heterogeneous and vertically fractured sandstone reservoir that has been successfully waterflooded and is approaching the economic limits of conventional waterflooding recovery. The ultimate incremental oil recovery from the project is estimated to be about 570,000 barrels (or approximately 1.4% of the original oil-in-place). This is significantly less than the original recovery predictions but does demonstrate that the project was technicallymore » successful. The lower-than-anticipated recovery is attributed principally to the extremely heterogeneous nature of the reservoir. One of the major objectives of this evaluation is to present an updated economic anlaysis of the North Stanley Polymer Demonstration Project. The updated economic analysis under current (mid-1982) economic conditions indicates that the North Stanley project would be commercially feasible if polymer injection had begun in 1982, rather than in 1976. Overall project operations were conducted efficiently, with a minimum of operational problems. The North Stanley polymer project provides a well-documented example of an actual field-scale tertiary application of polymer-augmented waterflooding in a highly heterogeneous reservoir.« less

  4. A meta-analysis of the effectiveness of the opioid receptor antagonist alvimopan in reducing hospital length of stay and time to GI recovery in patients enrolled in a standardized accelerated recovery program after abdominal surgery.

    PubMed

    Vaughan-Shaw, P G; Fecher, I C; Harris, S; Knight, J S

    2012-05-01

    Despite accelerated recovery programs and the widespread uptake of laparoscopic surgery, postoperative ileus remains a significant factor affecting length of stay after abdominal surgery. Alvimopan, an opioid-receptor antagonist, may reduce the incidence of postoperative ileus and expedite hospital discharge. The aim of this study was to perform a meta-analysis to determine the role of alvimopan in accelerating GI recovery and hospital discharge after laparoscopic and open abdominal surgery performed within an accelerated recovery program. Cochrane (1999-2010), Embase (1980-2010), MEDLINE (1980-2010), and International Pharmaceutical Abstracts (1970-2010) were searched for relevant double-blinded, randomized controlled trials. Twelve milligrams of alvimopan and placebo were given to patients enrolled in an accelerated recovery program after abdominal surgery. The primary outcomes measured were the length of stay as defined by the writing of the hospital discharge order and GI-3 and GI-2 GI tract recovery. : Three trials were included that reported on a pooled modified intention-to-treat population of 1388 patients; 685 (49%) patients received alvimopan. On meta-analysis, alvimopan reduced time to the hospital discharge order (HR 1.37 (1.21, 1.62), p < 0.0001), GI-3 recovery (HR 1.42 (1.25, 1.62), p < 0.001), and GI-2 recovery (HR 1.49 (1.32, 1.68), p < 0.0001). The search criteria identified only a small number of trials of alvimopan after abdominal surgery with no randomized trials of alvimopan after laparoscopic surgery. In addition, the use of length of hospital stay as the primary outcome measure may be inappropriate, because it is open to many confounding factors. Finally, adverse events, in particular, adverse cardiovascular events, were not considered. Alvimopan 12 mg can further reduce time to GI recovery and hospital discharge in patients undergoing abdominal surgery within an accelerated recovery program. Investigation into the effect of alvimopan

  5. Sports massage with ozonised oil or non-ozonised oil: Comparative effects on recovery parameters after maximal effort in cyclists.

    PubMed

    Paoli, Antonio; Bianco, Antonino; Battaglia, Giuseppe; Bellafiore, Marianna; Grainer, Alessandro; Marcolin, Giuseppe; Cardoso, Claudia C; Dall'aglio, Roberto; Palma, Antonio

    2013-11-01

    To study the effects of passive rest (PR) and sports massage with (SMOZO) and without (SM) ozonised oil on sports performance psycho-physiological indices in competitive amateur cyclists after 3 pre-fatiguing Wingate cycle and post-recovery ramp tests. An intra-subjects experimental design with repeated measures. Department of Human Anatomy and Physiology, University of Padua. Fifteen male competitive cyclists (age: 27 ± 3.5 years, body weight: 77.6 ± 8.3 kg, height: 178 ± 7.7 cm) were studied. Subjects' power output (P), heart rate (HR), Visual Analogue Scale (VAS) score and blood lactate (BL) clearance in response to PR, SMOZO and SM recoveries were compared. There were no significant differences in cyclists' heart rate patterns in the three experimental conditions (p > 0.05). After SMOZO recovery, athletes showed a higher Pmax (p < 0.05) and a lower perceived fatigue VAS score (p < 0.033) in the ramp test. Blood lactate decreased more at T2 (mid-time point of treatment) and T3 (final time point of treatment) than T1 (beginning of treatment) compared to SM and PR conditions. These findings suggest that use of ozonised oil during sports massage increases blood lactate removal, improves performance and reduces the perception of fatigue in cyclists from 3 Wingate tests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    USGS Publications Warehouse

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  7. Bilateral priming accelerates recovery of upper limb function after stroke: a randomized controlled trial.

    PubMed

    Stinear, Cathy M; Petoe, Matthew A; Anwar, Samir; Barber, Peter Alan; Byblow, Winston D

    2014-01-01

    The ability to live independently after stroke depends on the recovery of upper limb function. We hypothesized that bilateral priming with active-passive movements before upper limb physiotherapy would promote rebalancing of corticomotor excitability and would accelerate upper limb recovery at the subacute stage. A single-center randomized controlled trial of bilateral priming was conducted with 57 patients randomized at the subacute stage after first-ever ischemic stroke. The PRIMED group made device-assisted mirror symmetrical bimanual movements before upper limb physiotherapy, every weekday for 4 weeks. The CONTROL group was given intermittent cutaneous electric stimulation of the paretic forearm before physiotherapy. Assessments were made at baseline, 6, 12, and 26 weeks. The primary end point was the proportion of patients who reached their plateau for upper limb function at 12 weeks, measured with the Action Research Arm Test. Odds ratios indicated that PRIMED participants were 3× more likely than controls to reach their recovery plateau by 12 weeks. Intention-to-treat and per-protocol analyses showed a greater proportion of PRIMED participants achieved their plateau by 12 weeks (intention to treat, χ2=4.25; P=0.039 and per protocol, χ2=3.99; P=0.046). ANOVA of per-protocol data showed PRIMED participants had greater rebalancing of corticomotor excitability than controls at 12 and 26 weeks and interhemispheric inhibition at 26 weeks (all P<0.05). Bilateral priming accelerated recovery of upper limb function in the initial weeks after stroke. URL: http://www.anzctr.org.au. Unique identifier: ANZCTR1260900046822.

  8. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.

    PubMed

    Chen, Jinbo

    2018-06-14

    Hyper-accumulator biomass, Pteris vittata L., was hydrothermally converted into bio-oils via hydrothermal liquefaction (HTL) in sub-supercritical water. The distributions and characterizations of various products as well as energy recovery under different temperatures (250-390 °C) were investigated. The highest bio-oil yield of 16.88% was obtained at 350 °C with the hydrothermal conversion of 61.79%, where the bio-oil was dominated by alcohols, esters, phenols, ketones and acidic compounds. The higher heating values of bio-oil were in the range of 19.93-35.45 MJ/kg with a H/C ratio of 1.26-1.46, illustrating its high energy density and potential for use as an ideal liquid fuel. The main gaseous products were CO 2 , H 2 , CO, and CH 4 with the H 2 yield peaking at 22.94%. The total energy recovery from bio-oils and solid residues fell within the range of 37.72-45.10%, highlighting the potential of HTL to convert hyper-accumulator biomass into valuable fuels with high conversion efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Viscous fingering and channeling in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Dutta, Sourav

    2017-11-01

    We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.

  11. The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Lewis R.; Byrnes, Martin J.; Stephens, James O.

    This project was designed to demonstrate that a microbially enhanced oil recovery process (MEOR), developed in part under DOE Contract No. DE-AC22-90BC14665, will increase oil recovery from fluvial dominated deltaic oil reservoirs. The process involves stimulating the in-situ indigenous microbial population in the reservoir to grow in the more permeable zones, thus diverting flow to other areas of the reservoir, thereby increasing the effectiveness of the waterflood. This five and a half year project is divided into three phases, Phase I, Planning and Analysis (9 months), Phase II, Implementation (45 months), and Phase III, Technology Transfer (12 months). Phase Imore » was completed and reported in the first annual report. This fifth annual report covers the completion of Phase II and the first six months of Phase III.« less

  12. Four Years of Chemical Measurements from the Deepwater Horizon Oil Spill Define the Deep Sea Sediment footprint and Subsequent Recovery

    NASA Astrophysics Data System (ADS)

    Boehm, P.

    2016-02-01

    Chemical data acquired during and after the DWHOS showed that several mechanisms were responsible for transport of oil from the water column to the sediments in the deep sea off the continental shelf. Three primary pathways were identified:Sorption onto and sinking of drilling mud particles during "Top Kill" response activity, highly scattered deposition of residuesfrom in situ burns, and deposition of oil combined with microbial organic matter from diffuse oil plumes ("marine snow"). Data collected during 2010, 2011 and 2014 were used to define the oil footprint and estimate time to recovery. More than 1200 stations were sampled. Of these, 27 stations were visited all three years, providing a time series from which recovery rates were calculated using the loss of total polycyclic aromatic hydrocarbons (TPAH) over time fit to first order kinetics. Results showed that the footprint of the oil was limited to the area around the wellhead and in patches to the southwest. Mostsamples had returned to background levels by 2015, with some exceptions close to the wellhead. Deposition to the northeast (DeSoto Canyon) was minor as evidenced by the absence of oil in sediments in that area. Samples with the longest recovery times were within 2 nautical miles of the wellhead, and often contained drilling mud, as shown by olefin signatures on the GC/FID chromatogram. Detailed chemistry data evaluation and chemical fingerprinting provided evidence that oil was being degraded in situ.

  13. Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis.

    PubMed

    Li, De-Chang; Xu, Wan-Fei; Mu, Yang; Yu, Han-Qing; Jiang, Hong; Crittenden, John C

    2018-05-01

    Petroleum-contaminated soil (PCS) caused by the accidental release of crude oil into the environment, which occurs frequently during oil exploitation worldwide, needs efficient and cost-effective remediation. In this study, a fast pyrolysis technology was implemented to remediate the PCS and concurrently recover the oil. The remediation effect related to pyrolytic parameters, the recovery rate of oil and its possible formation pathway, and the physicochemical properties of the remediated PCS and its suitability for planting were systematically investigated. The results show that 50.9% carbon was recovered in oil, whose quality even exceeds that of crude oil. Both extractable total petroleum hydrocarbon (TPH) and water-soluble organic matter (SOM) in PCS were completely removed at 500 °C within 30 min. The remaining carbon in remediated PCS was determined to be in a stable and innocuous state, which has no adverse effect on wheat growth. On the basis of the systematically characterizations of initial PCS and pyrolytic products, a possible thermochemical mechanism was proposed which involves evaporation, cracking and polymerization. In addition, the energy consumption analysis and remediation effect of various PCSs indicate that fast pyrolysis is a viable and cost-effective method for PCS remediation.

  14. Effects of Dual-Pump Recovery on Crude-Oil Contamination of Groundwater, Bemidji, Minnesota

    NASA Astrophysics Data System (ADS)

    Delin, G. N.; Herkelrath, W. N.; Lounsbury, S.

    2009-12-01

    In 1979 a crude-oil pipeline ruptured near Bemidji, Minnesota spilling about 1.7 million liters of crude oil onto a glacial-outwash deposit. Initial remediation efforts in 1979-80 removed about 75% of this oil. In 1983 the U.S. Geological Survey and several academic institutions began research to study the fate and transport of the petroleum hydrocarbons in the unsaturated and saturated zones at the site. In 1998 the Minnesota Pollution Control Agency (MPCA) requested that the pipeline company remove as much of the remaining oil as possible. A dual-pump recovery system was installed using five wells to remove the free-phase oil. Each well had an oil skimming pump as well as a deeper pump in the groundwater, which was used to create a cone of depression in the water table near the well. The oil/water mixture from the skimming pump was pumped to a treatment facility where the oil was separated for later removal from the site. Pumped wastewater was injected into an upgradient infiltration gallery. Despite large public and private expenditures on development and implementation of this type of remediation system, few well-documented field-scale case studies have been published. The renewed remediation presented an opportunity to document how the dissolution, biodegradation, vapor transport, and other processes changed as the site transitioned from natural attenuation to a condition of pump-and-treat remediation and back again following termination of the remediation. Impacts of the remediation were evaluated in part using measurements of oil thicknesses in wells, dissolved-oxygen concentrations in groundwater, and concentrations of methane and other gases in the unsaturated zone. The remediation from 1999 - 2004 resulted in removal of about 114,000 liters of crude oil from the site, or about 27% of the total that remained following the initial remediation in 1979-80. Although the renewed remediation decreased oil thicknesses in the immediate vicinity of remediation

  15. 2013 update on sea otter studies to assess recovery from the 1989 Exxon Valdez oil spill, Prince William Sound, Alaska

    USGS Publications Warehouse

    Ballachey, Brenda E.; Monson, Daniel H.; Esslinger, George G.; Kloecker, Kimberly A.; Bodkin, James L.; Bowen, Lizabeth; Miles, A. Keith

    2014-01-01

    On March 24, 1989, the tanker vessel Exxon Valdez ran aground in Prince William Sound, Alaska, spilling an estimated 42 million liters of Prudhoe Bay crude oil. Oil spread in a southwesterly direction and was deposited on shores and waters in western Prince William Sound (WPWS). The sea otter (Enhydra lutris) was one of more than 20 nearshore species considered to have been injured by the spill. Since 1989, the U.S. Geological Survey has led a research program to evaluate effects of the spill on sea otters and assess progress toward recovery, as defined by demographic and biochemical indicators. Here, we provide an update on the status of sea otter populations in WPWS, presenting findings through 2013. To assess recovery based on demographic indicators, we used aerial surveys to estimate abundance and annual collections of sea otter carcasses to evaluate patterns in ages-at-death. To assess recovery based on biochemical indicators, we quantified transcription rates for a suite of genes selected as potential indicators of oil exposure in sea otters based on laboratory studies of a related species, the mink (Mustela vison). In our most recent assessment of sea otter recovery, which incorporated results from a subset of studies through 2009, we concluded that recovery of sea otters in WPWS was underway. This conclusion was based on increasing abundance throughout WPWS, including increasing numbers at northern Knight Island, an area that was heavily oiled in 1989 and where the local sea otter population had previously shown protracted injury and lack of recovery. However, we did not conclude that the WPWS sea otter population had fully recovered, due to indications of continuing reduced survival and exposure to lingering oil in sea otters at Knight Island, at least through 2009. Based on data available through 2013, we now conclude that the status of sea otters—at all spatial scales within WPWS—is consistent with the designation of recovery from the spill as

  16. Oceanographic Effects on Maritime Threats: Mines and Oil Spills in the Strait of Hormuz

    DTIC Science & Technology

    2007-03-01

    could potentially be used (Kreil, 2004). The full flow potential for all the pipelines together is about seven million barrels of oil a day... potential oil spills, and drift mining could mean the difference for a faster recovery from an incident at this choke point. The faster the clean...θ is potential temperature, g is the acceleration due to gravity, 1Λ is the dissipation length scale, , , and wu v′ ′ ′ denote the components

  17. Gastrointestinal tract recovery in patients undergoing bowel resection: results of a randomized trial of alvimopan and placebo with a standardized accelerated postoperative care pathway.

    PubMed

    Ludwig, Kirk; Enker, Warren E; Delaney, Conor P; Wolff, Bruce G; Du, Wei; Fort, John G; Cherubini, Maryann; Cucinotta, James; Techner, Lee

    2008-11-01

    To investigate the efficacy and safety of alvimopan, 12 mg, administered orally 30 to 90 minutes preoperatively and twice daily postoperatively in conjunction with a standardized accelerated postoperative care pathway for managing postoperative ileus after bowel resection. This multicenter, randomized, placebo-controlled, double-blind, phase 3 trial enrolled adult patients undergoing partial bowel resection with primary anastomosis by laparotomy and scheduled to receive intravenous, opioid-based, patient-controlled analgesia. A standardized accelerated postoperative care pathway including early ambulation, oral feeding, and postoperative nasogastric tube removal was used to facilitate gastrointestinal (GI) tract recovery in all of the patients. The primary end point was time to GI-2 recovery (toleration of solid food and first bowel movement). Secondary end points included time to GI-3 recovery (toleration of solid food and first flatus or bowel movement), hospital discharge order written, and actual hospital discharge. Postoperative length of hospital stay based on calendar day of hospital discharge order written, opioid consumption, and overall postoperative ileus-related morbidity were recorded. Alvimopan, 12 mg, was well tolerated and significantly accelerated GI-2 recovery, GI-3 recovery, and actual hospital discharge compared with a standardized accelerated postoperative care pathway alone (hazard ratio = 1.5, 1.5, and 1.4, respectively; P < .001 for all). Time to hospital discharge order written as measured by hazard ratio (1.4) and by postoperative calendar days (mean for alvimopan, 5.2 days; mean for placebo, 6.2 days) was also accelerated. Opioid consumption was comparable between groups, and alvimopan was associated with reduced postoperative ileus-related morbidity compared with placebo. Alvimopan, 12 mg, administered 30 to 90 minutes before and twice daily after bowel resection is well tolerated, accelerates GI tract recovery, and reduces postoperative

  18. Off-shore enhanced oil recovery in the north sea: matching CO_2 demand and supply given uncertain market conditions

    NASA Astrophysics Data System (ADS)

    Compernolle, Tine; Welkenhuysen, Kris; Huisman, Kuno; Piessens, Kris; Kort, Peter

    2015-04-01

    Introduction CO2 enhanced oil recovery (CO2-EOR) entails the injection of CO2 in mature oil fields in order to mobilize the oil. In particular, the injected CO2 reduces the oil's viscosity and acts as a propellant, resulting in an increased oil extraction rate (Leach et al., 2011). Given uncertainty in both oil price and CO2 price under the EU ETS system, aim of this study is to analyze under which economic conditions a CO2 exchange can be established between a CO2 supplier (an electricity producer for whom CO2 is a by-product) and a CO2 user (an offshore oil company that exploits oil fields in the North Sea and needs CO2 for enhanced oil recovery). Methodology A techno-economic simulation tool, PSS IV, was developed to provide investment decision support on integrated CO2-EOR projects (Welkenhuysen et al., 2014). Until now, a fixed onshore supply of CO2 was presumed. An economic optimization model is now developed for both the CO2 producer and the CO2 user. Because net present value and discounted cash flow methods are inadequate to deal with issues like uncertainty and the irreversibility of an investment decision, the real options theory is applied (Dixit and Pindyck, 1994). The way in which cooperation between the companies can take place, will be studied using game theoretical concepts (Lukas and Welling, 2014). Economic and technical data on CO2 capture are available from the PSS database (Piessens et al., 2012). Data on EOR performance, CO2 requirements and various costs are taken from literature (BERR, 2007; Klokk et al., 2010; Pershad et al., 2012). Results/Findings It will be shown what the impact of price uncertainty is on the investment decision of the electricity producer to capture and sell CO2, and on the decision of the oil producer to make the necessary investments to inject CO2 for enhanced oil recovery. Based on these results, it will be determined under which economic conditions a CO2 exchange and transport can take place. Furthermore, also the

  19. The evolution of analgesia in an 'accelerated' recovery programme for resectional laparoscopic colorectal surgery with anastomosis.

