These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Acceleration of trapped particles and beams  

E-print Network

The dynamics of a quantum particle bound by an accelerating delta-functional potential is investigated. Three cases are considered, using the reference frame moving along with the {\\delta}-function, in which the acceleration is converted into the additional linear potential. (i) A stationary regime, which corresponds to a resonance state, with a minimum degree of delocalization, supported by the accelerating potential trap. (ii) A pulling scenario: an initially bound particle follows the accelerating delta-functional trap, within a finite time. (iii) The pushing scenario: the particle, which was initially localized to the right of the repulsive delta-function, is shoved to the right by the accelerating potential. For the two latter scenarios, the life time of the trapped particle, and the largest velocity to which it can be accelerated while staying trapped, are found. Analytical approximations are developed for the cases of small and large accelerations in the pulling regime, and also for a small acceleration in the stationary situation, and in the regime of pushing. The same regimes may be realized by Airy-like planar optical beams guided by a narrow bending potential channel or crest. Physical estimates are given for an atom steered by a stylus of a scanning tunneling microscope (STM), and for the optical beam guided by a bending stripe.

Er'el Granot; Boris Malomed

2011-07-30

2

Jacobi equations and particle accelerator beam dynamics  

E-print Network

A geometric formulation of the linear beam dynamics in accelerator physics is presented. In particular, it is proved that the linear transverse and longitudinal dynamics can be interpret geometrically as an approximation to the Jacobi equation of an affine averaged Lorentz connection. We introduce a specific notion reference trajectory as integral curves of the main velocity vector field. A perturbation caused by the statistical nature of the bunch of particles is considered.

Ricardo Gallego Torrome

2012-03-27

3

Automatic beam path analysis of laser wakefield particle acceleration data  

E-print Network

Automatic beam path analysis of laser wakefield particle acceleration data Oliver Rübel1 particle accelerators play a key role in the understanding of the complex acceleration process in a pipeline fashion to automatically locate and analyze high-energy particle bunches undergoing acceleration

Geddes, Cameron Guy Robinson

4

Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data  

E-print Network

Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data Oliver R¨ubel1 particle accelerators play a key role in the understanding of the complex acceleration process in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration

Knowles, David William

5

Characterisation of electron beams from laser-driven particle accelerators  

SciTech Connect

The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-12-21

6

Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam  

DOEpatents

A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

Maschke, A.W.

1984-04-16

7

Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam  

DOEpatents

A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

Maschke, Alfred W. (East Moriches, NY)

1985-01-01

8

Applications of laser-accelerated particle beams for radiation therapy  

NASA Astrophysics Data System (ADS)

Proton beams are more advantageous than high-energy photons and electrons for radiation therapy because of their finite penetrating range and the Bragg peak near the end of their range, which have been utilized to achieve better dose conformity to the treatment target allowing for dose escalation and/or hypofractionation to increase local tumor control, reduce normal tissue complications and/or treatment time/cost. Proton therapy employing conventional particle acceleration techniques is expensive because of the large accelerators and treatment gantries that require excessive space and shielding. Compact proton acceleration systems are being sought to improve the cost-effectiveness for proton therapy. This paper reviews the physics principles of laser-proton acceleration and the development of prototype laserproton therapy systems as a solution for widespread applications of advanced proton therapy. The system design, the major components and the special delivery techniques for energy and intensity modulation are discussed in detail for laser-accelerated proton therapy.

Ma, C.-M.; Fourkal, E.; Li, J. S.; Veltchev, I.; Luo, W.; Fan, J. J.; Lin, T.; Tafo, A.

2011-05-01

9

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

E-print Network

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams C. B. Schroeder, E of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator-charge force of a charged particle beam. Laser-driven plasma accelerators (LPAs) were first proposed in 1979

Geddes, Cameron Guy Robinson

10

Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data  

SciTech Connect

Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

2009-10-19

11

Particle-beam accelerators for radiotherapy and radioisotopes  

SciTech Connect

The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines.

Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

1981-01-01

12

On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures  

SciTech Connect

This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

Ostrovsky, A.O. [Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)

1993-09-01

13

Automated detection and analysis of particle beams in laser-plasma accelerator simulations 367 Automated detection and analysis  

E-print Network

Automated detection and analysis of particle beams in laser-plasma accelerator simulations 367 0 Automated detection and analysis of particle beams in laser-plasma accelerator simulations Daniela M (particle) accelerators [Geddes et al. (2009); Tajima & Dawson (1979)] model the acceleration of electrons

Geddes, Cameron Guy Robinson

14

Particle trapping and beam transport issues in laser driven accelerators  

NASA Astrophysics Data System (ADS)

The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)

Gwenael, Fubiani; Wim, Leemans; Eric, Esarey

2000-10-01

15

Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge  

SciTech Connect

The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation neutron sources, nuclear waste transmutation, etc.

Barnard, J.J.; Lund, S.M.

2008-05-30

16

Charged particle accelerator grating  

DOEpatents

A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

Palmer, Robert B. (Shoreham, NY)

1986-01-01

17

Acceleration of energetic particles by whistler waves in active space experiment with charged particle beams injection  

NASA Astrophysics Data System (ADS)

In this paper the investigation of wave-particle interaction during simultaneous injection of electron and xenon ion beams from the satellite Intercosmos-25 (IK-25) carried out using the data of the double satellite system with subsatellite Magion-3 (APEX). Results of active space experiment devoted to the beam-plasma instability are partially presented in the paper Baranets et al. (2007). A specific feature of the experiment carried out in orbits 201, 202 was that charged particle flows were injected in the same direction along the magnetic field lines B0 so the oblique beam-into-beam injection have been produced. Results of the beam-plasma interaction for this configuration were registered by scientific instruments mounted on the station IK-25 and Magion-3 subsatellite. Main attention is paid to study the electromagnetic and longitudinal waves excitation in different frequency ranges and the energetic electron fluxes disturbed due to wave-particle interaction with whistler waves. The whistler wave excitation on the 1st electron cyclotron harmonic via normal Doppler effect during electron beam injection in ionospheric plasma are considered.

Baranets, Nikolai; Ruzhin, Yuri; Erokhin, Nikolai; Afonin, Valeri; Vojta, Jaroslav; milauer, Jan; Kudela, Karel; Matiin, Jan; Ciobanu, Mircea

2012-03-01

18

Artificial intelligence research in particle accelerator control systems for beam line tuning  

SciTech Connect

Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

Pieck, Martin [Los Alamos National Laboratory

2008-01-01

19

Amps particle accelerator definition study  

NASA Technical Reports Server (NTRS)

The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

Sellen, J. M., Jr.

1975-01-01

20

Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics  

SciTech Connect

Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a MuonCollider require large numbers of challenging superconducting magnets,including large aperture solenoids, closely spaced solenoids withopposing fields, shielded solenoids, very high field (~;40-50 T)solenoids, and storage ring magnets with a room-temperature midplanesection. Uses for the various magnets will be outlined, along withR&D plans to develop these and other required components of suchmachines.

Zisman, Michael S.

2007-09-25

21

Particle acceleration  

NASA Technical Reports Server (NTRS)

Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

1986-01-01

22

Charged particle accelerator grating  

DOEpatents

A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

Palmer, R.B.

1985-09-09

23

Principles of Charged Particle Acceleration  

NSDL National Science Digital Library

This learning resources comprise a healthy introduction to charged particle acceleration. The site, by Stanley Humphries, a professor of electrical and computer engineering at University of New Mexico, amounts to an online textbook (.pdf) introducing the theory of charged particle acceleration. The book's fifteen chapters (with bibliography) summarize "the principles underlying all particle accelerators" and provide "a reference collection of equations and material essential to accelerator development and beam applications."

2007-05-03

24

Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles' trajectories.  

PubMed

Self-accelerating beams--shape-preserving bending beams--are attracting great interest, offering applications in many areas such as particle micromanipulation, microscopy, induction of plasma channels, surface plasmons, laser machining, nonlinear frequency conversion and electron beams. Most of these applications involve light-matter interactions, hence their propagation range is limited by absorption. We propose loss-proof accelerating beams that overcome linear and nonlinear losses. These beams, as analytic solutions of Maxwell's equations with losses, propagate in absorbing media while maintaining their peak intensity. While the power such beams carry decays during propagation, the peak intensity and the structure of their main lobe region are maintained over large distances. We use these beams for manipulation of particles in fluids, steering the particles to steeper angles than ever demonstrated. Such beams offer many additional applications, such as loss-proof self-bending plasmons. In transparent media these beams show exponential intensity growth, which facilitates other novel applications in micromanipulation and ignition of nonlinear processes. PMID:25355605

Schley, Ran; Kaminer, Ido; Greenfield, Elad; Bekenstein, Rivka; Lumer, Yaakov; Segev, Mordechai

2014-01-01

25

Means for the focusing and acceleration of parallel beams of charged particles. [Patent application  

DOEpatents

Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

Maschke, A.W.

1980-09-23

26

Means for the focusing and acceleration of parallel beams of charged particles  

DOEpatents

Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

Maschke, Alfred W. (East Moriches, NY)

1982-09-21

27

Acoustic particle acceleration sensors  

SciTech Connect

A crossed dipole array provides a directional receiving capability in a relatively small sensor package and is therefore very attractive for many applications in acoustics. Particle velocity measurements on two axes perpendicular to each other are required to provide the dipole signals. These can be obtained directly using particle velocity sensors or via simple transfer functions using acceleration and displacement sensors. Also, the derivative of the acoustic pressure with respect to space provides a signal proportional to the particle acceleration and gives rise to the pressure gradient sensor. Each of these sensors has strengths and drawbacks depending on the frequency regime of interest, the noise background, and whether a point or a line configuration of dipole sensors is desired. In this paper, the performance of acceleration sensors is addressed using a sensor concept developed at DREA. These sensors exploit bending stresses in a cantilever beam of piezoelectric material to obtain wide bandwidth and high sensitivity. Models which predict the acceleration sensitivity, pressure sensitivity, and natural frequency for this type of sensor are described. Experimental results obtained using several different versions of these sensors are presented and compared with theory. The predicted performance of acceleration sensors are compared with that of pressure gradient arrays and particle velocity sensors. {copyright} {ital 1996 American Institute of Physics.}

Franklin, J.B. [Franklin Scientific Services (work performed while Mr. Franklin was employed by Defence Research Establishment Atlantic); Barry, P.J. [Defence Research Establishment Atlantic, P.O. Box 1012, Dartmouth, B2Y 3Z7 (CANADA)

1996-04-01

28

Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators  

NASA Astrophysics Data System (ADS)

Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

2012-09-01

29

A stochastic model for the semiclassical collective dynamics of charged beams in particle accelerators  

Microsoft Academic Search

A recent proposal (see quant-ph\\/9803068) to simulate semiclassical\\u000acorrections to classical dynamics by suitable classical stochastic fluctuations\\u000ais applied to the specific instance of charged beam dynamics in particle\\u000aaccelerators. The resulting picture is that the collective beam dynamics, at\\u000athe leading semiclassical order in Planck constant can be described by a\\u000aparticular diffusion process, the Nelson process, which is

Salvatore De Martino; Silvio De Siena; Fabrizio Illuminati

1998-01-01

30

Electrostatic wire stabilizing a charged particle beam  

DOEpatents

In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

1983-03-21

31

ADVANCED ULTRAFINE PARTICLE ACCELERATOR  

Microsoft Academic Search

The conceptual design of an Ultrafine Particle Radio Frequency Quadrupole (UFP-RFQ) accelerator is discussed. The results indicate that it is possible to accelerate 1 pm radius Al particles to velocities around 100 km\\/s in 100 m RFQ length. This accelerator can provide variable output particle velocity, with capability of handling different particle materials with different sizes. There are scientific, industrial

D. A. Swenson; A. E. Dabiri; Z. Mikic; D. B. McCall; M. F. Scharff

32

Artificial intelligence research in particle accelerator control systems for beam line tuning  

Microsoft Academic Search

Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault.

Pieck

2008-01-01

33

Improving beam stability in particle accelerator models by using Hamiltonian control  

E-print Network

We derive a Hamiltonian control theory which can be applied to a 4D symplectic map that models a ring particle accelerator composed of elements with sextupole nonlinearity. The controlled system is designed to exhibit a more regular orbital behavior than the uncontrolled one. Using the Smaller Alignement Index (SALI) chaos indicator, we are able to show that the controlled system has a dynamical aperture up to 1.7 times larger than the original mode

J. Boreux; T. Carletti; Ch. Skokos; M. Vittot

2011-09-21

34

Studies of the chromatic properties and dynamic aperture of the BNL colliding-beam accelerator. [PATRICIA particle tracking code  

SciTech Connect

The PATRICIA particle tracking program has been used to study chromatic effects in the Brookhaven CBA (Colliding Beam Accelerator). The short term behavior of particles in the CBA has been followed for particle histories of 300 turns. Contributions from magnet multipoles characteristic of superconducting magnets and closed orbit errors have been included in determining the dynamic aperture of the CBA for on and off momentum particles. The width of the third integer stopband produced by the temperature dependence of magnetization induced sextupoles in the CBA cable dipoles is evaluated for helium distribution systems having periodicity of one and six. The stopband width at a tune of 68/3 is naturally zero for the system having a periodicity of six and is approx. 10/sup -4/ for the system having a periodicity of one. Results from theory are compared with results obtained with PATRICIA; the results agree within a factor of slightly more than two.

Dell, G.F.

1983-01-01

35

Space Charge Compensation in Laser Particle Accelerators  

E-print Network

Space Charge Compensation in Laser Particle Accelerators L.C. Steinhauer and W.D. Kimura STI Optronics, 2755 Northup Way, Bellevue, WA 98004-1495 Abstract. Laser particle acceleration (LPA) involves the acceleration of particle beams by electromagnetic waves with relatively short wavelength compared

Brookhaven National Laboratory

36

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24

37

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-print Network

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

Labaune, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

2013-01-01

38

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.  

PubMed

The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. PMID:24104859

Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

2013-01-01

39

Entanglement of Accelerating Particles  

E-print Network

We study how the entanglement of a maximally entangled pair of particles is affected when one or both of the pair are uniformly accelerated, while the detector remains in an inertial frame. We find that the entanglement is unchanged if all degrees of freedom are considered. However, particle pairs are produced, and the entanglements of different bipartite systems may change with the acceleration. In particular, the entanglement between accelerating fermions is transferred preferentially to the produced antiparticles when the acceleration is large, and the entanglement transfer is complete when the acceleration approaches infinity. However, for scalar particles, no entanglement transfer to the antiparticles is observed.

W. L. Ku; M. -C. Chu

2007-09-03

40

Particle Beam Radiography  

NASA Astrophysics Data System (ADS)

Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

Peach, Ken; Ekdahl, Carl

2014-02-01

41

Particle accelerator employing transient space charge potentials  

DOEpatents

The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

Post, Richard F. (Walnut Creek, CA)

1990-01-01

42

Light ion sources and target results on PBFA II (Particle Beam Fusion Accelerator II)  

SciTech Connect

Advances in ion beam theory, diagnostics, and experiments in the past two years have enabled efficient generation of intense proton beams on PBFA II, and focusing of the beam power to 5.4 TW/cm{sup 2} on a 6-mm-diameter target. Target experiments have been started with the intense proton beams, since the range of protons at 4--5 MeV is equivalent to that of lithium at 30 MeV. Three series of experiments have been conducted using planar, conical, and cylindrical targets. These tests have provided information on ion beam power density, uniformity, and energy deposition. In order to increase the power density substantially for target implosion experiments, we are now concentrating on development of high voltage lithium ion beams. 10 refs., 13 figs.

Cook, D.L.; Bailey, J.E.; Bieg, K.W.; Bloomquist, D.D.; Coats, R.S.; Chandler, G.C.; Cuneo, M.E.; Derzon, M.S.; Desjarlais, M.P.; Dreike, P.L.; Dukart, R.J.; Gerber, R.A.; Johnson, D.J.; Leeper, R.J.; Lockner, T.R.; McDaniel, D.H.; Maenchen, J.E.; Matzen, M.K.; Mehlhorn, T.A.; Mix, L.P.; Moats, A.R.; Nelson, W.E.; Pointon, T.D.; Pregenzer, A.L.; Quintenz, J.P.; Renk, T.J.; Rosenthal, S.E.; Ruiz, C.L.; Slutz, S.A.; Stinnett, R

1990-01-01

43

Neutral particle beam intensity controller  

DOEpatents

A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

Dagenhart, William K. (Oak Ridge, TN)

1986-01-01

44

Particle Acceleration in Jets  

NASA Technical Reports Server (NTRS)

Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

Nishikawa, Ken-Ichi

2005-01-01

45

TEM (Transverse Electromagnetic) analysis and computer simulations of DEMON and PBFA-II (Particle Beam Fusion Accelerator-II) open transmission-line systems  

SciTech Connect

Transverse Electromagnetic (TEM) multimode analysis and 3-dimensional, time-dependent computer simulations, as well as experiments, have been carried out to quantify the energy-transport efficiencies of the open transmission-line systems of the particle Beam Fusion Accelerator II (PBFA II) and the DEMON accelerator. The insights gained are guiding design efforts to improve the energy-transport efficiency of PBFA II.

Johnson, W.A.; Neau, E.L.; Schneider, L.X.

1987-01-01

46

Method and apparatus for varying accelerator beam output energy  

DOEpatents

A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

Young, Lloyd M. (Los Alamos, NM)

1998-01-01

47

Laser ion source for particle accelerators  

E-print Network

There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

Sherwood, T R

1995-01-01

48

Carbon Fiber Damage in Accelerator Beam  

E-print Network

Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

Sapinski, M; Guerrero, A; Koopman, J; Mtral, E

2009-01-01

49

IEC accelerator beam coordinate transformations for clinical Monte Carlo simulation from a phase space or full BEAMnrc particle source.  

PubMed

Monte Carlo simulation of clinical treatment plans require, in general, a coordinate transformation to describe the incident radiation field orientation on a patient phantom coordinate system. The International Electrotechnical Commission (IEC) has defined an accelerator coordinate system along with positive directions for gantry, couch and collimator rotations. In order to describe the incident beam's orientation with respect to the patient's coordinate system, DOSXYZnrc simulations often require transformation of the accelerator's gantry, couch and collimator angles to describe the incident beam. Similarly, versions of the voxelized Monte Carlo code (VMC(++)) require non-trivial transformation of the accelerator's gantry, couch and collimator angles to standard Euler angles ?, ?, ?, to describe an incident phase space source orientation with respect to the patient's coordinate system. The transformations, required by each of these Monte Carlo codes to transport phase spaces through a phantom, have been derived with a rotation operator approach. The transformations have been tested and verified against the Eclipse treatment planning system. PMID:21053115

Bush, Karl K; Zavgorodni, Sergei F

2010-12-01

50

Beam Breakup Effects in Dielectric Based Accelerators  

SciTech Connect

The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

Schoessow, P.; Kanareykin, A. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Jing, C. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Argonne National Laboratory, IL (United States); Kustov, A. [Dynamics Software, Helsinki (Finland); Altmark, A. [Electrotechnical University Eltech 'LETI', St. Petersburg (Russian Federation); Power, J. G.; Gai, W. [Argonne National Laboratory, IL (United States)

2009-01-22

51

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

NONE

1980-12-31

52

The Diagnosis Method for High-Energy Ion Beams Using Backscattered Particles for Laser-Driven Ion Acceleration Experiments  

NASA Astrophysics Data System (ADS)

A single CR-39 detector mounted on plastic plates is irradiated with a 100 MeV He ion beam. Although the beam energy is much greater than the detection threshold limit of the CR-39 detector, a large number of etch pits having elliptical openings are observed on the rear surface. Detailed investigations reveal that these etch pits are created by heavy ions inelastically backscattered from the plastic plates. This method allows a simple diagnosis of the ion beam profile and the presence of the high-energy component beyond the detection threshold limit of the CR-39 detector, especially in mixed-radiation fields such as laser-driven ion acceleration experiments.

Kanasaki, Masato; Fukuda, Yuji; Sakaki, Hironao; Hori, Toshihiko; Tampo, Motonobu; Kondo, Kiminori; Kurashima, Satoshi; Kamiya, Tomihiro; Oda, Keiji; Yamauchi, Tomoya

2012-05-01

53

Particle Acceleration by MHD Turbulence  

E-print Network

Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-$\\beta$) and gaseous pressure (high-$\\beta$) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We compare the results with the acceleration rate that arises from resonance scattering and Transit-Time Damping (TTD). We establish that fast modes accelerate particles more efficiently than slow modes. We find that particle acceleration by pitch-angle scattering and TTD dominates acceleration by slow or fast modes when the spatial diffusion rate is small. When the rate of spatial diffusion of particles is high, we establish an enhancement of the efficiency of particle acceleration by slow and fast modes in weak turbulence. We show that highly supersonic turbulence is an efficient agent for particle acceleration. We find that even incompressible turbulence can accelerate particles on the scales comparable with the particle mean free path.

Jungyeon Cho; A. Lazarian

2005-10-21

54

BEAM EXTRACTION FROM THE MURA 50 Mev FFAG ACCELERATOR  

Microsoft Academic Search

The components, operation, and performance of the beam extraction system ; are described, and the selection and proporties of particle orbits in the ; extraction channel are discussed. Single accelerated beam pulses were observed ; to last 37 nsec, and 40 mamp per pulse currents were measured in the extracted ; beam. The 45-Mev stacked beam was also extracted in

F. E. Mills; G. M. Lee; H. K. Meier; J. E. OMeara; C. H. Pruett; E. M. Rowe; C. A. Radmer; M. F. Shea; D. A. Swenson; D. E. Young

1963-01-01

55

Particle beam injector system and method  

DOEpatents

Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

Guethlein, Gary

2013-06-18

56

Solar particle acceleration and propagation  

NASA Technical Reports Server (NTRS)

The research performed in the period 1983-1986 on solar-particle acceleration and propagation is discussed. Special attention is given to satellite-based observations of large solar energetic particles and (He-3)-rich events; measurements of solar gamma rays, neutrons, and low-energy (1-100-keV) electrons; and observations related to the interplanetary propagation of fast particles. Consideration is also given to theoretical acceleration models based on satellite measurements of accelerated ions.

Lin, R. P.

1987-01-01

57

High field gradient particle accelerator  

DOEpatents

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

Nation, J.A.; Greenwald, S.

1989-05-30

58

High field gradient particle accelerator  

DOEpatents

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

1989-01-01

59

Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities  

SciTech Connect

To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

Donovan, G.L.; Goldstein, S.A.

1986-12-01

60

High Gradient Two-Beam Electron Accelerator  

SciTech Connect

A high-gradient two-beam electron accelerator structure using detuned cavities is described. A self-consistent theory based on a circuit model is presented to calculate idealized acceleration gradient, transformer ratio, and efficiency for energy transfer from the drive beam to the accelerated beam. Experimental efforts are being carried out to demonstrate this acceleration concept.

Jiang, Y. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Kazakov, S. Yu. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kuzikov, S. V. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Institute of Applied Physics, Nizhny Novgorod, 603600 (Russian Federation); Hirshfield, J. L. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States)

2010-11-04

61

Laser wakefield simulations towards development of compact particle accelerators  

E-print Network

Laser wakefield simulations towards development of compact particle accelerators C.G.R. Geddes1, D understanding of accelerator physics to advance beam performance and stability, and particle simulations model, France; 9 Oxford University, UK E-mail: cgrgeddes@lbl.gov Abstract. Laser driven wakefield accelerators

Geddes, Cameron Guy Robinson

62

Space Experiments with Particle Accelerators: SEPAC  

NASA Technical Reports Server (NTRS)

The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

1994-01-01

63

Particle acceleration at planetary bow shock waves  

Microsoft Academic Search

One property of the collisionless shocks that may be studied through a comparison of their behavior in a variety of plasma conditions at several different planets is the occurrence of MHD waves, associated with particle beams accelerated at these shocks and flowing backward to the sun. Mercury, Venus, earth and Jupiter observations of one of these wave classes show that

M. M. Hoppe

1982-01-01

64

Non-accelerator Particle Physics  

E-print Network

Non-accelerator Particle Physics and Neutrino Physics Research programs of: Prof. Martin that often connect particle physics with astrophysics and cosmology Some questions: - What particles of the neutrino? #12;The techniques: Laboratory experiments, in the style of particle physics · High energy

Wechsler, Risa H.

65

Solar Flares and particle acceleration  

E-print Network

prominent in X-rays, UV/EUV and radio . but can be seen from radio to 100 MeV #12;Solar flares and accelerated particles #12;Solar flares and accelerated particles From Emslie et al., 2004, 2005 Free magnetic

66

Space Experiments with Particle Accelerators (SEPAC)  

NASA Technical Reports Server (NTRS)

The purpose of Space Experiments with Particle Accelerators (SEPAC) on the Atmospheric Laboratory for Applications and Science (ATLAS 1) mission, is to carry out active and interactive experiments on and in the earth's ionosphere, atmosphere, and magnetosphere. The instruments to be used are an electron beam accelerator (EBA), plasma contactor, and associated instruments the purpose of which is to perform diagnostic, monitoring, and general data taking functions. Four major classes of investigations are to be performed by SEPAC. They are: beam plasma physics, beam-atmosphere interactions, the use of modulated electron beams as transmitting antennas, and the use of electron beams for remote sensing of electric and magnetic fields. The first class consists mainly of onboard plasma physics experiments to measure the effects of phenomena in the vicinity of the shuttle. The last three are concerned with remote effects and are supported by other ATLAS 1 investigations as well as by ground-based observations.

Obayashi, Tatsuzo

1988-01-01

67

[Particle beam radiotherapy].  

PubMed

Recently, particle beam radiotherapy with protons or carbon ions has been used in cancer treatment. Energy deposition with particle beams increases as depth increases. Furthermore, carbon ion beams have stronger biological effects than X-rays or proton beams, because carbon beams generate denser ionization along the pathway of the particles. In Japan, clinical study with carbon ions for cancer therapy was initiated in 1994 at the National Institute of Radiological Science(NIRS). Four treatment facilities are now in operation, including Gunma University Heavy Ion Medical Center. The experience with carbon ion radiotherapy at NIRS has demonstrated advantages for the following types of cancer. In terms of histological type, adenocarcinomas, sarcomas, and melanomas that are relatively radioresistant to conventional X-ray radiotherapy may be sensitive to carbon ion radiotherapy. Primary sites that may be sensitive include the head and neck region, lung, liver, prostate, bone and soft tissue, and pelvis(for recurrence of rectal cancer). Combined with surgery, cytotoxic drugs, molecular targeted drugs, and immunotherapy, carbon ion radiotherapy promises to be an important modality in the future. PMID:25596047

Saitoh, Jun-ichi; Nakano, Takashi

2014-12-01

68

Dusty-Plasma Particle Accelerator  

NASA Technical Reports Server (NTRS)

A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.

Foster, John E.

2005-01-01

69

Particle Acceleration at Relativistic Shocks  

E-print Network

I review the current status of Fermi acceleration theory at relativistic shocks. I first discuss the relativistic shock jump conditions, then describe the non-relativistic Fermi mechanism and the differences introduced by relativistic flows. I present numerical calculations of the accelerated particle spectrum, and examine the maximum energy attainable by this process. I briefly consider the minimum energy for Fermi acceleration, and a possible electron pre-acceleration mechanism.

Yves A. Gallant

2002-01-15

70

Particle acceleration in pulsar magnetospheres  

NASA Technical Reports Server (NTRS)

The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

Baker, K. B.

1978-01-01

71

Space Experiments with Particle Accelerators (SEPAC)  

NASA Technical Reports Server (NTRS)

The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

Taylor, William W. L.

1994-01-01

72

A particle accelerator employing transient space charge potentials  

DOEpatents

The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

Post, R.F.

1988-02-25

73

Particle Acceleration by Magnetic Reconnection  

NASA Astrophysics Data System (ADS)

Observational data require a rich variety of mechanisms to accelerate fast particles in astrophysical environments operating under different conditions. The mechanisms discussed in the literature include varying magnetic fields in compact sources, stochastic processes in turbulent environments, and acceleration behind shocks. An alternative, much less explored mechanism involves particle acceleration within magnetic reconnection sites. In this chapter we discuss this mechanism and show that particles can be efficiently accelerated by magnetic reconnection through a first order Fermi process within large scale current sheets (specially when in the presence of local turbulence which speeds up the reconnection and make the acceleration region thicker) and also through a second order Fermi process in pure MHD turbulent environments.

de Gouveia Dal Pino, Elisabete M.; Kowal, Grzegorz

74

Future Particle Accelerator Developments for Radiation Therapy  

NASA Astrophysics Data System (ADS)

During the last decade particle beam cancer therapy has seen a rapid increase in interest, and several new centers have been built, are currently under construction, or are in an advanced stage of planning. Typical treatment centers today consist of an accelerator capable of producing proton or ion beams in an energy range of interest for medical treatment, i.e. providing a penetration depth in water of about 30 cm, a beam delivery system to transport the produced beam to the patient treatment rooms, and several patient stations, allowing for an optimal usage of the continuously produced beam. This makes these centers rather large and consequently expensive. Only major hospital centers situated in an area where they can draw on a population of several million can afford such an installation. In order to spread the use of particle beam cancer therapy to a broader population base it will be necessary to scale down the facility size and cost. This can in principle be done by reducing the number of treatment rooms to one, eliminating the need of an elaborate beam delivery system, and thereby reducing the building size and cost. Such a change should be going in parallel with a reduction of the accelerator itself, and a number of approaches to this are currently being pursued. If successful, such developments could eventually lead to a compact system where all components would fit into a single shielded room, not much different in size from a typical radiation vault for radiotherapy with X-rays.

Holzscheiter, Michael H.; Bassler, Niels

75

Crystal devices for beam steering in the IHEP accelerator  

NASA Astrophysics Data System (ADS)

Different crystal devices are described, which provide an extraction and splitting of beams for a long period of time at the U-70 accelerator of IHEP. The modes of channeling and volume reflections in the bent crystals are used for these tasks. In regular accelerator runs crystals produce the particle beams in a wide range of intensity, from 106 up to 1012 particles in a cycle. Novel crystal techniques suitable for charged particle beams deflection and focus as well as photon generation are presented also.

Chesnokov, Yu A.; Afonin, A. G.; Baranov, V. T.; Britvich, G. I.; Chirkov, P. N.; Maisheev, V. A.; Terekhov, V. I.; Yazynin, I. A.

2014-05-01

76

Computation applied to particle accelerator simulations  

SciTech Connect

The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples taken from the above categories to illustrate the methods and we will discuss the significance of the work to the project, and also briefly discuss the accelerator project itself. The examples that will be discussed are: (1) the tracking analysis done for the main ring of the Superconducting Supercollider, which contributed to the analysis which ultimately resulted in changing the dipole coil diameter to 5 cm from the earlier design for a 4-cm coil-diameter dipole magnet; (2) the design of accelerator structures for electron-positron linear colliders and circular colliding beam systems (B-factories); (3) simulation of the wake fields from multibunch electron beams for linear colliders; and (4) particle-in-cell simulation of space-charge dominated beams for an experimental liner induction accelerator for Heavy Ion Fusion. 8 refs., 9 figs.

Herrmannsfeldt, W.B. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Yan, Y.T. (Superconducting Super Collider Lab., Dallas, TX (United States))

1991-07-01

77

Nonparaxial Mathieu and Weber accelerating beams.  

PubMed

We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical, or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only do generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves. PMID:23215384

Zhang, Peng; Hu, Yi; Li, Tongcang; Cannan, Drake; Yin, Xiaobo; Morandotti, Roberto; Chen, Zhigang; Zhang, Xiang

2012-11-01

78

Nonparaxial Mathieu and Weber Accelerating Beams  

NASA Astrophysics Data System (ADS)

We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical, or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only do generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.

Zhang, Peng; Hu, Yi; Li, Tongcang; Cannan, Drake; Yin, Xiaobo; Morandotti, Roberto; Chen, Zhigang; Zhang, Xiang

2012-11-01

79

Beam-driven acceleration in ultra-dense plasma media  

NASA Astrophysics Data System (ADS)

Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

Shin, Young-Min

2014-09-01

80

Particle Acceleration in relativistic plasmas  

NASA Astrophysics Data System (ADS)

We review our recent results on particle acceleration in shocks [1], in reconnection [2] and via wave-particle interactions in microinstabilites [3]. After reviewing the fundamental issues in particle acceleration in the three classes of problems mentioned above, we focus specifically on the interactions of waves and particles during the evolution of plasma microinstabilites. We consider a new mechanism responsible for exceedingly strong acceleration events in relativistic plasmas. We conduct simulations of streaming plasmas (generated for example in astrophysical processes such as jets or in shocks) and consider the evolution of instabilities, comparing the classical and the relativistic evolution. The cause of the new processes is discussed in ration with the properties of the Minkowski space-time itself [3]. [1] G. Lapenta, J. King, JGR, to appear. [2] W. Wan, G. Lapenta, GRL, submitted [3] G. Lapenta et al, ApJ, to appear.

Lapenta, G.

2007-12-01

81

Particle Acceleration Mechanisms  

Microsoft Academic Search

In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed\\u000a non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering,\\u000a that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical\\u000a situations, and in

V. Petrosian; A. M. Bykov

2008-01-01

82

Space experiments with particle accelerators. [Spacelab  

NASA Technical Reports Server (NTRS)

The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

Obayashi, T.

1981-01-01

83

RADIO EMISSION OF SOLAR FLARE PARTICLE ACCELERATION  

E-print Network

RADIO EMISSION OF SOLAR FLARE PARTICLE ACCELERATION A. O. Benz Abstract The solar corona is a very be considered as a particle accelerator. The free mobility of charged particles in a dilute plasma to accelerate particles in resonance. From a plasma physics point of view, acceleration is not surprising

84

Studies of beam dynamics in relativistic klystron two- beam accelerators  

NASA Astrophysics Data System (ADS)

Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain, and output rf cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are described. The first is the commissioning of the RTA injector. This electron gun produces a 1 MV, 600 A beam over a 250 ns pulse length. The post-injector beamline is described, and the battery of diagnostics is presented, with initial results reported. (Abstract shortened by UMI.)

Lidia, Steven Michael

85

Neutral particle beam intensity controller  

DOEpatents

The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

Dagenhart, W.K.

1984-05-29

86

Theory and Design of Charged Particle Beams  

Microsoft Academic Search

Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity

Martin Reiser

1994-01-01

87

Cosmic Particle Acceleration: Basic Issues  

E-print Network

Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

T. W. Jones

2000-12-22

88

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOEpatents

An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

Birx, D.L.; Reginato, L.L.

1984-03-22

89

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOEpatents

An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

1988-01-01

90

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOEpatents

An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

1987-01-01

91

A Fundamental Theorem on Particle Acceleration  

SciTech Connect

A fundamental theorem on particle acceleration is derived from the reciprocity principle of electromagnetism and a rigorous proof of the theorem is presented. The theorem establishes a relation between acceleration and radiation, which is particularly useful for insightful understanding of and practical calculation about the first order acceleration in which energy gain of the accelerated particle is linearly proportional to the accelerating field.

Xie, Ming

2003-05-01

92

PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS  

SciTech Connect

Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the regimes of operation (linear and nonlinear wave). Limitations owing to driver emittance are also discussed.

Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

2011-04-01

93

Particle Acceleration in Relativistic Outflows  

NASA Technical Reports Server (NTRS)

In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

2012-01-01

94

Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions  

NASA Technical Reports Server (NTRS)

Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

1987-01-01

95

Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.  

PubMed

The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy. PMID:22739009

Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jrg

2012-01-01

96

PARTICLE BEAM RADIOTHERAPY: CLINICAL PERSPECTIVE  

E-print Network

of high LET #12;radiation. This provided the impetus for the clinical studies using fast neutron beams path is referred to as linear energy transfer. Conventional photon and electron beams used in therapyCHAPTER 16 PARTICLE BEAM RADIOTHERAPY: CLINICAL PERSPECTIVE GEORGE E. LARAMORE MARK H. PHILLIPS

Yetisgen-Yildiz, Meliha

97

Space Experiments with Particle Accelerators (SEPAC)  

NASA Technical Reports Server (NTRS)

Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.

Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.

1982-01-01

98

Use of particle beams for lunar prospecting  

NASA Technical Reports Server (NTRS)

A key issue in choosing the appropriate site for a manned lunar base is the availability of resources, particularly oxygen and hydrogen for the production of water, and ores for the production of fuels and building materials. NASA has proposed two Lunar Scout missions that would orbit the Moon and use, among other instruments, a hard X-ray spectrometer, a neutron spectrometer, and a Ge gamma ray spectrometer to map the lunar surface. This passive instrumentation will have low resolution (tens of kilometers) due to the low signal levels produced by natural radioactivity and the interaction of cosmic rays and the solar wind with the lunar surface. This paper presents the results of a concept definition effort for a neutral particle beam lunar mapper probe. The idea of using particle beam probes to survey asteroids was first proposed by Sagdeev et al., and an ion beam device was fielded on the 1988 Soviet probe to the Mars moon Phobos. During the past five years, significant advances in the technology of neutral particle beams (NPB) have led to a suborbital flight of a neutral hydrogen beam device in the SDIO-sponsored BEAR experiment. An orbital experiment, the Neutral Particle Beam Far Field Optics Experiment (NPB-FOX) is presently in the preliminary design phase. The development of NPB accelerators that are space-operable leads one to consider the utility of these devices for probing the surface of the Moon using gamma ray, X-ray, and optical/UV spectroscopy to locate various elements and compounds. We consider the utility of the NPB-FOX satellite containing a 5-MeV particle beam accelerator as a probe in lunar orbit. Irradiation of the lunar surface by the particle beam will induce secondary and back scattered radiation from the lunar surface to be detected by a sensor that may be co-orbital with or on the particle beam satellite platform, or may be in a separate orbit. The secondary radiation is characteristic of the make-up of the lunar surface. The size of the spot irradiated by the beam is less than 1 km wide along the ground track of the satellite, resulting in the potential for high resolution. The fact that the probe could be placed in polar orbit would result in global coverage of the lunar surface. The orbital particle beam probe could provide the basis for selection of sites for more detailed prospecting by surface rovers.

Toepfer, A. J.; Eppler, D.; Friedlander, A.; Weitz, R.

1993-01-01

99

The cooling of particle beams  

SciTech Connect

A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling.

Sessler, A.M.

1994-10-01

100

Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators  

SciTech Connect

We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

Lee, S. Y.

2014-04-07

101

Particle acceleration in pulsar magnetospheres  

E-print Network

We investigate a pair creation cascade in the magnetosphere of a rapidly rotating neutron star. We solve the set of the Poisson equation for the electro-static potential and the Boltzmann equations for electrons, positrons, and gamma-ray photons simultaneously. In this paper, we first examine the time-dependent nature of particle accelerators by solving the non-stationary Boltzmann equations on the two-dimensional poloidal plane in which both the rotational and magnetic axes reside. Evaluating the temperature of the heated polar cap surface, which is located near the magnetic pole, by the bombardment of gap-accelerated particles, and applying the scheme to millisecond pulsar parameters, we demonstrate that the solution converges to a stationary solution of which pair-creation cascade is maintained by the heated polar-cap emission, in a wide range of three-dimensional parameter space (period, period derivative, magnetic inclination angle). We also present the deathlines of millisecond pulsars.

P. C. Hsu; K. Hirotani; H. K. Chang

2006-12-22

102

Particle beam fusion  

NASA Astrophysics Data System (ADS)

This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/sq cm on PBFA-2 in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-2 experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-2 have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

Sweeney, M. A.

1994-08-01

103

Collective acceleration of protons by the plasma waves in a counterstreaming electron beam  

SciTech Connect

A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration.

Yan, Y.T.

1987-03-01

104

Acceleration and stability of a high-current ion beam in induction fields  

SciTech Connect

A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

Karas', V. I.; Manuilenko, O. V. [National Science Center Kharkov Institute of Physics and Technology (Ukraine)] [National Science Center Kharkov Institute of Physics and Technology (Ukraine); Tarakanov, V. P. [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation)] [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation); Federovskaya, O. V. [National Science Center Kharkov Institute of Physics and Technology (Ukraine)] [National Science Center Kharkov Institute of Physics and Technology (Ukraine)

2013-03-15

105

High efficiency ion beam accelerator system  

NASA Technical Reports Server (NTRS)

An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

Aston, G.

1981-01-01

106

Automation of particle accelerator control  

SciTech Connect

We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a 'mouseable' representation of a typical beamline. This responds actively to changes input from the mouse or keyboard, giving an updated display of the beamline itself, its optical properties, and the instrumentation and control devices as seen by the operator. We have incorporated the Fortran beam optics code TRANSPORT for simulation of the beam. The paper describes the experience gained in this process and discusses plans to extend the work so that it is usable, in real-time, on an operating beamline. 11 refs., 2 figs.

Silbar, R.R.; Schultz, D.E.

1988-01-01

107

Challenges in plasma and laser wakefield accelerated beams diagnostic  

NASA Astrophysics Data System (ADS)

The new frontier in the particle beam accelerator is the so called plasma acceleration. Using the strong electric field inside a plasma it is possible to achieve accelerating gradients in the order of magnitude larger with respect to the actual technologies. Different schemes have been proposed and several already tested, producing beams of energy of several GeV. Mainly two approaches are followed: either the beam is directly produced by the interaction of a TW/PW class laser with a gas jet or a preexisting particle beam is accelerated in a plasma channel. In both cases a precise determination of the emerging beam parameters is mandatory for the fine tuning of the devices. The measurement of these parameters, in particular the emittance, is not trivial, mainly due to the large energy spread and to the tight focusing of these beams or to the background noise produced in the plasma channel. We show the problems related to the diagnostic of this kind of beams and the proposed or already realized solutions.

Cianchi, A.; Anania, M. P.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Ferrario, M.; Gatti, G.; Marchetti, B.; Mostacci, A.; Pompili, R.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.

2013-08-01

108

Microwaves and particle accelerators: a fundamental link  

SciTech Connect

John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of the twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)

Chattopadhyay, Swapan [Universities of Lancaster, Liverpool and Manchester and Cockcroft Institute, Cheshire (United Kingdom)

2011-07-01

109

Neutral particle beam distributed data acquisition system  

SciTech Connect

A distributed data acquisition system has been designed to support experiments at the Argonne Neutral Particle Beam Accelerator. The system uses a host VAXstation II/GPX computer acting as an experimenter's station linked via Ethernet with multiple MicroVAX IIs and rtVAXs dedicated to acquiring data and controlling hardware at remote sites. This paper describes the hardware design of the system, the applications support software on the host and target computers, and the real-time performance.

Daly, R.T.; Kraimer, M.R.; Novick, A.H.

1987-01-01

110

Systems and methods of varying charged particle beam spot size  

DOEpatents

Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

Chen, Yu-Jiuan

2014-09-02

111

Beam Coupling to Optical Scale Accelerating Structures  

SciTech Connect

Current research efforts into structure based laser acceleration of electrons utilize beams from standard RF linacs. These beams must be coupled into very small structures with transverse dimensions comparable to the laser wavelength. To obtain decent transmission, a permanent magnet quadrupole (PMQ) triplet with a focusing gradient of 560 T/m is used to focus into the structure. Also of interest is the induced wakefield from the structure, useful for diagnosing potential accelerator structures or as novel radiation sources.

Sears, Christopher M. S.; Colby, Eric R.; Cowan, Benjamin M.; Ischebeck, Rasmus; Lincoln, Melissa R.; Siemann, Robert H.; Spencer, James E. [Stanford Linear Accelerator Center, Menlo Park, CA 94025 (United States); Byer, Robert L.; Plettner, Tomas [Stanford University, Stanford, CA 94305 (United States)

2006-11-27

112

RFQ device for accelerating particles  

DOEpatents

A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

Shepard, K.W.; Delayen, J.R.

1995-06-06

113

RFQ device for accelerating particles  

DOEpatents

A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.

Shepard, Kenneth W. (Park Ridge, IL); Delayen, Jean R. (Naperville, IL)

1995-01-01

114

Conditional Fluid-Particle Accelerations in Turbulence  

Microsoft Academic Search

. Simple closures for average fluid-particle accelerations, conditional on fixed local fluid velocity, are considered in isotropic,\\u000a homogeneous and stationary turbulence using exact probability density transport equations and are compared with direct numerical\\u000a simulations (DNS). Such accelerations are common ingredients in Lagrangian stochastic models for fluid-particle trajectories\\u000a in turbulence. One-particle accelerations are essentially trivial, so the focus is on two-particle

M. S. Borgas; P. K. Yeung

1998-01-01

115

Fundamentals of relativistic particle beam optics  

SciTech Connect

This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly.

Cornacchia, M.

1995-12-01

116

Plasma based charged-particle accelerators  

Microsoft Academic Search

Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense

R Bingham; J T Mendona; P K Shukla

2004-01-01

117

Particle Acceleration Mechanisms in Magnetosonic Shock Waves  

Microsoft Academic Search

Theory and simulations of nonstochastic particle acceleration mechanisms occurring in collisionless shock waves in a magnetized plasma are reviewed. We describe the acceleration mechanisms of hydrogen ions, heavy ions, electrons, nonthermal relativistic ions, and positrons. The first three mechanisms explain the basic properties of solar energetic particles; i.e., prompt acceleration of ions to energies 10 10 91 0 + eV

OHSAWA Yukiharu

2004-01-01

118

Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude  

DOEpatents

A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

Bogaty, John M. (Lombard, IL); Clifft, Benny E. (Park Forest, IL); Bollinger, Lowell M. (Downers Grove, IL)

1995-01-01

119

Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude  

DOEpatents

A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

1995-08-08

120

Generalized Radially Self-Accelerating Helicon Beams  

NASA Astrophysics Data System (ADS)

We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set of solutions for rotating complex fields.

Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

2014-10-01

121

The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field  

NASA Astrophysics Data System (ADS)

The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

Joshi, C.

2012-12-01

122

How to obtain particles to accelerate  

NSDL National Science Digital Library

Where do the particles come from that are accelerated in a particle accelerator? In this portion of a particle physics tutorial, three sources of particles are described for students. The first source is electrons, which come from heated metals. The second is protons, which are available from ionized hydrogen. Antiparticles are the third source. They are collected by magnetic fields after particles smash targets. Copyright 2005 Eisenhower National Clearinghouse

Group, Lawrence B.

2002-01-01

123

1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings  

NASA Astrophysics Data System (ADS)

The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

Strathdee, A.

1985-10-01

124

Beam-driven acceleration in ultra-dense plasma media  

SciTech Connect

Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25?}m{sup ?3} and 1.6??10{sup 28?}m{sup ?3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ?20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?{sub p} to 0.6 ?{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

Shin, Young-Min [Department of Physics, Northern Illinois University, Dekalb, Illinois 60115 (United States); Accelerator Physics Center (APC), Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510 (United States)

2014-09-15

125

Solitary waves in particle beams  

SciTech Connect

Since space charge waves on a particle beam exhibit both dispersive and nonlinear character, solitary waves or solitons are possible. Dispersive, nonlinear wave propagation in high current beams is found to be similar to ion-acoustic waves in plasmas with an analogy between Debye screening and beam pipe shielding. Exact longitudinal solitary wave propagation is found for potentials associated with certain transverse distributions which fill the beam pipe. For weak dispersion, the waves satisfy the Korteweg-deVries (KdV) equation, but for strong dispersion they exhibit breaking. More physically realizable distributions which do not fill the beam pipe are investigated and shown to also satisfy a KdV equation for weak dispersion if averaging over rapid transverse motion is physically justified. Scaling laws are presented to explore likely parameter regimes where these phenomena may be observed experimentally.

Bisognano, J.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

1996-07-01

126

Particle motion in crystalline beams  

SciTech Connect

Studying the possibility of storing a low emittance (or ``cooled``) beam of charged particles in a storage ring, the authors are faced with the effect of space charge by which particles are repelled and influence each others` motion. The correct evaluation of the space-charge effects is important to determine the attainment and properties of Crystalline Beams, a phase transition which intense beams of ions can undergo when cooling is applied. In this report they derive the equations of motion of a particle moving under the action of external resorting forces generated by the magnets of the storage ring, and of the electromagnetic fields generated by the other particles. The motion in every direction is investigated: in the longitudinal, as well as vertical and horizontal direction. The external forces are assumed to be linear with the particle displacement from the reference orbit. The space-charge forces are comparable in magnitude to the external focusing forces. The equations of motion so derived are then used to determine confinement and stability conditions for the attainment of Crystalline Beams, using transfer matrices.

Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

1994-04-20

127

Vacuum electron acceleration and bunch compression by a flat-top laser beam.  

PubMed

The field intensity distribution and phase velocity characteristics of a flat-top laser beam are analyzed and discussed. The dynamics of electron acceleration in this kind of beam are investigated using three-dimensional test particle simulations. Compared with the standard (i.e., TEM(00) mode) Gaussian beam, a flat-top laser beam has a stronger longitudinal electric field and a larger diffraction angle. These characteristics make it easier for electrons to be trapped and accelerated by the beam. With a flat-top shape, the laser beam is also applicable to the acceleration of low energy electron and bunch compression. PMID:17902943

Wang, W; Wang, P X; Ho, Y K; Kong, Q; Gu, Y; Wang, S J

2007-09-01

128

Vacuum electron acceleration and bunch compression by a flat-top laser beam  

SciTech Connect

The field intensity distribution and phase velocity characteristics of a flat-top laser beam are analyzed and discussed. The dynamics of electron acceleration in this kind of beam are investigated using three-dimensional test particle simulations. Compared with the standard (i.e., TEM{sub 00} mode) Gaussian beam, a flat-top laser beam has a stronger longitudinal electric field and a larger diffraction angle. These characteristics make it easier for electrons to be trapped and accelerated by the beam. With a flat-top shape, the laser beam is also applicable to the acceleration of low energy electron and bunch compression.

Wang, W.; Wang, P. X.; Ho, Y. K.; Kong, Q.; Gu, Y.; Wang, S. J. [Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, 200433 (China) and Shanghai Institute of Laser Plasma, Shanghai, 201800 (China); Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, 200433 (China); Shanghai Institute of Laser Plasma, Shanghai, 201800 (China)

2007-09-15

129

Vacuum electron acceleration and bunch compression by a flat-top laser beam  

NASA Astrophysics Data System (ADS)

The field intensity distribution and phase velocity characteristics of a flat-top laser beam are analyzed and discussed. The dynamics of electron acceleration in this kind of beam are investigated using three-dimensional test particle simulations. Compared with the standard (i.e., TEM00 mode) Gaussian beam, a flat-top laser beam has a stronger longitudinal electric field and a larger diffraction angle. These characteristics make it easier for electrons to be trapped and accelerated by the beam. With a flat-top shape, the laser beam is also applicable to the acceleration of low energy electron and bunch compression.

Wang, W.; Wang, P. X.; Ho, Y. K.; Kong, Q.; Gu, Y.; Wang, S. J.