    PubMed

    Zafar, N; Davies, R; Greenslade, G L; Dixon, A R

    2010-02-01

    The study set out to analyse the outcomes of an evolving accelerated recovery programme after laparoscopic colorectal resection (LCR). The results of a prospective electronic database (March 2000 - April 2008) were analysed. There were 353 consecutive patients undergoing 'three port' high anterior resection (AR) (237 without covering stoma) and 166 a right hemicolectomy (RHC). One hundred thirty-eight had postoperative analgesia using paracetamol IV and oral analgesia (IVP); 27 (16.3%) received additional parenteral morphine and were excluded. Patient controlled morphine analgesia (PCA) was used in 138. Transversus abdominis plane (TAP) blocks, supplemented by IV paracetamol and oral analgesia were used in the last 50 patients. The time to the resumption of diet was significantly reduced with TAP analgesia (median 12 h) and IVP (median 12 h) compared with PCA median (36 h) (chi(2) = 143; 4df: P < 0.001). The postoperative hospital stay was significantly reduced with TAP analgesia (median 2 days) and IVP (median 3 days) compared with PCA (median 5 days); chi(2) = 73; 2df: P < 0.001. Seventeen (34%) TAP and nine (6.5%) IVP patients were discharged within 24 h of surgery compared with no patient in the PCA group. Ninety-three per cent of PCA, 35% IVP and 10% TAP patients were discharged in more than 3 days. The movement towards 'accelerated recovery' was not associated with any increased risk of urinary retention, return to theatre, readmission and/or 30 day mortality. Laparoscopic surgery utilizing IV paracetamol and TAP blocks for postoperative analgesia aids safe effective 'accelerated recovery' in an unselected patient population undergoing right hemicolectomy and high anterior resection. Routine epidural anaesthesia is unnecessary for LCR. Morphine PCA is associated with delayed recovery.

  20. Effects of nitrate injection on microbial enhanced oil recovery and oilfield reservoir souring.

    PubMed

    da Silva, Marcio Luis Busi; Soares, Hugo Moreira; Furigo, Agenor; Schmidell, Willibaldo; Corseuil, Henry Xavier

    2014-11-01

    Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells.

  1. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William A. Goddard III; Yongchun Tang; Patrick Shuler

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies tomore » calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in

  2. Polymers for enhanced oil recovery: fundamentals and selection criteria.

    PubMed

    Rellegadla, Sandeep; Prajapat, Ganshyam; Agrawal, Akhil

    2017-06-01

    With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper. From the past 40 years, polymer flooding has been carried out in marginal oil fields and have proved to be successful in many cases. The common expectation from polymer flooding is to obtain 50% ultimate recovery with 15 to 20% incremental recovery over secondary water flooding. Both naturally derived polymers like xanthan gum and synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) have been used for this purpose. Earlier laboratory and field trials revealed that salinity and temperature are the major issues with the synthetic polymers that lead to polymer degradation and adsorption on the rock surface. Microbial degradation and concentration are major issues with naturally derived polymers leading to loss of viscosity and pore throat plugging. Earlier studies also revealed that polymer flooding is successful in the fields where oil viscosity is quite higher (up to 126 cp) than injection water due to improvement in mobility ratio during polymer flooding. The largest successful polymer flood was reported in China in 1990 where both synthetic and naturally derived polymers were used in nearly 20 projects. The implementation of these projects provides valuable suggestions for further improving the available processes in future. This paper examines the selection criteria of polymer, field characteristics that support polymer floods and recommendation to design a large producing polymer flooding.

  3. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    PubMed

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  4. Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91-96°C.

    PubMed

    Arora, Preeti; Ranade, Dilip R; Dhakephalkar, Prashant K

    2014-08-01

    A consortium of bacteria growing at 91°C and above (optimally at 96°C) was developed for the recovery of crude oil from declining/depleted oil reservoirs having temperature of more than 91°C. PCR-DGGE-Sequencing analysis of 16S rRNA gene fragments of NJS-4 consortium revealed the presence of four strains identified as members of the genus Clostridium. The metabolites produced by NJS-4 consortium included volatile fatty acids, organic acids, surfactants, exopolysaccarides and CO2, which reduced viscosity, emulsified crude oil and increased the pressure that facilitated displacement of emulsified oil towards the surface. NJS-4 enhanced oil recovery by 26.7% and 10.1% in sand pack trials and core flood studies respectively in optimized nutrient medium comprised of sucrose and sodium acetate as carbon/energy source and urea as nitrogen source (pH 7-9, 96°C, and 4% salinity). Nutrient medium for MEOR was constituted using commercial grade cheap nutrients to improve the economic viability of MEOR process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Impact of hurricane Isaac on recovery of saltmarshes affected by the BP oil spill in Barataria Bay in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Haverkamp, P. J.; Santos, M. J.; Shapiro, K.; Lay, M.; Koltunov, A.; Ustin, S.

    2013-12-01

    Saltmarshes of the Gulf of Mexico have a long history of being impacted by oil spills. The Deep Water Horizon BP Oil spill was the biggest spill in US history. Its effects are still noticeable on these coastal wetlands. While it is expected that over time these ecosystems will recover from oil spill impacts, disturbances can alter the pathway to recovery. In August 2012, hurricane Isaac traced the same path as the 2010 oil spill. We questioned whether the hurricane had a detrimental effect on the recovery of wetland communities previously affected by the oil spill. We analyzed AVIRIS hyperspectral imagery acquired over Bay Jimmy in Barataria Bay in September of 2010, in August of 2011, and after hurricane Isaac in October of 2012. We estimated oil and hurricane impact extent, and effects on plant stress based on change detection and trajectories of narrow band vegetation indexes. In September 2010, the oil impact extended 14m inland from the shore. Four plant stress indexes (NDVI, mNDVI, ANIR, ARed) and three water content indexes (NDII, WA980, WA1240) consistently showed that plant stress was significantly negatively correlated with distance from the shore. A year after the oil spill, in August 2011, we found that the vegetation was regenerating rapidly in more than 80% of the affected area. However, after hurricane Isaac, in October 2012, 24% of the 14-m green vegetation belt next to the shore disappeared under water in regions previously impacted by oil and 21% of the oil-free shoreline also lost its land to water. In the first 7 m adjacent to the shore, 38.5% of the land disappeared in oil-impacted zones and 32% in the oil-free zones. These results suggest that post-oil disturbance events can delay vegetation recovery in an already fragile wetland community.

  6. Ionic liquids for low-tension oil recovery processes: Phase behavior tests.

    PubMed

    Rodriguez-Escontrela, Iria; Puerto, Maura C; Miller, Clarence A; Soto, Ana

    2017-10-15

    Chemical flooding with surfactants for reducing oil-brine interfacial tensions (IFTs) to mobilize residual oil trapped by capillary forces has a great potential for Enhanced Oil Recovery (EOR). Surface-active ionic liquids (SAILs) constitute a class of surfactants that has recently been proposed for this application. For the first time, SAILs or their blends with an anionic surfactant are studied by determining equilibrium phase behavior for systems of about unit water-oil ratio at various temperatures. The test fluids were model alkane and aromatic oils, NaCl brine, and synthetic hard seawater (SW). Patterns of microemulsions observed are those of classical phase behavior (Winsor I-III-II transition) known to correlate with low IFTs. The two anionic room-temperature SAILs tested were made from common anionic surfactants by substituting imidazolium or phosphonium cations for sodium. These two anionic and two cationic SAILs were found to have little potential for EOR when tested individually. Thus, also tested were blends of an anionic internal olefin sulfonate (IOS) surfactant with one of the anionic SAILs and both cationic SAILs. Most promising for EOR was the anionic/cationic surfactant blend of IOS with [C 12 mim]Br in SW. A low equilibrium IFT of ∼2·10 -3 mN/m was measured between n-octane and an aqueous solution having the optimal blend ratio for this system at 25°C. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    NASA Astrophysics Data System (ADS)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  8. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase.more » A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as

  9. Production of a Lipopeptide Biosurfactant by a Novel Bacillus sp. and Its Applicability to Enhanced Oil Recovery.

    PubMed

    Varadavenkatesan, Thivaharan; Murty, Vytla Ramachandra

    2013-01-01

    Biosurfactants are surface-active compounds derived from varied microbial sources including bacteria and fungi. They are secreted extracellularly and have a wide range of exciting properties for bioremediation purposes. They also have vast applications in the food and medicine industry. With an objective of isolating microorganisms for enhanced oil recovery (EOR) operations, the study involved screening of organisms from an oil-contaminated site. Morphological, biochemical, and 16S rRNA analysis of the most promising candidate revealed it to be Bacillus siamensis, which has been associated with biosurfactant production, for the first time. Initial fermentation studies using mineral salt medium supplemented with crude oil resulted in a maximum biosurfactant yield of 0.64 g/L and reduction of surface tension to 36.1 mN/m at 96 h. Characterization studies were done using thin layer chromatography and Fourier transform infrared spectroscopy. FTIR spectra indicated the presence of carbonyl groups, alkyl bonds, and C-H and N-H stretching vibrations, typical of peptides. The extracted biosurfactant was stable at extreme temperatures, pH, and salinity. Its applicability to EOR was further verified by conducting sand pack column studies that yielded up to 60% oil recovery.

  10. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data.

    PubMed

    Khanna, Shruti; Santos, Maria J; Ustin, Susan L; Koltunov, Alexander; Kokaly, Raymond F; Roberts, Dar A

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

  11. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data

    USGS Publications Warehouse

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

  12. Detection of Salt Marsh Vegetation Stress and Recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico Using AVIRIS Data

    PubMed Central

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill. PMID:24223872

  13. Antioxidant effcacy of unripe banana (Musa acuminata Colla) peel extracts in sunflower oil during accelerated storage.

    PubMed

    Ling, Stella Sye Chee; Chang, Sui Kiat; Sia, Winne Chiaw Mei; Yim, Hip Seng

    2015-01-01

    Sunflower oil is prone to oxidation during storage time, leading to production of toxic compounds that might affect human health. Synthetic antioxidants are used to prevent lipid oxidation. Spreading interest in the replacement of synthetic food antioxidants by natural ones has fostered research on fruit and vegetables for new antioxidants. In this study, the efficacy of unripe banana peel extracts (100, 200 and 300 ppm)  in stabilizing sunflower oil was tested under accelerated storage (65°C) for a period of 24 days. BHA and α-tocopherol served as comparative standards besides the control. Established parameters such as peroxide value (PV), iodine value (IV), p-anisidine value (p-AnV), total oxidation value (TOTOX), thiobarbituric acid reactive substances (TBARS) and free fatty acid (FFA) content were used to assess the extent of oil deterioration. After 24 days storage at 65°C, sunflower oil containing 200 and 300 ppm extract of unripe banana peel showed significantly lower PV and TOTOX compared to BHA and α-tocopherol. TBARS, p-AnV and FFA values of sunflower oil containing 200 and 300 ppm of unripe banana peel extract exhibited comparable inhibitory effects with BHA. Unripe banana peel extract at 200 and 300 ppm demonstrated inhibitory effect against both primary and secondary oxidation up to 24 days under accelerated storage conditions. Unripe banana peel extract may be used as a potential source of natural antioxidants in the application of food industry to suppress lipid oxidation.

  14. Effect of exogenous inoculants on enhancing oil recovery and indigenous bacterial community dynamics in long-term field pilot of low permeability reservoir.

    PubMed

    Li, Jing; Xue, Shuwen; He, Chunqiu; Qi, Huixia; Chen, Fulin; Ma, Yanling

    2018-03-20

    Pseudomonas aeruginosa DN1 strain and Bacillus subtilis QHQ110 strain were chosen as rhamnolipid and lipopeptide producer respectively, to evaluate the efficiency of exogenous inoculants on enhancing oil recovery (EOR) and to explore the relationship between injected bacteria and indigenous bacterial community dynamics in long-term filed pilot of Hujianshan low permeability water-flooded reservoir for 26 months. Core-flooding tests showed that the oil displacement efficiency increased by 18.46% with addition of exogenous consortia. Bacterial community dynamics using quantitative PCR and high-throughput sequencing revealed that the exogenous inoculants survived and could live together with indigenous bacterial populations. They gradually became the dominant community after the initial activation, while their comparative advantage weakened continually after 3 months of the first injection. The bacterial populations did not exert an observable change in the process of the second injection of exogenous inoculants. On account of facilitating oil emulsification and accelerating bacterial growth with oil as the carbon source by the injection of exogenous consortia, γ-proteobacteria was finally the prominent bacterial community at class level varying from 25.55 to 32.67%, and the dominant bacterial populations were increased by 2-3 orders of magnitude during the whole processes. The content of organic acids and rhamnolipids in reservoir were promoted with the change of bacterial community diversity, respectively. Cumulative oil increments reached 26,190 barrels for 13 months after the first injection, and 55,947 barrels of oil had been accumulated in all of A20 wells block through two rounds of bacterial consortia injection. The performance of EOR has a cumulative improvement by the injection of exogenous inoculants without observable inhibitory effect on the indigenous bacterial populations, demonstrating the application potential in low permeability water

  15. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  16. Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery.

    PubMed

    Sharma, Rajni; Singh, Jagdish; Verma, Neelam

    2018-01-01

    The present work reveals the potential of biosurfactant producing P. aeruginosa PBS for microbial enhanced oil recovery (MEOR). The biosurfactant production medium and culture conditions were optimized using response surface methodology. The optimization of media components and process parameters was consecutively executed in two sets of experimental runs designed by central composite rotatable design (CCRD). The maximum biosurfactant yield was attained with 2% fresh inoculum of P. aeruginosa PBS in minimal salt medium (pH 7), possessing 2.17% sodium citrate as C-source and 0.5% yeast extract as N-source, after 48 h upon incubation at 30 °C/150 rpm. Under optimum conditions, biosurfactant yield was increased more than threefold and turned out to be 2.65 g/L as compared to 0.82 g/L under previous conditions. The biosurfactant was characterized as a glycolipid comprising of four rhamnolipid homologs (RhaRhaC 10 C 10 , RhaRhaC 8 C 10 , RhaRhaC 12 C 10 /RhaRhaC 10 C 12 , RhaC 10 C 10 ) by thin layer chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance and mass spectrometry. The produced biosurfactant was highly efficient for oil recovery application showing extreme reduction in surface tension of medium (71.80 to 23.76 mN/m), immense hydrocarbons emulsification capacity (50-60%) and greater stability at wide range of temperature (4-100 °C) and pH (4-10) along with an excellent (56.18 ± 1.59%) additional oil recovery in sand-pack column lab test.

  17. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    PubMed

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

  18. Ozonation of oil sands process-affected water accelerates microbial bioremediation.

    PubMed

    Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange

    2010-11-01

    Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.

  19. Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp fibre

    NASA Astrophysics Data System (ADS)

    Ramly, N. H.; Zakaria, R.; Naim, M. N.

    2016-06-01

    Surfactant-assisted aqueous extraction has been proposed as a “green” alternative to hexane extraction for the recovery of oil from plant matters. An efficient aqueous surfactant extraction system usually use an extended type of ionic surfactant with the ability to produce Winsor type III microemulsion, reducing the interfacial tension (IFT) between plant oil and surfactant solution to an ultralow level (10-3 mN/m). However, the safe used of this surfactant in food processing is uncertain leading to non-food application of the recovered oil. In the present study, the potential of Tween 80, a commercial food-grade non-ionic surfactant, was evaluated in the recovery of residual oil from palm-pressed mesocarp. The emulsion produced between Tween 80 and crude palm oil (CPO) was characterised in terms of IFT, droplet size, viscosity and phase inversion temperature (PIT). The effect of surfactant concentration, electrolyte (NaCl) and temperature were studied to determine whether a Winsor Type III microemulsion can be produced. Results shows that although these parameters were able to reduce the IFT to very low values, Winsor type III microemulsion was not produced with this single surfactant. Emulsion of CPO and Tween 80 solution did not produce a PIT even after heating to 100°C indicating that middle phase emulsion was not able to be formed with increasing temperature. The highest percentage of oil extraction (38.84%) was obtained at the concentration above the critical micelle concentration (CMC) of Tween 80 and CPO, which was at 0.5 wt% Tween 80 with 6% NaCl, and temperature of 60°C. At this concentration, the IFT value is 0.253 mN/m with a droplet size of 4183.8 nm, and a viscosity of 7.38 cp.

  20. An Integrative Review of Postoperative Accelerated Recovery Protocols.

    PubMed

    Oliveira, Ramon AntÔnio; Guatura, Gabrielle Meriche GalvÃo Bento da Silva; Peniche, Aparecida de Cássia Giani; Costa, Ana Lúcia Siqueira; Poveda, Vanessa de Brito

    2017-10-01

    We undertook an integrative literature review of articles pertaining to perioperative nursing care provided to patients using postoperative accelerated recovery protocols. To select the articles, we searched the MEDLINE, PubMed, Cumulative Index to Nursing and Allied Health Literature, and LiteraturaLatino-Americana e do Caribe em Ciências da Saúde databases. We identified 329 studies, 13 of which met our inclusion criteria and described perioperative nursing care activities. Nursing activities noted in these articles were hypothermia prevention and maintenance of normothermia, restriction of IV fluids, assessment of vital signs, management of symptoms and pain, support of early ambulation, care for tubes and drains, oral administration of carbohydrate-rich foods, assessment of ability to tolerate diet, and encouragement to resume activities of daily living. There was a lack of research on this topic by nursing professionals; additional research by nursing professionals is needed regarding nurses' roles in providing this care. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  1. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE PAGES

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; ...

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS

  2. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.

    PubMed

    Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q

    2015-01-01

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits

  3. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS

  4. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  5. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.

  6. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    PubMed

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-06

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered.

  7. Microbial enhanced oil recovery research. [Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.M.; Georgiou, G.

    1992-01-01

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 [times] 10[sup 3] mN/m which is one of the lowest values ever obtainedmore » with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in

  8. Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study.

    PubMed

    Jo, Chris Hyunchul; Kim, Ji Eun; Yoon, Kang Sup; Lee, Ji Ho; Kang, Seung Baik; Lee, Jae Hyup; Han, Hyuk Soo; Rhee, Seung Hwan; Shin, Sue

    2011-10-01

    Platelet-rich plasma (PRP) has been recently used to enhance and accelerate the healing of musculoskeletal injuries and diseases, but evidence is still lacking, especially on its effects after rotator cuff repair. Platelet-rich plasma accelerates recovery after arthroscopic rotator cuff repair in pain relief, functional outcome, overall satisfaction, and enhanced structural integrity of repaired tendon. Cohort study; Level of evidence, 2. Forty-two patients with full-thickness rotator cuff tears were included. Patients were informed about the use of PRP before surgery and decided themselves whether to have PRP placed at the time of surgery. Nineteen patients underwent arthroscopic rotator cuff repair with PRP and 23 without. Platelet-rich plasma was prepared via plateletpheresis and applied in the form of a gel threaded to a suture and placed at the interface between tendon and bone. Outcomes were assessed preoperatively and at 3, 6, 12, and finally at a minimum of 16 months after surgery (at an average of 19.7 ± 1.9 months) with respect to pain, range of motion, strength, and overall satisfaction, and with respect to functional scores as determined using the following scoring systems: the American Shoulder and Elbow Surgeon (ASES) system, the Constant system, the University of California at Los Angeles (UCLA) system, the Disabilities of the Arm, Shoulder and Hand (DASH) system, the Simple Shoulder Test (SST) system, and the Shoulder Pain and Disability Index (SPADI) system. At a minimum of 9 months after surgery, repaired tendon structural integrities were assessed by magnetic resonance imaging. Platelet-rich plasma gel application to arthroscopic rotator cuff repairs did not accelerate recovery with respect to pain, range of motion, strength, functional scores, or overall satisfaction as compared with conventional repair at any time point. Whereas magnetic resonance imaging demonstrated a retear rate of 26.7% in the PRP group and 41.2% in the conventional group

  9. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOEpatents

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  10. Stratigraphy of Citronelle Oil Field, AL: Perspectives from Enhanced Oil Recovery and Potential CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.