2007-09-01

130

Particle acceleration efficiencies in astrophysical shear flows  

E-print Network

The acceleration of energetic particles in astrophysical shear flows is analyzed. We show that in the presence of a non-relativistic gradual velocity shear, power law particle momentum distributions $f(p) \\propto p^{-(3+\\alpha)}$ may be generated, assuming a momentum-dependent scattering time $\\tau \\propto p^{\\alpha}$, with $\\alpha > 0$. We consider possible acceleration sites in astrophysical jets and study the conditions for efficient acceleration. It is shown, for example, that in the presence of a gradual shear flow and a gyro-dependent particle mean free path, synchrotron radiation losses no longer stop the acceleration once it has started to work efficiently. This suggests that shear acceleration may naturally account for a second, non-thermal population of energetic particles in addition to a shock-accelerated one. The possible relevance of shear acceleration is briefly discussed with reference to the relativistic jet in the quasar 3C 273.

F. M. Rieger; P. Duffy

2005-02-04

131

High gradient lens for charged particle beam  

DOEpatents

Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

Chen, Yu-Jiuan

2014-04-29

132

Observations of particle acceleration in solar flares  

NASA Technical Reports Server (NTRS)

Solar flares provide several examples of nonthermal particle acceleration. The paper reviews the information gained about these processes via X-ray and gamma-ray astronomy, which can presently distinguish among three separate particle-acceleration processes at the sun: an impulsive accelerator of more than 20 keV electrons, a gradual accelerator of more than 20 keV electrons, and a gradual accelerator of more than 10 MeV ions. The acceleration energy efficiency (total particle energy divided by total flare energy) of any of these mechanisms cannot be less than about 0.1%, although the gradual acceleration does not occur in every flare. The observational material suggests that both the impulsive and gradual accelerations take place preferentially in closed magnetic-field structures, but that the electrons decay in these traps before they can escape. The ions escape very efficiently.

Hudson, H. S.

1979-01-01

133

Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators  

SciTech Connect

In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

2008-01-28

134

Stochastic Particle Acceleration by Helical Turbulence in Solar Flares  

NASA Astrophysics Data System (ADS)

Modern X-ray and radio observations favor a stochastic (Fermi) acceleration mechanism of fast particles produced in flares, which implies that an accelerating turbulence must somehow be generated by the primary flare energy release. The very release of free magnetic energy is only possible if the magnetic field deviates from a potential one. We show that this magnetic field nonpotentiality, via its corresponding current helicity, necessarily results in a noticeable kinetic helicity of the turbulence generated at the flare site by the primary energy release. We study the role of the turbulence helicity on the particle acceleration and find that a nonzero turbulence helicity has a remarkably strong effect on the particle acceleration. The main reason for this strong helicity effect is that the helical component of the turbulence induces, through a well-known alpha-effect, a regular large-scale electric field capable of directly accelerating charged particles (like in the models with DC field acceleration). We estimate the turbulence kinetic helicity based on measured photospheric and extrapolated values of the current helicity and take into consideration the helical turbulence effect on stochastic particle acceleration. We find that this induced large-scale electric field can be comparable with the electron and estimated effective ion Dreicer fields, which has an immediate effect on charged particle extraction from the thermal pool and their injection into stochastic acceleration process. We have discovered that this, so far missing but highly important, ingredient of the particle stochastic acceleration by turbulence at the flare site is naturally consistent with such puzzling flare manifestations as spatial separation of electron and proton emission sites, electron beam formation, and enrichment of the accelerated particle population by 3He and other tiny ions. This work was supported in part by NSF grant AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.

Fleishman, Gregory D.; Toptygin, I. N.

2012-05-01

135

Type II radio bursts and particle acceleration  

Microsoft Academic Search

328 particle events recorded during 30 months from January 1, 1966 to June 30, 1968 (taken from the new Catalog of Solar Particle Events, 19551969) are compared with the occurrence of 166 type II radio bursts during the same period. The results of this comparison give a convincing evidence that proton acceleration to higher energies in flares (the second acceleration

Z. vestka; L. Fritzov-Svestkov

1974-01-01

136

Dynamics of intense particle beam in axial-symmetric magnetic field  

NASA Astrophysics Data System (ADS)

Axial-symmetric magnetic field is often used in focusing of particle beams. Most existing ion Low Energy Beam Transport lines are based on solenoid focusing. Modern accelerator projects utilize superconducting solenoids in combination with superconducting accelerating cavities for acceleration of high-intensity particle beams. Present article discusses conditions for matched beam in axial-symmetric magnetic field. Analysis allows us to minimize power consumption of solenoids and beam emittance growth due to nonlinear space charge, lens aberrations, and maximize acceptance of the channel. Expressions for maximum beam current in focusing structure, beam emittance growth due to spherical aberrations and non-linear space charge forces are derived.

Batygin, Yuri K.

2015-02-01

137

Numerical Study of Random Noise-Induced Beam Degradation in High Energy Accelerators  

Microsoft Academic Search

Random noise caused by small machine errors is an inevitable and potentially significant source of beam degradation in high-energy accelerators. Understanding the detailed effects of such noise on beam quality is critical to evaluating the viability of accelerator design and operation. To this end, we study the dynamics of a single particle under the combined influence of random noise and

Arjun Landes; Ronald Davidson; Hong Qin

2009-01-01

138

A non-invasive beam profile monitor for charged particle beams  

SciTech Connect

Non-interceptive beam profile monitors are highly desirable in almost all particle accelerators. Such techniques are especially valuable in applications where real time monitoring of the beam properties is required while beam preservation and minimal influence on the vacuum are of the greatest importance. This applies to many kinds of accelerators such as high energy machines where the normal diagnostics cannot withstand the beam's power, medical machines where treatment time is valuable and cannot be allocated to diagnostics and also low energy, low intensity accelerators where the beam's properties are difficult to measure. This paper presents the design of a gas-jet based beam profile monitor which was developed and commissioned at the Cockcroft Institute and can operate in a very large background pressure range from 10{sup ?7} down to below 10{sup ?11} millibars. The functioning principle of the monitor is described and the first experimental results obtained using a 5?keV electron beam are discussed.

Tzoganis, Vasilis, E-mail: vasileios.tzoganis@cockcroft.ac.uk [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); RIKEN Nishina Centre, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Welsch, Carsten P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

2014-05-19

139

Particle acceleration in relativistic laser channels  

Microsoft Academic Search

Energy spectra of ions and fast electrons accelerated by a channeling laser pulse in near-critical plasma are studied using three-dimensional (3D) Particle-In-Cell simulations. The realistic 3D geometry of the simulations allows us to obtain not only the shape of the spectra, but also the absolute numbers of accelerated particles. It is shown that ions are accelerated by a collisionless radial

A. Pukhov; Z.-M. Sheng; J. Meyer-Ter-Vehn

1999-01-01

140

Feature-based Analysis of Plasma-based Particle Acceleration Data  

SciTech Connect

Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

2013-07-05

141

Feature-based analysis of plasma-based particle acceleration data.  

PubMed

Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam, and to investigate transverse particle loss. PMID:24356363

Rbel, Oliver; Geddes, Cameron G R; Chen, Min; Cormier-Michel, Estelle; Bethel, E Wes

2014-02-01

142

Study of space charge compensation phenomena in charged particle beams  

SciTech Connect

The propagation of a charged particle beam is accompanied by the production of secondary particles created in the interaction of the beam itself with the background gas flowing in the accelerator tube. In the drift region, where the electric field of the electrodes is negligible, secondary particles may accumulate giving a plasma which shields the self-induced potential of the charged beam. This phenomenon, known as space charge compensation is a typical issue in accelerator physics, where it is usually addressed by means of 1D radial transport codes or Monte Carlo codes. The present paper describes some theoretical studies on this phenomenon, presenting a Particle in Cell-Monte Carlo (PIC-MC) Code developed ad hoc where both radial and axial confinements of secondary particles are calculated. The features of the model, offering a new insight on the problem, are described and some results discussed.

Veltri, P.; Serianni, G. [Consorzio RFX, C.so Stati Uniti 4, 35100 Padova (Italy); Cavenago, M. [INFN-LNL, Viale dell'Universita 2, 35020 Legnaro (Italy)

2012-02-15

143

Advanced visualization technology for terascale particle accelerator simulations  

Microsoft Academic Search

This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next-generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of

Kwan-Liu Ma; Gregory L. Schussman; Brett Wilson; Kwok Ko; Ji Qiang; Robert Ryne

2002-01-01

144

Particle acceleration at collisionless shocks: An overview  

SciTech Connect

An overview of shock acceleration is presented, focusing primarily on interplanetary shocks and the termination shock as examples. An extended discussion of recent advances in modeling real solar energetic particle (SEP) and energetic storm particle (ESP) events is presented. When the energy of accelerated particles becomes very large, their back reaction on the flow can result in a shock that is significantly mediated, and as an example, we consider some results for the termination shock.

Zank, G.P.; Li Gang; Webb, G.M.; Le Roux, J.A.; Florinski, V.; Ao, X.; Rice, W.K.M. [Institute of Geophysics and Planetary Physics, University of California, Riverside, CA 92521 (United States)

2005-08-01

145

A monolithic relativistic electron beam source based on a dielectric laser accelerator structure  

SciTech Connect

Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)

2012-12-21

146

Superconducting accelerating structures for very low velocity ion beams  

SciTech Connect

This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

2008-01-01

147

Space experiments with particle accelerators  

NASA Technical Reports Server (NTRS)

Electron and plasma beams and neutral gas plumes were injected into the space environment by instruuments on Spacelab 1, and various diagnostic measurements including television camera observations were performed. The results yield information on vehicle charging and neutralization, beam-plasma interactions, and ionization enhancement by neutral beam injection.

Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Roberts, W. T.; Chappell, C. R.; Reasoner, D. L.; Garriott, O. K.; Taylor, W. W. L.

1984-01-01

148

Particle Accelerators Test Cosmological Theory.  

ERIC Educational Resources Information Center

Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)

Schramm, David N.; Steigman, Gary

1988-01-01

149

Energy deposition from particle beams  

NASA Astrophysics Data System (ADS)

A FORTRAN code named PARTEN, designed to compute electron or heavy-particle energy deposition in a layered, infinite plane target, was written and tested by comparison with measurements. Ease of use, transportability, and economy in computing times were primary considerations. The user may choose to include or omit energy loss straggling and multiple scattering detours. The user also has the optics of including a treatment of the photon electron multiplication and transport process for ion beams.

Osborne, W. Z.

1984-11-01

150

Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators  

NASA Astrophysics Data System (ADS)

In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

Edmonds, C. S.; Gratus, J.; Hock, K. M.; Machida, S.; Muratori, B. D.; Torrom, R. G.; Wolski, A.

2014-05-01

151

Acceleration of particles in imbalanced magnetohydrodynamic turbulence.  

PubMed

The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating. PMID:25215682

Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

2014-08-01

152

Acceleration of particles in imbalanced magnetohydrodynamic turbulence  

NASA Astrophysics Data System (ADS)

The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

Teaca, Bogdan; Weidl, Martin S.; Jenko, Frank; Schlickeiser, Reinhard

2014-08-01

153

On the use of the autocorrelation and covariance methods for feedforward control of transverse angle and position jitter in linear particle beam accelerators  

SciTech Connect

It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter in pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually {open_quotes}learns{close_quotes} the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth.

Barr, D.S.

1993-11-01

154

Early experiments in charged particle beams from the Space Shuttle  

NASA Technical Reports Server (NTRS)

Characteristics of studies on board the Shuttle involving the interaction of particle beams with the atmosphere and the ionosphere, and the effects of the beams on the electrical potential of the platform, are discussed. Noting that the Shuttle allows greater weight and power demands by scientific payloads than previous satellite launches, the OSS-1 Vehicle Charging and Potential experiment and the Spacelab 1 Particle Accelerator and Phenomena Induced by Charged Particle Beams are described. Instrumentation details are provided, including charge and current probes, the Spherical Retarding Potential Analyzer, the Fast Pulse Electron Generator, and digital control and interface units. The SEPAC equipment, which comprises an electron beam accelerator, and MPD plasma jet, and diagnostic units are detailed, and operating procedures and experiment objectives are outlined.

Raitt, W. J.; Banks, P. M.; Williamson, P. R.; Baker, K. D.; Obayashi, T.; Burch, J. L.

1982-01-01

155

Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line  

SciTech Connect

Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

Pivi, M.T.F.; Collet, G.; King, F.; Kirby, R.E.; Markiewicz, T.; Raubenheimer, T.O.; Seeman, J.; /SLAC; Le Pimpec, F.; /PSI, Villigen

2010-08-25

156

Acceleration statistics of heavy particles in turbulence  

E-print Network

We present the results of direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, up to resolution $512^3$ ($R_\\lambda\\approx 185$). Following the trajectories of up to 120 million particles with Stokes numbers, $St$, in the range from 0.16 to 3.5 we are able to characterize in full detail the statistics of particle acceleration. We show that: ({\\it i}) The root-mean-squared acceleration $a_{\\rm rms}$ sharply falls off from the fluid tracer value already at quite small Stokes numbers; ({\\it ii}) At a given $St$ the normalised acceleration $a_{\\rm rms}/(\\epsilon^3/\

J. Bec; L. Biferale; G. Boffetta; A. Celani; M. Cencini; A. Lanotte; S. Musacchio; F. Toschi

2005-12-09

157

Harmonic Ratcheting for Ferrite Tuned RF Acceleration of Charged Particles  

NASA Astrophysics Data System (ADS)

One of the most persistent difficulties in the design of RF cavities for acceleration of charged particles is the rapid and efficient acceleration of particles over a large range of frequencies. From medical synchrotrons to accelerator driven systems, there is a strong need for fast acceleration of protons and light ions over hundreds of MeV. Conventionally, this is a costly undertaking, requiring specially designed ferrite loaded cavities to be tuned over a large range of frequencies. Ferromagnetic materials allow for the precise adjustment of cavity resonant frequency, but rapid changes in the frequency as well as operation outside material specific frequency ranges result in significant Q-loss to the cavity. This leads to a considerable increase in power required and is thus undesirable for regular operation. We introduce an acceleration scheme known as harmonic ratcheting which can be used to reduce the cavity frequency range needed for accelerating an ion beam in a synchrotron. In particular, this scheme addresses the need for high rep. rate machines for applications such as radiation therapy in which low beam intensity is needed. We demonstrate with simulations the type of ramps achievable using this technique and consider its advantages over h=1 acceleration schemes.

Cook, Nathan; Brennan, Mike

2013-04-01

158

A technology platform for translational research on laser driven particle accelerators for radiotherapy  

NASA Astrophysics Data System (ADS)

It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tnnermann, A.; Baumann, M.

2011-05-01

159

Particle acceleration at a reconnecting magnetic separator  

NASA Astrophysics Data System (ADS)

Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

2015-02-01

160

Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams  

NASA Astrophysics Data System (ADS)

Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

Hofmann, K. M.; Schell, S.; Wilkens, J. J.

2013-07-01

161

Accelerations of Finite Size Particles in Turbulence  

NASA Astrophysics Data System (ADS)

We report the use of a new high speed imaging system to record the trajectories of tracer particles in a turbulent water flow between counter-rotating disks, for which 300 < R_? < 1000. Particles with diameters as small as 25 microns can be tracked at frame rates up to 75 kHz with a spatial resolution of 512 pixels, allowing the Lagrangian acceleration to be measured over times short compared with the Kolmogorov time scale. The varience of the acceleration distribution has been measured for a variety of particle sizes. For a given particle density, we find that the acceleration varience is independent of particle size if the ratio of the particle size to the Kolmogorov distance scale is below a certain threshold. More information is available at http://milou.msc.cornell.edu/turbulence.html and http://milou.msc.cornell.edu/turbulence.html This work supported the National Science foundation under grant PHY-9722128.

La Porta, A.; Voth, Greg A.; Crawford, Alice M.; Bodenschatz, Eberhard; Alexander, Jim

1999-11-01

162

Acceleration control of Airy beams with optically induced photonic lattices  

NASA Astrophysics Data System (ADS)

We analyze how an optically induced photonic lattice affects and modifies the acceleration of Airy beams. Various conditions for the propagation and existence of Airy beams are considered in both linear and nonlinear regimes. We investigate how the strength of a medium's nonlinearity and the lattice intensity influence beam diffraction as well as reduction of beam acceleration. It is shown that the transverse acceleration of Airy beams, when propagating in a photonic lattice, can be reduced to the point of creating a beam similar to discrete solitons. Acceleration control of Airy beams near lattice boundaries is also investigated. We observe a novel type of Airy surface mode, localized in the lattice corner.

Piper, Aleksandra; Timotijevi?, Dejan V.; Jovi?, Dragana M.

2013-11-01

163

High-powered pulsed-ion-beam acceleration and transport  

SciTech Connect

The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

Humphries, S. Jr.; Lockner, T.R.

1981-11-01

164

Production of an Accelerated Oxygen-14 Beam  

SciTech Connect

BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was Carbon-11 and beams of intensity more than 108 ions/sec have been utilized for experiments. Development of Oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 seconds and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of Oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, Oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an Oxygen-14 beam have been performed.

Powell, James; O'Neil, James P.; Cerny, Joseph

2002-05-03

165

Particle acceleration in electron-ion jets  

E-print Network

Weibel instability created in collisionless shocks is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-ion jet fronts propagating into an ambient plasma without initial magnetic fields with a longer simulation system in order to investigate nonlinear stage of the Weibel instability and its acceleration mechanism. The current channels generated by the Weibel instability induce the radial electric fields. The z component of the Poynting vector (E x B) become positive in the large region along the jet propagation direction. This leads to the acceleration of jet electrons along the jet. In particular the E x B drift with the large scale current channel generated by the ion Weibel instability accelerate electrons effectively in both parallel and perpendicular directions.

K. -I. Nishikawa; P. Hardee; C. B. Hededal; G. Richardson; R. Preece; H. Sol; G. J. Fishman; C. Kouvelioutou; Y. Mizuno

2005-09-20

166

Visions for the future of particle accelerators  

NASA Astrophysics Data System (ADS)

The ambitions of accelerator based science, technology and applications far exceed the present accelerator possibilities. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results and visions for the future in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The main subject is however the vision for the future of particle accelerators and next generation light sources.

Romaniuk, Ryszard S.

2013-10-01

167

Twisted waveguides for particle accelerator applications  

E-print Network

A novel microwave device for accelerating charged particles based on twisted waveguide is presented. Twisted guides support slow-wave TM modes whose phase velocity could reach the speed of light c. The axial electric field ...

Wilson, Joshua L.

168

Apparatus for irradiation with charged particle beams  

SciTech Connect

An apparatus according to the present invention for irradiating a specimen with charged particle beams comprises a single charged particle generating source from which the charged particle beams formed of electrons and negative ions, respectively, can be simultaneously derived; a specimen holder on which the specimen is placed; and charged particle irradiation means which is interposed between the charged particle generating source and the specimen holder in order to focus the charged particle beams and to irradiate the surface of the specimen with the focused beams, and which includes at least one magnetic lens and at least one electrostatic lens that are individually disposed.

Tamura, H.; Ishitani, T.; Shimase, A.

1984-10-23

169

Solar particle acceleration and propagation  

Microsoft Academic Search

Experimental and theoretical results concerning the acceleration of solar radiation are reviewed. Different types of radiations are considered separately including neutrons, electrons, gamma rays, and He-rich events. (AIP)

R. P. Lin

1987-01-01

170

Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers  

DOEpatents

A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

Danby, G.T.; Jackson, J.W.

1990-03-19

171

Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers  

DOEpatents

A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

Danby, Gordon T. (Wading River, NY); Jackson, John W. (Shoreham, NY)

1991-01-01

172

Particle acceleration by multiple parallel shocks  

E-print Network

We present both numerical and semi-analytical results on test-particle acceleration in multiple parallel shocks. We apply a kinetic Monte Carlo code and an eigenfunction expansion method to calculate the distribution functions for electron populations accelerated in subsequent parallel shocks with speeds ranging from non- to fully-relativistic. We examine the levels of particle anisotropy at the shocks and discuss the implications for AGN and microquasar jets.

Joni Tammi; Paul Dempsey

2007-12-11

173

Applications of large-scale computation to particle accelerators  

SciTech Connect

The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

Herrmannsfeldt, W.B.

1991-05-01

174

Energy Amplification and Beam Bunching in a Pulse Line Ion Accelerator  

SciTech Connect

In a first beam dynamics validation experiment for a new Pulse Line Ion Acceleration (PLIA) concept, the predicted energy amplification and beam bunching were experimentally observed. Beam energy modulation of -80 keV to +150 keV was measured using a PLIA input voltage waveform of -21 kV to +12 kV. Ion pulses accelerated by 150 keV, and bunching by a factor of four were simultaneously achieved. The measured longitudinal phase space and current waveform of the accelerated beam are in good agreement with 3-D particle-in-cell simulations.

Roy, P K; Waldron, W L; Yu, S S; Coleman, J E; Henestroza, E; Grote, D P; Baca, D; Bieniosek, F M; Briggs, R J; Davidson, R C; Eylon, S; Friedman, A; Greenway, W G; Leitner, M; Logan, G B; Reginato, L L; Seidl, P A

2006-06-08

175

Two-beam detuned-cavity electron accelerator structure  

SciTech Connect

Progress has been made in the theory, development, cavity design and optimization, beam dynamics study, beam transport design, and hardware construction for studies of a detuned two-beam electron accelerator structure.

Jiang, Y.; Hirshfield, J. L. [Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States); Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States) and Omega-P, Inc., New Haven, CT 06510 (United States)

2012-12-21

176

Nonparaxial accelerating Bessel-like beams  

NASA Astrophysics Data System (ADS)

A class of nonparaxial accelerating optical waves is introduced. These are beams with a Bessel-like profile that are capable of shifting laterally along fairly arbitrary trajectories as the wave propagates in free space. The concept expands on our previous proposal of paraxial accelerating Bessel-like beams to include beams with subwavelength lobes and/or large trajectory angles. Such waves are produced when the phase at the input plane is engineered so that the interfering ray cones are made to focus along the prespecified path. When the angle of these cones is fixed, the beams possess a diffraction-free Bessel profile on planes that stay normal to their trajectory, which can be considered as a generalized definition of diffractionless propagation in the nonparaxial regime. The analytical procedure leading to these results is based on a ray-optics interpretation of Rayleigh-Sommerfeld diffraction and is presented in detail. The evolution of the proposed waves is demonstrated through a series of numerical examples and a variety of trajectories.

Chremmos, Ioannis D.; Efremidis, Nikolaos K.

2013-12-01

177

Particle acceleration in supernova remnants  

NASA Astrophysics Data System (ADS)

Supernova remnants (SNR) are the most likely source of galactic cosmic rays (CRs) up to the 'knee' in the spectrum at a few PeV. The theory of diffusive shock acceleration nicely supplies a power law energy distribution with approximately the desired spectral index and with suitably high efficiency. For a SNR blast wave expanding into a typical interstellar magnetic field the predicted maximum CR energy falls short of 1 PeV, but a non-resonant plasma instability allows the CRs themselves to amplify the magnetic field by orders of magnitude to a level capable of accelerating CRs to the knee.

Bell, A. R.

2009-12-01

178

Applications of particle accelerators in medicine.  

PubMed

There are nearly 20,000 particle accelerators in operation worldwide, about half of them employed for biomedical uses. This paper focuses on some recent advances in the two main medical domains where accelerators find their use, radionuclide production and radiation therapy. The paper first discusses the use of high-energy electron and proton accelerators for the potential, future production of (99)Mo, which is presently provided by fission reactors. Next, it reviews the rationale for the use of protons and carbon ions in cancer therapy, discussing the requirements imposed on accelerator technology and looking at some recent developments. PMID:21676897

Silari, Marco

2011-07-01

179

Particle acceleration by fluctuating electric fields  

NASA Astrophysics Data System (ADS)

Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the primary candidate mechanisms for releasing non-potential energy from magnetized plasmas. A collisionless magnetic reconnection scenario could provide both the energy release mechanism and the particle accelerator in flares. We studied particle acceleration consequences from fluctuating (in-time) electric fields superposed on an X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. Time evolution of thermal particle distributions are obtained by numerically integrating particle orbits. A range of frequencies of the electric field is used, representing a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and often have energy distributions of bimodal form. Protons are accelerated to gamma-ray producing energies and electrons to and above hard X-ray producing energies in timescales of less than 1 second. The acceleration mechanism could be applicable to all collisionless plasmas.

Petkaki, P.; MacKinnon, A. L.

2008-12-01

180

Understanding particle acceleration at supernova shocks  

NASA Astrophysics Data System (ADS)

One century after the pioneering discovery of cosmic rays by V. Hess, the present generation of X- and gamma-ray telescopes is finally unravelling the origin of such an extraterrestrial radiation, at least for what concerns particles with energies below 10^8 GeV, which are thought to be accelerated at the forward shocks of Galactic supernova remnants (SNRs). I discuss the present theoretical understanding of efficient particle acceleration at non-relativistic, collisionless shocks, addressing with both analytical and numerical (particle-in-cell) techniques the crucial interplay between accelerated ions and magnetic turbulence. In SNRs, in fact, magnetic fields turn out to be a factor of 10-100 larger than in the interstellar medium, because of plasma instabilities triggered by energetic particles. In particular, I show 2D and 3D hybrid (fluid electrons - kinetic ions) simulations of non-relativistic collisionless shocks, pointing out the efficiency of Fermi acceleration and the role of the cosmic-ray-induced filamentation instability in amplifying the magnetic field up to the levels inferred at the blast waves of young Galactic remnants. Finally, I outline the observational counterparts of such a theory of particle acceleration at strong shocks in terms of SNR multi-wavelength emission, with a special attention to Tycho's SNR, arguably the best laboratory where to test hadron acceleration.