    2008-12-01

    The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.

  11. β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance.

    PubMed

    Wei, Bing

    2015-12-10

    This proof of concept research evaluates an approach to improve the enhanced heavy oil recovery performance of conventional polymers. Three associated polymeric systems, based on hydrolyzed polyacrylamide, xanthan gum, and a novel hydrophobic copolymer, were proposed in this work. The results of the theoretically rheology study indicate that these systems offer superior viscoelasticity and pronounced shear-thinning behavior due to the "interlocking effect". As a result of the surfactant collaboration, the dynamic interfacial tension between oil and polymer solution can be reduced by two orders of magnitude. Sandpack flooding tests demonstrated the capacity of the developed systems in mobility control during propagating in porous media, and the adsorption behavior was represented by the thickness of the adsorbed layer. The relationship between microscopic efficiency and capillary number indicated that the associated systems can significantly reduce the residual oil saturation due to the synergistic effect of the mobility reduction and surface activity, and the overall recovery efficiency was raised by 2-20% OOIP compared to the baseline polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico

    2018-04-01

    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

  13. General introduction and recovery factors

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    IntroductionThe U.S. Geological Survey (USGS) compared methods for estimating an incremental recovery factor (RF) for the carbon dioxide enhanced oil recovery (CO2-EOR) process involving the injection of CO2 into oil reservoirs. This chapter first provides some basic information on the RF, including its dependence on various reservoir and operational parameters, and then discusses the three development phases of oil recovery—primary, second­ary, and tertiary (EOR). It ends with a brief discussion of the three approaches for estimating recovery factors, which are detailed in subsequent chapters.

  14. Autonomous Electrothermal Facility for Oil Recovery Intensification Fed by Wind Driven Power Unit

    NASA Astrophysics Data System (ADS)

    Belsky, Aleksey A.; Dobush, Vasiliy S.

    2017-10-01

    This paper describes the structure of autonomous facility fed by wind driven power unit for intensification of viscous and heavy crude oil recovery by means of heat impact on productive strata. Computer based service simulation of this facility was performed. Operational energy characteristics were obtained for various operational modes of facility. The optimal resistance of heating element of the downhole heater was determined for maximum operating efficiency of wind power unit.

  15. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 82, quarterly report, January--March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document consists of a list of projects supporting work on oil recovery programs. A publications list and index of companies and institutions is provided. The remaining portion of the document provides brief descriptions on projects in chemical flooding, gas displacement, thermal recovery, geoscience, resource assessment, and reservoir class field demonstrations.

  16. Biscalix[4]arene derivative as a very efficient phase selective gelator for oil spill recovery.

    PubMed

    Tsai, Chia-Chen; Cheng, Ying-Tsai; Shen, Li-Ching; Chang, Kai-Chi; Ho, I-Ting; Chu, Jean-Ho; Chung, Wen-Sheng

    2013-11-15

    A biscalixarene framework, without long alkyl chains, has been readily synthesized in three steps starting from the parent calix[4]arene. The biscalix[4]arene 1 was able to form organogels in various alcoholic solvents; furthermore, it exhibited an excellent phase selective gelation property that is potentially useful in oil spill recovery.

  17. Recovery and Utilization of Palm Oil Mill Effluent Source as Value-Added Food Products.

    PubMed

    Teh, Soek Sin; Hock Ong, Augustine Soon; Mah, Siau Hui

    2017-01-01

    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13 C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.

  18. Application of decline curve analysis to estimate recovery factors for carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Jahediesfanjani, Hossein

    2017-07-17

    IntroductionIn the decline curve analysis (DCA) method of estimating recoverable hydrocarbon volumes, the analyst uses historical production data from a well, lease, group of wells (or pattern), or reservoir and plots production rates against time or cumu­lative production for the analysis. The DCA of an individual well is founded on the same basis as the fluid-flow principles that are used for pressure-transient analysis of a single well in a reservoir domain and therefore can provide scientifically reasonable and accurate results. However, when used for a group of wells, a lease, or a reservoir, the DCA becomes more of an empirical method. Plots from the DCA reflect the reservoir response to the oil withdrawal (or production) under the prevailing operating and reservoir conditions, and they continue to be good tools for estimating recoverable hydrocarbon volumes and future production rates. For predicting the total recov­erable hydrocarbon volume, the DCA results can help the analyst to evaluate the reservoir performance under any of the three phases of reservoir productive life—primary, secondary (waterflood), or tertiary (enhanced oil recovery) phases—so long as the historical production data are sufficient to establish decline trends at the end of the three phases.

  19. Crude oil desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B. (Inventor)

    1982-01-01

    High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery.

  20. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  1. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  2. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    PubMed

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  3. Evaluation of corn oil as an additive in the pre-enrichment step to increase recovery of Salmonella enterica from oregano.

    PubMed

    Jean-Gilles Beaubrun, Junia; Flamer, Marie-Laure; Addy, Nicole; Ewing, Laura; Gopinath, Gopal; Jarvis, Karen; Grim, Chris; Hanes, Darcy E

    2016-08-01

    Phenolic compounds associated with essential oils of spices and herbs possess a variety of antioxidant and antimicrobial properties that interfere with Salmonella detection from fresh and dried products. Finding a compound to neutralize the effect of these antimicrobial compounds, while allowing Salmonella growth during pre-enrichment, is a crucial step in both traditional pathogen isolation and molecular detection from these foods. This study evaluated the effectiveness of corn oil as a component of the pre-enrichment broth to counteract antimicrobial compounds properties and increase the recovery of Salmonella from spices. Oregano samples artificially contaminated with Salmonella enterica were pre-enriched in modified Buffered Peptone Water (mBPW) supplemented with and without 2% (vol/vol) corn oil respectively. Samples were incubated overnight at 37 °C. The results showed that recovery of Salmonella from oregano samples was increased by ≥50% when pre-enriched with corn oil. Serovars were confirmed using a PCR serotyping method. In addition, shot-gun metagenomics analyses demonstrated bacterial diversity and the effect of corn oil on the relative prevalence of Salmonella in the oregano samples. Modifying pre-enrichment broths with corn oil improved the detection and isolation of Salmonella from oregano, and may provide an alternative method for pathogen detection in dried food matrices such as spices. Published by Elsevier Ltd.

  4. The physiological effects of oil, dispersant and dispersed oil on the bay mussel, Mytilus trossulus, in Arctic/Subarctic conditions.

    PubMed

    Counihan, Katrina L

    2018-06-01

    Increasing oil development around Alaska and other Arctic regions elevates the risk for another oil spill. Dispersants are used to mitigate the impact of an oil spill by accelerating natural degradation processes, but the reduced hydrophobicity of dispersed oil may increase its bioavailability to marine organisms. There is limited research on the effect of dispersed oil on cold water species and ecosystems. Therefore, spiked exposure tests were conducted with bay mussels (Mytilus trossulus) in seawater with non-dispersed oil, Corexit 9500 and oil dispersed with different concentrations of Corexit 9500. After three weeks of exposure, acute and chronic physiological impacts were determined. The majority of physiological responses occurred during the first seven days of exposure, with mussels exhibiting significant cytochrome P450 activity, superoxide dismutase activity and heat shock protein levels. Mussels exposed to non-dispersed oil also experienced immune suppression, reduced transcription and higher levels of mortality. After 21 days, mussels in all treatments exhibited evidence of genetic damage, tissue loss and a continued stress response. Bay mussels are useful as indicators of ecosystem health and recovery, and this study was an important step in understanding how non-dispersed oil, dispersant and dispersed oil affect the physiology of this sentinel species in Arctic/subarctic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Recovery in soccer : part ii-recovery strategies.

    PubMed

    Nédélec, Mathieu; McCall, Alan; Carling, Chris; Legall, Franck; Berthoin, Serge; Dupont, Gregory

    2013-01-01

    In the formerly published part I of this two-part review, we examined fatigue after soccer matchplay and recovery kinetics of physical performance, and cognitive, subjective and biological markers. To reduce the magnitude of fatigue and to accelerate the time to fully recover after completion, several recovery strategies are now used in professional soccer teams. During congested fixture schedules, recovery strategies are highly required to alleviate post-match fatigue, and then to regain performance faster and reduce the risk of injury. Fatigue following competition is multifactorial and mainly related to dehydration, glycogen depletion, muscle damage and mental fatigue. Recovery strategies should consequently be targeted against the major causes of fatigue. Strategies reviewed in part II of this article were nutritional intake, cold water immersion, sleeping, active recovery, stretching, compression garments, massage and electrical stimulation. Some strategies such as hydration, diet and sleep are effective in their ability to counteract the fatigue mechanisms. Providing milk drinks to players at the end of competition and a meal containing high-glycaemic index carbohydrate and protein within the hour following the match are effective in replenishing substrate stores and optimizing muscle-damage repair. Sleep is an essential part of recovery management. Sleep disturbance after a match is common and can negatively impact on the recovery process. Cold water immersion is effective during acute periods of match congestion in order to regain performance levels faster and repress the acute inflammatory process. Scientific evidence for other strategies reviewed in their ability to accelerate the return to the initial level of performance is still lacking. These include active recovery, stretching, compression garments, massage and electrical stimulation. While this does not mean that these strategies do not aid the recovery process, the protocols implemented up until

  6. Accelerated Recovery of Consciousness after General Anesthesia Is Associated with Increased Functional Brain Connectivity in the High-Gamma Bandwidth

    PubMed Central

    Li, Duan; Hambrecht-Wiedbusch, Viviane S.; Mashour, George A.

    2017-01-01

    Recent data from our laboratory demonstrate that high-frequency gamma connectivity across the cortex is present during consciousness and depressed during unconsciousness. However, these data were derived from static and well-defined states of arousal rather than during transitions that would suggest functional relevance. We also recently found that subanesthetic ketamine administered during isoflurane anesthesia accelerates recovery upon discontinuation of the primary anesthetic and increases gamma power during emergence. In the current study we re-analyzed electroencephalogram (EEG) data to test the hypothesis that functional cortical connectivity between anterior and posterior cortical regions would be increased during accelerated recovery induced by ketamine when compared to saline-treated controls. Rodents were instrumented with intracranial EEG electrodes and general anesthesia was induced with isoflurane anesthesia. After 37.5 min of continuous isoflurane anesthesia, a subanesthetic dose of ketamine (25 mg/kg intraperitoneal) was administered, with evidence of a 44% reduction in emergence time. In this study, we analyzed gamma and theta coherence (measure of undirected functional connectivity) and normalized symbolic transfer entropy (measure of directed functional connectivity) between frontal and parietal cortices during various levels of consciousness, with a focus on emergence from isoflurane anesthesia. During accelerated emergence in the ketamine-treated group, there was increased frontal-parietal coherence {p = 0.005, 0.05–0.23 [95% confidence interval (CI)]} and normalized symbolic transfer entropy [frontal to parietal: p < 0.001, 0.010–0.026 (95% CI); parietal to frontal: p < 0.001, 0.009–0.025 (95% CI)] in high-frequency gamma bandwidth as compared with the saline-treated group. Surrogates of cortical information exchange in high-frequency gamma are increased in association with accelerated recovery from anesthesia. This finding adds evidence

  7. Accelerated Recovery of Consciousness after General Anesthesia Is Associated with Increased Functional Brain Connectivity in the High-Gamma Bandwidth.

    PubMed

    Li, Duan; Hambrecht-Wiedbusch, Viviane S; Mashour, George A

    2017-01-01

    Recent data from our laboratory demonstrate that high-frequency gamma connectivity across the cortex is present during consciousness and depressed during unconsciousness. However, these data were derived from static and well-defined states of arousal rather than during transitions that would suggest functional relevance. We also recently found that subanesthetic ketamine administered during isoflurane anesthesia accelerates recovery upon discontinuation of the primary anesthetic and increases gamma power during emergence. In the current study we re-analyzed electroencephalogram (EEG) data to test the hypothesis that functional cortical connectivity between anterior and posterior cortical regions would be increased during accelerated recovery induced by ketamine when compared to saline-treated controls. Rodents were instrumented with intracranial EEG electrodes and general anesthesia was induced with isoflurane anesthesia. After 37.5 min of continuous isoflurane anesthesia, a subanesthetic dose of ketamine (25 mg/kg intraperitoneal) was administered, with evidence of a 44% reduction in emergence time. In this study, we analyzed gamma and theta coherence (measure of undirected functional connectivity) and normalized symbolic transfer entropy (measure of directed functional connectivity) between frontal and parietal cortices during various levels of consciousness, with a focus on emergence from isoflurane anesthesia. During accelerated emergence in the ketamine-treated group, there was increased frontal-parietal coherence { p = 0.005, 0.05-0.23 [95% confidence interval (CI)]} and normalized symbolic transfer entropy [frontal to parietal: p < 0.001, 0.010-0.026 (95% CI); parietal to frontal: p < 0.001, 0.009-0.025 (95% CI)] in high-frequency gamma bandwidth as compared with the saline-treated group. Surrogates of cortical information exchange in high-frequency gamma are increased in association with accelerated recovery from anesthesia. This finding adds evidence

  8. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  9. The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, James O.; Brown, Lewis R.; Vadie, A. Alex

    2000-02-02

    The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue formore » much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.« less

  10. Accelerated aortic imaging using small field of view imaging and electrocardiogram-triggered quadruple inversion recovery magnetization preparation.

    PubMed

    Peel, Sarah A; Hussain, Tarique; Cecelja, Marina; Abbas, Abeera; Greil, Gerald F; Chowienczyk, Philip; Spector, Tim; Smith, Alberto; Waltham, Matthew; Botnar, Rene M

    2011-11-01

    To accelerate and optimize black blood properties of the quadruple inversion recovery (QIR) technique for imaging the abdominal aortic wall. QIR inversion delays were optimized for different heart rates in simulations and phantom studies by minimizing the steady state magnetization of blood for T(1) = 100-1400 ms. To accelerate and improve black blood properties of aortic vessel wall imaging, the QIR prepulse was combined with zoom imaging and (a) "traditional" and (b) "trailing" electrocardiogram (ECG) triggering. Ten volunteers were imaged pre- and post-contrast administration using a conventional ECG-triggered double inversion recovery (DIR) and the two QIR implementations in combination with a zoom-TSE readout. The QIR implemented with "trailing" ECG-triggering resulted in consistently good blood suppression as the second inversion delay was timed during maximum systolic flow in the aorta. The blood signal-to-noise ratio and vessel wall to blood contrast-to-noise ratio, vessel wall sharpness, and image quality scores showed a statistically significant improvement compared with the traditional QIR implementation with and without ECG-triggering. We demonstrate that aortic vessel wall imaging can be accelerated with zoom imaging and that "trailing" ECG-triggering improves black blood properties of the aorta which is subject to motion and variable blood flow during the cardiac cycle. Copyright © 2011 Wiley Periodicals, Inc.

  11. The fifth international conference on microbial enhanced oil recovery and related biotechnology for solving environmental problems: 1995 Conference proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, R.

    1995-12-31

    This volume contains 41 papers covering the following topics: field trials of microbial enhanced recovery of oil; control and treatment of sour crudes and natural gas with microorganisms; bioremediation of hydrocarbon contamination in soils; microbial plugging processes; microbial waste water treatment; the use of microorganisms as biological indicators of oils; and characterization and behavior of microbial systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    PubMed

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Microbial enhanced oil recovery research. Annex 5, Summary annual report 1990--1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.M.; Georgiou, G.

    1991-12-31

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (2) development of simulators for MEOR; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs,; (4) design of operation strategies for the sequential injection of microorganisms and nutrient in reservoirs. Accomplishments are: (1) ultra low interfacial tensions (0.003 mN/M) were obtained between decane and 5% NaCl brine using biosurfactants obtained frommore » Bacillus Licheniformis, JF-2 which is the lowest IFT ever reported for biosurfactants; (2) a method to was developed isolate the biosurfactant from the growth medium; (3) the structure of the isolated biosurfactant has been determined; (4) several techniques have been proposed to increase the yield of the surfactant; and (5) an MEOR simulator has been completed.« less

  14. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less

  15. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process

    NASA Astrophysics Data System (ADS)

    Jung, Myungwon; Mishra, Brajendra

    2018-02-01

    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  16. Accelerated hematopoietic recovery with angiotensin-(1-7) after total body radiation.

    PubMed

    Rodgers, Kathleen E; Espinoza, Theresa; Roda, Norma; Meeks, Christopher J; Hill, Colin; Louie, Stan G; Dizerega, Gere S

    2012-06-01

    Angiotensin (1-7) [A(1-7)] is a component of the renin angiotensin system (RAS) that stimulates hematopoietic recovery after myelosuppression. In a Phase I/IIa clinical trial, thrombocytopenia after chemotherapy was reduced by A(1-7). In this study, the ability of A(1-7) to improve recovery after total body irradiation (TBI) is shown with specific attention to radiation-induced hematopoietic injury. Mice were exposed to TBI (doses of 2-7 Gray [Gy]) of cesium 137 gamma rays, followed by treatment with A(1-7), typical doses were 100-1000 μg/kg given once or once daily for a specified number of days depending on the study. Animals are injected subcutaneously via the nape of the neck with 0.1 ml drug in saline. The recovery of blood and bone marrow cells was determined. Effects of TBI and A(1-7) on survival and bleeding time was also evaluated. Daily administration of A(1-7) after radiation exposure improved survival (from 60% to 92-97%) and reduced bleeding time at day 30 after TBI. Further, A(1-7) increased early mixed progenitors (3- to 5-fold), megakaryocyte (2- to 3-fold), myeloid (3- to 6-fold) and erythroid (2- to 5-fold) progenitors in the bone marrow and reduced radiation-induced thrombocytopenia (RIT) (up to 2-fold). Reduction in the number of treatments to 3 per week also improved bone marrow recovery and reduced RIT. As emergency responder and healthcare systems in case of nuclear accident or/and terrorist attack may be overwhelmed, the consequence of delayed initiation of treatment was ascertained. Treatment with A(1-7) can be delayed up to 5 days and still be effective in the reduction of RIT or acceleration of bone marrow recovery. The data presented in this paper indicate that A(1-7) reduces the consequences of critical radiation exposure and can be initiated well after initial exposure with maximal effects on early responding hematopoietic progenitors when treatment is initiated 2 days after exposure and 5 days after exposure for the later responding

  17. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.

    PubMed

    Basu, Kingshuk; Nandi, Nibedita; Mondal, Biplab; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2017-12-06

    A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n -hexane, n -octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o -xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.

  18. Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults.

    PubMed

    Graham, David F; Carty, Christopher P; Lloyd, David G; Barrett, Rod S

    2017-01-01

    The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance.

  19. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves.

    PubMed

    Wang, Li-Jun; Fan, Ling; Loescher, Wayne; Duan, Wei; Liu, Guo-Jie; Cheng, Jian-Shan; Luo, Hai-Bo; Li, Shao-Hua

    2010-02-23

    Although the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25 degrees C), during heat stress (43 degrees C for 5 h), and through the following recovery period (25 degrees C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated. SA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activation state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls. SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activation state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  20. Design and feasibility study for a portable oil recovery turbopump

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A portable oil recovery turbopump concept, using the Firefly module as primer mover, for the offloading of distressed tank vessels is examined. The demands to be met both in terms of the type of petroleum to be offloaded, as well as the operational requirements placed on the pump, are studied with respect to the capability of different pump configurations. Two configurations, one a centrifugal type and the other a screw type pump, are developed and evaluated. While the centrifugal configuration is found to be effective in a large proportion of tank vessel offloading situations, the screw type will be required where high viscosity cargoes are involved. The feasibility of the turbopump concept, with the Firefly module as prime mover, is established.