Caprioli, Damiano

2013-04-01

181

Nonlinear Particle Acceleration in Relativistic Shocks  

E-print Network

Monte Carlo techniques are used to model nonlinear particle acceleration in parallel collisionless shocks of various speeds, including mildly relativistic ones. When the acceleration is efficient, the backreaction of accelerated particles modifies the shock structure and causes the compression ratio, r, to increase above test-particle values. Modified shocks with Lorentz factors less than about 3 can have compression ratios considerably greater than 3 and the momentum distribution of energetic particles no longer follows a power law relation. These results may be important for the interpretation of gamma-ray bursts if mildly relativistic internal and/or afterglow shocks play an important role accelerating particles that produce the observed radiation. For shock Lorentz factors greater than about 10, r approaches 3 and the so-called `universal' test-particle result of N(E) proportional to E^{-2.3} is obtained for sufficiently energetic particles. In all cases, the absolute normalization of the particle distribution follows directly from our model assumptions and is explicitly determined.

Donald C. Ellison; Glen P. Double

2002-04-22

182

Studies of nanotube channeling for efficient beam scraping at accelerators  

NASA Astrophysics Data System (ADS)

While particle beam steering (and in particular, "scraping") in accelerators by bent channeling crystals is an established technique extensively tested at IHEP Protvino and other major high-energy labs, an interesting question is how one could improve channeling capabilities by applying modern nanotechnology. Theoretical research of nanotube channeling was in progress over recent years. In this work, we assess potential benefits from nanotube channeling for real accelerator systems. We report simulation studies of channeling in nanostructured material (carbon SWNT and MWNT) tested for possible serving as a primary scraper for the collimation systems of hadron colliders. The advantages of nanostructured material as a potential choice for a primary scraper in a high-energy accelerator such as LHC or the Tevatron are discussed in comparison to crystal lattices and amorphous material. We evaluate physical processes relevant to this application and reveal nanotechnology requirements.

Biryukov, V. M.; Bellucci, S.

2005-04-01

183

Test particle acceleration in torsional fan reconnection  

NASA Astrophysics Data System (ADS)

Magnetic reconnection is understood to be a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. Torsional fan reconnection is one of the proposed mechanisms for steady-state three-dimensional (3D) magnetic reconnection. By using the magnetic and electric fields for `torsional fan reconnection', the features of test particle acceleration with input parameters for the solar corona are investigated numerically. We show that torsional fan reconnection is potentially an efficient particle accelerator and a proton can gain up to tens of MeV of kinetic energy within only a few milliseconds. Although the final kinetic energy of the accelerated particle depends on the injection position but there exists only one scenario for the particle's trajectory with different initial positions in which the particle is accelerated on the fan plane. Moreover, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory. These results are compared with those of torsional spine reconnection.

Hosseinpour, M.

2014-12-01

184

Particle acceleration in astrophysical shear flows  

E-print Network

We consider the acceleration of particles due to a velocity shear in relativistic astrophysical flows. The basic physical picture and the formation of power law momentum spectra is discussed for a non-relativistic velocity field using a microscopic approach. We identify possible sites for shear acceleration in relativistic astrophysical jets and analyze their associated acceleration timescales. It is shown in particular that for a mean scattering time $\\tau$ scaling with the gyro-radius, the acceleration timescale for gradual shear scales in the same manner as the synchrotron cooling timescale, so that losses may no longer be able to stop the acceleration once it has started to work efficiently. Finally, the possible role of shear acceleration is discussed with reference to the relativistic jet in the quasar 3C~273.

Frank M. Rieger; Peter Duffy

2005-01-10

185

Transport of elliptic intense charged -particle beams  

E-print Network

The transport theory of high-intensity elliptic charged-particle beams is presented. In particular, the halo formation and beam loss problem associated with the high space charge and small-aperture structure is addressed, ...

Zhou, J. (Jing), 1978-

2006-01-01

186

Studies of Particle Acceleration by an Active Microwave Medium  

SciTech Connect

The PASER is potentially a very attractive method for particle acceleration, in which energy from an active medium is transferred to a charged particle beam. The effect is similar to the action of a maser or laser with the stimulated emission of radiation being produced by the virtual photons in the electromagnetic field of the beam. We have been investigating the possibility of developing a demonstration PASER operating at X-band. The less restrictive beam transport and device dimensional tolerances required for working at X-band rather than optical frequencies as well as the widespread application of X-band hardware in accelerator technology all contribute to the attractiveness of performing a PASER demonstration experiment in this frequency range. Key to this approach is the availability of a new class of active materials that exhibit photoinduced electron spin polarization. We will report on the status of active material development and measurements, numerical simulations, and progress towards a planned microwave PASER acceleration experiment at the Argonne Wakefield Accelerator facility.

Schoessow, Paul; Kanareykin, Alexei [Euclid Techlabs LLC, Solon, OH 44139 (United States); Schaechter, Levi [Technion - Israel Institute of Technology, Haifa 32000 (Israel); Bogachev, Yuriy [St. Petersburg Electrical Engineering University, St. Petersburg 197376 (Russian Federation); Tyukhtin, Andrey; Yevlampieva, Natalia [St. Petersburg University, St. Petersburg, 198302 (Russian Federation); Bagryanskaya, Elena [International Tomography Center SB RAS, Novosibirsk, 630090 (Russian Federation)

2006-11-27

187

Studies of Particle Acceleration by an Active Microwave Medium  

NASA Astrophysics Data System (ADS)

The PASER is potentially a very attractive method for particle acceleration, in which energy from an active medium is transferred to a charged particle beam. The effect is similar to the action of a maser or laser with the stimulated emission of radiation being produced by the virtual photons in the electromagnetic field of the beam. We have been investigating the possibility of developing a demonstration PASER operating at X-band. The less restrictive beam transport and device dimensional tolerances required for working at X-band rather than optical frequencies as well as the widespread application of X-band hardware in accelerator technology all contribute to the attractiveness of performing a PASER demonstration experiment in this frequency range. Key to this approach is the availability of a new class of active materials that exhibit photoinduced electron spin polarization. We will report on the status of active material development and measurements, numerical simulations, and progress towards a planned microwave PASER acceleration experiment at the Argonne Wakefield Accelerator facility.

Schoessow, Paul; Kanareykin, Alexei; Schchter, Levi; Bogachev, Yuriy; Tyukhtin, Andrey; Bagryanskaya, Elena; Yevlampieva, Natalia

2006-11-01

188

Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators  

SciTech Connect

The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC. Simulations studies and measurements were conducted that clearly show the correlation between RF noise and longitudinal bunch emittance, identify the major LLRF noise contributions, and determine the RF component dominating this effect. With these results, LHC upgrades and alternative algorithms are evaluated to reduce longitudinal emittance growth during operations. The applications of this work are described with regard to future machines and analysis of new technical implementations, as well as to possible future work which would continue the directions of this dissertation.

Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC

2011-03-01

189

Plasma Astrophysics in the Laboratory with Accelerator Beams  

NASA Astrophysics Data System (ADS)

An ultra-relativistic electron/positron or ``fireball'' beam interacting with a laboratory plasma is subject to the current filamentation instability (CFI). In the near future, ultra-short (<100fs), ultra-relativistic (25GeV) electron and positron bunches will become available at the SLAC FACET facility. These bunches are accelerated one half period apart and overlapped in space and time near the final focal point. With an equal number of particles, these two bunches form a neutral, field- and charge-free beam that we call a relativistic fireball beam. The interaction of this beam with laboratory plasma is rather different from that of either the electron or positron bunch alone. No large wakefields are generated. Instead the beam is subject to the CFI, which results in transverse filamentation, accompanied by strong plasma density modulation, generation of large magnetic fields, and generation of radiation that can be detected. This situation is similar to that of space relativistic plasmas, e.g. from supernovae, interacting with the interstellar medium. The CFI generates the magnetic field, and the charged particles emit radiation as in gamma ray bursts afterglow. Detecting the CFI and measuring it characteristics will validate astrophysical models. CFI may also play an important role in the propagation of hot electrons in plasmas for example in the fast igniter concept of ICF. We describe the CFI and the experiment to detect it.

Muggli, P.; Martins, S.; Silva, L.

2010-11-01

190

Space experiments with particle accelerators (SEPAC): Description of instrumentation  

NASA Technical Reports Server (NTRS)

SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

1987-01-01

191

Solar Particle Acceleration Radiation and Kinetics (SPARK). A mission to understand the nature of particle acceleration  

NASA Astrophysics Data System (ADS)

Energetic particles are critical components of plasma populations found throughout the universe. In many cases particles are accelerated to relativistic energies and represent a substantial fraction of the total energy of the system, thus requiring extremely efficient acceleration processes. The production of accelerated particles also appears coupled to magnetic field evolution in astrophysical plasmas through the turbulent magnetic fields produced by diffusive shock acceleration. Particle acceleration is thus a key component in helping to understand the origin and evolution of magnetic structures in, e.g. galaxies. The proximity of the Sun and the range of high-resolution diagnostics available within the solar atmosphere offers unique opportunities to study the processes involved in particle acceleration through the use of a combination of remote sensing observations of the radiative signatures of accelerated particles, and of their plasma and magnetic environment. The SPARK concept targets the broad range of energy, spatial and temporal scales over which particle acceleration occurs in the solar atmosphere, in order to determine how and where energetic particles are accelerated. SPARK combines highly complementary imaging and spectroscopic observations of radiation from energetic electrons, protons and ions set in their plasma and magnetic context. The payload comprises focusing-optics X-ray imaging covering the range from 1 to 60 keV; indirect HXR imaging and spectroscopy from 5 to 200 keV, ?-ray spectroscopic imaging with high-resolution LaBr3 scintillators, and photometry and source localisation at far-infrared wavelengths. The plasma environment of the regions of acceleration and interaction will be probed using soft X-ray imaging of the corona and vector magnetography of the photosphere and chromosphere. SPARK is designed for solar research. However, in addition it will be able to provide exciting new insights into the origin of particle acceleration in other regimes, including terrestrial gamma-ray flashes (TGF), the origin of ?-ray bursts, and the possible existence of axions.

Matthews, Sarah A.; Williams, David R.; Klein, Karl-Ludwig; Kontar, Eduard P.; Smith, David M.; Lagg, Andreas; Krucker, Sam; Hurford, Gordon J.; Vilmer, Nicole; MacKinnon, Alexander L.; Zharkova, Valentina V.; Fletcher, Lyndsay; Hannah, Iain G.; Browning, Philippa K.; Innes, Davina E.; Trottet, Gerard; Foullon, Clare; Nakariakov, Valery M.; Green, Lucie M.; Lamoureux, Herve; Forsyth, Colin; Walton, David M.; Mathioudakis, Mihalis; Gandorfer, Achim; Martinez-Pillet, Valentin; Limousin, Olivier; Verwichte, Erwin; Dalla, Silvia; Mann, Gottfried; Aurass, Henri; Neukirch, Thomas

2012-04-01

192

Particle Acceleration at High-$?$ Shock Waves  

E-print Network

First-order Fermi acceleration processes at ultrarelativistic shocks are studied with Monte Carlo simulations. The accelerated particle spectra are obtained by integrating the exact particle trajectories in a turbulent magnetic field near the shock, with a few ``realistic'' features of the field structure included. We show that the main acceleration process at oblique shocks is the particle compression at the shock. Formation of energetic spectral tails is possible in a limited energy range for highly perturbed magnetic fields. Cut-offs in the spectra occur at low energies in the resonance range considered. We relate this feature to the structure of the magnetic field downstream of the shock, where field compression produces effectively 2D turbulence in which cross-field diffusion is very small. Because of the field compression downstream, the acceleration process is inefficient also in parallel high-$\\gamma$ shocks for larger turbulence amplitudes, and features observed in oblique shocks are recovered. For small-amplitude perturbations, particle spectra are formed in a wide energy range and modifications of the acceleration process due to the existence of long-wave perturbations are observed. The critical turbulence amplitude for efficient acceleration at parallel shocks decreases with shock Lorentz factor. We also study the influence of strong short-wave perturbations downstream of the shock on the particle acceleration processes. The spectral indices obtained do not converge to the ``universal'' value . Our results indicate inefficiency of the first-order Fermi process to generate high-energy cosmic rays at ultrarelativistic shocks with the considered perturbed magnetic field structures.

Jacek Niemiec

2005-09-22

193

Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams  

PubMed Central

Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. ( 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

2012-01-01

194

Accelerators for charged particle therapy: PAMELA and related issues  

NASA Astrophysics Data System (ADS)

Cancer is a dreadful disease that will affect one in three people at some point in their life; radiotherapy is used in more than half of all cancer treatment, and contributes about 40% to the successful treatment of cancer. Charged Particle Therapy uses protons and other light ions to deliver the lethal dose to the tumor while being relatively sparing of healthy tissue and, because of the finite range of the particles, is able to avoid giving any dose to vital organs. While there are adequate technologies currently available to deliver the required energies and fluxes, the two main technologies (cyclotrons and synchrotrons) have limitations. PAMELA (the Particle Accelerator for MEdicaL Applications) uses the newly-developed non-scaling Fixed Field Alternating Gradient accelerator concepts to deliver therapeutically relevant beams. The status of the development of the PAMELA conceptual design is discussed.

Peach, Ken

2014-05-01

195

A plasma wakefield acceleration experiment using CLARA beam  

NASA Astrophysics Data System (ADS)

We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed.

Xia, G.; Angal-Kalinin, D.; Clarke, J.; Smith, J.; Cormier-Michel, E.; Jones, J.; Williams, P. H.; Mckenzie, J. W.; Militsyn, B. L.; Hanahoe, K.; Mete, O.; Aimidula, A.; Welsch, C. P.

2014-03-01

196

Energetic particle acceleration in shear layers  

E-print Network

A plasma velocity shear layer and/or a tangential flow discontinuity provide conditions allowing for energetic particle acceleration. We review such acceleration processes acting both in non-relativistic and in relativistic flows. In heliospheric conditions shear layers can provide particles with energies compatible with the observed values (from several keV up to MeV), while in relativistic extragalactic jets proton energies even in excess of 10^{19} eV can be obtained. Application of the discussed theory to particular astrophysical objects is severely limited by inadequate knowledge of local physical conditions.

M. Ostrowski

1999-11-05

197

Cancer therapy with particle accelerators  

NASA Astrophysics Data System (ADS)

This review paper is devoted to conventional radiotherapy and to hadrontherapy. In this therapeutical modality, proposed by R. R. Wilson in 1946, the physical selectivity of proton and light ion beams is used to irradiate tissues very close to organs at risk, which cannot be irradiated (the brain and the spinal cord for instance). Also fast neutrons are employed, but they are not suitable for a truly conformal irradiation. Carbon ions have the added advantage, with respect to protons, of the high density of ionization at the end of the range in matter. This property is very valuable for the control of tumours which are radioresistant to both X-rays and protons. After clarifying the general principles, a review is presented of the world hadrontherapy centres which are running or are in the design and construction stage.

Amaldi, Ugo

1999-07-01

198

Quiet time particle acceleration in interplanetary space  

E-print Network

We propose a model for the acceleration of charged particles in interplanetary space that appear during quiet time periods, that is, not associated with solar activity events like intense flares or coronal mass ejections. The interaction of charged particles with modeled turbulent electromagnetic fields, which mimic the fields observed in the interplanetary medium, is studied. The turbulence is modeled by means of a dynamical system,the Gledzer-Ohkitani-Yamada (GOY) shell model, which describes the gross features of the Navier-Stokes equations. The GOY model is used to build a 3-D velocity field, which in turn is used to numerically solve the ideal magneto-hydrodynamic (MHD) induction equation, while the electric field is calculated from the ideal Ohm's law. Particle acceleration in such an environment is investigated by test particle simulations, and the resulting energy distributions are discussed and compared to observations of suprathermal electrons and ions during quiet periods in interplanetary space.

F. Lepreti; H. Isliker; K. Petraki; L. Vlahos

2004-12-09

199

Aerodynamic beam generator for large particles  

DOEpatents

A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

Brockmann, John E. (Albuquerque, NM); Torczynski, John R. (Albuquerque, NM); Dykhuizen, Ronald C. (Albuquerque, NM); Neiser, Richard A. (Albuquerque, NM); Smith, Mark F. (Albuquerque, NM)

2002-01-01

200

Levy-Student distributions for halos in accelerator beams  

SciTech Connect

We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Matematica dell'Universita di Bari and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy); Dipartimento di Fisica dell'Universita di Salerno, INFM Unita di Salerno, and INFN Sezione di Napoli Gruppo collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)

2005-12-15

201

Lvy-Student distributions for halos in accelerator beams.  

PubMed

We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrdinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lvy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lvy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lvy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams. PMID:16486070

Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

2005-12-01

202

Math Bite: Constructing Efficient Particle Accelerators is as Easy as 1+1=2 (Thanks to Vladimir Visnjic)  

E-print Network

Math Bite: Constructing Efficient Particle Accelerators is as Easy as 1+1=2 (Thanks's ingenious constr* *uction of two local waves on the particle beam in an accelerator that promises to save to the accelerator) of which we only need to know that * *it is nonnegative and has zeros. The number of sources

Zeilberger, Doron

203

Math Bite: Constructing Ecient Particle Accelerators is as Easy as 1+1=2 (Thanks to Vladimir Visnjic)  

E-print Network

Math Bite: Constructing E?cient Particle Accelerators is as Easy as 1+1=2 (Thanks to Vladimir of two local waves on the particle beam in an accelerator that promises to save the American taxpayer to the accelerator) of which we only need to know that it is nonnegative and has zeros. The number of sources

Zeilberger, Doron

204

Test particle acceleration by rotating jet magnetospheres  

E-print Network

Centrifugal acceleration of charged test particles at the base of a rotating jet magnetosphere is considered. Based on an analysis of forces we derive the equation for the radial accelerated motion and present an analytical solution. It is shown that for particles moving outwards along rotating magnetic field lines, the energy gain is in particular limited by the breakdown of the bead-on-the-wire approximation which occurs in the vicinity of the light cylinder $r_{L}$. The corresponding upper limit for the maximum Lorentz factor $\\gamma_{max}$ for electrons scales $\\propto B^{2/3} r_{L}^{2/3}$, with $B$ the magnetic field strength at $r_{L}$, and is at most of the order of a $10^2-10^3$ for the conditions regarded to be typical for BL Lac objects. Such values suggest that this mechanism may provide pre-accelerated seed particles which are required for efficient Fermi-type particle acceleration at larger scales in radio jets.

F. M. Rieger; K. Mannheim

2000-11-01

205

Seventy Five Years of Particle Accelerators  

SciTech Connect

Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

Andy Sessler

2008-04-04

206

Seventy Five Years of Particle Accelerators  

ScienceCinema

Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

Andy Sessler

2013-06-11

207

Evidence for particle acceleration during magnetospheric substorms  

NASA Technical Reports Server (NTRS)

Magnetospheric substorms represent the episodic dissipation of energy stored in the geomagnetic tail that was previously extracted from the solar wind. This energy release produces activity throughout the entire magnetosphere-ionosphere system, and it results in a wide variety of phenomena such as auroral intensifications and the generation of new current systems. All of these phenomena involve the acceleration of particles, sometimes up to several MeV. We present a brief overview of substorm phenomenology. We then review some of the evidence for particle acceleration in Earth's magnetosphere during substorms. Such in-situ observations in this most accessible of all cosmic plasma domains may hold important clues to understanding acceleration processes in more distant astrophysical systems.

Lopez, Ramon E.; Baker, Daniel N.

1994-01-01

208

Charged-particle beam: a safety mandate  

SciTech Connect

The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk.

Young, K.C.

1983-07-15

209

Educating the next generation in the science and technology of plasmas, beams and accelerators  

Microsoft Academic Search

Accelerators are essential tools for discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can

Wiliam Barletta

2007-01-01

210

Particles accelerate the detachment of viscous liquids  

E-print Network

During detachment of a viscous fluid extruded from a nozzle a filament linking the droplet to the latter is formed. Under the effect of surface tension the filament thins until pinch off and final detachment of the droplet. In this paper we study the effect of the presence of individual particles trapped in the filament on the detachment dynamics using granular suspensions of small volume fractions ({\\phi} particle strongly modifies the detachment dynamics. The particle perturbs the thinning of the thread and a large droplet of fluid around the particle is formed. This perturbation leads to an acceleration of the detachment of the droplet compared to the detachment ob- served for a pure fluid. We quantify this acceleration for single particles of different sizes and link it to similar ob- servations for suspensions of small volume fractions. Our study also gives more insight into particulate effects on de- tachment of more dense suspensions and allows to explain the accelerated detachment close to final pinch off observed previously (Bonnoit et al 2012)

Merlijn S. van Deen; Thibault Bertrand; Nhung Vu; David Qur; Eric Clment; Anke Lindner

2013-01-31

211

Particle acceleration at perpendicular shock waves: Model and observations  

E-print Network

Particle acceleration at perpendicular shock waves: Model and observations G. P. Zank,1 Gang Li,1 V the transport of energetic particles, we construct a model for diffusive particle acceleration at highly excitation at quasiparallel shocks in evaluating the particle acceleration timescale ensures

Sanahuja, Blai

212

Laser ion acceleration toward future ion beam cancer therapy - Numerical simulation study -  

PubMed Central

Background: Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. Subjects and methods: An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. Results: When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near-critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. Conclusions: The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. PMID:24155555

Kawata, Shigeo; Izumiyama, Takeshi; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Min

2013-01-01

213

Linear particle accelerator with seal structure between electrodes and insulators  

DOEpatents

An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

Broadhurst, John H. (Golden Valley, MN)

1989-01-01

214

Longitudinal control of intense charged particle beams  

NASA Astrophysics Data System (ADS)

As the accelerator frontier shifts from high energy to high intensity, accelerator facilities are demanding beams with higher quality. Applications such as Free Electron Lasers and Inertial Fusion Energy production require the minimization of both transverse emittance and longitudinal energy spread throughout the accelerator. Fluctuations in beam energy or density at the low-energy side of the accelerator, where space-charge forces dominate, may lead to larger modulations downstream and the eventual degradation of the overall beam quality. Thus it is important to understand the phenomenon that causes these modulations in space-charge dominated beams and be able to control them. This dissertation presents an experimental study on the longitudinal control of a space-charge dominated beam in the University of Maryland Electron Ring (UMER). UMER is a scaled model of a high-intensity beam system, which uses low-energy high-current electron beams to study the physics of space-charge. Using this facility, I have successfully applied longitudinal focusing to the beam edges, significantly lengthening the propagation distance of the beam to 1000 turns (>11.52 km). This is a factor of 10 greater than the original design conceived for the accelerator. At this injected current, the space-charge intensity is several times larger than the standard limit for storage rings, an encouraging result that raises the possibility of operating these machines with far more space-charge than previously assumed possible. I have also explored the transverse/longitudinal correlations that result when a beam is left to expand longitudinally under its own space-charge forces. In this situation, the beam ends develop a large correlated energy spread. Through indirect measurements, I have inferred the correlated energy profile along the bunch length. When the bunch is contained using longitudinal focusing, I have shown that errors in the applied focusing fields induce space-charge waves at the bunch edges that propagate into the middle region of the beam. In some cases, these waves sustain multiple reflections before damping away. I conclude that space-charge in an intense beam without longitudinal focusing can cause the bunch to develop a large correlated energy spread, increasing the risk that the beam is lost to the pipe walls as it requires a larger aperture. When longitudinal focusing is applied however, we are able to transport the beam over a much longer path length and reduce the correlated energy spread.

Beaudoin, Brian Louis

2011-12-01

215

Highly localized accelerating beams using nano-scale metallic gratings  

NASA Astrophysics Data System (ADS)

Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.

Naserpour, Mahin; Zapata-Rodrguez, Carlos J.; Zakery, Abdolnaser; Miret, Juan J.

2015-01-01

216

Self force on an accelerated particle  

E-print Network

We calculate the singular field of an accelerated point particle (scalar charge, electric charge or small gravitating mass) moving on an accelerated (non-geodesic) trajectory in a generic background spacetime. Using a mode-sum regularization scheme, we obtain explicit expressions for the self-force regularization parameters. In the electromagnetic and gravitational case, we use a Lorenz gauge. This work extends the work of Barack and Ori [1] who demonstrated that the regularization parameters for a point particle in geodesic motion in a Schwarzschild spacetime can be described solely by the leading and subleading terms in the mode-sum (commonly known as the $A$ and $B$ terms) and that all terms of higher order in $\\ell$ vanish upon summation (later they showed the same behavior for geodesic motion in Kerr [2], [3]). We demonstrate that these properties are universal to point particles moving through any smooth spacetime along arbitrary (accelerated) trajectories. Our renormalization scheme is based on, but not identical to, the Quinn-Wald axioms. As we develop our approach, we review and extend work showing that that different definitions of the singular field used in the literature are equivalent to our approach. Because our approach does not assume geodesic motion of the perturbing particle, we are able use our mode-sum formalism to explicitly recover a well-known result: The self-force on static scalar charges near a Schwarzschild black hole vanishes.