  1. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration.

    PubMed

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-07-12

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

  2. Oiling accelerates loss of salt marshes, southeastern Louisiana

    USGS Publications Warehouse

    Beland, Michael; Biggs, Trent W.; Roberts, Dar A.; Peterson, Seth H.; Kokaly, Raymond F.; Piazza, Sarai

    2017-01-01

    The 2010 BP Deepwater Horizon (DWH) oil spill damaged thousands of km2 of intertidal marsh along shorelines that had been experiencing elevated rates of erosion for decades. Yet, the contribution of marsh oiling to landscape-scale degradation and subsequent land loss has been difficult to quantify. Here, we applied advanced remote sensing techniques to map changes in marsh land cover and open water before and after oiling. We segmented the marsh shorelines into non-oiled and oiled reaches and calculated the land loss rates for each 10% increase in oil cover (e.g. 0% to >70%), to determine if land loss rates for each reach oiling category were significantly different before and after oiling. Finally, we calculated background land-loss rates to separate natural and oil-related erosion and land loss. Oiling caused significant increases in land losses, particularly along reaches of heavy oiling (>20% oil cover). For reaches with ≥20% oiling, land loss rates increased abruptly during the 2010–2013 period, and the loss rates during this period are significantly different from both the pre-oiling (p < 0.0001) and 2013–2016 post-oiling periods (p < 0.0001). The pre-oiling and 2013–2016 post-oiling periods exhibit no significant differences in land loss rates across oiled and non-oiled reaches (p = 0.557). We conclude that oiling increased land loss by more than 50%, but that land loss rates returned to background levels within 3–6 years after oiling, suggesting that oiling results in a large but temporary increase in land loss rates along the shoreline.

  3. A Dietary Supplementation with Leucine and Antioxidants Is Capable to Accelerate Muscle Mass Recovery after Immobilization in Adult Rats

    PubMed Central

    Savary-Auzeloux, Isabelle; Magne, Hugues; Migné, Carole; Oberli, Marion; Breuillé, Denis; Faure, Magali; Vidal, Karine; Perrot, Marie; Rémond, Didier; Combaret, Lydie; Dardevet, Dominique

    2013-01-01

    Prolonged inactivity induces muscle loss due to an activation of proteolysis and decreased protein synthesis; the latter is also involved in the recovery of muscle mass. The aim of the present work was to explore the evolution of muscle mass and protein metabolism during immobilization and recovery and assess the effect of a nutritional strategy for counteracting muscle loss and facilitating recovery. Adult rats (6–8 months) were subjected to unilateral hindlimb casting for 8 days (I0–I8) and then permitted to recover for 10 to 40 days (R10–R40). They were fed a Control or Experimental diet supplemented with antioxidants/polyphenols (AOX) (I0 to I8), AOX and leucine (AOX + LEU) (I8 to R15) and LEU alone (R15 to R40). Muscle mass, absolute protein synthesis rate and proteasome activities were measured in gastrocnemius muscle in casted and non-casted legs in post prandial (PP) and post absorptive (PA) states at each time point. Immobilized gastrocnemius protein content was similarly reduced (-37%) in both diets compared to the non-casted leg. Muscle mass recovery was accelerated by the AOX and LEU supplementation (+6% AOX+LEU vs. Control, P<0.05 at R40) due to a higher protein synthesis both in PA and PP states (+23% and 31% respectively, Experimental vs. Control diets, P<0.05, R40) without difference in trypsin- and chymotrypsin-like activities between diets. Thus, this nutritional supplementation accelerated the recovery of muscle mass via a stimulation of protein synthesis throughout the entire day (in the PP and PA states) and could be a promising strategy to be tested during recovery from bed rest in humans. PMID:24312309

  4. Biodegradation of isopropanol and acetone under denitrifying conditions by Thauera sp. TK001 for nitrate-mediated microbially enhanced oil recovery.

    PubMed

    Fida, Tekle Tafese; Gassara, Fatma; Voordouw, Gerrit

    2017-07-15

    Amendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001. The strain was able to grow on IPA or acetone and nitrate. To monitor effects of strain TK001 on oil recovery, sand-packed columns containing heavy oil were flooded with minimal medium at atmospheric or high (400psi) pressure. Bioreactors were then inoculated with 0.5 pore volume (PV) of minimal medium containing Thauera sp. TK001 with 25mM of acetone or 22.2mM of IPA with or without 80mM nitrate. Incubation without flow for two weeks and subsequent injection with minimal medium gave an additional 17.0±6.7% of residual oil in place (ROIP) from low-pressure bioreactors and an additional 18.3% of ROIP from the high-pressure bioreactors. These results indicate that acetone or IPA, which are commonly used organic solvents, are good substrates for nitrate-mediated microbial enhanced oil recovery (MEOR), comparable to glucose, acetate or molasses, tested previously. This technology may be used for coupling biodegradation of IPA and/or acetone in waste streams to MEOR where these waste streams are generated in close proximity to an oil field. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults

    PubMed Central

    Graham, David F.; Carty, Christopher P.; Lloyd, David G.

    2017-01-01

    The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance. PMID:29069097

  6. Enhancing the recovery of oilseed rape seed oil bodies (oleosomes) using bicarbonate-based soaking and grinding media.

    PubMed

    De Chirico, Simone; di Bari, Vincenzo; Foster, Tim; Gray, David

    2018-02-15

    An aqueous process for the recovery of oil bodies from rapeseed using sodium bicarbonate-based soaking and grinding media (pH 9.5) was investigated. The effect of the ratio between seed and mass of media during grinding and molarity of the medium used on oil body integrity, purity and storage stability have been studied. The grinding of seeds in solution at a ratio of 1:7 (w/w) significantly improved the quality of oil body suspension to a size more in-line with that seen in vivo (average D 4,3 of 1.19µm). The purity and the composition of the recovered oil bodies depends on the molarity of medium used; the use of a sodium bicarbonate solution (pH 9.5, 0.1M) in the grinding and washing steps produced oil body preparations with the same purity as that resulting from washing a crude preparation with 9M urea. The resultant emulsion had improved physical stability over a storage period of one month. Copyright © 2017. Published by Elsevier Ltd.

  7. Shelf Life Extension of Tomato Paste Through Organoleptically Acceptable Concentration of Betel Leaf Essential Oil Under Accelerated Storage Environment.

    PubMed

    Basak, Suradeep

    2018-05-01

    This study was attempted with two objectives: (1) to find an acceptable concentration of betel leaf essential oil (BLEO) based on sensory evaluation that can be employed in tomato paste; (2) to evaluate the effect of the acceptable concentration of BLEO in the paste during accelerated storage under 89 ± 1.2% RH at 39 ± 1 °C. Linguistic data obtained from sensory evaluation of tomato paste treated with 4 different concentrations of BLEO were analyzed using fuzzy logic approach. The organoleptically acceptable concentration was determined to be 0.25 mg/g of BLEO in tomato paste. The effect of the selected concentration of BLEO on different physicochemical and microbial attributes of tomato paste during accelerated storage was studied. Untreated tomato paste was found to have 12% less total antioxidant capacity than treated paste at the end of storage. Based on a * /b * value in CIELAB color space, the BLEO treated paste efficiently extended the shelf life by 14 days with respect to untreated paste samples under accelerated storage conditions. BLEO comes with a tag contributing to green consumerism, and its application as food preservative is no less than a value addition to the product. Essential oil is considered to have promising potential as an alternative food preservative, and its use is practically possible if they could overcome the sensory barrier, while retaining the preservative potency. The importance of identifying the sensory attributes for commercial success of essential oil treated food product was considered in this study. It contributes to the potency of organoleptically acceptable concentration of BLEO in shelf life extension of tomato paste under accelerated storage conditions. At industrial level, the estimated shelf life of treated tomato paste can be increased by incorporating more hurdles alongside BLEO. © 2018 Institute of Food Technologists®.

  8. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis.

    PubMed

    Cooney, Gregory; Littlefield, James; Marriott, Joe; Skone, Timothy J

    2015-06-16

    This study uses life cycle analysis (LCA) to evaluate the greenhouse gas (GHG) performance of carbon dioxide (CO2) enhanced oil recovery (EOR) systems. A detailed gate-to-gate LCA model of EOR was developed and incorporated into a cradle-to-grave boundary with a functional unit of 1 MJ of combusted gasoline. The cradle-to-grave model includes two sources of CO2: natural domes and anthropogenic (fossil power equipped with carbon capture). A critical parameter is the crude recovery ratio, which describes how much crude is recovered for a fixed amount of purchased CO2. When CO2 is sourced from a natural dome, increasing the crude recovery ratio decreases emissions, the opposite is true for anthropogenic CO2. When the CO2 is sourced from a power plant, the electricity coproduct is assumed to displace existing power. With anthropogenic CO2, increasing the crude recovery ratio reduces the amount of CO2 required, thereby reducing the amount of power displaced and the corresponding credit. Only the anthropogenic EOR cases result in emissions lower than conventionally produced crude. This is not specific to EOR, rather the fact that carbon-intensive electricity is being displaced with captured electricity, and the fuel produced from that system receives a credit for this displacement.

  9. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    PubMed

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Influence of optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-10-01

    We numerically investigate the influence of the optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by solving 1088 coupled rate equations. The temporal variations of the gain and phase recovery response at the ground state (GS) of QDs are calculated at various signal wavelengths when the optical pumping wavelengths at the excited state (ES) of QDs are varied. The phase recovery response is fastest when the wavelength of the signal and pumping beams corresponds to the respective emission wavelength of the GS and the ES in the same size of QDs. The absorption efficiency of the optical pumping beam at the ES is determined by the Lorentzian line shape function of the homogeneous broadening.

  11. Accelerated Recovery of Endothelium Function after Stent Implantation with the Use of a Novel Systemic Nanoparticle Curcumin.

    PubMed

    Lu, Qi; Ye, Fang; Yang, Xiangjun; Gu, Qingqing; Wang, Peng; Zhu, Jianhua; Shen, Li; Gong, Feirong

    2015-01-01

    Curcumin was reported to exhibit a wide range of pharmacological effects including antioxidant, anti-inflammatory, and antiproliferative activities and significantly prevent smooth muscle cells migration. In the present study, a novel kind of curcumin loaded nanoparticles (Cur-NP) has been prepared and characterized with the aim of inhibiting inflammation formation and accelerating the healing process of the stented arteries. Cur-NP was administrated intravenously after stent implantation twice a week and detailed tissue responses were evaluated. The results demonstrated that intravenous administration of Cur-NP after stent implantation accelerated endothelial cells restoration and endothelium function recovery and may potentially be an effective therapeutic alternative to reduce adverse events for currently available drug eluting stents.

  12. Food limitation and the recovery of sea otters following the 'Exxon Valdez' oil spill

    USGS Publications Warehouse

    Dean, Thomas A.; Bodkin, James L.; Fukuyama, Allan K.; Jewett, Stephen C.; Monson, Daniel H.; O'Clair, Charles E.; VanBlaricom, Glenn R.

    2002-01-01

    We examined the potential role of food limitation in constraining the recovery of sea otters Enhydra lutris in Prince William Sound, Alaska, following the 'Exxon Valdez' oil spill. The spill resulted in the removal of a large number of sea otters in 1989, and as of 1998, the portion of the population in the heavily oiled northern Knight Island region had not fully recovered. Between 1996 and 1998, prey consumption rate was higher and the condition of sea otters was better at northern Knight Island than in an unoiled area of the sound (Montague Island). Estimates of prey energy available per unit mass of sea otter were about 4 times higher at Knight than Montague Island, albeit not significantly different between the 2 areas. Over this same period, the number of sea otters remained constant at northern Knight Island but increased at Montague Island. These data suggest that food was at least as abundant at Knight than at Montague Island, and that recovery of sea otters via intrinsic population growth was limited by factors other than food. However, the availability of food, the prey consumption rate, and the condition of sea otters were all much lower at both Knight and Montague Islands than in areas newly occupied by sea otters where the population growth rate was near the theoretical maximum. It is possible that the relatively short supply of food (compared to areas where sea otter population growth rate was high) may have inhibited immigration or interacted with other factors (e.g. oil-induced mortality or predation) to restrict sea otter population growth. Nonetheless, these data suggest that impacts of anthropogenic disturbances on large, often food-limited vertebrate predators can persist in spite of the availability of food resources that are sufficient for intrinsic population growth.

  13. Experimental Study on Oil Displacement Mechanism

    NASA Astrophysics Data System (ADS)

    Pi, Yanfu; Shao, Hongzhi; Pi, Yanming; Liu, Li

    2018-02-01

    In this work, the objective is enhancing oil recovery in offshore heavy oil after polymer flooding. The heterogeneous physical model is especially designed for oil fields with heavy oil. The comparative study of the two displacement experiments was carried out, and the experimental data was compared and analysed. The comparison between scheme one and scheme two was analysed from the production curve. The patterns of cores are analysed and compared with each other. It was found that the oil in the high permeability layer and medium permeability layer had been widely removed in the stage of binary combination flooding. There was a high degree of use in the low permeability layer. The recovery ratio is 66.29%. After polymer flooding, the addition of binary combination flooding in the heavy oil reservoir can greatly enhance oil recovery.

  14. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    PubMed

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  15. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration

    PubMed Central

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C.; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-01-01

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil–water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions. PMID:27354529

  16. Efficacy of an accelerated recovery protocol for Oxford unicompartmental knee arthroplasty--a randomised controlled trial.

    PubMed

    Reilly, K A; Beard, D J; Barker, K L; Dodd, C A F; Price, A J; Murray, D W

    2005-10-01

    Unicompartmental knee arthroplasty (UKA) is appropriate for one in four patients with osteoarthritic knees. This study was performed to compare the safety, effectiveness and economic viability of a new accelerated protocol with current standard care in a state healthcare system. A single blind RCT design was used. Eligible patients were screened for NSAID tolerance, social circumstances and geographical location before allocation to an accelerated recovery group (A) or standard care group (S). Primary outcome was the Oxford Knee Assessment at 6 months post operation, compared using independent Mann-Whitney U-tests. A simple difference in costs incurred was calculated. The study power was sufficient to avoid type 2 errors. Forty-one patients were included. The average stay for Group A was 1.5 days. Group S averaged 4.3 days. No significant difference in outcomes was found between groups. The new protocol achieved cost savings of 27% and significantly reduced hospital bed occupancy. In addition, patient satisfaction was assessed as greater with the accelerated discharge than with the routine discharge time. The strict inclusion criteria meant that 75% of eligible patients were excluded. However, a large percentage of these were due to the distances patients lived from the hospital.

  17. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflectmore » mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been

  18. Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery.

    PubMed

    Zhao, F; Mandlaa, M; Hao, J; Liang, X; Shi, R; Han, S; Zhang, Y

    2014-08-01

    Response surface methodology was employed to enhance the anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl. Glycerol is a promising carbon source used to anaerobically produce rhamnolipid. In a Plackett-Burman design, glycerol, KH2 PO4 and yeast extract were significant factors. The proposed optimized medium contained the following: 46·55 g l(-1) glycerol; 3 g l(-1) NaNO3 ; 5·25 g l(-1) K2 HPO4 ·3H2 O; 5·71 g l(-1) KH2 PO4 ; 0·40 g l(-1) MgSO4 ·7H2 O; 0·13 g l(-1) CaCl2 ; 1·0 g l(-1) KCl; 1·0 g l(-1) NaCl; and 2·69 g l(-1) yeast extract. Using this optimized medium, we obtained an anaerobic yield of rhamnolipid of 3·12 ± 0·11 g l(-1) with a 0·85-fold increase. Core flooding test results also revealed that Ps. stutzeri Rhl grown in an optimized medium enhanced the oil recovery efficiency by 15·7%, which was 6·6% higher than in the initial medium. Results suggested that the optimized medium is a promising nutrient source that could effectively mobilize oil by enhancing the in situ production of rhamnolipid. The ex situ application of rhamnolipid for microbial enhanced oil recovery (MEOR) is costly and complex in terms of rhamnolipid production, purification and transportation. Compared with ex situ applications, the in situ production of rhamnolipid in anaerobic oil reservoir is more advantageous for MEOR. This study is the first to report the anaerobic production optimization of rhamnolipid. Results showed that the optimized medium enhanced not only the anaerobic production of rhamnolipid but also crude oil recovery. © 2014 The Society for Applied Microbiology.

  19. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  20. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  1. Secondary oil recovery from selected Carter sandstone oilfields -- Black Warrior Basin, Alabama. Quarterly technical progress report, September 1--November 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.C.

    1994-01-15

    Anderman/Smith Operating Co. is operating a secondary oil recovery project involving the Carter sandstone in northwest Alabama. The project objectives are: (1) to increase the ultimate economic recovery of oil from the Carter reservoirs, thereby increasing domestic reserves and lessening US dependence on foreign oil; (2) to extensively model, test, and monitor the reservoirs so their management is optimized; and (3) to assimilate and transfer the information and results gathered to other US oil companies to encourage them to attempt similar projects. As a result of waterflood operations at the Central Buff unit, oil production from the Fowler Brasher 7--9more » well increased to 40--50 stb/d in late October, and averaged about 45 stb/d in November with no measurable water production. Production at the Fowler Dodson 8--12 was more erratic during the same period. In October, the oil rate for this well increased to nearly 17 stb/d with no reported water production. However, in November the oil production rate declined to about 9 stb/d with an associated average water rate of nearly 17 bpd. Water analysis showed that this produced water was significantly fresher than the connate water produced prior to waterflood operations. This provides evidence for early breakthrough of water injected at the Jones 7--16 well and will be an important consideration in the reservoir modeling study being performed for the unit. There has been essentially no change in the waterflood response at the North Fairview Unit during the last quarter. Oil production rates from the three producing wells have remained unchanged; that is, 3 stb/d for Smith 33-6, 2 stb/d for Perkins 33--11, and 1 stb/d for the Perkins Young 33--10 well.« less

  2. Accelerated recovery of Atlantic salmon (Salmo salar) from effects of crowding by swimming.

    PubMed

    Veiseth, Eva; Fjaera, Svein Olav; Bjerkeng, Bjørn; Skjervold, Per Olav

    2006-07-01

    The effects of post-crowding swimming velocity (0, 0.35, and 0.70 m/s) and recovery time (1.5, 6, and 12 h) on physiological recovery and processing quality parameters of adult Atlantic salmon (Salmo salar) were determined. Atlantic salmon crowded to a density similar to that of a commercial slaughter process (>200 kg/m(3), 40 min) were transferred to a swimming chamber for recovery treatment. Osmolality and concentrations of cortisol, glucose and lactate in blood plasma were used as physiological stress indicators, whereas image analyses of extent and duration of rigor contraction, and fillet gaping were used as measures of processing quality. Crowded salmon had a 5.8-fold higher plasma cortisol concentration than control salmon (P<0.05). The elevated plasma cortisol concentration was reduced by increasing the swimming velocity, and had returned to control levels after 6 h recovery at high water velocity. Similar effects of swimming velocity were observed for plasma osmolality and lactate concentration. A lower plasma glucose concentration was present in crowded than in control fish (P<0.05), although a typical post-stress elevation in plasma glucose was observed after the recovery treatments. Lower muscle pH was found in crowded compared with control salmon (P<0.05), but muscle pH returned to control levels after 6 h recovery at intermediate and high swimming velocities and after 12 h in the low velocity group. Crowding caused an early onset of rigor mortis contraction. However, subjecting crowded salmon to active swimming for 6 h before slaughter delayed the onset of rigor mortis contraction from 2.5 to 7.5 h post mortem. The extent of rigor mortis contraction was also affected by crowding and post-stress swimming activity (P<0.05), and the largest degree of contraction was found in crowded salmon. In conclusion, active swimming accelerated the return of plasma cortisol, hydromineral balance, and the energy metabolism of adult Atlantic salmon to pre

  3. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan McCool; Tony Walton; Paul Whillhite

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increasedmore » with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.« less

  4. Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.