Thomas M. Linz; John L. Friedman; Alan G. Wiseman

2014-04-28

217

Self-force on an accelerated particle  

NASA Astrophysics Data System (ADS)

We calculate the singular field of an accelerated point particle (scalar charge, electric charge or small gravitating mass) moving on an accelerated (nongeodesic) trajectory in a generic background spacetime. Using a mode-sum regularization scheme, we obtain explicit expressions for the self-force regularization parameters. We use a Lorentz gauge for the electromangetic and gravitational cases. This work extends the work of Barack and Ori [1] who demonstrated that the regularization parameters for a point particle in geodesic motion in a Schwarzschild spacetime can be described solely by the leading and subleading terms in the mode-sum (commonly known as the A and B terms) and that all terms of higher order in ? vanish upon summation (later they showed the same behavior for geodesic motion in Kerr [2], [3]). We demonstrate that these properties are universal to point particles moving through any smooth spacetime along arbitrary (accelerated) trajectories. Our renormalization scheme is based on, but not identical to, the Quinn-Wald axioms. As we develop our approach, we review and extend work showing that that different definitions of the singular field used in the literature are equivalent to our approach. Because our approach does not assume geodesic motion of the perturbing particle, we are able use our mode-sum formalism to explicitly recover a well-known result: The self-force on static scalar charges near a Schwarzschild black hole vanishes.

Linz, Thomas M.; Friedman, John L.; Wiseman, Alan G.

2014-07-01

218

TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS  

SciTech Connect

High energy physics, perhaps more than any other branch of science, is driven by technology. It is not the development of theory, or consideration of what measurements to make, which are the driving elements in our science. Rather it is the development of new technology which is the pacing item. Thus it is the development of new techniques, new computers, and new materials which allows one to develop new detectors and new particle-handling devices. It is the latter, the accelerators, which are at the heart of the science. Without particle accelerators there would be, essentially, no high energy physics. In fact. the advances in high energy physics can be directly tied to the advances in particle accelerators. Looking terribly briefly, and restricting one's self to recent history, the Bevatron made possible the discovery of the anti-proton and many of the resonances, on the AGS was found the {mu}-neutrino, the J-particle and time reversal non-invariance, on Spear was found the {psi}-particle, and, within the last year the Z{sub 0} and W{sup {+-}} were seen on the CERN SPS p-{bar p} collider. Of course one could, and should, go on in much more detail with this survey, but I think there is no need. It is clear that as better acceleration techniques were developed more and more powerful machines were built which, as a result, allowed high energy physics to advance. What are these techniques? They are very sophisticated and ever-developing. The science is very extensive and many individuals devote their whole lives to accelerator physics. As high energy experimental physicists your professional lives will be dominated by the performance of 'the machine'; i.e. the accelerator. Primarily you will be frustrated by the fact that it doesn't perform better. Why not? In these lectures, six in all, you should receive some appreciation of accelerator physics. We cannot, nor do we attempt, to make you into accelerator physicists, but we do hope to give you some insight into the machines with which you will be involved in the years to come. Perhaps, we can even turn your frustration with the inadequacy of these machines into marvel at the performance of the accelerators. At the least, we hope to convince you that the accelerators are central, not peripheral, to our science and that the physics of such machines is both fascinating and sophisticated. The plan is the following: First I will give two lectures on basic accelerator physics; then you will hear two lectures on the state of the art, present limitations, the specific parameters of LEP, HERA, TEV2 and SLC, and some extrapolation to the next generation of machines such as the Large Hadron Collider (LHC), Superconducting Super Collider (SSC), and Large Linear Colliders; finally, I will give two lectures on new acceleration methods.

Sessler, A.M.

1984-07-01

219

Cosmic Particle Acceleration - Electrons VS. Nuclei  

NASA Astrophysics Data System (ADS)

Although cosmic radiation inlcudes accelerated nuclei from H through Fe in certain abundances, the observed high energy electron component is much less intense as a result of energy loss processes in our galaxy. The situation appears to be reversed when we observe the gamma-radiation from some of the well-known gamma-ray sources. Since electrons, being lighter particles, radiate more efficiently than nuclei of the same energy, we expect to see the radation from electrons to be dominant at the sources of cosmic ray acceleration. We have selected galactic pulsars and their plerions for a case study, and we will also review the role which ions play in the acceleration process.

de Jager, O. C.

2001-09-01

220

uge particle accelerators have been at the vanguard of research in particle  

E-print Network

H uge particle accelerators have been at the vanguard of research in particle physics for more than counterparts, positrons, can then `surf' the electric field of a wave's wake. Particles have been accelerated accelerator, charged particles such as electrons, protons or their antiparticles are accelerated by an alterna

Geddes, Cameron Guy Robinson

221

Particle Acceleration at Multiple Internal Relativistic Shocks  

E-print Network

Relativistic shocks provide an efficient method for high-energy particle acceleration in many astrophysical sources. Multiple shock systems are even more effective and of importance, for example, in the internal shock model of gamma-ray bursts. We investigate the reacceleration of pre-existing energetic particles at such relativistic internal shocks by the first order Fermi process of pitch angle scattering. We use a well established eigenfunction method to calculate the resulting spectra for infinitely thin shocks. Implications for GRBs and relativistic jets are discussed.

Paul Dempsey; Peter Duffy

2007-04-03

222

Neutral particle beam sensing and steering  

DOEpatents

The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

Maier, II, William B. (Los Alamos, NM); Cobb, Donald D. (Los Alamos, NM); Robiscoe, Richard T. (Los Alamos, NM)

1991-01-01

223

Stochastic Particle Acceleration in Impulsive Solar Flares  

NASA Technical Reports Server (NTRS)

The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the protons become superAlfvenic (above about 1 MeV/nucleon), they too can suffer transit-time acceleration by the fast mode waves and will receive an extra acceleration "kick." The basic overall objective of this 1 year effort was to construct a spatially-dependent version of this acceleration model and this has been realized.

Miller, James A.

2001-01-01

224

Development of a Compact Rotating-Wave Electron Beam Accelerator  

SciTech Connect

We present the successful prototype development results of a novel compact rotating-wave electron beam accelerator (RWA). The RWA uses a single cylindrical cavity holding a transverse-magnetic resonant mode in combination with an axial static magnetic field to accelerate electrons to higher energies. With approximately 80 kilowatts of microwave power fed into a C-band cavity, we have been able to successfully accelerate a 3 keV electron beam to {approx}760 keV. The compact RWA accelerator could be the basis for a new class of compact and affordable 1-10 MeV microwave accelerators for military, medical and industrial applications.

Velazco, Jose E.; Ceperley, Peter H. [Microwave Technologies Incorporated, Fairfax, Virginia 22030 (United States); Departments of Physics and Electrical Engineering, George Mason University, Fairfax, Virginia 22030 (United States)

2003-08-26

225

ONE GEV BEAM ACCELERATION IN A ONE METER LONG  

E-print Network

ONE GEV BEAM ACCELERATION IN A ONE METER LONG PLASMA CELL A Proposal to the Stanford Linear. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter

226

Channeled particle acceleration by plasma waves in metals  

SciTech Connect

A solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal is presented. Acceleration gradients of order 100 GV/cm are theoretically possible. Particle dechanneling due to electron multiple scattering can be eliminated with a sufficiently high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed.

Chen, P.; Noble, R.J.

1987-01-01

227

Particle acceleration during substorm growth and onset  

Microsoft Academic Search

The authors present ISEE-1 observations of ion and electron energization made at 11 R{sub E} during a substorm event occurring on 2 April 1978. An analysis of the dominant cross-tail current systems in this event has allowed them to uniquely associate particle energization processes with the development and\\/or disruption of the cross-tail currents. They find that significant ion acceleration occurs

D. J. Williams; D. G. Mitchell; C. Y. Huang; L. A. Frank; C.T. Russell

1990-01-01

228

Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator  

NASA Astrophysics Data System (ADS)

Strategies for mitigating ionization-induced beam head erosion in an electron-beam-driven plasma wakefield accelerator (PWFA) are explored when the plasma and the wake are both formed by the transverse electric field of the beam itself. Beam head erosion can occur in a preformed plasma because of a lack of focusing force from the wake at the rising edge (head) of the beam due to the finite inertia of the electrons. When the plasma is produced by field ionization from the space charge field of the beam, the head erosion is significantly exacerbated due to the gradual recession (in the beam frame) of the 100% ionization contour. Beam particles in front of the ionization front cannot be focused (guided) causing them to expand as in vacuum. When they expand, the location of the ionization front recedes such that even more beam particles are completely unguided. Eventually this process terminates the wake formation prematurely, i.e., well before the beam is depleted of its energy. Ionization-induced head erosion can be mitigated by controlling the beam parameters (emittance, charge, and energy) and/or the plasma conditions. In this paper we explore how the latter can be optimized so as to extend the beam propagation distance and thereby increase the energy gain. In particular we show that, by using a combination of the alkali atoms of the lowest practical ionization potential (Cs) for plasma formation and a precursor laser pulse to generate a narrow plasma filament in front of the beam, the head erosion rate can be dramatically reduced. Simulation results show that in the upcoming two-bunch PWFA experiments on the FACET facility at SLAC national accelerator laboratory the energy gain of the trailing beam can be up to 10 times larger for the given parameters when employing these techniques. Comparison of the effect of beam head erosion in preformed and ionization produced plasmas is also presented.

An, W.; Zhou, M.; Vafaei-Najafabadi, N.; Marsh, K. A.; Clayton, C. E.; Joshi, C.; Mori, W. B.; Lu, W.; Adli, E.; Corde, S.; Litos, M.; Li, S.; Gessner, S.; Frederico, J.; Hogan, M. J.; Walz, D.; England, J.; Delahaye, J. P.; Muggli, P.

2013-10-01

229

Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity  

NASA Astrophysics Data System (ADS)

This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

2013-11-01

230

Low noise particle in cell simulations of laser plasma accelerator 10 GeV stages  

NASA Astrophysics Data System (ADS)

Because of their ultra-high accelerating gradient, laser plasma based accelerators (LPA) are contemplated for the next generation of high-energy colliders and light sources. The upcoming BELLA project will explore acceleration of electron bunches to 10 GeV in a 1 meter long plasma, where a wakefield is driven by a PW-class laser. Particle-in-cell (PIC) simulations are used to design the upcoming experiments. As criteria on energy spread and beam emittance become more stringent, PIC simulations become more challenging as high frequency noise artificially increases those quantities. We show that calculating the beam self-fields using a static Poisson solve in the beam frame dramatically reduces particle noise, allowing for more accurate simulation of the beam evolution. Here, we will focus particularly on beam emittance evolution, where boosted frame simulations are used to model the full scale stages.

Cormier-Michel, Estelle; Bruhwiler, David L.; Hallman, Eric J.; Cowan, Benjamin M.; Cary, John R.; Geddes, Cameron G. R.; Vay, Jean-Luc; Schroeder, Carl B.; Esarey, Eric; Leemans, Wim P.

2012-10-01

231

The Solar Flare: A Strongly Turbulent Particle Accelerator  

E-print Network

Chapter 5 The Solar Flare: A Strongly Turbulent Particle Accelerator L. Vlahos, S. Krucker, and P) and particle acceleration during such an event are rarely discussed together in the same article. Many the topic of particle acceleration is often presented as an addi- tional complication to be addressed

California at Berkeley, University of

232

Particle acceleration in solar flares: observations versus numerical simulations  

E-print Network

Particle acceleration in solar flares: observations versus numerical simulations A O Benz, P C processes such as isotropization and magnetic trapping are made. Keywords: Particle acceleration, hard X. As the electric field of reconnection with possible parallel component capable of particle acceleration is limited

233

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-print Network

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre/m) Accelerator Research DESY DESY is one of the world's leading research centres for photon science, particle science, particle physics and atto-second science. The position of a senior scientist in accelerator

234

Don Melrose Particle Acceleration and Nonthermal Radiation in  

E-print Network

Don Melrose #12;Particle Acceleration and Nonthermal Radiation in Space Plasmas D.B. Melrose maser emission fi-om planets and stars. Key words: Acceleration of particles, plasma emission, electron mechanism is ' a process that increases the energy of nonthermal particles. Several different acceleration

Melrose, Don

235

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-print Network

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre science, particle physics and atto-second science. The position of a tenure track scientist in accelerator and XFEL · Study realistic applications of new accelerator technologies for photon science and particle

236

Advanced Visualization Technology for Terascale Particle Accelerator Simulations  

E-print Network

Advanced Visualization Technology for Terascale Particle Accelerator Simulations Kwan-Liu Ma £ Greg-performance computing, particle accelerators, perception, point-based rendering, scientific visualization, field lines Introduction Particle accelerators have helped enable some of the most remarkable discoveries of the 20th

Ma, Kwan-Liu

237

PARTICLE ACCELERATION AT THE SUN AND IN THE HELIOSPHERE  

E-print Network

PARTICLE ACCELERATION AT THE SUN AND IN THE HELIOSPHERE DONALD V. REAMES NASA/ Goddard Space Flight) Abstract. Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. Printed in the Netherlands. #12;414 PARTICLE ACCELERATION AT THE SUN AND IN THE HELIOSPHERE 4. Impulsive

Reames, Donald V.

238

Accelerated Particle Electrophoretic Motion and Separation in Converging-Diverging  

E-print Network

Accelerated Particle Electrophoretic Motion and Separation in Converging-Diverging Microchannels of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8 Accelerated particle electrophoretic. The accelerated particle elec- trophoretic separation is highly desirable in on-chip flow cytometry and high

Xuan, Xiangchun "Schwann"

239

Stochastic particle acceleration by a pair of slow shocks  

Microsoft Academic Search

We consider a stochastic acceleration mechanism of charged particles working at a pair of slow MHD shocks. The dominant acceleration occurs when a particle has a curvature drift at the shock front, which is parallel to the convection electric field. Since this acceleration mechanism works only on particles crossing the shock front, scattering agents in the upstream region are needed

Nobue Shimada; Toshio Terasawa; J. R. Jokipii

1997-01-01

240

Staged concept of laser-plasma acceleration toward multi-GeV electron beams  

NASA Astrophysics Data System (ADS)

The concepts of the laser-plasma based accelerator and injector are discussed here. The recent tests done at LOA as well as design studies of high-quality GeV electron beam production with low energy spread (1%) are presented. These laser-produced particle beams have a number of interesting properties and could lend themselves to applications in many fields, including medicine (radiotherapy), chemistry (radiolysis), and accelerator physics. They could be used as a source for the production of ? ray beams for nondestructive material inspection by radiography, or for future compact X-free electron laser machines.

Malka, Victor; Lifschitz, A.; Faure, J.; Glinec, Y.

2006-09-01

241

Polymer surface treatment with particle beams  

DOEpatents

A polymer surface and near surface treatment process produced by irradiation with high energy particle beams. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications.

Stinnett, Regan W. (1033 Tramway La. NE., Albuquerque, NM 87122); VanDevender, J. Pace (7604 Lamplighter NE., Albuquerque, NM 87109)

1999-01-01

242

Polymer surface treatment with particle beams  

DOEpatents

A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

Stinnett, R.W.; VanDevender, J.P.

1999-05-04

243

Detecting chaos in particle accelerators through the frequency map analysis method  

E-print Network

The motion of beams in particle accelerators is dominated by a plethora of non-linear effects which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

Yannis Papaphilippou

2014-06-05

244

Particle acceleration in relativistic subluminal shock environments  

E-print Network

The understanding of the particle spectra resulting from acceleration in relativistic shocks as they occur in extragalactic sources, is essential for the interpretation of the cosmic ray spectrum above the ankle ($E_p>3\\cdot 10^{18}$ eV). It is believed that extragalactic sources like Active Galactic Nuclei and Gamma Ray Bursts can produce particle spectra up to $E_p\\sim 10^{21}$ eV. In this contribution, subluminal shocks are investigated with respect to different shock boost factors $\\Gamma$ and the inclination angle between the shock normal and the magnetic field $\\psi$. A correlation between the boost factor and the spectral behavior of the emitted particles is found. The results are compared to Active Galactic Nuclei and Gamma Ray Burst diffuse cosmic ray contribution and the observed cosmic ray spectrum at the highest energies.

A. Meli; J. Becker; J. J. Quenby; J. Luenemann

2007-08-10

245

The production of accelerated radioactive ion beams  

SciTech Connect

During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL.

Olsen, D.K.

1993-11-01

246

9/16/2009 Andy Haas Stanford Student Orientation: Accelerator based Particle Physics 1 Accelerator-based Particle Physics  

E-print Network

9/16/2009 Andy Haas Stanford Student Orientation: Accelerator based Particle Physics 1 Accelerator-based Particle Physics Opportunities at SLAC/Stanford Andy Haas / SLAC Stanford Student Orientation Sept. 16, 2009 #12;9/16/2009 Andy Haas Stanford Student Orientation: Accelerator based Particle Physics 2

Wechsler, Risa H.

247

Levy-Student Distributions for Halos in Accelerator Beams  

E-print Network

We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the Stochastic Mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Shchr\\"odinger--like (\\Sl) equation. The space charge effects have been introduced in a recent paper~\\cite{prstab} by coupling this \\Sl equation with the Maxwell equations. We analyze the space charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self--consistent solutions are related to the (external, and space--charge) potentials both when we suppose that the external field is harmonic (\\emph{constant focusing}), and when we \\emph{a priori} prescribe the shape of the stationary solution. We then proceed to discuss a few new ideas~\\cite{epac04} by introducing the generalized Student distributions, namely non--Gaussian, L\\'evy \\emph{infinitely divisible} (but not \\emph{stable}) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non--Gaussian) L\\'evy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the L\\'evy--Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

N. Cufaro Petroni; S. De Martino; S. De Siena; F. Illuminati

2006-01-17

248

Behaviour of advanced materials impacted by high energy particle beams  

NASA Astrophysics Data System (ADS)

Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasch, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

2013-07-01

249

High quality electron beams from a plasma channel guided laser wakefield accelerator  

SciTech Connect

Laser driven accelerators, in which particles are accelerated by the electric field of a plasma wave driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV/m. These fields are thousands of times those achievable in conventional radiofrequency (RF) accelerators, spurring interest in laser accelerators as compact next generation sources of energetic electrons and radiation. To date however, acceleration distances have been severely limited by lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low energy beams with 100% electron energy spread, limiting applications. Here we demonstrate that a relativistically intense laser can be guided by a preformed plasma density channel and that the longer propagation distance can result in electron beams of percent energy spread with low emittance and increased energy, containing >10{sup 9} electrons above 80 MeV. The preformed plasma channel technique forms the basis of a new class of accelerators, combining beam quality comparable to RF accelerators with the high gradients of laser accelerators to produce compact tunable high brightness electron and radiation sources.

Geddes, C.G.R.; Toth, Cs.; van Tilborg, J.; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

2004-07-08

250

Radiation from Shock-Accelerated Particles  

NASA Technical Reports Server (NTRS)

Plasma instabilities excited in collisionless shocks are responsible for particle acceleration, generation of magnetic fields , and associated radiation. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. The shock structure depends on the composition of the jet and ambient plasma (electron-positron or electron-ions). Strong electromagnetic fields are generated in the reverse , jet shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The detailed properties of the radiation are important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jet shocks, and supernova remnants

Nishikawa, Ken-ichi; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

2012-01-01

251

Solar energetic particles: Acceleration and transport  

NASA Astrophysics Data System (ADS)

This paper reviews highlights of the 26th ICRC in the area of acceleration and propagation of solar energetic particles (SEPs). New results on SEP charge state and composition, a lively topic during the Conference, are covered in an accompanying paper by Klecker. I begin with a brief historical review of the field to provide context for the key advances/developments on SEP acceleration/propagation presented in Salt Lake City. These include: (1) the use of gamma-ray emissions as diagnostics of the acceleration process(es) and probes of the interaction region; (2) the observation of ~10 GeV (or higher) protons for the 6 November 1997 ground level event by the Milagrito experiment; (3) observations of coronal Moreton waves as ``smoking pistols'' of shock acceleration/injection of SEPs; (4) an investigation of the role of proton event spectra in the current ``two-class'' picture of SEP events; (5) an analysis of the Gnevyshev Gap in SEP activity; (6) a Ulysses-based determination of the dependence of SEP mean free path on radial distance from the Sun and on heliographic latitude, and (7) an examination of the dissipation range in the power spectrum of interplanetary magnetic field fluctuations. I conclude with a discussion of new instrumentation (e.g., Milagro, HESSI) and a look to the expected level of SEP activity for the approaching maximum of solar cycle 23. .

Cliver, Edward W.

2000-06-01

252

Self-accelerating self-trapped optical beams.  

PubMed

We present self-accelerating self-trapped beams in nonlinear optical media, exhibiting self-focusing and self-defocusing Kerr and saturable nonlinearities, as well as a quadratic response. In Kerr and saturable media such beams are stable under self-defocusing and weak self-focusing, whereas for strong self-focusing the beams off-shoot solitons while their main lobe continues to accelerate. Self-accelerating self-trapped wave packets are universal, and can also be found in matter waves, plasma, etc. PMID:21699299

Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N

2011-05-27

253

Experimental Studying of Dust Particles Charging by Electron Beam  

SciTech Connect

The studying of the dusty plasma properties under electron beam action are of great interest because it gives the unique opportunities for experimental investigation of strongly coupled systems as well as for developing the new dusty plasma technologies of creating the new composite materials. Highly charged dust particle generates electrostatic field that can accelerate positive ions to high power. It gives the unique possibilities of using these macroparticles (for deeply ions implantation, as catalysts for increasing rate of reactions with the high energy barrier, in the new ionic engines etc.). Presented work deals with the experimental investigation of dust particles charging under direct influence of electron beam. On the basis of experimental data the average velocities of dust particles were obtained and the charge of macroparticle was estimated.

Gavrikov, A. V.; Fortov, V. E.; Petrov, O. F.; Vorona, N. A. [Joint Institute for High Temperatures, RAS, Izhorskaya 13, buid. 2, Moscow, 125412 (Russian Federation); Vasiliev, M. N. [Moscow Institute of Physics and Technology (National University), Institutskii per., 9, Dolgoprudny, Moscow Region, 141701 (Russian Federation)

2008-09-07

254

Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic  

E-print Network

Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic Pulse Propagating to plasma physics and particle accelerators. The interaction physics of fields with particles has also been, Colchester CO4 3SQ, U.K. Abstract. The motion of a charged particle driven by an electromagnetic pulse

Paris-Sud XI, Université de

255

Computer modeling of test particle acceleration at oblique shocks  

Microsoft Academic Search

We review the basic techniques and results of numerical codes used to model the acceleration of charged particles at oblique, fast-mode, collisionless shocks. The emphasis is upon models in which accelerated particles (ions) are treated as test particles, and particle dynamics is calculated by numerically integrating along exact phase-space orbits. We first review the case where ions are sufficiently energetic

Robert B. Decker

1988-01-01

256

Particle Acceleration in Cusp-like Magnetic Trapping Regions  

Microsoft Academic Search

Acceleration of charged particles is a fundamental problem of space plasma systems. Recent test particle computations in MHD magnetic and electric fields have shown significant energization of particles in magnetic trapping regions such as a cusp-like magnetic configuration. Necessary conditions for the particle acceleration are a highly efficient trapping and the presence of an electric field. In such a configuration

A. Otto; E. Adamson; K. Nykyri

2008-01-01

257

A beam energy analysis and monitoring system for linear accelerators  

SciTech Connect

A model-based beam orbit simulation program has been used successfully to analyze the beam energy errors at the two-mile linear accelerator during commissioning of the SLC system. This simulation program has also been used to develop a nondestructive beam energy error monitoring system. The method of analysis, the simulation program, and a beam energy analysis and monitoring system using expert systems techniques will be described.

Lee, M.J.; Kleban, S.D.; Zambre, Y.B.; Seeman, J.T.; Adolphsen, C.E.; Abrams, G.S.; Iverson, R.; Stanek, M.; Turner, J.L.; Blanchette, C.J.

1988-02-01

258

Pulsed particle beam vacuum-to-air interface  

DOEpatents

A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

Cruz, G.E.; Edwards, W.F.

1987-06-18

259

General Relativistic Polar Particle Acceleration and Pulsar Death  

E-print Network

I summarize the theory of acceleration of non-neutral particle beams by starvation electric fields along the polar magnetic field lines of rotation powered pulsars, including the effect of dragging of inertial frames which dominates the acceleration of a space charge limited beam. I apply these acceleration results to a new calculation of the radio pulsar death line, under the hypotheses that pulsar ``death'' corresponds to cessation of pair creation over the magnetic poles and that the magnetic field has a locally dipolar topology. While the frame dragging effect in star centered dipole geometry does improve comparison of the theory with observation, an unacceptably large fraction of the observed stars outside the bounds of pair creation theory still persists. Offsetting the dipole improves the correspondence between theory and observation. The result is a ``death valley'' for pulsars; acceptable comparison of observation and theory occurs if the boundary of death valley corresponds to offsets of the dipole center from the stellar center $\\sim (0.7-0.8) R_*$. I also point out that pulsars are absent for magnetic moments corresponding to star centered polar fields in excess of $\\sim 4 \\times 10^{13}$ Gauss, and I suggest that this absence is due to pairs forming as bound positronium atoms in such strong fields, creating a neutral, relativistically outflowing gas which cannot participate in low altitude collective radio emission processes in such strongly magnetized objects.

Jonathan Arons

1998-03-06

260

Accelerating Airy beams with non-parabolic trajectories  

NASA Astrophysics Data System (ADS)

A class of Airy accelerating beams with non-parabolic trajectories are derived by means of a novel application of a conformal transformation originally due to Bateman. It is also shown that the salient features of these beams are very simply incorporated in a solution which is derived by applying a conventional conformal transformation together with a Galilean translation to the basic accelerating Airy beam solution of the two-dimensional paraxial equation. Motivation for the non-parabolic beam trajectories is provided and the effects of finite-energy requirements are discussed.