  5. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments onmore » the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid

  6. A Multi-scale Approach for CO2 Accounting and Risk Analysis in CO2 Enhanced Oil Recovery Sites

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Viswanathan, H. S.; Middleton, R. S.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S. Y.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2015-12-01

    Using carbon dioxide in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce carbon sequestration costs in the absence of greenhouse gas emissions policies that include incentives for carbon capture and storage. This study develops a multi-scale approach to perform CO2 accounting and risk analysis for understanding CO2 storage potential within an EOR environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and transport in the Marrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2 injection rate, CO2 first breakthrough time, CO2 production rate, cumulative net CO2 storage, cumulative oil and CH4 production, and water injection and production rates. A global sensitivity analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/CH4 recovery rates. The well spacing (the distance between the injection and production wells) and the sequence of alternating CO2 and water injection are the major operational parameters for designing an effective five-spot CO2-EOR pattern. The response surface analysis shows that net CO2 injection rate increases with the increasing reservoir thickness, permeability, and porosity. The oil/CH4 production rates are positively correlated to reservoir permeability, porosity and thickness, but negatively correlated to the initial water saturation. The mean and confidence intervals are estimated for quantifying the uncertainty ranges of the risk metrics. The results from this study provide useful insights for understanding the CO2 storage potential and the corresponding risks of commercial-scale CO2-EOR fields.

  7. Curcuma oil attenuates accelerated atherosclerosis and macrophage foam-cell formation by modulating genes involved in plaque stability, lipid homeostasis and inflammation.

    PubMed

    Singh, Vishal; Rana, Minakshi; Jain, Manish; Singh, Niharika; Naqvi, Arshi; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-14

    In the present study, the anti-atherosclerotic effect and the underlying mechanism of curcuma oil (C. oil), a lipophilic fraction from turmeric (Curcuma longa L.), was evaluated in a hamster model of accelerated atherosclerosis and in THP-1 macrophages. Male golden Syrian hamsters were subjected to partial carotid ligation (PCL) or FeCl3-induced arterial oxidative injury (Ox-injury) after 1 week of treatment with a high-cholesterol (HC) diet or HC diet plus C. oil (100 and 300 mg/kg, orally). Hamsters fed with the HC diet were analysed at 1, 3 and 5 weeks following carotid injury. The HC diet plus C. oil-fed group was analysed at 5 weeks. In hyperlipidaemic hamsters with PCL or Ox-injury, C. oil (300 mg/kg) reduced elevated plasma and aortic lipid levels, arterial macrophage accumulation, and stenosis when compared with those subjected to arterial injury alone. Similarly, elevated mRNA transcripts of matrix metalloproteinase-2 (MMP-2), MMP-9, cluster of differentiation 45 (CD45), TNF-α, interferon-γ (IFN-γ), IL-1β and IL-6 were reduced in atherosclerotic arteries, while those of transforming growth factor-β (TGF-β) and IL-10 were increased after the C. oil treatment (300 mg/kg). The treatment with C. oil prevented HC diet- and oxidised LDL (OxLDL)-induced lipid accumulation, decreased the mRNA expression of CD68 and CD36, and increased the mRNA expression of PPARα, LXRα, ABCA1 and ABCG1 in both hyperlipidaemic hamster-derived peritoneal and THP-1 macrophages. The administration of C. oil suppressed the mRNA expression of TNF-α, IL-1β, IL-6 and IFN-γ and increased the expression of TGF-β in peritoneal macrophages. In THP-1 macrophages, C. oil supplementation prevented OxLDL-induced production of TNF-α and IL-1β and increased the levels of TGF-β. The present study shows that C. oil attenuates arterial injury-induced accelerated atherosclerosis, inflammation and macrophage foam-cell formation.

  8. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Generation of Hot Water from Hot-Dry for Heavy-Oil Recovery in Northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pathak, V.; Babadagli, T.; Majorowicz, J. A.; Unsworth, M. J.

    2011-12-01

    The focus of prior applications of hot-dry-rock (HDR) technology was mostly aimed at generating electricity. In northern Alberta, the thermal gradient is low and, therefore, this technology is not suitable for electricity generation. On the other hand, the cost of steam and hot water, and environmental impacts, are becoming critical issues in heavy-oil and bitumen recovery in Alberta. Surface generation of steam or hot-water accounts for six percent of Canada's natural gas consumption and about 50 million tons of CO2 emission. Lowered cost and environmental impacts are critical in the widespread use of steam (for in-situ recovery) and hot-water (for surface extraction of bitumen) in this region. This paper provides an extensive analysis of hot-water generation to be used in heavy-oil/bitumen recovery. We tested different modeling approaches used to determine the amount of energy produced during HDR by history matching to example field data. The most suitable numerical and analytical models were used to apply the data obtained from different regions containing heavy-oil/bitumen deposits in northern Alberta. The heat generation capacity of different regions was determined and the use of this energy (in the form of hot-water) for surface extraction processes was evaluated. Original temperature gradients were applied as well as realistic basement formation characteristics through an extensive hydro thermal analysis in the region including an experimental well drilled to the depth of 2,500m. Existing natural fractures and possible hydraulic fracturing scenarios were evaluated from the heat generation capacity and the economics points of view. The main problem was modeling difficulties, especially determination and representation of fracture network characteristics. A sensitivity analysis was performed for the selected high temperature gradient regions in Alberta. In this practice, the characteristics of hydraulic fractures, injection rate, depth, the distance between

  10. Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    NASA Astrophysics Data System (ADS)

    Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.

    2016-11-01

    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.

  11. Aqueous enzymatic extraction of Moringa oleifera oil.

    PubMed

    Mat Yusoff, Masni; Gordon, Michael H; Ezeh, Onyinye; Niranjan, Keshavan

    2016-11-15

    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Secondary oil recovery from selected Carter sandstone oilfields--Black Warrior Basin, Alabama. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.C.

    1995-02-01

    Producibility problems, such as low reservoir pressure and reservoir heterogeneity, have severely limited oil production from the Central Bluff and North Fairview fields. Specific objectives for this project were: To successfully apply detailed geologic and engineering studies with conventional waterflood technologies to these fields in an effort to increase the ultimate economic recovery of oil from Carter sandstone fields; To extensively model, test and evaluate these technologies; thereby, developing a sound methodology for their use and optimization; and To team with Advanced Resources International and the US DOE to assimilate and transfer the information and results gathered from this studymore » to other oil companies to encourage the widespread use of these technologies. At Central Bluff, water injection facilities were constructed and water injection into one well began in January 1993. Oil response from the waterflood has been observed at both producing wells. One of the producing wells has experienced early water breakthrough and a concomitant drop in secondary oil rate. A reservoir modeling study was initiated to help develop an appropriate operating strategy for Central Bluff. For the North Fairview unit waterflood, a previously abandoned well was converted for water injection which began in late June 1993. The reservoir is being re-pressurized, and unit water production has remained nil since flood start indicating the possible formation of an oil bank. A reservoir simulation to characterize the Carter sand at North Fairview was undertaken and the modeling results were used to forecast field performance. The project was terminated due to unfavorable economics. The factors contributing to this decision were premature water breakthrough at Central Bluff, delayed flood response at North Fairview and stalled negotiations at the South Bluff site.« less

  13. Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity.

    PubMed

    Kousin-Ezewu, Onajite; Azzopardi, Laura; Parker, Richard A; Tuohy, Orla; Compston, Alastair; Coles, Alasdair; Jones, Joanne

    2014-06-17

    To test the hypothesis that accelerated peripheral blood mononuclear cell recovery after alemtuzumab treatment of multiple sclerosis is associated with recurrent disease activity and to investigate the claim that CD4 counts greater than 388.5 × 10(6) cells/mL at 12 months can be used to identify patients who may benefit from further treatment. A total of 108 patients were followed for a median of 99 months post alemtuzumab. Patients were classified as active or nonactive after each cycle of treatment based on clinical relapse, increasing disability, or new T2/enhancing MRI lesions. These outcomes were correlated with CD4, CD8, CD19, CD56+ NK, and monocyte counts. Of 108 patients, 56 (52%) relapsed at some point during follow-up. Mean annualized relapse rate after alemtuzumab was 0.17 vs 1.67 prior to treatment (equating to a 90% reduction). Of 108 patients, 28 (26%) met the criteria for sustained accumulation of disability. Median time to the lower limit of normal for CD19, CD8, and CD4 was 3, 19.5, and 32 months, respectively. There was no significant difference in the recovery of any cell population between patients with and without disease activity or accumulation of disability after treatment. This study does not support the use of cell counts as biomarkers for identifying patients at greater risk of active disease following treatment with alemtuzumab. © 2014 American Academy of Neurology.

  14. Effect of EOR-systems on the oil composition at biooxidation with native microflora of the oil reservoir

    NASA Astrophysics Data System (ADS)

    Ovsyannikova, Varvara S.; Shcherbakova, Anastasia G.; Altunina, Lyubov K.; Filatov, Dmitry A.

    2017-12-01

    The paper presents the results of laboratory experiments on the biodegradation of different oil compositions from the Usinskoye oil field in the presence of systems for enhanced oil recovery. It is shown that the oil-displacing IKhN-PRO system could be an optimal stimulating substrate to activate the biooxidation of oil with a high content of aromatic hydrocarbons, while the maximum conversion of oil with a high content of n-alkanes is observed in the presence of the oil-displacing sol-forming NINKA 3 system. A stimulating effect of the systems on the hydrocarbon-oxidizing native microflora of the oil reservoir, promoting its growth and increasing the level of oil biodegradation, could be used to enhance oil recovery, in addition to physicochemical methods.

  15. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Lyle D.

    2009-04-14

    -product of hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a “dual use” opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.« less

  16. Effect of additional optical pumping injection into the ground-state ensemble on the gain and the phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2014-02-01

    The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.

  17. Cornell-BNL Electron Energy Recovery Linac FFAG Test Accelerator (CBETA)

    NASA Astrophysics Data System (ADS)

    Trbojevic, Dejan; Peggs, Steve; Berg, Scott; Brooks, Stephen; Mahler, George; Meot, Francois; Tsoupas, Nicholaos; Witte, Holger; Hoffstaetter, Georg; Bazarov, Ivan; Mayes, Christopher; Patterson, Ritchie; Smolenski, Karl; Li, Yulin; Dobbins, John; BNL Team; Cornell University Team

    A novel energy recovery linac (ERL) with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack is being constructed as a result of collaboration of the Cornell University with Brookhaven National Laboratory. The existing injector and superconducting linac at Cornell University are being installed together with a single NS-FFAG arcs and straight section at the opposite side of the linac to form an ERL system. The 6 MeV electron beam from injector is transferred into the 36 MeV superconducting linac and accelerated by four successive passes: from 42 to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase and with 4 passes electron energy is recovered and brought back to the initial energy of 6 MeV. This is going to be the first 4 pass superconducting ERL and the first NS-FFAG permanent magnet structure to bring the electron beam back to the linac.

  18. A Comprehensive Investigation and Coupler Design for Higher-Order Modes in the BNL Energy Recovery Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Marques, Carlos

    A next generation Energy Recovery Linac (ERL) is under development in the Collider-Accelerator Department at Brookhaven National Laboratory (BNL). This ERL uses a superconducting radio frequency (SFR) cavity to produce an electric field gradient ideal to accelerate charged particles. As with many accelerators, higher-order modes (HOMs) can be induced by a beam of charged particles traversing the linear accelerator cavity. The excitation of these modes can result in problematic single and multi-bunch effects and also produce undesirable heat loads to the cryogenic system. Understanding HOM prevalence and structure inside the accelerator cavity is crucial for devising a procedure for extracting HOM power and promoting excellent beam quality. In this work, a method was created to identify and characterize HOMs using a perturbation technique on a copper (Cu) cavity prototype of the BNL3 linac and a double lambda/4 crab cavity. Both analyses and correlation between simulated and measured results are shown. A coaxial to dual-ridge waveguide HOM coupler was designed, constructed and implemented to extract power from HOMs simultaneously making an evanescent fundamental mode for the BNL3 cavity. A full description of the design is given along with a simulated analysis of its performance. Comparison between previous HOM coupler designs as well as correspondence between simulation and measurement is also given.

  19. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study.

    PubMed

    Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2014-11-01

    for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process. Georg Thieme Verlag KG Stuttgart · New York.

  20. Oral erlotinib, but not rapamycin, causes modest acceleration of bladder and hindlimb recovery from spinal cord injury in rats.

    PubMed

    Kjell, J; Pernold, K; Olson, L; Abrams, M B

    2014-03-01

    Erlotinib and Rapamycin are both in clinical use and experimental inhibition of their respective molecular targets, EGFR and mTORC1, has improved recovery from spinal cord injury. Our aim was to determine if daily Erlotinib or Rapamycin treatment started directly after spinal contusion injury in rats improves locomotion function or recovery of bladder function. Stockholm, Sweden. Rats were subjected to contusion injuries and treated during the acute phase with either Erlotinib or Rapamycin. Recovery of bladder function was monitored by measuring residual urine volume and hindlimb locomotion assessed by open-field observations using the BBB rating scale as well as by automated registration of gait parameters. Body weights were monitored. To determine whether Erlotinib and Rapamycin inhibit the same signaling pathway, a cell culture system and western blots were used. Erlotinib accelerated locomotor recovery and slightly improved bladder recovery; however, we found no long-term improvements of locomotor function. Rapamycin did neither improved locomotor function nor bladder recovery. In vitro studies confirmed that Erlotinib and Rapamycin both inhibit the EGFR-mTORC1 signaling pathway. We conclude that none of these two drug regimes improved long-term functional outcome in our current model of spinal cord injury. Nevertheless, oral treatment with Erlotinib may offer modest temporary advantages, whereas treatment with Rapamycin does not.

  1. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    PubMed

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  2. Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    1995-04-01

    A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids (LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The graphical plots. The approach uses ARMOS ©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic simulations of free oil area changes to pumping rates are analyzed. Pumping rates are determined that achieve LNAPL plume containment at different times (i.e. 90, 180 and 360 days) for a planning period of 360 days. These pumping rates are used in reverse order as a stepwise (monotonically increasing) pumping strategy. This stepwise pumping strategy is analyzed further by performing additional simulations at different pumping rates for the last pumping period. The final stepwise pumping strategy is varied by factors of -25% and +30% to evaluate sensitivity in the free oil recovery process. Stepwise pumping is compared to steady pumping rates to determine the best free oil recovery strategy. Stepwise pumping is shown to improve oil recovery by increasing recoveredoil volume (11%) and decreasing residual oil (15%) when compared with traditional steady pumping strategies. The best stepwise pumping strategy recovers more free oil by reducing the amount of residual oil left in the system due to pumping drawdown. This stepwise pumping pproach can be used to enhance free oil recovery and provide for cost-effective design and management of LNAPL cleanup.

  3. Influence of pH on dynamics of microbial enhanced oil recovery processes using biosurfactant producing Pseudomonas putida: Mathematical modelling and numerical simulation.

    PubMed

    Sivasankar, P; Suresh Kumar, G

    2017-01-01

    In present work, the influence of reservoir pH conditions on dynamics of microbial enhanced oil recovery (MEOR) processes using Pseudomonas putida was analysed numerically from the developed mathematical model for MEOR processes. Further, a new strategy to improve the MEOR performance has also been proposed. It is concluded from present study that by reversing the reservoir pH from highly acidic to low alkaline condition (pH 5-8), flow and mobility of displaced oil, displacement efficiency, and original oil in place (OOIP) recovered gets significantly enhanced, resulting from improved interfacial tension (IFT) reduction by biosurfactants. At pH 8, maximum of 26.1% of OOIP was recovered with higher displacement efficiency. The present study introduces a new strategy to increase the recovery efficiency of MEOR technique by characterizing the biosurfactants for IFT min /IFT max values for different pH conditions and subsequently, reversing the reservoir pH conditions at which the IFT min /IFT max value is minimum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Community Recovery Following the Deepwater Horizon Oil Spill: Toward A Theory of Cultural Resilience

    PubMed Central

    Clarke, Hannah E.; Mayer, Brian

    2017-01-01

    Culture plays an important role in communities’ abilities to adapt to environmental change and crises. The emerging field of resilience thinking has made several efforts to better integrate social and cultural factors into the systems-level approach to understanding socialecological resilience. However, attempts to integrate culture into structural models often fail to account for the agentic processes that influence recovery at the individual and community levels, overshadowing the potential for agency and variation in community response. Using empirical data on the 2010 BP oil spill’s impact on a small, natural resource-dependent community, we propose an alternative approach emphasizing culture’s ability to operate as a resource that contributes to social, or community, resilience. We refer to this more explicit articulation of culture’s role in resilience as cultural resilience. Our findings reveal that not all cultural resources that define resilience in reference to certain disasters provided successful mitigation, adaptation, or recovery from the BP spill. PMID:29104368

  5. Effects of Accelerated Storage on the Quality of Kenaf Seed Oil in Chitosan-Coated High Methoxyl Pectin-Alginate Microcapsules.

    PubMed

    Leong, Mei-Huan; Tan, Chin-Ping; Nyam, Kar-Lin

    2016-10-01

    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage. © 2016 Institute of Food Technologists®.

  6. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  7. Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin) Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction.

    PubMed

    Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi

    2017-10-22

    The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.

  8. 30 CFR 250.1165 - What must I do for enhanced recovery operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... promptly initiate enhanced oil and gas recovery operations for all reservoirs where these operations would... similar recovery operations intended to increase the ultimate recovery of oil and gas from a reservoir... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do for enhanced recovery operations...

  9. Floating Heavy Oil Recovery: Current State Analysis

    DTIC Science & Technology

    2006-07-27

    recovered oil to a chute cause some build-up of oil, but the retained amount was not considered substantial enough to warrant any design changes. The GT...unit was the Lamor Brush Conveyor (shown in Figure 7) which uses a yellow V- brush design to recover oils and uses a propeller to draw water through...deals with the transfer of product that has already been collected and contained (Moffatt et al., 2004). The Coast Guard Research and Development

  10. GREEN TECHNOLOGIES SOLUTIONS-OIL RECOVERY (GTS-OR)

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent used in oil spill cleanups may clean oil from beaches, rocks, riprap, pilings, and seawalls. May be used in freshwater, estuarine, and marine environments.

  11. Application of cavitation system to accelerate aqueous enzymatic extraction of seed oil from Cucurbita pepo L. and evaluation of hypoglycemic effect.

    PubMed

    Li, Xiao-Juan; Li, Zhu-Gang; Wang, Xun; Han, Jun-Yan; Zhang, Bo; Fu, Yu-Jie; Zhao, Chun-Jian

    2016-12-01

    Cavitation-accelerated aqueous enzymatic extraction (CAEE) of seed oil from Cucurbita pepo was performed. An enzyme cocktail comprised of cellulose, pectinase and proteinase can work synergistically in releasing the oil. The CAEE extraction conditions were optimized by a Plackett-Burman design followed by a central composite methodology. A maximal extraction yield of 58.06% was achieved under optimal conditions of vacuum degree -0.07, enzyme amount 1.05% and extraction time 69min. As compared to soxhlet extraction (SE)-derived oil, CAEE-derived oil exhibited similar physical properties and better oxidation stability. In addition, chemical composition analyzing showed that the content of linoleic acid obtained by CAEE (47.67%) was higher than that of SE (44.51%). Moreover, the IC50 of oil obtained by CAEE and SE, as measured by α-amylase inhibition assay, were 40.68μg/mL and 45.46μg/mL. All results suggest that CAEE represents an excellent alternative protocol for production of oil from oil-bearing materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pore Structure and Diagenetic Controls on Relative Permeability: Implications for Enhanced Oil Recovery and CO2 Storage

    NASA Astrophysics Data System (ADS)

    Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.

    2016-12-01

    Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Novel robust cellulose-based foam with pH and light dual-response for oil recovery

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-05-01

    We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation (λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation (λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.

  14. Novel robust cellulose-based foam with pH and light dual-response for oil recovery

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-06-01

    We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation ( λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation ( λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.

  15. The Effectiveness of Rambutan (Nephelium lappaceum L.) Extract in Stabilization of Sunflower Oil under Accelerated Conditions

    PubMed Central

    Mei, Winne Sia Chiaw; Ismail, Amin; Mohd. Esa, Norhaizan; Akowuah, Gabriel Akyirem; Wai, Ho Chun; Seng, Yim Hip

    2014-01-01

    The oxidative properties of sunflower oil supplemented with rambutan extract, (crude extract and its fractionated fraction, SF II) in comparison with synthetic antioxidant were investigated. The supplemented sunflower oils were stored under accelerated conditions for 24 days at 60 °C. For every 6-day interval, the oxidative properties of the supplemented sunflower oil were evaluated based on the following tests, namely peroxide value, p-anisidine value, Thiobarbituric Acid Reactive Substances (TBARS) assay, iodine value and free fatty acids. The total oxidation (TOTOX) values were also calculated based on the peroxide values and p-anisidine values. Rambutan extract is a potential source of antioxidant. The oxidative activities of the extracts at all concentrations were significantly (p < 0.05) higher than the control. Generally, the partially fractionated fraction was more effective than the crude extract. With a 2-year storage period at ambient temperature, the fractionated fraction of the extract, SF II at 300 ppm, was observed to work more effectively than the synthetic antioxidant, t-Tocopherol, and it possessed a protective effect comparable with butylatedhydrioxynanisole (BHA). Therefore, rambutan extract could be used as a potential alternative source of antioxidant in the oil industry or other fat-based products to delay lipid oxidation. PMID:26784877

  16. The Effectiveness of Rambutan (Nephelium lappaceum L.) Extract in Stabilization of Sunflower Oil under Accelerated Conditions.

    PubMed

    Mei, Winne Sia Chiaw; Ismail, Amin; Esa, Norhaizan Mohd; Akowuah, Gabriel Akyirem; Wai, Ho Chun; Seng, Yim Hip

    2014-05-09

    The oxidative properties of sunflower oil supplemented with rambutan extract, (crude extract and its fractionated fraction, SF II) in comparison with synthetic antioxidant were investigated. The supplemented sunflower oils were stored under accelerated conditions for 24 days at 60 °C. For every 6-day interval, the oxidative properties of the supplemented sunflower oil were evaluated based on the following tests, namely peroxide value, p-anisidine value, Thiobarbituric Acid Reactive Substances (TBARS) assay, iodine value and free fatty acids. The total oxidation (TOTOX) values were also calculated based on the peroxide values and p-anisidine values. Rambutan extract is a potential source of antioxidant. The oxidative activities of the extracts at all concentrations were significantly (p < 0.05) higher than the control. Generally, the partially fractionated fraction was more effective than the crude extract. With a 2-year storage period at ambient temperature, the fractionated fraction of the extract, SF II at 300 ppm, was observed to work more effectively than the synthetic antioxidant, t-Tocopherol, and it possessed a protective effect comparable with butylatedhydrioxynanisole (BHA). Therefore, rambutan extract could be used as a potential alternative source of antioxidant in the oil industry or other fat-based products to delay lipid oxidation.

  17. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  18. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  19. 42 CFR 484.245 - Accelerated payments for home health agencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as HHA bills are processed... 42 Public Health 5 2013-10-01 2013-10-01 false Accelerated payments for home health agencies. 484... for Home Health Agencies § 484.245 Accelerated payments for home health agencies. (a) General rule...

  20. 42 CFR 484.245 - Accelerated payments for home health agencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as HHA bills are processed... 42 Public Health 5 2014-10-01 2014-10-01 false Accelerated payments for home health agencies. 484... for Home Health Agencies § 484.245 Accelerated payments for home health agencies. (a) General rule...

  1. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice.

    PubMed

    Hashimoto, Yoko; Mori, Mayumi; Kobayashi, Shuichiro; Hanya, Akira; Watanabe, Shin-Ichi; Ohara, Naoki; Noguchi, Toshihide; Kawai, Tatsushi; Okuyama, Harumi

    2014-01-01

    Canola oil (Can) and hydrogenated soybean oil (H2-Soy) are commonly used edible oils. However, in contrast to soybean oil (Soy), they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP) rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK) 1 in H2-Soy and unidentified component(s) in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP)-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC) and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC]) levels were significantly lower in the Can group than in the Soy group ( p < 0.05). However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044) or was almost significantly lower (in H2-Soy; p = 0.053) than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s) among the three dietary groups.

  2. A mathematical model of microbial enhanced oil recovery (MEOR) method for mixed type rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnikov, A.A.; Eremin, N.A.; Ibattulin, R.R.

    1994-12-31

    This paper deals with the microbial enhanced oil recovery method. It covers: (1) Mechanism of microbial influence on the reservoir was analyzed; (2) The main groups of metabolites affected by the hydrodynamic characteristics of the reservoir were determined; (3) The criterions of use of microbial influence method on the reservoir are defined. The mathematical model of microbial influence on the reservoir was made on this basis. The injection of molasse water solution with Clostridium bacterias into the mixed type of rock was used in this model. And the results of calculations were compared with experimental data.

  3. Production report: enhanced recovery. [Combustion, steam, soak steam drive, polymer and caustic, micellar/surfactant miscible hydrocarbons and CO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noran, D.

    Schemes for producing additional oil using enhanced-recovery (ER) methods are under way throughout the world. The extent and intensity of ER activity is highest in the U.S. with 156 projects, about two-thirds of which are thermal. Venezuela has a strong ER commitment with at least 70 active projects, with a major thrust on steam soak. Significant projects, but limited in number, are under way in Canada, North Africa, Southeast Asia, and elsewhere in Latin America. A breakdown of active U.S. ER projects for 1970, 1973, and 1975 is tabulated for combustion, steam soak, steam drive, polymer and caustic, micellar/surfactant, misciblemore » hydrocarbon, and CO/sub 2/ methods. This Oil and Gas Journal Survey includes seven articles; the first six were prepared by David Noran, Journal Production Editor. The final article on Venezuelan activity was written by Alvaro Franco, Editor and Publisher, Petroleo Internacional. The articles are entitled: U.S. Thermal Recovery Activity Growing Steadily; Operators Accelerate Testing of Micellar/Surfactant Potential; Polymer and Caustic Methods on Rebound; Gas Miscible Projects Move at Slow Pace; Canadian Enhanced-Recovery Activity Moderate, Centers on Thermal Projects; Other Global Enhanced-Recovery Work Sparse; and Thermal Work Humming in Venezuela. Detailed information on each method is tabulated for each article. (MCW)« less

  4. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  5. Enhanced recovery after laparoscopic colorectal resection with primary anastomosis: accelerated discharge is safe and does not give rise to increased readmission rates.

    PubMed

    Gash, K J; Greenslade, G L; Dixon, A R

    2012-10-01

    Enhanced recovery programmes after colorectal surgery are promoted to minimize complications and expedite recovery, thus reducing length of hospital stay where appropriate and improving the overall standard of patient care. There are few published trials of enhanced recovery programmes in the context of laparoscopic colorectal surgery. Data were prospectively collected on all laparoscopic colorectal resections carried out in our institution from May 2004 to November 2009. An informal move to 48-h discharge was introduced in May 2004 and the official enhanced recovery programme was launched in November 2008. We identified all patients with a primary anastomosis discharged within 3 days of surgery. Early outcomes - leaks, complications, readmission rates and returns to theatre - were analysed. In all, 606 resections were performed in this period. Median length of stay was 4 (0-52) days. Of these patients, 279 (46%) met the criteria of accelerated discharge by day 3: 2 (0.7%) were discharged on the day of surgery, 70 (25.1%) within 24 h, 116 (41.6%) within 48 h and 91 (32.6%) by 72h. Age was not a significant factor in determining length of stay. Patients undergoing right hemicolectomy were more likely to be discharged by 24 h than those with left-sided anastomoses, and patients having total mesorectal excision resections were more likely to stay 3 days. The readmission rate was 4%, regardless of day of discharge. Accelerated discharge is feasible and safe. High readmission rates reported in enhanced recovery programmes after open colorectal surgery have not occurred in our laparoscopic experience. © 2012 The Authors. Colorectal Disease © 2012 The Association of Coloproctology of Great Britain and Ireland.

  6. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.

    PubMed

    Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing

    2018-08-01

    On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. High-dose estrogen treatment at reperfusion reduces lesion volume and accelerates recovery of sensorimotor function after experimental ischemic stroke.

    PubMed

    Carpenter, Randall S; Iwuchukwu, Ifeanyi; Hinkson, Cyrus L; Reitz, Sydney; Lee, Wonhee; Kukino, Ayaka; Zhang, An; Pike, Martin M; Ardelt, Agnieszka A

    2016-05-15

    Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17β-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    PubMed

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  11. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    NASA Astrophysics Data System (ADS)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  12. Contribution of microwave accelerated distillation in the extraction of the essential oil of Zygophyllum album L.

    PubMed

    Tigrine-Kordjani, Nacéra; Meklati, Brahim Youcef; Chemat, Farid

    2011-01-01

    The aerial parts of Zygophyllum album L. are used in folk medicine as an antidiabetic agent and as a drug active against several pathologies. In this work we present the chemical composition of Algerian essential oils obtained by microwave accelerated distillation (MAD) extraction, a solventless method assisted by microwave. Under the same analytical conditions and using GC-FID and GC-MS, the chemical composition of the essential oil of Zygophyllum album L. extracted by MAD was compared with that achieved using hydrodistillation (HD). The extracted compounds were hydrosoluble, and they were removed from the aqueous solution by a liquid extraction with an organic solvent. Employing MAD (100°C, 30  min), the essential oil contained mainly oxygenated monoterpenes with major constituents: carvone and α-terpineol. However, most of the compounds present in the hydrodistilled volatile fraction were not terpene species, with β-damascenone as a major constituent. The MAD method appears to be more efficient than HD: after 30  min extraction time, the obtained yields (i.e. 0.002%) were comparable to those provided by HD after 3  h extraction. MAD seems to be more convenient since the volatile fraction is richer in oxygenated monoterpenes, species that are recognised for their olfactory value and their contribution to the fragrance of the essential oil. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  14. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  15. Acceleration of recovery in acute renal failure: from cellular mechanisms of tubular repair to innovative targeted therapies.

    PubMed

    Abbate, M; Remuzzi, G

    1996-05-01

    Kidney repair from injury is a major focus of interest for research, both clinical and basic, in the field of acute renal failure. This is so because very little progress has been made during the past several years to improve mortality in hospitalized patients with acute renal failure despite the unique potential of the kidney for complete structural and functional recovery. Novel therapeutic options have recently emerged from the knowledge of molecular mechanisms of tissue injury after ischemia, including pathways of endothelial-leukocyte interaction and epithelial cell aggregation mediated by integrin molecules. These strategies are promising because they may target early mechanisms of leukocyte infiltration and tubular obstruction. However, it seems clear that additional interventions should address the reparative program that potentially leads to the full restoration of kidney structure and function. Thus, acceleration of repair from acute renal failure is achieved experimentally by growth factors which besides different renal actions seem to have in common the ability to stimulate proliferation of surviving tubular epithelial cells. We direct attention to cellular processes which characterize, and possibly have role in, renal repair from acute tubular injury as potential targets of therapy. In addition to proliferation, they include epithelial differentiation and apoptosis. Further investigation in the biology of repair should set the stage for rational design of targeted therapies which may accelerate the pace of recovery and hopefully decrease mortality in such a dramatic and potentially reversible setting.

  16. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    PubMed

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  17. Assessing Risks to Sea Otters and the Exxon Valdez Oil Spill: New Scenarios, Attributable Risk, and Recovery

    PubMed Central

    Harwell, Mark A.; Gentile, John H.

    2014-01-01

    The Exxon Valdez oil spill occurred more than two decades ago, and the Prince William Sound ecosystem has essentially recovered. Nevertheless, discussion continues on whether or not localized effects persist on sea otters (Enhydra lutris) at northern Knight Island (NKI) and, if so, what are the associated attributable risks. A recent study estimated new rates of sea otter encounters with subsurface oil residues (SSOR) from the oil spill. We previously demonstrated that a potential pathway existed for exposures to polycyclic aromatic hydrocarbons (PAHs) and conducted a quantitative ecological risk assessment using an individual-based model that simulated this and other plausible exposure pathways. Here we quantitatively update the potential for this exposure pathway to constitute an ongoing risk to sea otters using the new estimates of SSOR encounters. Our conservative model predicted that the assimilated doses of PAHs to the 1-in-1000th most-exposed sea otters would remain 1–2 orders of magnitude below the chronic effects thresholds. We re-examine the baseline estimates, post-spill surveys, recovery status, and attributable risks for this subpopulation. We conclude that the new estimated frequencies of encountering SSOR do not constitute a plausible risk for sea otters at NKI and these sea otters have fully recovered from the oil spill. PMID:24587690

  18. A Novel Equation-of-State to Model Microemulsion Phase Behavior for Enhanced Oil Recovery Application

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumyadeep

    Surfactant-polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant-oil-brine phase behavior is critical to the design of chemical EOR floods. While considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced oil recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand's plot is still used today to model the microemulsion phase behavior with little predictive capability as these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper flood designs. Reservoir crudes also contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali-surfactant-polymer (ASP) flooding. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. In this dissertation, we account for pressure changes in the hydrophilic-lipophilic difference (HLD) equation. This new HLD equation is coupled with the net-average curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion phase transitions (Winsor II-, III, and II+). This dissertation presents the first modified HLD-NAC model to predict microemulsion phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. This new equation-of-state-like model could significantly aid the design and forecast of chemical floods where key variables change dynamically

  19. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary andmore » tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed

  20. Manipulative therapy in addition to usual medical care accelerates recovery of shoulder complaints at higher costs: economic outcomes of a randomized trial.

    PubMed

    Bergman, Gert J D; Winter, Jan C; van Tulder, Maurits W; Meyboom-de Jong, Betty; Postema, Klaas; van der Heijden, Geert J M G

    2010-09-06

    Shoulder complaints are common in primary care and have unfavourable long term prognosis. Our objective was to evaluate the clinical effectiveness of manipulative therapy of the cervicothoracic spine and the adjacent ribs in addition to usual medical care (UMC) by the general practitioner in the treatment of shoulder complaints. This economic evaluation was conducted alongside a randomized trial in primary care. Included were 150 patients with shoulder complaints and a dysfunction of the cervicothoracic spine and adjacent ribs. Patients were treated with UMC (NSAID's, corticosteroid injection or referral to physical therapy) and were allocated at random (yes/no) to manipulative therapy (manipulation and mobilization). Patient perceived recovery, severity of main complaint, shoulder pain, disability and general health were outcome measures. Data about direct and indirect costs were collected by means of a cost diary. Manipulative therapy as add-on to UMC accelerated recovery on all outcome measures included. At 26 weeks after randomization, both groups reported similar recovery rates (41% vs. 38%), but the difference between groups in improvement of severity of the main complaint, shoulder pain and disability sustained. Compared to the UMC group the total costs were higher in the manipulative group (€1167 vs. €555). This is explained mainly by the costs of the manipulative therapy itself and the higher costs due sick leave from work. The cost effectiveness ratio showed that additional manipulative treatment is more costly but also more effective than UMC alone. The cost-effectiveness acceptability curve shows that a 50%-probability of recovery with AMT within 6 months after initiation of treatment is achieved at €2876. Manipulative therapy in addition to UMC accelerates recovery and is more effective than UMC alone on the long term, but is associated with higher costs. INTERNATIONAL STANDARD RANDOMIZED CONTROLLED TRIAL NUMBER REGISTER: ISRCTN11216.

  1. Optimal contant time injection policy for enhanced oil recovery and characterization of optimal viscous profiles

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2011-11-01

    We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.

  2. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles.

    PubMed

    Matsuura-Hachiya, Yuko; Arai, Koji Y; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysismore » timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.« less

  4. Process for oil shale retorting

    DOEpatents

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  5. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  6. Recovery from glycerol-induced acute kidney injury is accelerated by suramin.

    PubMed

    Korrapati, Midhun C; Shaner, Brooke E; Schnellmann, Rick G

    2012-04-01

    Acute kidney injury (AKI) is a common and potentially life-threatening complication after ischemia/reperfusion and exposure to nephrotoxic agents. In this study, we examined the efficacy and mechanism(s) of suramin in promoting recovery from glycerol-induced AKI, a model of rhabdomyolysis-induced AKI. After intramuscular glycerol injection (10 ml of 50% glycerol per kilogram) into male Sprague-Dawley rats, serum creatinine maximally increased at 24 to 72 h and then decreased at 120 h. Creatinine clearance (CrCl) decreased 75% at 24 to 72 h and increased at 120 h. Suramin (1 mg/kg i.v.) administered 24 h after glycerol accelerated recovery of renal function as demonstrated by increased CrCl, decreased renal kidney injury molecule-1, and improved histopathology 72 h after glycerol injection. Suramin treatment decreased interleukin-1β (IL-1β) mRNA, transforming growth factor-β(1) (TGF-β(1)), phospho-p65 of nuclear factor-κB (NF-κB), and cleaved caspase-3 at 48 h compared with glycerol alone. Suramin treatment also decreased glycerol-induced activation of intracellular adhesion molecule-1 (ICAM-1) and leukocyte infiltration at 72 h. Urinary/renal neutrophil gelatinase-associated lipocalin 2 (NGAL) levels, hemeoxygenase-1 expression, and renal cell proliferation were increased by suramin compared with glycerol alone at 72 h. Mechanistically, suramin decreases early glycerol-induced proinflammatory (IL-1β and NF-κB) and growth inhibitory (TGF-β(1)) mediators, resulting in the prevention of late downstream inflammatory effects (ICAM-1 and leukocyte infiltration) and increasing compensatory nephrogenic repair. These results support the hypothesis that delayed administration of suramin is effective in abrogating apoptosis, attenuating inflammation, and enhancing nephrogenic repair after glycerol-induced AKI.

  7. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  8. OHMSETT (Oil and Hazardous Materials Simulated Environmental Test Tank) test series 77: Global Oil Recovery Skimmer, Veegarm Skimming Arm, Kebab 600, Wylie Skimmer and the Skim-Pak Cluster. Final report Jan 80-Jun 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borst, M.