Besieris, Ioannis M.; Shaarawi, Amr M.

2014-11-01

261

Possibilities for beam stripping solutions at a rare isotope accelerator (RIA)  

NASA Astrophysics Data System (ADS)

We investigated the possibilities and problems of beam strippers in the different heavy ion accelerator components of a possible rare isotope accelerator (RIA) facility. We focused on two beam stripping positions in the RIA heavy ion driver where benchmark currents of up to 5 particle ?A 238U were projected at energies of 10.5 MeV/u and 85 MeV/u, respectively. In order to select feasible stripper materials, data from experiments with uranium beams at the Texas A&M cyclotron and the Gesellschaft fuer Schwerionenforschung (GSI) accelerator were evaluated. Based on these results thermal estimates for a possible design were calculated and cooling simulations with commercially available software performed. Additionally, we performed simulations with the GEANT4 code on evaluating the radiation environment for our beam stripping solution at the 85 MeV/u position in the RIA driver.

Greife, Uwe; Simmons, Ellen; Erikson, Luke; Jewett, Cybele; Livesay, Jake; Chipps, Kelly

2007-08-01

262

Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams  

NASA Technical Reports Server (NTRS)

We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

Lipatov, Alexander S.

2011-01-01

263

Seminar Ia, cetrti letnik, stari program LONGITUDINAL DYNAMICS OF PARTICLES IN ACCELERATORS  

E-print Network

Seminar Ia, cetrti letnik, stari program LONGITUDINAL DYNAMICS OF PARTICLES IN ACCELERATORS Author motion of charged particles in particle accelerators. The technique of acceleration by electromagnetic . . . . . . . . . . . . . . . . . . . . . 13 6 Conclusion 15 1 Introduction Particle accelerator physics primarily deals with interaction

?umer, Slobodan

264

PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS  

SciTech Connect

Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

David L. Chichester

2009-11-01

265

Linear Accelerators  

SciTech Connect

In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

Sidorin, Anatoly [Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna (Russian Federation)

2010-01-05

266

Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex  

SciTech Connect

After a 14 month shutdown accelerator modifications and upgrades are in place to allow us doubling of the Main Injector beam power. We will discuss the past MI high power operation and the current progress towards doubling the power.

Kourbanis, ioanis

2014-06-01

267

Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators  

NASA Astrophysics Data System (ADS)

The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlstrm, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Sc?rer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin, S Mangles, L O Silva, R Fonseca and P A Norreys Electro-optic shocks from blowout laser wakefields D F Gordon, A Ting, M H Helle, D Kaganovich and B Hafizi Onset of self-steepening of intense laser pulses in plasmas J Vieira, F Fiza, L O Silva, M Tzoufras and W B Mori Analysis of laser wakefield dynamics in capillary tubes N E Andreev, K Cassou, F Wojda, G Genoud, M Burza, O Lundh, A Persson, B Cros, V E Fortov and C-G Wahlstrom Characterization of the beam loading effects in a laser plasma accelerator C Rechatin, J Faure, X Davoine, O Lundh, J Lim, A Ben-Ismal, F Burgy, A Tafzi, A Lifschitz, E Lefebvre and V Malka Energy gain scaling with plasma length and density in the plasma wakefield accelerator P Muggli, I Blumenfeld, C E Clayton, F J Decker, M J Hogan, C Huang, R Ischebeck, R H Iverson, C Joshi, T Katsouleas, N Kirby, W Lu, K A Marsh, W B Mori, E Oz, R H Siemann, D R Walz and M Zhou Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021-1023Wcm-2 Lu-Le Yu, Han Xu, Wei-Min Wang, Zheng-Ming Sheng, Bai-Fei Shen, Wei Yu and Jie Zhang Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses D C Carroll, O Tresca, R Prasad, L Romagnani, P S Foster, P Gallegos, S Ter-Avetisyan, J S Green, M J V Streeter, N Dover, C A J Palmer, C M Brenner, F H Cameron, K E Quinn, J Schreiber, A P L Robinson, T Baeva, M N Quinn, X H Yuan, Z Najmudin, M Zepf, D Neely, M Borghesi and P McKenna Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse S Y Kalmykov, S A Yi, A Beck, A F Lifschitz, X Davoine, E Lefebvre, A Pukhov, V Khudik, G Shvets, S A Reed, P Dong, X Wang, D Du, S Bedacht, R Zgadzaj, W Henderson, A Bernstein, G Dyer, M Martinez, E Gaul, T Ditmire and M C Downer Effects of laser prepulses on laser-induced proton generation D Batani, R Jafer, M Veltcheva, R Dezulian, O Lundh, F Lindau, A Persson, K Osvay, C-G Wahlstrm, D C Carroll, P McKenna, A Flacco and V Malka Proton accelerati

Joshi, Chan; Malka, Victor

2010-04-01

268

Studies of beam dynamics in relativistic klystron two-beam accelerators  

SciTech Connect

Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also described.

Lidia, Steven M.

1999-11-01

269

Particle Acceleration in the Heliosphere: Implications for Astrophysics  

NASA Astrophysics Data System (ADS)

There has been a remarkable discovery concerning particles that are accelerated in the solar wind. At low energies, in the region where the particles are being accelerated, the spectrum of the accelerated particles is always the same: when expressed as a distribution function, the spectrum is a power law in particle speed with a spectral index of -5, and a rollover at higher particle speeds that can often be described as exponential. This common spectral shape cannot be accounted for by any conventional acceleration mechanism, such as diffusive shock acceleration or traditional stochastic acceleration. It has thus been necessary to invent a new acceleration mechanism to account for these observations, a pump mechanism in which particles are pumped up in energy through a series of adiabatic compressions and expansions. The conditions under which the pump acceleration is the dominant acceleration mechanism are quite general and are likely to occur in other astrophysical plasmas. In this paper, the most compelling observations of the -5 spectra are reviewed; the governing equation of the pump acceleration mechanism is derived in detail; the pump acceleration mechanism is applied to acceleration at shocks; and, as an illustration of the potential applicability of the pump acceleration mechanism to other astrophysical plasmas, the pump mechanism is applied to the acceleration of galactic cosmic rays in the interstellar medium.

Fisk, L. A.; Gloeckler, G.

2012-11-01

270

A Simplified Model for the Acceleration of Cosmic Ray Particles  

ERIC Educational Resources Information Center

Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not

Gron, Oyvind

2010-01-01

271

Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams  

SciTech Connect

Purpose: Laser plasma acceleration can potentially replace large and expensive cyclotrons or synchrotrons for radiotherapy with protons and ions. On the way toward a clinical implementation, various challenges such as the maximum obtainable energy still remain to be solved. In any case, laser accelerated particles exhibit differences compared to particles from conventional accelerators. They typically have a wide energy spread and the beam is extremely pulsed (i.e., quantized) due to the pulsed nature of the employed lasers. The energy spread leads to depth dose curves that do not show a pristine Bragg peak but a wide high dose area, making precise radiotherapy impossible without an additional energy selection system. Problems with the beam quantization include the limited repetition rate and the number of accelerated particles per laser shot. This number might be too low, which requires a high repetition rate, or it might be too high, which requires an additional fluence selection system to reduce the number of particles. Trying to use laser accelerated particles in a conventional way such as spot scanning leads to long treatment times and a high amount of secondary radiation produced when blocking unwanted particles. Methods: The authors present methods of beam delivery and treatment planning that are specifically adapted to laser accelerated particles. In general, it is not necessary to fully utilize the energy selection system to create monoenergetic beams for the whole treatment plan. Instead, within wide parts of the target volume, beams with broader energy spectra can be used to simultaneously cover multiple axially adjacent spots of a conventional dose delivery grid as applied in intensity modulated particle therapy. If one laser shot produces too many particles, they can be distributed over a wider area with the help of a scattering foil and a multileaf collimator to cover multiple lateral spot positions at the same time. These methods are called axial and lateral clustering and reduce the number of particles that have to be blocked in the beam delivery system. Furthermore, the optimization routine can be adjusted to reduce the number of dose spots and laser shots. The authors implemented these methods into a research treatment planning system for laser accelerated particles. Results: The authors' proposed methods can decrease the amount of secondary radiation produced when blocking particles with wrong energies or when reducing the total number of particles from one laser shot. Additionally, caused by the efficient use of the beam, the treatment time is reduced considerably. Both improvements can be achieved without extensively changing the quality of the treatment plan since conventional intensity modulated particle therapy usually includes a certain amount of unused degrees of freedom which can be used to adapt to laser specific properties. Conclusions: The advanced beam delivery and treatment planning methods reduce the need to have a perfect laser-based accelerator reproducing the properties of conventional accelerators that might not be possible without increasing treatment time and secondary radiation to the patient. The authors show how some of the differences to conventional beams can be overcome and efficiently used for radiation treatment.

Schell, Stefan; Wilkens, Jan J. [Department of Radiation Oncology, Technische Universitaet Muenchen, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Muenchen (Germany)

2010-10-15

272

Beam dynamics in a long-pulse linear induction accelerator  

SciTech Connect

The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

2010-01-01

273

GPU accelerated particle visualization with Splotch  

NASA Astrophysics Data System (ADS)

Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organization and classification of particles. We deploy a reference cosmological simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimizations and exploitation of hybrid systems and emerging accelerators.

Rivi, M.; Gheller, C.; Dykes, T.; Krokos, M.; Dolag, K.

2014-07-01

274

Particle beam generator using a radioactive source  

DOEpatents

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, David G. (Naperville, IL)

1993-01-01

275

Diagnostic resonant cavity for a charged particle accelerator  

DOEpatents

Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

Barov, Nikolai (San Diego, CA)

2007-10-02

276

Staging Laser Plasma Accelerators for Increased Beam Energy  

E-print Network

of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energiesStaging Laser Plasma Accelerators for Increased Beam Energy D. Panasenko, A. J. Shu, C. B with compact laser systems. The concept of staging includes coupling of additional laser energy

Geddes, Cameron Guy Robinson

277

Possibility of using sliding particles in accelerators and tunable sources of coherent ultraviolet radiation  

NASA Astrophysics Data System (ADS)

We consider sliding particles (electrons or ions) which move in vacuum in a potential well at a small distance from a corrugated dielectric surface. We consider a way to stabilize the beam position above the plate, avoiding the bombardment of the plate by the particles. We discuss possible ways to create beams of such sliding particles with the desired characteristics. It is proposed to use such sliding particles in accelerators and tunable sources of coherent ultraviolet radiation. It is shown, that in principle the laser effect can be observed at rather small currents of ultra-relativistic sliding electrons.

Namiot, V. A.; Shchurova, L. Yu.

2012-10-01

278

Acceleration of ampere class H(-) ion beam by MeV accelerator.  

PubMed

The H(-) ion accelerator R&D to realize the international thermonuclear experimental reactor neutral beam is ongoing at Japan Atomic Energy Agency (JAEA). The required performance for the prototype MeV accelerator developed at JAEA is 1 MeV, 500 mA (current density of 200 A/m(2)) H(-) ion beam at the beamlet divergence angle of less than 7 mrad. Up to 2005, 836 keV, 146 A/m(2) H(-) ion beam was successfully accelerated as the highest record of the current density at MeV class energy beams. In the present work, high current negative ion beam acceleration test was performed by increasing the beam extraction apertures from 3 x 3 (9 apertures) to 3 x 5 (15 apertures). By fixing the air leak at the source chamber due to backstream ions as well as the improvement of voltage holding capability by a new fiber reinforced plastic insulator ring, the performance of the MeV accelerator was improved. So far, H(-) ion beam of 320 mA was successfully accelerated up to 796 keV with the beam divergence angle of 5.5 mrad. The accelerated drain current including the electron reaches close to the power supply limit for the MeV test facility. The heat flux by the backstream ion during the above beam acceleration was estimated to be 360 W/cm(2). The Cs leakage to the accelerator during the test campaign (Cs total input of 5.0 g) was 0.26 mg (7.0 microg/cm(2)). This is considered to be the allowable level from the viewpoint of voltage holding. PMID:18315236

Taniguchi, M; Inoue, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Dairaku, M; Sakamoto, K

2008-02-01

279

Carbon Fiber Damage in Particle Beam  

E-print Network

Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

2011-01-01

280

Tumour Therapy with Particle Beams  

E-print Network

Photons are exponentially attenuated in matter producing high doses close to the surface. Therefore they are not well suited for the treatment of deep seated tumours. Charged particles, in contrast, exhibit a sharp increase of ionisation density close to the end of their range, the so-called Bragg-peak. The depth of the Bragg-peak can be adjusted by varying the particle's energy. In parallel with the large energy deposit the increase in biological effectiveness for cell killing at the end of the range provides an ideal scalpel for the surgeon effectively without touching the surface tissue. Consequently proton therapy has gained a lot of ground for treating well localized tumours. Even superior still are heavy ions, where the ionisation pattern is increased by the square of their charge.

Grupen, Claus

2000-01-01

281

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator  

E-print Network

In this study, a low energy beam transport (LEBT) channel for the proton linac section of the Turkic Accelerator Complex (TAC) has been designed by using TRACE 2D and TRAVEL codes. The LEBT channel is located between an ion source and a radio frequency quadrupole (RFQ) structure. The aims of the design studies are perfect matching between input and output beams with two solenoid magnets, small emittance growth and sufficient space for beam diagnostics. Total length of such LEBT channel is about 1.3 m. The current of H- ion beam from ion source is 80 mA. In the beam dynamical simulations, we have taken into account some space charge compensation (SCC) factors between %93.75 and %100. The results of both codes have been compared for the selected SCC factors. Additionally, beam aperture study for % 95 SCC factor has been done to discard unwanted particles and increase the beam brightness.

Caliskan, A; Sultansoy, S; Yilmaz, M

2012-01-01

282

Beam profile effects on NPB (neutral particle beam) performance  

SciTech Connect

A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs.

LeClaire, R.J. Jr.

1988-03-01

283

Tungsten Powder as an accelerator target & InBeam Testing  

E-print Network

Programme in PASIWP3 + ASTEC 1 2 3 4 · Offline testing ­ Pneumatic conveying (densephase and leanphase1 Tungsten Powder as an accelerator target & InBeam Testing Ottone Caretta, Peter Loveridge - Reliability in harsh environment? - High static stress levels require much larger beam sigma than baseline

McDonald, Kirk

284

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-print Network

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association PARTICLE PHYSICS· DESY has openings for: DESY-Fellowships (f/m) DESY DESY is one accelerators and detectors for photon science and particle physics. The position Fellows in experimental

285

Particle accelerators unravel Art and Archaeology issues  

NASA Astrophysics Data System (ADS)

Many analytical techniques are applied to get a better insight on art works and archaeological artefacts and to contribute to their conservation and restoration. Because of the precious and sometimes unique character of these items, non-destructive and non-sampling techniques are preferred. From this standpoint, the analysis with ion beams produced by accelerators (IBA), featuring good analytical performance and non-destructiveness, constitutes one of the best choices. Ion beams analysis techniques (IBA) introduced in 1957 have been constantly adapted to address art and archaeology questions; today the performances obtained directly on the object placed in the atmosphere rival with those achieved in vacuum. Since 20 years, AGLAE, the IBA facility of the Centre for Research and Restoration of the Museums of France located in the Louvre museum has contributed to this progress. The cornerstone of this development is a versatile external nuclear microprobe implementing PIXE, PIGE, RBS, NRA and ERDA methods for rapid expertises of art works and more extensive research works in art history, archaeology and conservation science. After an introduction of the physical principles of IBA, a virtual tour of this unique facility will be provided. The benefit of its use will be illustrated through two case studies, the first one dealing with the determination by PIXE of the provenance of painted works of the Spanish master Murillo and the second one with the authentication study using NRA of a mysterious archaeological rock crystal skull.

Calligaro, Thomas

2008-10-01

286

Education in a rapidly advancing technology: Accelerators and beams  

SciTech Connect

The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers.

Month, Mel [Brookhaven National Laboratory/US Particle Accelerator School, Building 902A, Upton, New York 11973-5000 (United States)] [Brookhaven National Laboratory/US Particle Accelerator School, Building 902A, Upton, New York 11973-5000 (United States)

2000-06-01

287

High transformer ratio drive beams for wakefield accelerator studies  

SciTech Connect

For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Max Planck Institute for Physics, 80805 Munich (Germany); University of California Los Angeles, Los Angeles, CA 90095 (United States); Tsinghua University, Beijing (China)

2012-12-21

288

High transformer ratio drive beams for wakefield accelerator studies  

NASA Astrophysics Data System (ADS)

For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W.

2012-12-01

289

Models of particle motion in plasma of a linear hall accelerator and their interaction with structure members  

NASA Astrophysics Data System (ADS)

In the development of charged-particle accelerators (electric rocket engines, technological complexes, electrophysical installations) there is a problem of charged particle fluxes forming in the plasma of a gas discharge. We study the interaction of these fluxes with the structural members. This report treats a complex of models, describing the motion of charged particle beams in plasmas of a linear Hall current accelerator, particle distribution and other characteristics of fluxes at the outlet of the accelerator and their interaction with the accelerator channel walls, erosion of these walls and their configuration change.

Tchuyan, Rostislav K.

290

Turn-By Beam Extraction during Acceleration in a Synchrotron  

NASA Astrophysics Data System (ADS)

A synchrotron to accelerate protons or carbon ions for medical applications is being designed at Brookhaven National Laboratory (BNL). Single beam bunches with maximum beam energy of 1.18 GeV and 400 MeV/u for protons and carbon ions respectively will be extracted from the synchrotron at 15 Hz. For protons, the maximum required energy for irradiating a tumor is 206 MeV. A pencil-like proton beam containing 5.4107 p/bunch delivers a therapeutic dose of 2.5 Gy in 1.5 minutes to treat a tumor of 1 liter volume. It will take 80 minutes with bunches containing 4.5104 ions/bunch to deliver the same dose of 2.5 Gy with a 400 MeV/u pencil-like carbon beam. This extended treatment time when using carbon ions is not acceptable. In addition, the synchrotron cannot be controlled with a beam bunch containing such a low number of carbon ions. To overcome these two problems of the extended treatment time and the low bunch intensity required for the treatment when carbon ions are used, we have devised a method to peel the required 4.5104 carbon-ions/bunch from the accelerating carbon beam bunch containing 108 ions/bunch and deliver them to the tumor on a turn-by-turn basis. Unlike other methods of beam extraction from a synchrotron, such as resonance extraction, this method does not allow for any beam losses during the extraction and the carbon beam can be peeled off in less than 15 ms during the acceleration or deceleration cycle of the synchrotron. Thus, this turn-by-turn beam extraction method provides beam with variable energy and precisely controlled beam current during the 30 ms acceleration or deceleration time.

Tsoupas, Nicholaos; Trbojevic, Dejan

2014-02-01

291

Accelerating universes driven by bulk particles  

E-print Network

We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory.

F. A. Brito; F. F. Cruz; J. F. N. Oliveira

2005-04-04

292

Surfatron acceleration of a relativistic particle by electromagnetic plane wave  

E-print Network

We study motion of a relativistic charged particle in a plane slow electromagnetic wave and background uniform magnetic field. The wave propagates normally to the background field. Under certain conditions, the resonance between the wave and the Larmor motion of the particle is possible. Capture into this resonance results in acceleration of the particle along the wave front (surfatron acceleration). We analyse the phenomenon of capture and show that a captured particle never leaves the resonance and its energy infinitely grows. Scattering on the resonance is also studied. We find that this scattering results in diffusive growth of the particle energy. Finally, we estimate energy losses due to radiation by an accelerated particle.

A. I. Neishtadt; A. A. Vasiliev; A. V. Artemyev

2010-11-09

293

Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams  

NASA Astrophysics Data System (ADS)

We report the generation of two types of self-accelerating surface plasmon beams which are solutions of the nonparaxial Helmholtz equation in two dimensions. These beams preserve their shape while propagating along either elliptic (Mathieu beam) or parabolic (Weber beam) trajectories. We show that owing to the nonparaxial nature of the Weber beam, it maintains its shape over a much larger distance along the parabolic trajectory, with respect to the corresponding solution of the paraxial equationthe Airy beam. Dynamic control of the trajectory is realized by translating the position of the illuminating free-space beam. Finally, the ability of these beams to self-heal after blocking obstacles is demonstrated as well.

Libster-Hershko, Ana; Epstein, Itai; Arie, Ady

2014-09-01

294

Turbulent Particle Acceleration in the Diffuse Cluster Plasma  

E-print Network

In situ particle acceleration is probably occuring in cluster radio haloes. This is suggested by the uniformity and extent of the haloes, given that spatial diffusion is slow and that radiative losses limit particle lifetimes. Stochastic acceleration by plasma turbulence is the most likely mechanism. Alfven wave turbulence has been suggested as the means of acceleration, but it is too slow to be important in the cluster environment. We propose, instead, that acceleration occurs via strong lower-hybrid wave turbulence. We find that particle acceleration will be effective in clusters if only a small fraction of the cluster energy density is in this form.

J. A. Eilek; J. C. Weatherall

1999-06-30

295

Polarization of fast particle beams by collisional pumping  

DOEpatents

Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

Stearns, J. Warren (Castro Valley, CA); Kaplan, Selig N. (El Cerrito, CA); Pyle, Robert V. (Berkeley, CA); Anderson, L. Wilmer (Madison, WI); Ruby, Lawrence (Berkeley, CA); Schlachter, Alfred S. (Oakland, CA)

1988-01-01

296

Particle Acceleration in Relativistic Jets Due to Weibel Instability  

Microsoft Academic Search

Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient

K.-I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

2003-01-01

297

Particle acceleration, magnetic field generation, and emission in relativistic shocks  

Microsoft Academic Search

Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3D relativistic electromagnetic particle code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find

K.-I. Nishikawa; P. Hardee; C. B. Hededal; G. Richardson; R. Preece; H. Sol; G. J. Fishman

2006-01-01

298

Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks  

Microsoft Academic Search

Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an

K.-I. Nishikawa; C. Hededal; P. Hardee; G. Richardson; R. Preece; H. Sol; G. Fishman

2004-01-01

299

Relativistic Shocks: Particle Acceleration, Magnetic Field Generation, and Emission  

Microsoft Academic Search

Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with

K.-I. Nishikawa; P. Hardee; C. B. Hededal; G. Richardson; R. Preece; H. Sol; G. J. Fishman

2005-01-01

300

Particle acceleration, magnetic field generation, and emission in relativistic shocks  

Microsoft Academic Search

Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an

K.-I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

2003-01-01

301

Transformer ratio improvement for beam based plasma accelerators  

NASA Astrophysics Data System (ADS)

Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R ? 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

2012-12-01

302

Transformer ratio improvement for beam based plasma accelerators  

SciTech Connect

Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl [University of California, Los Angeles, Department of Physics and Astronomy, Los Angeles, CA 90095 (United States); University of Southern California, Department of Electrical Engineering, Los Angeles, CA 90089 U.S.A. and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Accelerator Test Facility, Brookhaven National Lab, Upton, NY, 11973 (United States)

2012-12-21

303

Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility  

SciTech Connect

In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Darmstadt (Germany)] [Linac and Operations/Ion Sources, GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Darmstadt (Germany)

2014-02-15

304

Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.  

PubMed

In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed. PMID:24593461

Adonin, A A; Hollinger, R

2014-02-01

305

US Particle Accelerators at Age 50.  

ERIC Educational Resources Information Center

Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

Wilson, R. R.

1981-01-01

306

Particle Acceleration in SN1006 Shock Waves  

NASA Technical Reports Server (NTRS)

This grant is for the analysis of FUSE observations of particle acceleration in supernova remnant SN1006 shock waves. We have performed quick look analysis of the data, but because the source is faint and because the O VI emission lines on SN1006 are extremely broad, extreme care is needed for background subtraction and profile fitting. Moreover, the bulk of the analysis in will consist of model calculations. The Ly beta and O VI lines are clearly detected at the position in the NW filament of SN1006, but not in the NE position where non-thermal X-rays are strong. The lack of O VI emission in the NE places an upper limit on the pre-shock density there.

Raymond, John C.; Ghavamian, Parviz; Sonneborn, George (Technical Monitor)

2003-01-01

307

CCD based beam loss monitor for ion accelerators  

NASA Astrophysics Data System (ADS)

Beam loss monitoring is an important aspect of proper accelerator functioning. There is a variety of existing solutions, but each has its own disadvantages, e.g. unsuitable dynamic range or time resolution, high cost, or short lifetime. Therefore, new options are looked for. This paper shows a method of application of a charge-coupled device (CCD) video camera as a beam loss monitor (BLM) for ion beam accelerators. The system was tested with a 500 MeV/u N+7 ion beam interacting with an aluminum target. The algorithms of camera signal processing with LabView based code and beam loss measurement are explained. Limits of applicability of this monitor system are discussed.

Belousov, A.; Mustafin, E.; Ensinger, W.