    1984-03-01

    This report covers the performance testing of five oil spill recovery devices at the Oil and Hazardous Materials Simulated Environmental Test Tank in Leonardo, New Jersey. The GOR Skimmer was tow tested in harbor chops, regular waves, and calm water at tow speeds through 2 knots to determine the effectiveness of modifications made to the device since it was last tested. The performance was consistently lower after the modifications in all conditions. The Hydrovac Veegarm was the most exhaustively tested skimmer in this program.

  9. HPLC study of migration of terephthalic acid and isophthalic acid from PET bottles into edible oils.

    PubMed

    Khaneghah, Amin Mousavi; Limbo, Sara; Shoeibi, Shahram; Mazinani, Somayeh

    2014-08-01

    Polyethylene terephthalate (PET) containers for food oil packaging were evaluated with a newly established determination method for terephthalic acid (TPA) and isophthalic acid (IPA). The analysis of monomers, TPA and IPA that migrate from PET bottles into oils was performed using high-pressure liquid chromatography with a diode array detector. Three types of commercial oils (sunflower oil, canola oil and blended oil which included sunflower oil, soy bean oil and cottonseed oil) were bottled in PET containers. These samples were incubated for 10 days at 49 °C as accelerated test condition. The means of recovery for this method varied from 70% to 72% and from 101% to 111% for TPA and IPA, respectively. The results showed that the amounts of specific migration of TPA and IPA into the samples conform to European Union legislation that identifies specific migration limits. More important, the results highlighted a different behavior of migration as a function of the fatty acid profile. Previous investigations have been performed with food simulants such as HB307 or 20% ethanol but our study used real food samples and determined trace amounts of the migrated compounds. Further investigation will be needed to better explain the influence of fatty acid conformation on migration of PET monomers. © 2013 Society of Chemical Industry.

  10. The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol

    NASA Astrophysics Data System (ADS)

    Shang, Shengxiang; Dong, Mingzhe; Gong, Houjian

    2018-01-01

    In this study, the supercritical CO2 huff-n-puff experiment of shale oil has been investigated. Experimental data shows that the addition of isopropanol can greatly improve the recovery of shale oil. And this provides a new way to improve the recovery of shale oil. In this paper, it is also tried to analyze the influencing factor of isopropanol on the recovery of shale oil by analyzing the MMP.

  11. TOGA: A TOUGH code for modeling three-phase, multi-component, and non-isothermal processes involved in CO 2-based Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    TOGA is a numerical reservoir simulator for modeling non-isothermal flow and transport of water, CO 2, multicomponent oil, and related gas components for applications including CO 2-enhanced oil recovery (CO 2-EOR) and geologic carbon sequestration in depleted oil and gas reservoirs. TOGA uses an approach based on the Peng-Robinson equation of state (PR-EOS) to calculate the thermophysical properties of the gas and oil phases including the gas/oil components dissolved in the aqueous phase, and uses a mixing model to estimate the thermophysical properties of the aqueous phase. The phase behavior (e.g., occurrence and disappearance of the three phases, gas +more » oil + aqueous) and the partitioning of non-aqueous components (e.g., CO 2, CH 4, and n-oil components) between coexisting phases are modeled using K-values derived from assumptions of equal-fugacity that have been demonstrated to be very accurate as shown by comparison to measured data. Models for saturated (water) vapor pressure and water solubility (in the oil phase) are used to calculate the partitioning of the water (H 2O) component between the gas and oil phases. All components (e.g., CO 2, H 2O, and n hydrocarbon components) are allowed to be present in all phases (aqueous, gaseous, and oil). TOGA uses a multiphase version of Darcy’s Law to model flow and transport through porous media of mixtures with up to three phases over a range of pressures and temperatures appropriate to hydrocarbon recovery and geologic carbon sequestration systems. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. New methods for phase partitioning and thermophysical property modeling in TOGA have been validated against experimental data published in the literature for describing phase partitioning and phase behavior. Flow and transport has been verified by testing against related TOUGH2 EOS modules and CMG. The code has also been validated against a CO 2-EOR experimental

  12. Enhanced oil displacement by nanofluid's structural disjoining pressure in model fractured porous media.

    PubMed

    Zhang, Hua; Ramakrishnan, T S; Nikolov, Alex; Wasan, Darsh

    2018-02-01

    Nanofluids for improved oil recovery has been demonstrated through laboratory corefloods. Despite numerous experimental studies, little is known about the efficacy of nanofluids in fractured systems. Here, we present studies of nanofluid injection in fractured porous media (both water-wet and oil-wet) formed by sintering borosilicate glass-beads around a dissolvable substrate. The fracture inside the porous medium is characterized and visualized using a high resolution X-ray microtomography. Based on a simple displacement theory, the nanofluid injection is conducted at a rate where structural disjoining pressure driven oil recovery is operational. An additional 23.8% oil was displaced using nanofluid after brine injection with an overall recovery efficiency of 90.4% provided the matrix was in its native wettability state. But only 6% additional oil was displaced by nanofluid following brine injection when the bead-pack was rendered oil-wet. Nanofluids appear to be a good candidate for enhanced oil recovery (EOR) in fractured water-wet to weakly water-wet media but not necessarily for strongly oil-wet systems. Our laboratory studies enable us to understand limitations of nanofluids for improving oil recovery in fractured media. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. 40 CFR 279.11 - Used oil specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... burned for energy recovery, and any fuel produced from used oil by processing, blending, or other... levels of the constituents and properties shown in Table 1. Once used oil that is to be burned for energy recovery has been shown not to exceed any allowable level and the person making that showing complies with...

  14. Burning crude oil without pollution

    NASA Technical Reports Server (NTRS)

    Houseman, J.

    1979-01-01

    Crude oil can be burned at drilling sites by two-stage combustion process without producing pollution. Process allows easier conformance to strict federal or state clean air standards without installation of costly pollution removal equipment. Secondary oil recovery can be accomplished with injection of steam heating by burning oil.

  15. Use of 222Rn as natural tracer for LNAPL quantification and recovery efficiency in a crude-oil contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Ponsin, Violaine; Chablais, Amélie; Dumont, Julien; Cardetti, Marc; Radakovitch, Olivier; Höhener, Patrick

    2014-05-01

    In august 2009, five hectares of the pristine gravel aquifer of Crau in southern France were contaminated by 5,100 m3 of crude oil due to the sudden break of a pipeline. The remediation of this site is still ongoing and consists in replacement and off-site disposal of contaminated topsoils, plume management by hydraulic groundwater barriers with re-injection of activated charcoal-treated waters, and dual-phase LNAPL extraction in the source zone. It is anticipated to stop these remediation actions when the rate of hydrocarbon extraction becomes inefficient. The volume of LNAPL is estimated between 100 and 1000 m3. A more accurate estimation is needed for the implementation of natural attenuation once physical treatment is discontinued. 222Rn has been introduced as a natural tracer for the quantification of LNAPL saturation in porous media under natural gradient conditions (Hunkeler et al., 1997; Semprini et al., 2000; Schubert et al., 2007). The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for LNAPL quantification at a field site treated by LNAPL removal. To this end, groundwater samples were obtained in pristine monitoring wells from upgradient the contamination using submersible electric pumps, and in LNAPL recovery wells. There, samples were obtained from the tap on the hard PVC tubing used for pumping groundwater to the treatment facility. For 222Rn analysis, flasks of 250 mL were gently filled and were capped thereafter without permitting air bubbles. The flasks were analysed within 6 to 24 hours. The 222Rn activity of groundwater was measured by a Rn detector (RAD7-Durridge, Co. Inc.). The measurements were spaced over more than 15 months in order to account for seasonal changes. Each well was sampled at least 3 times. In pristine groundwater, the radon activity was relatively constant and remained always > 14 Bq/L. The radon activities in the groundwater of source zone wells were also relatively constant and

  16. Influence of Lentinus edodes and Agaricus blazei extracts on the prevention of oxidation and retention of tocopherols in soybean oil in an accelerated storage test.

    PubMed

    da Silva, Ana Carolina; Jorge, Neuza

    2014-06-01

    This study aimed to evaluate the influence of the methanol extracts of mushrooms Lentinus edodes and Agaricus blazei on the retention of tocopherols in soybean oil, when subjected to an accelerated storage test. The following treatments were subjected to an accelerated storage test in an oven at 60 °C for 15 days: Control (soybean oil without antioxidants), TBHQ (soybean oil + 100 mg/kg of TBHQ), BHT (soybean oil + 100 mg/kg of BHT), L. edodes (soybean oil + 3,500 mg/kg of L. edodes extract) and A. blazei (soybean oil + 3,500 mg/kg of A. blazei extract). The samples were analyzed for tocopherols naturally present in soybean oil and mass gain. The results showed, the time required to reach a 0.5% increase in mass was 13 days for TBHQ and 15 days for A. blazei. The content of tocopherols for TBHQ was 457.50 mg/kg and the A. blazei, 477.20 mg/kg.

  17. Analysis of potential used oil recovery from individuals. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottlieb, M.

    To assist the Department of Energy in its investigation of methods for recycling used motor oil, Market Facts conducted a telephone survey of individuals who change their own motor oil. The study examined the amount of oil used, oil change practices, oil disposal methods, and perceptions and attitudes toward used motor oil disposal and oil recycling. The results of this survey are presented in this report. The findings of this study confirm the generally held view that about half the vehicle households in the United States now do their own oil changes and additions. These do-it-yourselfers (DIY) households account formore » almost two-thirds of the motor oil consumed by all US households and produce about one-third of one billion gallons of used motor oil annually. At least half of this used motor oil, more than 170 million gallons, is returned to the environment in a form that pollutes the ground and endangers the water supply. Measures such as requiring information about proper disposal and the need for recycling used oil to be printed on motor oil containers have been taken in many states. The need for reminder advertising and reinforcement education and information and practical measures to ease the burden of compliance is suggested. These results suggest that careful consideration be given to the logistics of these measures. The most appealing of the measures would appear to be making a special container available to DIY oil changers. Employing civic groups as collection agents would also seem to be attractive.« less

  18. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, David; Golomb, Dan; Shi, Guang

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequentlymore » changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  19. CO 2 Sequestration and Enhanced Oil Recovery at Depleted Oil/Gas Reservoirs

    DOE PAGES

    Dai, Zhenxue; Viswanathan, Hari; Xiao, Ting; ...

    2017-08-18

    This study presents a quantitative evaluation of the operational and technical risks of an active CO 2-EOR project. A set of risk factor metrics is defined to post-process the Monte Carlo (MC) simulations for statistical analysis. The risk factors are expressed as measurable quantities that can be used to gain insight into project risk (e.g. environmental and economic risks) without the need to generate a rigorous consequence structure, which include (a) CO 2 injection rate, (b) net CO 2 injection rate, (c) cumulative CO 2 storage, (d) cumulative water injection, (e) oil production rate, (f) cumulative oil production, (g) cumulativemore » CH 4 production, and (h) CO 2 breakthrough time. The Morrow reservoir at the Farnsworth Unit (FWU) site, Texas, is used as an example for studying the multi-scale statistical approach for CO 2 accounting and risk analysis. A set of geostatistical-based MC simulations of CO 2-oil/gas-water flow and transport in the Morrow formation are conducted for evaluating the risk metrics. A response-surface-based economic model has been derived to calculate the CO 2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO 2 capture and operating expenses reduce, more realizations would be profitable.« less

  20. CO 2 Sequestration and Enhanced Oil Recovery at Depleted Oil/Gas Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhenxue; Viswanathan, Hari; Xiao, Ting

    This study presents a quantitative evaluation of the operational and technical risks of an active CO 2-EOR project. A set of risk factor metrics is defined to post-process the Monte Carlo (MC) simulations for statistical analysis. The risk factors are expressed as measurable quantities that can be used to gain insight into project risk (e.g. environmental and economic risks) without the need to generate a rigorous consequence structure, which include (a) CO 2 injection rate, (b) net CO 2 injection rate, (c) cumulative CO 2 storage, (d) cumulative water injection, (e) oil production rate, (f) cumulative oil production, (g) cumulativemore » CH 4 production, and (h) CO 2 breakthrough time. The Morrow reservoir at the Farnsworth Unit (FWU) site, Texas, is used as an example for studying the multi-scale statistical approach for CO 2 accounting and risk analysis. A set of geostatistical-based MC simulations of CO 2-oil/gas-water flow and transport in the Morrow formation are conducted for evaluating the risk metrics. A response-surface-based economic model has been derived to calculate the CO 2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO 2 capture and operating expenses reduce, more realizations would be profitable.« less

  1. 40 CFR 279.11 - Used oil specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Used oil specifications. 279.11... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Applicability § 279.11 Used oil specifications. Used oil burned for energy recovery, and any fuel produced from used oil by processing, blending, or other...

  2. 40 CFR 279.11 - Used oil specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Used oil specifications. 279.11... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Applicability § 279.11 Used oil specifications. Used oil burned for energy recovery, and any fuel produced from used oil by processing, blending, or other...

  3. 40 CFR 279.11 - Used oil specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Used oil specifications. 279.11... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Applicability § 279.11 Used oil specifications. Used oil burned for energy recovery, and any fuel produced from used oil by processing, blending, or other...

  4. 40 CFR 279.11 - Used oil specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Used oil specifications. 279.11... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Applicability § 279.11 Used oil specifications. Used oil burned for energy recovery, and any fuel produced from used oil by processing, blending, or other...

  5. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residualmore » oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and

  6. Trends in sea otter population abundance in western Prince William Sound, Alaska: Progress toward recovery following the 1989 Exxon Valdez oil spill

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.; Esslinger, George G.

    2011-01-01

    Sea otters in western Prince William Sound (WPWS) and elsewhere in the Gulf of Alaska suffered widespread mortality as a result of oiling following the 1989 T/V Exxon Valdez oil spill. Following the spill, extensive efforts have been directed toward identifying and understanding long-term consequences of the spill and the process of recovery. We conducted annual aerial surveys of sea otter abundance from 1993 to 2009 (except for 2001 and 2006) in WPWS. We observed an increasing trend in population abundance at the scale of WPWS through 2000 at an average annual rate of 4 percent: however, at northern Knight Island where oiling was heaviest and sea otter mortality highest, no increase in abundance was evident by 2000. We continued to see significant increase in abundance at the scale of WPWS between 2001 and 2009, with an average annual rate of increase from 1993 to 2009 of 2.6 percent. We estimated the 2009 population size of WPWS to be 3,958 animals (standard error=653), nearly 2,000 animals more than the first post-spill estimate in 1993. Surveys since 2003 also have identified a significant increasing trend at the heavily oiled site in northern Knight Island, averaging about 25 percent annually and resulting in a 2009 estimated population size of 116 animals (standard error=19). Although the 2009 estimate for northern Knight Island remains about 30 percent less than the pre-spill estimate of 165 animals, we interpret this trend as strong evidence of a trajectory toward recovery of spill-affected sea otter populations in WPWS.

  7. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  8. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  9. Alkali-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1986-09-02

    This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less

  10. A database and probabilistic assessment methodology for carbon dioxide enhanced oil recovery and associated carbon dioxide retention in the United States

    USGS Publications Warehouse

    Warwick, Peter D.; Verma, Mahendra K.; Attanasi, Emil; Olea, Ricardo A.; Blondes, Madalyn S.; Freeman, Philip; Brennan, Sean T.; Merrill, Matthew; Jahediesfanjani, Hossein; Roueche, Jacqueline; Lohr, Celeste D.

    2017-01-01

    The U.S. Geological Survey (USGS) has developed an assessment methodology for estimating the potential incremental technically recoverable oil resources resulting from carbon dioxide-enhanced oil recovery (CO2-EOR) in reservoirs with appropriate depth, pressure, and oil composition. The methodology also includes a procedure for estimating the CO2 that remains in the reservoir after the CO2-EOR process is complete. The methodology relies on a reservoir-level database that incorporates commercially available geologic and engineering data. The mathematical calculations of this assessment methodology were tested and produced realistic results for the Permian Basin Horseshoe Atoll, Upper Pennsylvanian-Wolfcampian Play (Texas, USA). The USGS plans to use the new methodology to conduct an assessment of technically recoverable hydrocarbons and associated CO2 sequestration resulting from CO2-EOR in the United States.

  11. Improvement of efficiency of oil extraction from wild apricot kernels by using enzymes.

    PubMed

    Bisht, Tejpal Singh; Sharma, Satish Kumar; Sati, Ramesh Chandra; Rao, Virendra Kumar; Yadav, Vijay Kumar; Dixit, Anil Kumar; Sharma, Ashok Kumar; Chopra, Chandra Shekhar

    2015-03-01

    An experiment was conducted to evaluate and standardize the protocol for enhancing recovery of oil and quality from cold pressed wild apricot kernels by using various enzymes. Wild apricot kernels were ground into powder in a grinder. Different lots of 3 kg powdered kernel were prepared and treated with different concentrations of enzyme solutions viz. Pectazyme (Pectinase), Mashzyme (Cellulase) and Pectazyme + Mashzyme. Kernel powder mixed with enzyme solutions were kept for 2 h at 50(±2) °C temperature for enzymatic treatment before its use for oil extraction through oil expeller. Results indicate that use of enzymes resulted in enhancement of oil recovery by 9.00-14.22 %. Maximum oil recovery was observed at 0.3-0.4 % enzyme concentration for both the enzymes individually, as well as in combination. All the three enzymatic treatments resulted in increasing oil yield. However, with 0.3 % (Pectazyme + Mashzyme) combination, maximum oil recovery of 47.33 % could be observed against were 33.11 % in control. The oil content left (wasted) in the cake and residue were reduced from 11.67 and 11.60 % to 7.31 and 2.72 % respectively, thus showing a high increase in efficiency of oil recovery from wild apricot kernels. Quality characteristics indicate that the oil quality was not adversely affected by enzymatic treatment. It was concluded treatment of powdered wild apricot kernels with 0.3 % (Pectazyme + Mashzyme) combination was highly effective in increasing oil recovery by 14.22 % without adversely affecting the quality and thus may be commercially used by the industry for reducing wastage of highly precious oil in the cake.

  12. Can Cognitive Activities during Breaks in Repetitive Manual Work Accelerate Recovery from Fatigue? A Controlled Experiment

    PubMed Central

    Mathiassen, Svend Erik; Hallman, David M.; Lyskov, Eugene; Hygge, Staffan

    2014-01-01

    Neurophysiologic theory and some empirical evidence suggest that fatigue caused by physical work may be more effectively recovered during “diverting” periods of cognitive activity than during passive rest; a phenomenon of great interest in working life. We investigated the extent to which development and recovery of fatigue during repeated bouts of an occupationally relevant reaching task was influenced by the difficulty of a cognitive activity between these bouts. Eighteen male volunteers performed three experimental sessions, consisting of six 7-min bouts of reaching alternating with 3 minutes of a memory test differing in difficulty between sessions. Throughout each session, recordings were made of upper trapezius muscle activity using electromyography (EMG), heart rate and heart rate variability (HRV) using electrocardiography, arterial blood pressure, and perceived fatigue (Borg CR10 scale and SOFI). A test battery before, immediately after and 1 hour after the work period included measurements of maximal shoulder elevation strength (MVC), pressure pain threshold (PPT) over the trapezius muscles, and a submaximal isometric contraction. As expected, perceived fatigue and EMG amplitude increased during the physical work bouts. Recovery did occur between the bouts, but fatigue accumulated throughout the work period. Neither EMG changes nor recovery of perceived fatigue during breaks were influenced by cognitive task difficulty, while heart rate and HRV recovered the most during breaks with the most difficult task. Recovery of perceived fatigue after the 1 hour work period was also most pronounced for the most difficult cognitive condition, while MVC and PPT showed ambiguous patterns, and EMG recovered similarly after all three cognitive protocols. Thus, we could confirm that cognitive tasks between bouts of fatiguing physical work can, indeed, accelerate recovery of some factors associated with fatigue, even if benefits may be moderate and some responses may

  13. Influence of stability of polymer surfactant on oil displacement mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Li; Li, Chengliang; Pi, Yanming; Wu, Di; He, Ying; Geng, Liang

    2018-02-01

    At present, most of the oilfields of China have entered the late stage of high water-cut development, and three oil recovery technique has become the leading technology for improving oil recovery. With the improvement of three oil recovery techniques, the polymer surfactant flooding technology has been widely promoted in oil fields in recent years. But in the actual field experiment, it has been found that the polymer surfactant has chromatographic separation at the extraction end, which indicates that the property of the polymer surfactant has changed during the displacement process. At present, there was few literature about how the stability of polymer surfactant affects the oil displacement mechanism. This paper used HuaDing-I polymer surfactant to conduct a micro photolithography glass flooding experiment, and then compared the oil displacement law of polymer surfactant before and after static setting. Finally, the influence law of stability of polymer surfactant on the oil displacement mechanism is obtained by comprehensive analysis.