2014-04-01

308

Beam transport and monitoring for laser plasma accelerators  

SciTech Connect

The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

Nakamura, K.; Sokollik, T.; Tilborg, J. van; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States) and University of California, Berkeley, CA 94720 (United States)

2012-12-21

309

Aging of organic materials around high-energy particle accelerators  

NASA Astrophysics Data System (ADS)

Around particle accelerators used for fundamental research on the basic structure of matter, materials and components are exposed to ionizing radiation caused by beam losses in the proton machines and by synchrotron radiation in the lepton machines. Furthermore, with the high-energy and high-intensity collisions produced from future colliders, radiation damage is also to be expected in particle-physics detectors. Therefore, for a safe and reliable operation, the radiation aging of most of the components has to be assessed prior to their selection. An extensive radiation-damage test program has been carried out at CERN for decades on a routine basis and many results have been published. The tests have mainly concentrated on magnet-coil insulations and cable-insulating materials; they are carried out in accordance with the IEC 544 standard which defines the mechanical tests to be performed and the methods of degradation evaluation. The mechanical tests are also used to assess the degradation of composite structural materials. Moreover, electrical properties of high-voltage insulations and optical properties of organic scintillators and wave guides have also been studied. Our long-term experience has pointed out many parameters to be taken into account for the estimate of the lifetime of components in the radiation environment of our accelerators. One of the main parameters is the dose-rate effect, but the influence of other parameters has sometimes to be taken into account.

Tavlet, Marc

1997-08-01

310

Testing general relativity with laser accelerated electron beams  

SciTech Connect

Electron accelerations of the order of 10{sup 21} g obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

Gergely, L. A.; Harko, T. [Department of Theoretical Physics, University of Szeged, Szeged 6720, Tisza L. krt. 84, Hungary and Department of Experimental Physics, University of Szeged, 6720 Szeged, Dom ter 9 (Hungary); Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong)

2012-07-09

311

Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam  

NASA Astrophysics Data System (ADS)

It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

Lotov, K. V.; Sosedkin, A. P.; Petrenko, A. V.; Amorim, L. D.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Gschwendtner, E.; Muggli, P.

2014-12-01

312

Long pulse H- ion beam acceleration in MeV accelerator.  

PubMed

A multiaperture multigrid accelerator called "MeV accelerator" has been developed for neutral beam injection system of international thermonuclear experimental reactor. In the present work, long pulse H(-) ion beam acceleration was performed by the MeV accelerator equipped with new water-cooled grids. At present, the pulse length was extended to 5 s for the beams of 750 keV, 221 mA, and 10 s for the beams of 600 keV, 158 mA. Energy density, defined as products of beam energy (keV), current (mA), and pulse (s) divided by aperture area (m(2)), increased more than one order of magnitude higher compared with original MeV accelerator without water cooling in its grids. At higher energy and current, the grid was melted by beam deflection. Due to this grid melting, breakdowns occurred between the grids, and hence, the pulse length was limited. Beam deflection will be compensated by aperture displacement in next experiment. PMID:20192408

Taniguchi, M; Mizuno, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Kojima, A; Tanaka, Y; Dairaku, M; Hanada, M; Sakamoto, K; Inoue, T

2010-02-01

313

Particle acceleration by stimulated emission of radiation: Theory and experiment  

NASA Astrophysics Data System (ADS)

The interaction of electromagnetic radiation with free electrons in the presence of an active medium has some appealing outcomes. Among them is particle acceleration by stimulated emission of radiation (PASER). In its framework, energy stored in an active medium (microscopic cavities) is transferred directly to an e -beam passing through. We have developed a two-dimensional analytic model for the evaluation of the energy exchange occurring as a train of electron microbunches traverses a dilute resonant medium. Efficient interaction occurs at resonancenamely, when the frequency of the train matches the resonance frequency of the medium. It is shown that the energy exchange is ? independent for relativistic energies and it drops dramatically with an increase of the beams radius. Based on this model, we have evaluated the relative change in the kinetic energy of a 0.1-nC 45-MeV macrobunch traversing an excited CO2 gas mixturethe former being modulated at the CO2 laser wavelength. Good agreement is found between the theoretical predictions and the results of the PASER experiment performed recently at Brookhaven National Laboratory.

Banna, Samer; Berezovsky, Valery; Schchter, Levi

2006-10-01

314

Ion acceleration and abundance enhancements by electron beam instabilities in impulsive solar flares  

NASA Technical Reports Server (NTRS)

We show that a nonrelativistic electron beam in a hydrogen-helium solar flare plasma will excite H(+) electromagnetic ion cyclotron, shear Alfven, and R-X waves, in addition to waves resulting from the two-stream instability. The H(+) electromagnetic ion cyclotron and shear Alfven waves are able to selectively accelerate ambient He-3 and Fe, respectively, to MeV energies through first harmonic gyroresonance, and thereby account for the large (He-3)/(He-4) and Fe/C ratios seen in the energetic particles from impulsive solar flares. In this model, separate heating and acceleration mechanisms for either He-3 or Fe are not required, and Fe acceleration is quite efficient since it does not need to occur by second harmonic gyroresonance. The combination of the other two unstable modes is able to accelerate ions to hundreds of MeV if the particles become trapped in an electrostatic potential well of a two-stream wave.

Miller, James A.; Vinas, Adolfo F.

1993-01-01

315

Acceleration statistics of solid particles in turbulent channel flow  

NASA Astrophysics Data System (ADS)

Direct numerical simulations (DNS) are used here to study inertial particle acceleration statistics in the near-wall region of a turbulent channel flow. The study is motivated by observations in homogeneous isotropic turbulence (HIT) suggesting that when particle inertia increases, particle acceleration variance decreases due to both particle preferential accumulation and the filtering effect of inertia. In accordance with these studies, the present DNS shows that for increasing inertia, solid particle acceleration probability density functions (PDFs), scaled by the acceleration root-mean-square (RMS), depart from that of the fluid. The tails of these PDFs become narrower. However, in turbulent channel flow, as the Stokes number increases up to 5, the streamwise acceleration RMS in the near-wall region increases, while further increase of the Stokes number is characterized by the streamwise acceleration RMS decrease. In parallel, contrary to calculations in homogeneous isotropic turbulence, the conditional acceleration statistics of the fluid seen by the solid particle show that while the vertical and transverse acceleration RMS components remain close to the unconditional fluid acceleration, the longitudinal RMS component is remarkably higher in the near wall region. This feature is more pronounced as the Stokes number is increased. Additionally, the conditional acceleration PDFs overlap almost perfectly with the unconditional fluid PDFs, normalized by the acceleration RMS. The enhanced longitudinal acceleration variance of the fluid seen by the particles may be due to the spanwise alternation of high-and-low speed streaks. Depending on inertia, particles may respond to those fluid solicitations (experiencing an increase of the longitudinal acceleration RMS) or ignore the wall turbulent structures (presenting in that case a more homogeneous concentration).

Zamansky, R.; Vinkovic, I.; Gorokhovski, M.

2011-11-01

316

Quantitative experiments with electrons in a positively-charged particle beam  

Microsoft Academic Search

Intense ion beams are an extreme example of non-neutral plasma. We use experiments and simulations to study the complex interactions between beam ions and (unwanted) electrons. (Such electron clouds limit the performance of many accelerators.) The detailed, self-consistent simulations use the 3-D Particle-In-Cell code WARP, with the addition of beam-transport fields, and electron and gas generation and transport, to compute

Arthur Molvik

2006-01-01

317

Dynamics of accelerated electron beams and X rays in solar flares with sub-THz radiation  

NASA Astrophysics Data System (ADS)

Unique measurements by a solar submillimeter radio telescope (SST) have been carried out in the sub-THz radiation at 212 and 405 THz over the past decade. The spectrum of RF radiation in this region increased with frequency for the three flares of November 2 and 4, 2003, and December 6, 2006, and the flux value reached 5 103-2 104 sfu at 405 GHz (Kaufman et al., 2009). In this work, we consider a set of nonlinear equations for an accelerated electrons beam and the Langmuir wave energy density. The distribution functions of the accelerated electron beam and wave energy density are calculated taking into account Coulomb collisions, electron scattering by waves, and wave scattering by plasma ions. In addition, the source of accelerated particles and the heat level of the Langmuir turbulence are specified. The beam and plasma parameters are chosen based on the aims of a problem. The plasma concentration varies from n = 1013 to 1015 cm-3, the electron plasma frequency f p = (3 1010-3 1011) Hz in this case. The ratio of plasma and beam concentrations, sufficient to explain the value of the radio flux at a frequency of 300 GHz, is n b/ n = 10-3. The Langmuir turbulence is excited due to the instability of the accelerated electron beam with an initial distribution function of the "bump-in-tail" type. Then, the parameters of radiowaves are calculated in the sub-THz range under the assumption of coalescence of two plasma waves. The calculation results show that a sub-THz radio flux can be obtained under the condition of injection of accelerated electrons. The fine time structure of radio flux observed is easily simulated based on this statement by the pulsed time structure of electron beams and their dynamics in overdense plasma. X-ray and gamma radiation was recorded during the events under study. Hard X-ray radiation is bremsstrahlung radiation from accelerated electron beams.

Vatagin, P. V.; Charikov, Yu. E.; Stepanov, A. V.; Kudryavtsev, I. V.

2012-12-01

318

Acceleration control of Airy beams with optically  

E-print Network

through the linear optical potential. Our results of active acceleration manipulation in graded media in free space or uniform media. However, in many environments, the refractive media are intrinsically-index media. In optics and photonics, graded index variation appears all the time. It is thus de- sirable

Chen, Zhigang

319

Accelerators  

NSDL National Science Digital Library

What is the purpose of particle accelerators? On this web page, part of a particle physics tutorial, students read that accelerators solve two problems. The accelerators provide an increase in momentum to produce particles of small wavelength, and the fast-moving particles can create new particles when smashed together. A photograph of the inside of a particle accelerator is provided. Copyright 2005 Eisenhower National Clearinghouse

Group, Lawrence B.

2002-01-01

320

Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration  

E-print Network

Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels C for the first time in a high gradient laser wakefield accelerator by guiding the drive laser pulse. Channels formed by hydrodynamic shock were used to guide acceleration relevant laser intensities of at least 1E18

Geddes, Cameron Guy Robinson

321

Particle acceleration in an unsteady fragmented 3D current sheet in a Solar flare  

NASA Astrophysics Data System (ADS)

Solar flares show intermittent fractal-like time variability in nonthermal emissions, because particles are impulsively accelerated in small-scale acceleration regions, i.e. multiple X-points, reconnection outflows, colliding plasmoids and internal shocks in a fragmented current sheet. We performed 3D MHD simulation of a solar flare, in which a horizontal flux rope in an unstable but equilibrium state is perturbed to be flown upward. The eruption of a flux rope forms a current sheet just below the flux rope, and when the width of a current sheet becomes enough thin, it becomes unstable for the tearing instability and generates small-scale plasmoids inside. The formation and interaction of the plasmoids make the current sheet complex and turbulent. When a small-scale plasmoid is ejected out or when two plasmoids collide with each other, the electric field in a current sheet is locally enhanced with intermittent time variability. In this 3D MHD simulation result, we inserted test particles. Particles are trapped in the turbulent current sheet or between multiple plasmoids and accelerated by locally enhanced electric field. At that time, particles are intermittently accelerated at several heights and repeat multistep acceleration. Some particles can escape upward into the erupting flux rope and propagate along the field line of the flux rope. Particles are slightly accelerated by the curvature drift acceleration in the erupting flux rope and finally precipitate to another X-point connected to the different pair of loop-foot points. We also show the comparison between our simulation result and the radio spectrograph data observed in Ondrejov observatory in Czech Republic. The radio spectrograph shows similar intermittent time variability of type III bursts, i.e. electron beams, and sometimes slowly drifting pulsating structures, i.e. trapped electron beams in a plasmoid, and we discuss particle acceleration in unsteady Fractal reconnection.

Nishizuka, Naoto; Nishida, Keisuke

322

Two-beam, Multi-mode Detuned Accelerating Structure  

SciTech Connect

A two-beam accelerator structure is described having several novel features including all metal construction, no transfer structures required between the drive and accelerator channels, symmetric fields at the axes of each channel, RF micropulse widths on cavity irises that are less than half those for a conventional cavity at the same fundamental frequency by virtue of using several harmonically-related cavity modes, and a transformer ratio much greater than unity by the use of detuned cavities. Detuning is also shown to allow either parallel or anti-parallel directions for the drive and accelerated beams. A preliminary calculation for the dilution of emittance due to short-range wakes for drive beam parameters similar to those for CLIC shows this effect to be acceptably small.

Kazakov, S. Yu. [Omega-P, Inc., 199 Whitney Ave., Suite 200, New Haven, CT 06511 (United States); High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki, 305-0801 (Japan); Kuzikov, S. V. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod Russia (Russian Federation); Yakovlev, V. P. [Omega-P, Inc., 199 Whitney Ave., Suite 200, New Haven, CT 06511 (United States); Fermi national Accelerator Laboratory, Batavia, IL 60510 (United States); Hirshfield, J. L. [Omega-P, Inc., 199 Whitney Ave., Suite 200, New Haven, CT 06511 (United States); Beam Physics Laboratory, Yale University, 272 Whitney Avenue, New Haven, CT 06511 (United States)

2009-01-22

323

Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator  

Microsoft Academic Search

Corrugated, hydrophilic particles with diameters between 30 and 150 mum are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases, and subsequently the particle separates from the cavity. The cavity growth and particle detachment are modeled

Manish Arora; Claus-Dieter Ohl; Knud Aage Mrch

2004-01-01

324

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-print Network

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre develops, builds and operates large accelerator facilities for photon science and particle physics of the Helmholtz Association ASTROPARTICLE PHYSICS· DESY, Zeuthen location, is seeking: Scientist (f/m) DESY DESY

325

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-print Network

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research CentreD-Students (f/m) DESY DESY is one of the world's leading research centres for photon science, particle and astroparticle physics as well as accelerator physics. The Photo Injector Test Facility PITZ in Zeuthen (near

326

Acceleration of low energy charged particles by gravitational waves  

E-print Network

The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

G. Voyatzis; L. Vlahos; S. Ichtiaroglou; D. Papadopoulos

2005-12-07

327

Particle acceleration in collisionless shocks - Regulated injection and high efficiency  

Microsoft Academic Search

Particle acceleration in supernova remnants and radio galaxies proceeds with high efficiency, and at the same time puts out most of the cosmic ray power at moderately relativistic energies. This suggests that there is a regulated injection mechanism that selects only a very small fraction of particles out of the thermal pool, but enough that, when accelerated to moderately relativistic

D. Eichler

1979-01-01

328

Applications of pyroelectric particle accelerators Jeffrey A. Geuther, Yaron Danon *  

E-print Network

Applications of pyroelectric particle accelerators Jeffrey A. Geuther, Yaron Danon * Rensselaer mounted to the crystal. By using the combined fields of two polarized crystals, the acceleration potential can be doubled, with one crystal acting as a particle emitter and the other crys- tal serving

Danon, Yaron

329

CUSP Energetic Particles: Confinement, Acceleration and Implications  

NASA Technical Reports Server (NTRS)

The cusp energetic particle (CEP) event is a new magnetospheric phenomenon. The events were detected in the dayside cusp for hours, in which the measured helium ions had energies up to 8 MeV. All of these events were associated with a dramatic decrease and large fluctuations in the local magnetic field strength. During January 1999 - December 1999 covered by this report, I have studied the CEP events by analyzing the POLAR, GEOTAIL, and WIND particle and magnetic field data measured during the geomagnetic quiet periods in 1996 and one geomagnetic storm period in 1998. The simultaneous observations indicated that the ion fluxes in the CEP events were higher than that in both the upstream and the downstream from the bow shock. The pitch angle distribution of the helium ions in the CEP events was found to peak around 90 deg. It was found that the mirror parameter, defined as the ratio of the square root of the integration of the parallel turbulent power spectral component over the ultra-low frequency (ULF) ranges to the mean field in the cusp, is correlated with the intensity of the cusp MeV helium flux, which is a measure of the influence of mirroring interactions and an indication of local effect. It was also found that the turbulent power of the local magnetic field in the ultra-low frequency (ULF) ranges is correlated with the intensity of the cusp energetic helium ions. Such ULF ranges correspond to periods of about 0.33-500 seconds that cover the gyroperiods, the bounce periods, and the drift periods of the tens keV to MeV charged particles when they are temporarily confined in the high-altitude dayside cusp. These observations represent a discovery that the high-altitude dayside cusp is a new acceleration and dynamic trapping region of the magnetosphere. The cusp geometry is connected via gradient and curvature drift of these energized ions to the equatorial plasma sheet as close as the geostationary orbit at local midnight. It implies that the dayside cusp is potentially an important source of magnetospheric particles. The discovery of the CEP events has been recognized as one of the most significant results from POLAR. I was invited to give a talk at 1999 IUGG meeting to interpret the CEP events. This discovery has also been written into the web-based Space Physics Text Book (http://www.oulu.fi/- spaceweb/textbook/cusp.html).

Chen, Jiasheng

1999-01-01

330

H-mode Accelerating Structures with PMQ Focusing for Low-Beta Beams  

SciTech Connect

We report on results of the project developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of IH-PMQ structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. The H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or in stand-alone applications. Results of the combined 3-D modeling -- electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis -- for a full IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of EM and beamdynamics modeling. Multi-particle simulations withParmela and CST Particle Studio have been used to confirm the design. Measurement results of a cold model of the IH-PMQ tank are presented.

Kurennoy, Sergey S. [Los Alamos National Laboratory; O'Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory

2011-01-01

331

Polarization of fast particle beams by collisional pumping  

DOEpatents

The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

1984-10-19

332

Femtosecond Microbunched Electron Beam A New Tool for Advanced Accelerator Research  

NASA Astrophysics Data System (ADS)

We employed periodic trains of femtosecond electron bunches for testing several novel concepts of acceleration. A microwave-driven linac sends a 45-MeV electron beam (e-beam) through a magnetic wiggler wherein the e-beam energy is modulated via the inverse free electron laser (IFEL) technique by interacting with a 30-GW CO2 laser beam, so creating 3 fs long microbunches separated by a 30 fs laser period. We show several examples of utilizing such a femtosecond bunch train in advanced accelerator and radiation source research. We demonstrated that microbunching improves the performance of the laser acceleration process compared to the previously investigated single-bunch technique. Specifically, microbunches were phased to the electromagnetic wave of the CO2 laser beam inside a matched tapered wiggler where 80% of electrons gained energy as an ensemble while maintaining a narrow energy spread (i.e., monoenergetic). Another plasma wakefield acceleration (PWFA) experiment explored resonant wakefield excitation in an electric discharge plasma with the plasma frequency matched to that of the CO2 laser. Simulations predict orders-of-magnitude enhancement in the wakefield's amplitude compared with that attained with single bunches. In the Particle Acceleration by Stimulated Emission of Radiation (PASER) experiment, we tested a prediction that an active laser medium can produce particle acceleration by stimulating the emission of radiation. The process benefits from the action of a periodic train of microbunches resonating with the laser transition. Finally, we analyze prospects for using partially coherent x-ray sources based on Thomson backscattering from the electron microbunch train.

Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Kusche, K. P.; Pavlishin, I. V.; Yakimenko, V.; Dilley, C. E.; Gottschalk, S. C.; Kimura, W. D.; Steinhauer, L. C.; Kallos, E.; Katsouleas, T.; Muggli, P.; Zigler, A.; Banna, S.; Schchter, L.; Cline, D. B.; Zhou, F.; Kamiya, Y.; Kumita, T.

2006-04-01

333

Monoenergetic Proton Beams Accelerated by a Radiation Pressure Driven Shock  

SciTech Connect

We report on the acceleration of impurity-free quasimononenergetic proton beams from an initially gaseous hydrogen target driven by an intense infrared ({lambda} = 10 {micro}m) laser. The front surface of the target was observed by optical probing to be driven forward by the radiation pressure of the laser. A proton beam of MeV energy was simultaneously recorded with narrow energy spread ({sigma}-4%), low normalized emittance (-8 nm), and negligible background. The scaling of proton energy with the ratio of intensity over density (I/n) confirms that the acceleration is due to the radiation pressure driven shock.

Palmer, C.A.; Pogorelsky, I.; Dover, N.P.; Babzien, M.; Dudnikova, G.I.; Ispiriyan, M.; Polyanskiy, M.N.; Schreiber, J.; Shkolnikov, P.; Yakimenko, V.; Najmudin, Z.

2011-11-01

334

Iron beam acceleration using direct plasma injection scheme  

SciTech Connect

A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

Okamura, M., E-mail: okamura@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Upton, New York 11973 (United States); Kanesue, T. [Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamamoto, T. [Waseda University, Shinjuku, Tokyo 169-8555 (Japan)] [Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Fuwa, Y. [Kyoto University, Uji, Kyoto 611-0011 (Japan) [Kyoto University, Uji, Kyoto 611-0011 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan)

2014-02-15

335

Iron beam acceleration using direct plasma injection schemea)  

NASA Astrophysics Data System (ADS)

A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.

2014-02-01

336

Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning  

E-print Network

The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen different monitor types (153 devices in total) and will allow measuring all relevant beam parameters from the source to the irradiation rooms. The monitors will have to cope with large intensities and energy ranges. Currently, one ion source, the low energy beam transfer line and the RFQ are being commissioned in the Injector Test Stand (ITS) at CERN. This paper gives an overview of all beam monitors foreseen for the MedAustron accelerator, elaborates some of the design choices and reports the first beam commissioning results from the ITS.

Osmic, F; Gyorgy, A; Kerschbaum, A; Repovz, M; Schwarz, S; Neustadt, W; Burtin, G

2012-01-01

337

PARTICLE ACCELERATION DURING MAGNETOROTATIONAL INSTABILITY IN A COLLISIONLESS ACCRETION DISK  

SciTech Connect

Particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk was investigated by using a particle-in-cell simulation. We discuss the important role that magnetic reconnection plays not only on the saturation of MRI but also on the relativistic particle generation. The plasma pressure anisotropy of p > p{sub ||} induced by the action of MRI dynamo leads to rapid growth in magnetic reconnection, resulting in the fast generation of nonthermal particles with a hard power-law spectrum. This efficient particle acceleration mechanism involved in a collisionless accretion disk may be a possible model to explain the origin of high-energy particles observed around massive black holes.

Hoshino, Masahiro, E-mail: hoshino@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan)

2013-08-20

338

Beam-breakup calculations for the DARHT accelerator  

Microsoft Academic Search

An induction line that will accelerate a 4-MeV, 3-kA beam of electrons to 16- to 20-MeV in 64 gaps is modeled. To suppress beam-breakup (BBU) instabilities induced by excitation of RF deflecting modes, the growth factor ? must be kept sufficiently small (e.g. <3). On prototype DARHT cavities, RF measurements have shown that the normally degenerate TM modes are split

Paul Allison; M. J. Burns; George J. Caporaso; A. G. Cole

1991-01-01

339

Electromagnetic and geometric characterization of accelerated ion beams by laser ablation  

NASA Astrophysics Data System (ADS)

Laser ion sources offer the possibility to get ion beam useful to improve particle accelerators. Pulsed lasers at intensities of the order of 108 W/cm2 and of ns pulse duration, interacting with solid matter in vacuum, produce plasma of high temperature and density. The charge state distribution of the plasma generates high electric fields which accelerate ions along the normal to the target surface. The energy of emitted ions has a Maxwell-Boltzmann distribution which depends on the ion charge state. To increase the ion energy, a post-acceleration system can be employed by means of high voltage power supplies of about 100 kV. The post acceleration system results to be a good method to obtain high ion currents by a not expensive system and the final ion beams find interesting applications in the field of the ion implantation, scientific applications and industrial use. In this work we compare the electromagnetic and geometric properties, like emittance, of the beams delivered by pure Cu, Y and Ag targets. The characterization of the plasma was performed by a Faraday cup for the electromagnetic characteristics, whereas a pepper pot system was used for the geometric ones. At 60 kV accelerating voltage the three examined ion bunches get a current peak of 5.5, 7.3 and 15 mA, with a normalized beam emittance of 0.22, 0.12 and 0.09 ? mm mrad for the targets of Cu, Y, and Ag, respectively.

Nassisi, V.; Velardi, L.; Side, D. Delle

2013-05-01

340

Optical trapping and rotation of airborne absorbing particles with a single focused laser beam  

SciTech Connect

We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.420?kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ?20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

Lin, Jinda; Li, Yong-qing, E-mail: liy@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (United States)] [Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (United States)

2014-03-10

341

Beam Physics of Integrable Optics Test Accelerator at Fermilab  

SciTech Connect

Fermilab's Integrable Optics Test Accelerator (IOTA) is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.

Nagaitsev, S.; Valishev, A.; /Fermilab; Danilov, V.V.; /Oak Ridge; Shatilov, D.N.; /Novosibirsk, IYF

2012-05-01

342

Polarized beams in accelerators and storage rings  

NASA Astrophysics Data System (ADS)

A general approach to the analysis of spin motion in realistic accelerator fields is presented. A method of finding the "spin closed orbit" and spin tune in arbitrary field configurations is given. It is shown that spin-orbital resonances perturb the spin motion and can cause depolarization. Methods of safe resonance crossing for protons are presented, including schemes with a few Siberian snakes and spin rotators in the rings. The effects of radiation on the spin of electrons are considered and illustrated by experiences in electron storage rings in the energy range from 500 MeV to 60 GeV.

Shatunov, Yu. M.

2001-10-01

343

1 ms Pulse Beam Generation and Acceleration by Photocathode Radio Frequency Gun and Superconducting Accelerator  

NASA Astrophysics Data System (ADS)

We report the successful generation and acceleration of a 1-ms-long pulse and multibunch electron beam by a normal conducting photocathode RF gun and a super conducting accelerator at the KEK Superconducting Test Facility (STF). A 1.3 GHz normal conducting RF gun generates a 1 ms and 10 mA macropulse that fully satisfies the designed parameters. This is the longest macropulse generated by a normal conducting RF gun with a frequency of more than 1 GHz. A beam acceleration of up to 40 MeV was demonstrated with more than 60% of the designed average current. The accelerated beam properties were evaluated: the intensity and energy fluctuations were 3.8% and less than 0.08%, respectively. These beam properties are sufficient for the requirement of the STF operation including that in the quantum beam project, which is high-brightness-X-ray generation by inverse laser Compton scattering. The intensity fluctuation should be improved toward the International Linear Collider (ILC) for uniform acceleration.