  14. Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR).

    PubMed

    Pathak, Khyati V; Keharia, Hareshkumar

    2014-02-01

    Bacillus subtilis K1 isolated from aerial roots of banyan tree secreted mixture of surfactins, iturins and fengycins with high degree of heterogeneity. The extracellular extract consisting of mixture of these cyclic lipopeptides exhibited very good emulsification activity as well as excellent emulsion stability. The culture accumulated maximum surfactant up to 48 h of growth during batch fermentation in Luria broth. The emulsion of hexane, heptane and octane prepared using 48-h-old culture supernatant of B. subtilis K1 remained stable up to 2 days while emulsion of four stroke engine oil remained stable for more than a year. The critical micelle concentration of crude lipopeptide biosurfactant extracted by acid precipitation from 48-h-old fermentation broth of B. subtilis K1 was found to be 20.5 μg/mL. The biosurfactant activity was found to be stable at 100 °C for 2 h, over a pH range of 6-12 h and over an NaCl concentration up to 10 % (w/v). The application of biosurfactant on laboratory scale sand pack column saturated with four stroke engine oil resulted in ~43 % enhanced oil recovery, suggesting its suitability in microbially enhanced oil recovery.

  15. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.

    PubMed

    Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir

    2014-02-01

    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation

  16. XOR inhibition with febuxostat accelerates pulmonary endothelial barrier recovery and improves survival in lipopolysaccharide-induced murine sepsis.

    PubMed

    Damarla, Mahendra; Johnston, Laura F; Liu, Gigi; Gao, Li; Wang, Lan; Varela, Lidenys; Kolb, Todd M; Kim, Bo S; Damico, Rachel L; Hassoun, Paul M

    2017-08-01

    Sepsis is a leading cause of death among patients in the intensive care unit, resulting from multi-organ failure. Activity of xanthine oxidoreductase (XOR), a reactive oxygen species (ROS) producing enzyme, is known to be elevated in nonsurvivors of sepsis compared to survivors. We have previously demonstrated that XOR is critical for ventilator-induced lung injury. Using febuxostat, a novel nonpurine inhibitor of XOR, we sought to determine the role of XOR inhibition in a murine model of sepsis-induced lung injury and mortality. C57BL/6J mice were subjected to intravenous (IV) lipopolysaccharide (LPS) for various time points, and lungs were harvested for analyses. Subsets of mice were treated with febuxostat, pre or post LPS exposure, or vehicle. Separate groups of mice were followed up for mortality after LPS exposure. After 24 hr of IV LPS , mice exhibited an increase in XOR activity in lung tissue and a significant increase in pulmonary endothelial barrier disruption. Pretreatment of animals with febuxostat before exposure to LPS, or treatment 4 h after LPS, resulted in complete abrogation of XOR activity. Inhibition of XOR with febuxostat did not prevent LPS-induced pulmonary vascular permeability at 24 h, however, it accelerated recovery of the pulmonary endothelial barrier integrity in response to LPS exposure. Furthermore, treatment with febuxostat resulted in significant reduction in mortality. Inhibition of XOR with febuxostat accelerates recovery of the pulmonary endothelial barrier and prevents LPS-induced mortality, whether given before or after exposure to LPS. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Evaluation of the Impact of Varied Carvacrol Concentrations on Salmonella Recovery in Oregano and How Corn Oil Can Minimize the Effect of Carvacrol during Preenrichment.

    PubMed

    Beaubrun, Junia Jean-Gilles; Addy, Nicole; Keltner, Zachary; Farris, Samantha; Ewing, Laura; Gopinath, Gopal; Hanes, Darcy E

    2018-06-01

    Phenolic compounds, like carvacrol, in oregano interfere with the detection of foodborne pathogens such as Salmonella enterica. Carvacrol concentration varies based on plant cultivars and growth region. Six oregano cultivars were used to compare the impact of carvacrol concentration on Salmonella and to evaluate the effectiveness of corn oil to help increase Salmonella survival for detection. The results of Agilent 1200 series high-performance liquid chromatography analysis showed that carvacrol concentration in the six oregano cultivars ranged from 64 to 11,200 ppm. Oregano samples were artificially contaminated with S. enterica and were preenriched in Trypticase soy broth with or without 2% (v/v) corn oil. After 18 to 24 h at 37°C, aliquots were transferred to selective enrichment broths. Salmonella was recovered onto xylose lysine Tergitol 4 agar. Six Salmonella serovars were compared, and recovery varied based on carvacrol concentration and serovar. Samples with higher concentrations of carvacrol showed Salmonella recovery only when they were preenriched with corn oil. Based on metagenomic analysis, the microflora associated with the oregano also varied per cultivar. The results show that, as carvacrol levels increased, Salmonella survival decreased. However, the addition of corn oil to the preenrichment broth can minimize the antimicrobial effects of the phenolic compounds, thus allowing for increased detection of Salmonella from oregano cultivars.

  18. Altering wettability to recover more oil from tight formations

    DOE PAGES

    Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey; ...

    2016-06-03

    We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less

  19. Altering wettability to recover more oil from tight formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey

    We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less

  20. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  1. Accelerated anaerobic release of K, Mg and P from surplus activated sludge for element recovery and struvite formation inhibition.

    PubMed

    Ito, A; Kawakami, H; Ishikawa, N; Ito, M; Oikawa, T; Sato, A; Umita, T

    2017-05-01

    Accelerated release of potassium (K), magnesium (Mg) and phosphorus (P) from surplus activated sludge (SAS) was investigated to develop a new system for the recovery of the elements. Anaerobic cultivation of SAS during 24 h released 78% of K and about 50% of Mg and P from SAS more effectively compared to aerobic cultivation (K: 40%, Mg: 15%, P: 15%). Furthermore, the addition of sodium acetate as an organic carbon source remarkably accelerated the release of K, Mg and P from SAS under anaerobic condition. However, no increase in the maximum release efficiencies was observed. The elements released from SAS could be transferred to separate liquid with the existing mechanical thickener and be recovered as MgKPO 4 by some additional process. Furthermore, the removal of the elements from SAS would inhibit the formation of struvite causing the blockage of sludge transport pipe after anaerobic digestion process of thickened sludge.

  2. Documentation of time-scales for onset of natural attenuation in an aquifer treated by a crude-oil recovery system.

    PubMed

    Ponsin, Violaine; Maier, Joachim; Guelorget, Yves; Hunkeler, Daniel; Bouchard, Daniel; Villavicencio, Hakeline; Höhener, Patrick

    2015-04-15

    A pipeline transporting crude-oil broke in a nature reserve in 2009 and spilled 5100 m(3) of oil that partly reached the aquifer and formed progressively a floating oil lens. Groundwater monitoring started immediately after the spill and crude-oil recovery by dual pump-and-skim technology was operated after oil lens formation. This study aimed at documenting the implementation of redox-specific natural attenuation processes in the saturated zone and at assessing whether dissolved compounds were degraded. Seven targeted water sampling campaigns were done during four years in addition to a routine monitoring of hydrocarbon concentrations. Liquid oil reached the aquifer within 2.5 months, and anaerobic processes, from denitrification to reduction of sulfate, were observable after 8 months. Methanogenesis appeared on site after 28 months. Stable carbon isotope analyses after 16 months showed maximum shifts in δ(13)C of +4.9±0.22‰ for toluene, +2.4±0.19‰ for benzene and +0.9±0.51‰ for ethylbenzene, suggesting anaerobic degradation of these compounds in the source zone. Estimations of fluxes of inorganic carbon produced by biodegradation revealed that, in average, 60% of inorganic carbon production was attributable to sulfate reduction. This percentage tended to decrease with time while the production of carbon attributable to methanogenesis was increasing. Within the investigation time frame, mass balance estimations showed that biodegradation is a more efficient process for control of dissolved concentrations compared to pumping and filtration on an activated charcoal filter. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Recovery of NORM from scales generated by oil extraction.

    PubMed

    Al Attar, Lina; Safia, Bassam; Ghani, Basem Abdul; Al Abdulah, Jamal

    2016-03-01

    Scales, containing naturally occurring radioactive materials (NORM), are a major problem in oil production that lead to costly remediation and disposal programmes. In view of environmental protection, radio and chemical characterisation is an essential step prior to waste treatment. This study focuses on developing of a protocol to recover (226)Ra and (210)Pb from scales produced by petroleum industry. X-ray diffractograms of the scales indicated the presence of barite-strontium (Ba0.75Sr0.25SO4) and hokutolite (Ba0.69Pb0.31SO4) as main minerals. Quartz, galena and Ca2Al2SiO6(OH)2 or sphalerite and iron oxide were found in minor quantities. Incineration to 600 °C followed by enclosed-digestion and acid-treatment gave complete digestion. Using (133)Ba and (210)Pb tracers as internal standards gave recovery ranged 87-91% for (226)Ra and ca. 100% for (210)Pb. Radium was finally dissolved in concentrated sulphuric acid, while (210)Pb dissolved in the former solution as well as in 8 M nitric acid. Dissolving the scales would provide better estimation of their radionuclides contents, facilitate the determination of their chemical composition, and make it possible to recycle NORM wastes in terms of radionuclides production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.

    PubMed

    Gudiña, Eduardo J; Rodrigues, Ana I; Alves, Eliana; Domingues, M Rosário; Teixeira, José A; Rodrigues, Lígia R

    2015-02-01

    In this work, biosurfactant production by a Pseudomonas aeruginosa strain was optimized using low-cost substrates. The highest biosurfactant production (3.2 g/l) was obtained using a culture medium containing corn steep liquor (10% (v/v)) and molasses (10% (w/v)). The biosurfactant reduced the surface tension of water up to 30 mN/m, and exhibited a high emulsifying activity (E24=60%), with a critical micelle concentration as low as 50 mg/l. The biosurfactant produced in this alternative medium was characterized as a mixture of eight different rhamnolipid congeners, being the most abundant the mono-rhamnolipid Rha-C10-C10. However, using LB medium, nine different rhamnolipid congeners were identified, being the most abundant the di-rhamnolipid Rha-Rha-C10-C10. The rhamnolipid mixture produced in the alternative medium exhibited a better performance in removing oil from contaminated sand when compared with two chemical surfactants, suggesting its potential use as an alternative to traditional chemical surfactants in enhanced oil recovery or bioremediation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Trona-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1988-03-01

    In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less

  6. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian

    2014-11-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.

  7. Chemical Methods for Ugnu Viscous Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore Mohanty

    2012-03-31

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing coldmore » heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical

  8. Oil outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiBona, C.J.

    1979-04-01

    Because the US imports approximately 43% of its oil, and the amount available from the western hemisphere has declined sharply, the US has depended more on the eastern hemisphere members of OPEC, which now supplies >82% of US oil imports. Because of the political unrest in Iran, it has become apparent that domestic energy goals must be considered along with clear air goals. Examples illustrating the compatibility of energy production and environment are described. Questions arising from differences in federal, state, and local regulations are discussed in terms of adjusting the Clean Air Act to allow the implementation of newmore » energy recovery systems, i.e., thermal recovery, and construction of terminals and pipeline to receive and ship Alaskan crude oil and of refineries to produce low-sulfur fuels and unleaded gasoline. The level of air quality that will protect public health, and how can that level be achieved effectively need to be resolved. The concern expressed over the relaxed O/sub 3/ standard is discussed, and arguments supporting the move are presented.« less

  9. Reuse of Produced Water from CO 2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO 2 enhanced oil recovery (CO 2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that producedmore » water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO 2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000

  10. Accelerated recovery of mitochondrial membrane potential by GSK-3β inactivation affords cardiomyocytes protection from oxidant-induced necrosis.

    PubMed

    Sunaga, Daisuke; Tanno, Masaya; Kuno, Atsushi; Ishikawa, Satoko; Ogasawara, Makoto; Yano, Toshiyuki; Miki, Takayuki; Miura, Tetsuji

    2014-01-01

    Loss of mitochondrial membrane potential (ΔΨm) is known to be closely linked to cell death by various insults. However, whether acceleration of the ΔΨm recovery process prevents cell necrosis remains unclear. Here we examined the hypothesis that facilitated recovery of ΔΨm contributes to cytoprotection afforded by activation of the mitochondrial ATP-sensitive K+ (mKATP) channel or inactivation of glycogen synthase kinase-3β (GSK-3β). ΔΨm of H9c2 cells was determined by tetramethylrhodamine ethyl ester (TMRE) before or after 1-h exposure to antimycin A (AA), an inducer of reactive oxygen species (ROS) production at complex III. Opening of the mitochondrial permeability transition pore (mPTP) was determined by mitochondrial loading of calcein. AA reduced ΔΨm to 15 ± 1% of the baseline and induced calcein leak from mitochondria. ΔΨm was recovered to 51 ± 3% of the baseline and calcein-loadable mitochondria was 6 ± 1% of the control at 1 h after washout of AA. mKATP channel openers improved the ΔΨm recovery and mitochondrial calcein to 73 ± 2% and 30 ± 7%, respectively, without change in ΔΨm during AA treatment. Activation of the mKATP channel induced inhibitory phosphorylation of GSK-3β and suppressed ROS production, LDH release and apoptosis after AA washout. Knockdown of GSK-3β and pharmacological inhibition of GSK-3β mimicked the effects of mKATP channel activation. ROS scavengers administered at the time of AA removal also improved recovery of ΔΨm. These results indicate that inactivation of GSK-3β directly or indirectly by mKATP channel activation facilitates recovery of ΔΨm by suppressing ROS production and mPTP opening, leading to cytoprotection from oxidant stress-induced cell death.

  11. Simultaneous recovery of benzene-rich oil and metals by steam pyrolysis of metal-poly(ethylene terephthalate) composite waste.

    PubMed

    Kumagai, Shogo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-03-18

    The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe2O3), and anatase (TiO2) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe2O3) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise.

  12. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  13. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  14. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  15. Deinococcus petrolearius sp. nov. isolated from crude oil recovery water in China.

    PubMed

    Xi, Lijun; Qiao, Nenghu; Zhang, Jingjing; Li, Jing; Liu, Dejian; You, Jing; Liu, Jianguo

    2018-03-01

    A Gram-stain positive, non-motile, spherical, red-pigmented and facultatively anaerobic bacterium, designated strain 6.1 T , was isolated from a crude oil recovery water sample from the Huabei oil field in China. The novel strain exhibited tolerance of UV irradiation (> 1000 J m -2 ). Based on 16S rRNA gene sequence comparisons, strain 6.1 T shows high similarity to Deinococcus citri DSM 24791 T (98.1%) and Deinococcus gobiensis I-0 T (97.8%), with less than 93.5% similarity to other closely related taxa. The major cellular fatty acids were identified as summed feature 3 (C 16:1 ω7c and/or iso-C 15:0 2-OH), followed by iso-C 17:1 ω9c and C 16:0 . The polar lipid profile was found to contain phospholipids, glycolipids, phosphoglycolipids and aminophospholipids. The predominant respiratory quinone was identified as MK-8. The DNA G + C content was determined to be 68.3 mol %. DNA-DNA hybridization between strain 6.1 T and D. citri DSM 24791 T was 45.6 ± 7.1% and with D. gobiensis I-O T was 36.6 ± 4.7%. On the basis of phylogenetic, chemotaxonomic and phenotypic data, we conclude strain 6.1 T represents a novel species of the genus Deinococcus, for which we propose the name Deinococcus petrolearius sp. nov. The type strain is 6.1 T (= CGMCC 1.15053 T  = KCTC 33744 T ).

  16. 30 CFR 250.1165 - What must I do for enhanced recovery operations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reservoirs where these operations would result in an increase in ultimate recovery of oil or gas under sound... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I do for enhanced recovery operations... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL...

  17. Superconducting energy recovery linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, Ilan

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  18. Superconducting energy recovery linacs

    DOE PAGES

    Ben-Zvi, Ilan

    2016-09-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  19. Oil spills and their impacts on sand beach invertebrate communities: A literature review.

    PubMed

    Bejarano, Adriana C; Michel, Jacqueline

    2016-11-01

    Sand beaches are highly dynamic habitats that can experience considerable impacts from oil spills. This review provides a synthesis of the scientific literature on major oil spills and their impacts on sand beaches, with emphasis on studies documenting effects and recoveries of intertidal invertebrate communities. One of the key observations arising from this review is that more attention has generally been given to studying the impacts of oil spills on invertebrates (mostly macrobenthos), and not to documenting their biological recovery. Biological recovery of sand beach invertebrates is highly dynamic, depending on several factors including site-specific physical properties and processes (e.g., sand grain size, beach exposure), the degree of oiling, depth of oil burial, and biological factors (e.g., species-specific life-history traits). Recovery of affected communities ranges from several weeks to several years, with longer recoveries generally associated with physical factors that facilitate oil persistence, or when cleanup activities are absent on heavily oiled beaches. There are considerable challenges in quantifying impacts from spills on sand beach invertebrates because of insufficient baseline information (e.g., distribution, abundance and composition), knowledge gaps in their natural variability (spatial and temporal), and inadequate sampling and replication during and after oil spills. Thus, environment assessments of impacts and recovery require a rigorous experimental design that controls for confounding sources of variability. General recommendations on sampling strategies and toxicity testing, and a preliminary framework for incorporating species-specific life history traits into future assessments are also provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Application of Porous Polydimethylsiloxane (PDMS) in oil absorption

    NASA Astrophysics Data System (ADS)

    Norfatriah, Abdullah; Syamaizar, Ahmad Sabli Ahmad; Samah Zuruzi, Abu

    2018-04-01

    Porous polydimethysiloxane (PDMS) displays both hydrophobic and oleophilic behaviour which makes it a suitable material to absorb oil in an aqueous stream. Furthermore, its elastomeric nature means that porous PDMS can be a reusable sorbent for oil. For such application, porous PDMS has to (i) absorb oil from aqueous stream quickly and (ii) discharge oil rapidly when compressed. In this study, porous polydimethylsiloxane (PDMS) has been fabricated using sugar templating method. The ability of porous PDMS to absorb olive, sunflower and vegetable oils with and without vibration was investigated. Small amplitude vibration was found to accelerate the oil uptake process and accelerates the absorption of olive and vegetable oil by 2.5 and 3 times, respectively. Compressive stress-strain curves over compression rates between 2 and 100 mm per min are similar and indicate mechanical property of porous PDMS does not vary significantly and can be rapidly compressed.