Kuriki, Masao; Iijima, Hokuto; Hosoda, Seiichi; Watanabe, Ken; Hayano, Hitoshi; Urakawa, Junji; Isoyama, Goro; Kato, Ryukou; Kawase, Keigo; Kuramoto, Ayaka; Kashiwagi, Shigeru; Sakaue, Kazuyuki

2013-05-01

344

Earth's Most Powerful Natural Particle Accelerator  

NASA Technical Reports Server (NTRS)

Thunderstorms launch antimatter, gamma rays, and highly energetic electrons and neutrons to the edge of space. This witches' brew of radiation is generated at the edge of the stratopause, by the strong electric fields associated with lightning discharges. In less than a quarter millisecond, an explosive feedback process takes an initial seed population of electrons, perhaps produced by cosmic rays from dying stars, and amplifies them a billion billion-fold in the rarefied air over high altitude thunderheads. The electrons generate gamma radiation as they travel through the stratosphere and lower mesosphere, momentarily brighter and of harder spectrum than cosmic gamma ray bursts. These electrons ultimately are absorbed by the atmosphere, but the gamma rays continue on, into the upper reaches of the atmosphere, where they in turn generate a new population of electrons, positrons, and energetic neutrons. These secondary electrons and positrons move along the magnetic field, and can reach near-earth space, streaming through the inner radiation belts, and possibly contributing to the trapped populations there. First postulated by Wilson in 1925, and serendipitously discovered by the Compton Gamma Ray Observatory in 1994 [Fishman et al.], these events, known as "Terrestrial Gamma ray Flashes" (TGFs), represent the most intense episodes of particle acceleration on or near the Earth, resulting in electrons with energies up to 100 MeV. Recent observations by the RHESSI [Smith et al., 2004], Fermi [Briggs et al., 2010], and AGILE [Tavani et al., 2011] satellites, and theoretical and computational modeling, have suggested that the relativistic runaway electron avalanche (RREA) mechanism [Gurevich, 1992], and important modifications, such as the relativistic feedback discharge (RFD) model [Dwyer 2012] can best explain the observations at present. In these models, strong thunderstorm electric fields drive seed electrons, generated from cosmic ray interactions, into a runaway discharge, in which the seed electrons continually gain energy from the electric field, creating a host of secondaries as they interact with the background atmospheric gas. The feedback mechanisms include backwards-propagating positrons and gamma rays, which then can generate new "seed" electrons at the base of the acceleration region, and themselves generate further avalanche chain reactions, greatly amplifying the initial seed population. All these processes happen in the stratosphere, in the altitude range near 15-20 km, where the electric fields and mean free paths are appropriate to allow the discharge to develop.

Rowland, Doug

2012-01-01

345

Injector and beam transport simulation study of proton dielectric wall accelerator  

NASA Astrophysics Data System (ADS)

A simulation study of a short-pulsed proton injector for, and beam transport in, a dielectric wall accelerator (DWA) has been carried out using the particle-in-cell (PIC) code Warp. It was shown that applying "tilt pulse" voltage waveforms on three electrodes enables the production of a shorter bunch by the injector. The fields in the DWA beam tube were simulated using Computer Simulation Technology's Microwave Studio (CST MWS) package, with various choices for the boundary conditions. For acceleration in the DWA, the beam transport was simulated with Warp, using applied fields obtained by running CST MWS. Our simulations showed that the electric field at the entrance to the DWA represents a challenging issue for the beam transport. We thus simulated a configuration with a mesh at the entrance of the DWA, intended to improve the entrance field. In these latter simulations, a proton bunch was successfully accelerated from 130 keV to about 36 MeV in a DWA with a length of 36.75 cm. As the beam bunch progresses, its transverse dimensions diminish from (roughly) 0.50.5 cm to 0.20.4 cm. The beam pulse lengthens from 1 cm to 2 cm due to lack of longitudinal compression fields.

Zhao, Quantang; Yuan, P.; Zhang, Z. M.; Cao, S. C.; Shen, X. K.; Jing, Y.; Ma, Y. Y.; Yu, C. S.; Li, Z. P.; Liu, M.; Xiao, R. Q.; Zhao, H. W.

2012-12-01

346

LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.  

SciTech Connect

Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

2006-06-23

347

Kinetic approaches to particle acceleration at cosmic ray modified shocks  

E-print Network

Kinetic approaches provide an effective description of the process of particle acceleration at shock fronts and allow to take into account the dynamical reaction of the accelerated particles as well as the amplification of the turbulent magnetic field as due to streaming instability. The latter does in turn affect the maximum achievable momentum and thereby the acceleration process itself, in a chain of causality which is typical of non-linear systems. Here we provide a technical description of two of these kinetic approaches and show that they basically lead to the same conclusions. In particular we discuss the effects of shock modification on the spectral shape of the accelerated particles, on the maximum momentum, on the thermodynamic properties of the background fluid and on the escaping and advected fluxes of accelerated particles.

Elena Amato; Pasquale Blasi; Stefano Gabici

2008-01-09

348

Experimental Evidence for Particle Acceleration by Stimulated Emission of Radiation  

NASA Astrophysics Data System (ADS)

The interaction of electromagnetic radiation with free electrons in the presence of an active medium has several appealing outcomes. Among them the PASER scheme, standing for Particle Acceleration by Stimulated Emission of Radiation. In the framework of this scheme, energy stored in an active medium (microscopic cavities) is transferred directly to an e-beam traversing the medium, and therefore, accelerating the former. Recently, a proof-of-principle experiment of this concept was performed at the Brookhaven National Laboratory reaching a gain of 200keV in the kinetic energy of a 5ps, 0.1nc and 45MeV quasi-mono-energetic macro-bunch which is modulated by its interaction with a CO2 laser pulse in an adequate wiggler. In the framework of this proof-of-principle experiment both the fundamental frequency of the train of micro-bunches and the medium's resonance frequency (CO2 mixture) are matched. A good agreement is found between the energy gain and a 2D analytic model that has been developed.

Banna, Samer; Berezovsky, Valery; Schchter, Levi

2006-11-01

349

Experimental Evidence for Particle Acceleration by Stimulated Emission of Radiation  

SciTech Connect

The interaction of electromagnetic radiation with free electrons in the presence of an active medium has several appealing outcomes. Among them the PASER scheme, standing for Particle Acceleration by Stimulated Emission of Radiation. In the framework of this scheme, energy stored in an active medium (microscopic cavities) is transferred directly to an e-beam traversing the medium, and therefore, accelerating the former. Recently, a proof-of-principle experiment of this concept was performed at the Brookhaven National Laboratory reaching a gain of 200keV in the kinetic energy of a 5ps, 0.1nc and 45MeV quasi-mono-energetic macro-bunch which is modulated by its interaction with a CO2 laser pulse in an adequate wiggler. In the framework of this proof-of-principle experiment both the fundamental frequency of the train of micro-bunches and the medium's resonance frequency (CO2 mixture) are matched. A good agreement is found between the energy gain and a 2D analytic model that has been developed.

Banna, Samer [Department of Electrical Engineering, Technion-IIT, Haifa 32000 (Israel); Brookhaven National Laboratory, Upton, NY 11973 (United States); Berezovsky, Valery; Schaechter, Levi [Department of Electrical Engineering, Technion-IIT, Haifa 32000 (Israel)

2006-11-27

350

Plasma flow and fast particles in a hypervelocity accelerator - A color presentation. [micrometeoroid simulation  

NASA Technical Reports Server (NTRS)

A new concept for particle acceleration for micrometeoroid simulation was developed at NASA Marshall Space Flight Center, using a high-density self-luminescent fast plasma flow to accelerate glass beads (with a diameter up to 1.0 mm) to velocities between 15-20 km/sec. After a short introduction to the operation of the hypervelocity range, the eight-converter-camera unit used for the photographs of the plasma flow and the accelerated particles is described. These photographs are obtained with an eight-segment reflecting pyramidal beam splitter. Wratten filters were mounted between the beam splitter and the converter tubes of the cameras. The photographs, which were recorded on black and white film, were used to make the matrices for the dye-color process, which produced the prints shown.

Igenbergs, E. B.; Cour-Palais, B.; Fisher, E.; Stehle, O.

1975-01-01

351

Pulsed particle beam vacuum-to-air interface  

SciTech Connect

A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

Cruz, Gilbert E. (Pleasanton, CA); Edwards, William F. (Livermore, CA)

1988-01-01

352

Generalized Skilling Equation for Particle Acceleration in Reconnecting Magnetic Fields  

NASA Astrophysics Data System (ADS)

While particle-in-cell simulations provide valuable information on particle acceleration in two-dimensional reconnection problems, such simulations are much rarer in three dimensions because of the limits of computing power. Hence, analytical approaches to calculating particle distribution functions need to be developed. In recent years, there have been attempts to use variants of Parker's transport equation to particle acceleration problems involving magnetic islands. In this paper, we present the derivation of a generalized Skilling equation (GSE) for guiding-center plasmas that is shown to reduce to Parker's transport equation under some strong assumptions, not generally valid for particle acceleration involving magnetic islands. The GSE assumes gyrotropy, but enables the treatment of anisotropy of the particle distribution function. The equation can be applied to relativistic as well as non-relativistic particles. We will present results on the application of this equation to hydrogen as well as pair plasmas.

Wang, Liang; Bhattacharjee, A.; Lee, M.

2010-11-01

353

Acceleration of energetic particles which accompany coronal mass ejections  

NASA Technical Reports Server (NTRS)

The causal association of major solar particle events seen at earth with coronal mass ejections (CME's), and not with solar flares, is discussed. Evidence that led to the demise of the flare dominated paradigm for major solar energetic particle events are described. The possibility of distinguishing particles from impulsive and gradual events using only observations is described. Particle acceleration at the CME level is discussed. Multi-spacecraft observations of CME events are described. Concerning the interplanetary CME, bidirectional proton events are discussed. Conclusions from progress in understanding the characteristics of solar energetic particles and their relation to the physical mechanisms of acceleration are given.

Reames, Donald V.

1994-01-01

354

Application of particle accelerators in research.  

PubMed

Since the beginning of the past century, accelerators have started to play a fundamental role as powerful tools to discover the world around us, how the universe has evolved since the big bang and to develop fundamental instruments for everyday life. Although more than 15 000 accelerators are operating around the world only a very few of them are dedicated to fundamental research. An overview of the present high energy physics (HEP) accelerator status and prospectives is presented. PMID:21908658

Mazzitelli, Giovanni

2011-07-01

355

Particle acceleration by stimulated emission of radiation: theory and experiment.  

PubMed

The interaction of electromagnetic radiation with free electrons in the presence of an active medium has some appealing outcomes. Among them is particle acceleration by stimulated emission of radiation (PASER). In its framework, energy stored in an active medium (microscopic cavities) is transferred directly to an e -beam passing through. We have developed a two-dimensional analytic model for the evaluation of the energy exchange occurring as a train of electron microbunches traverses a dilute resonant medium. Efficient interaction occurs at resonance-namely, when the frequency of the train matches the resonance frequency of the medium. It is shown that the energy exchange is gamma independent for relativistic energies and it drops dramatically with an increase of the beam's radius. Based on this model, we have evaluated the relative change in the kinetic energy of a 0.1-nC 45-MeV macrobunch traversing an excited CO2 gas mixture-the former being modulated at the CO2 laser wavelength. Good agreement is found between the theoretical predictions and the results of the PASER experiment performed recently at Brookhaven National Laboratory. PMID:17155184

Banna, Samer; Berezovsky, Valery; Schchter, Levi

2006-10-01

356

Particle acceleration by stimulated emission of radiation: Theory and experiment  

SciTech Connect

The interaction of electromagnetic radiation with free electrons in the presence of an active medium has some appealing outcomes. Among them is particle acceleration by stimulated emission of radiation (PASER). In its framework, energy stored in an active medium (microscopic cavities) is transferred directly to an e-beam passing through. We have developed a two-dimensional analytic model for the evaluation of the energy exchange occurring as a train of electron microbunches traverses a dilute resonant medium. Efficient interaction occurs at resonance--namely, when the frequency of the train matches the resonance frequency of the medium. It is shown that the energy exchange is {gamma} independent for relativistic energies and it drops dramatically with an increase of the beam's radius. Based on this model, we have evaluated the relative change in the kinetic energy of a 0.1-nC 45-MeV macrobunch traversing an excited CO{sub 2} gas mixture--the former being modulated at the CO{sub 2} laser wavelength. Good agreement is found between the theoretical predictions and the results of the PASER experiment performed recently at Brookhaven National Laboratory.

Banna, Samer; Berezovsky, Valery; Schaechter, Levi [Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel)

2006-10-15

357

A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators  

SciTech Connect

Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than ?{sub D}. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Serianni, G. [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy)] [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, Viale dell Universit 2, 35020 Legnaro (PD) (Italy)] [INFN-LNL, Viale dell Universit 2, 35020 Legnaro (PD) (Italy)

2014-02-15

358

A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators.  

PubMed

Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than ?D. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed. PMID:24593445

Veltri, P; Cavenago, M; Serianni, G

2014-02-01

359

Beam by design: Laser manipulation of electrons in modern accelerators  

NASA Astrophysics Data System (ADS)

Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

2014-07-01

360

Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator  

SciTech Connect

The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

2013-11-15

361

Particle acceleration in time-developing magnetic reconnection process  

Microsoft Academic Search

Particle trajectories and acceleration are numerically studied in time-varying electric and magnetic fields that are obtained by a previous MHD simulation of an externally driven reconnection. Electron and proton orbits are traced under the influence of the developing reconnection fields for various initial particle positions and velocities. A method of continuation of local analytic solution in a particle-pushing algorithm is

Tetsuya Sato; Hiroshi Matsumoto; Keisuke Nagai

1982-01-01

362

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-print Network

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association PARTICLE PHYSICS· DESY has openings for: DESY-Fellowships (f/m) DESY DESY is one of the world's leading research centres for photon science, particle and astroparticle physics as well

363

Laser-driven ion acceleration with hollow laser beams  

NASA Astrophysics Data System (ADS)

The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum fr Schwerionenforschung GmbH with laser intensities in the range from 1018 W cm-2 to 1020 W cm-2 . We observed an average reduction of the half opening angle by (3.07 0.42 ) or (13.2 2.0 )% when the targets have a thickness between 12 ?m and 14 ?m. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

Brabetz, C.; Busold, S.; Cowan, T.; Deppert, O.; Jahn, D.; Kester, O.; Roth, M.; Schumacher, D.; Bagnoud, V.

2015-01-01

364

Focused transport of intense charged particle beams. Final technical report FY/93  

SciTech Connect

Many recent developments in accelerator technology have increased the need for a better understanding of the physics of intense-beam transport. Of particular interest to the work described here is the appearance, as beam intensities are increased, of a class of nonlinear phenomena which involve the collective interaction of the beam particles. Beam intensity, used as a measure of the importance of space-charge collective behavior, depends on the ratio of current to emittance. The nonlinear beam dynamics, and any resulting emittance growth, which are characteristic of the intense-beam regime, can therefore occur even at low currents in any accelerator system with sufficiently high intensity, especially in the low beta section. Furthermore, since emittance of a beam is difficult to reduce, the ultimate achievement of necessary beam luminosities requires the consideration of possible causes of longitudinal and transverse emittance growth at every stage of the beam lifetime. The research program described here has addressed the fundamental physics which comes into play during the transport, acceleration and focusing of intense beams. Because of the long term and ongoing nature of the research program discussed here, this report is divided into two sections. The first section constitutes a long term revue of the accomplishments which have resulted from the research effort reported, especially in pioneering the use of particle-in-cell (PIC) computer simulation techniques for simulation of the dynamics of space-charge-dominated beams in particle accelerators. The following section emphasizes, in more detail, the accomplishments of the FY 92/93 period immediately prior to the termination of this particular avenue of support. 41 refs.

NONE

1997-06-01

365

A Phenomenological Cost Model for High Energy Particle Accelerators  

E-print Network

Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

Vladimir Shiltsev

2014-04-15

366

GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy  

NASA Astrophysics Data System (ADS)

We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

Ammazzalorso, F.; Bednarz, T.; Jelen, U.

2014-03-01

367

ON PARTICLE ACCELERATION RATE IN GAMMA-RAY BURST AFTERGLOWS  

SciTech Connect

It is well known that collisionless shocks are major sites of particle acceleration in the universe, but the details of the acceleration process are still not well understood. The particle acceleration rate, which can shed light on the acceleration process, is rarely measured in astrophysical environments. Here, we use observations of gamma-ray burst (GRB) afterglows, which are weakly magnetized relativistic collisionless shocks in ion-electron plasma, to constrain the rate of particle acceleration in such shocks. We find, based on X-ray and GeV afterglows, an acceleration rate that is most likely very fast, approaching the Bohm limit, when the shock Lorentz factor is in the range of {Gamma} {approx} 10-100. In that case X-ray observations may be consistent with no amplification of the magnetic field in the shock upstream region. We examine the X-ray afterglow of GRB 060729, which is observed for 642 days showing a sharp decay in the flux starting about 400 days after the burst, when the shock Lorentz factor is {approx}5. We find that inability to accelerate X-ray-emitting electrons at late time provides a natural explanation for the sharp decay, and that also in that case acceleration must be rather fast, and cannot be more than a 100 times slower than the Bohm limit. We conclude that particle acceleration is most likely fast in GRB afterglows, at least as long as the blast wave is ultrarelativistic.

Sagi, Eran; Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

2012-04-10

368

Particle-acceleration timescales in TeV blazar flares  

E-print Network

Observations of minute-scale flares in TeV Blazars place constraints on particle acceleration mechanisms in those objects. The implications for a variety of radiation mechanisms have been addressed in the literature; in this paper we compare four different acceleration mechanisms: diffusive shock acceleration, second-order Fermi, shear acceleration and the converter mechanism. When the acceleration timescales and radiative losses are taken into account, we can exclude shear acceleration and the neutron-based converted mechanism as possible acceleration processes in these systems. The first-order Fermi process and the converter mechanism working via SSC photons are still practically instantaneous, however, provided sufficient turbulence is generated on the timescale of seconds. We propose stochastic acceleration as a promising candidate for the energy-dependent time delays in recent gamma-ray flares of Markarian 501.

Joni Tammi; Peter Duffy

2008-12-01

369

Particle Simulations of a Linear Dielectric Wall Proton Accelerator  

SciTech Connect

The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

Poole, B R; Blackfield, D T; Nelson, S D

2007-06-12

370

An Accelerated Collaboration Meets with Beaming Success  

SciTech Connect

Maintaining a smaller, aging U.S. nuclear weapons stockpile without underground nuclear testing requires the capability to verify and validate the complex computer calculations on which stockpile confidence is based. This capability, in turn, requires nonnuclear hydrodynamic tests (hydrotests) that can x-ray stages of the implosion process, providing freeze-frame photos of materials imploding at speeds of more than 16,000 kilometers per hour. The images will yield important information on shapes and densities of metals and other materials under the extreme pressures and temperatures generated by the detonation of high explosives. The Dual-Axis Radiographic Hydrodynamics Test (DARHT) Facility at Los Alamos national Laboratory is a two-arm x-ray imaging system that will provide such images, capturing the inner workings of a mock nuclear explosion with high resolution. Scientists compare the radiographic images with computer models, examine the differences, and refine the models to more accurately represent weapon behavior. One of DARHT's arms (now called DARHT-II) recently got a ''leg up'' through a collaboration of Lawrence Livermore and Los Alamos scientists, using a Livermore accelerator to test its subsystems and codes.

Hazi, A U

2007-02-09

371

Effects of sidelobes of focused flat-topped laser beams on vacuum electron acceleration  

NASA Astrophysics Data System (ADS)

Using three-dimensional test particle simulations, we investigated electrons accelerated by a focused flat-top laser beam at different intensities and flatness levels of the beam profile before focusing in vacuum. The results show that the presence of sidelobes around the main focal spot of the focused flat-top laser beam influences the optimum (as far as electron acceleration is concerned) initial momentum (and incident angle) of electrons for acceleration. The difference of initial conditions between laser beams with and without sidelobes becomes evident when the laser field is strong enough (a0>10, corresponding to intensities I>11020 W/cm2 for the laser wavelength ?=1 ?m, where a0 is a dimensionless parameter measuring laser intensity). The difference becomes more pronounced at increasing a0. Because of the presence of sidelobes, there exist three typical CAS (capture and acceleration scenario) channels when a0?30 (corresponding to I>11021 W/cm2 for ?=1 ?m). The energy spread of the outgoing electrons is also discussed in detail.

Wang, W.; Wang, P. X.; Ho, Y. K.; Kong, Q.; Gu, Y.; Wang, S. J.

2007-07-01

372

Vacuum chamber for containing particle beams  

DOEpatents

A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

Harvey, A.

1985-11-26

373

Charged particle beam current monitoring tutorial  

SciTech Connect

A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

Webber, R.C.

1994-10-01

374

Vacuum chamber for containing particle beams  

DOEpatents

A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer, such as nickel can be coated on the inside of the pipe.

Harvey, Alexander (Los Alamos, NM)

1987-01-01

375

A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams  

E-print Network

We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laserplasma ...

Pfotenhauer, Sebastian Michael

376

Beam-driven acoustic solitary waves in the auroral acceleration region  

NASA Astrophysics Data System (ADS)

The formation of ion acoustic solitary structure driven by electron and ion beams in the auroral acceleration region is studied using two-dimensional electrostatic particle simulations. The beams are consistently present in regions of moderate potential drop (<=1 keV) where weak double layers have been observed on both S3-3 anad Viking spacecraft. The presence of more than one ion species introduces the ion two-stream instability besides the ion acoustic one into the system and modifies previous analysis and simulation results of solitary wave formation. Solitary structures form as a result of the microinstability development. The numerical simulation results show that positively peaked (?>0) localized structures are formed in the system driven by a dense (nib~ncne/2) ion beam. The solitary waves move in the direction of the ion beam velocity. By contrast, negative potential solitary structures form when the ion beam density is reduced to 10% (nib~0.1 ne) and electron drift relative to background ions is sustained by an applied electric field. In this case, solitary waves drift downward at subsonic speeds relative to the background ions, which may carry the localized pulses upward. Evolving solitary waves do not carry any significant net potential drop and therefore cannot contribute much to the auroral particle acceleration. They are found to be a consequence of the larger-scale V-shaped potential distribution in the auroral region.

Marchenko, Victor A.; Hudson, Mary K.

1995-10-01

377

Particle Acceleration in Gamma-Ray Burst Jets  

E-print Network

Gradual shear acceleration of energetic particles in gamma-ray burst (GRB) jets is considered. Special emphasis is given to the analysis of universal structured jets, and characteristic acceleration timescales are determined for a power-law and a Gaussian evolution of the bulk flow Lorentz factor $\\gamma_b$ with angle $\\phi$ from the jet axis. The results suggest that local power-law particle distributions may be generated and that higher energy particles are generally concentrated closer to the jet axis. Taking several constraints into account we show that efficient electron acceleration in gradual shear flows, with maximum particle energy successively decreasing with time, may be possible on scales larger than $r \\sim 10^{15}$ cm, provided the jet magnetic field becomes sufficiently weak and/or decreases rapidly enough with distance, while efficient acceleration of protons to ultra-high energies $> 10^{20}$ eV may be possible under a wide range of conditions.

Frank M. Rieger; Peter Duffy

2005-11-02

378

Black holes as particle accelerators: a brief review  

E-print Network

Rapidly rotating Kerr black holes can accelerate particles to arbitrarily high energy if the angular momentum of the particle is fine-tuned to some critical value. This phenomenon is robust as it is founded on the basic properties of geodesic orbits around a near-extremal Kerr black hole. On the other hand, the maximum energy of the acceleration is subjected to several physical effects. There is convincing evidence that the particle acceleration to arbitrarily high energy is one of the universal properties of general near-extremal black holes. We also discuss gravitational particle acceleration in more general context. This article is intended to provide a pedagogical introduction to and a brief overview of this topic for non-specialists.

Tomohiro Harada; Masashi Kimura

2014-11-18

379

Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)  

ScienceCinema

Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

Sessler, Andy

2011-04-28

380

A GPU Accelerated Smoothed Particle Hydrodynamics Capability For Houdini  

E-print Network

on the desired result. One common fluid simulation technique is the Smoothed Particle Hydrodynamics (SPH) method. This method is highly parellelizable. I have implemented a method to integrate a Graphics Processor Unit (GPU) accelerated SPH capability into the 3D...

Sanford, Mathew

2012-10-19

381

Black holes as particle accelerators: a brief review  

NASA Astrophysics Data System (ADS)

Rapidly rotating Kerr black holes can accelerate particles to arbitrarily high energy if the angular momentum of the particle is fine-tuned to some critical value. This phenomenon is robust as it is founded on the basic properties of geodesic orbits around a near-extremal Kerr black hole. On the other hand, the maximum energy of the acceleration is subjected to several physical effects. There is convincing evidence that the particle acceleration to arbitrarily high energy is one of the universal properties of general near-extremal black holes. We also discuss gravitational particle acceleration in a more general context. This article is intended to provide a pedagogical introduction to and a brief overview of this topic for non-specialists.

Harada, Tomohiro; Kimura, Masashi

2014-12-01

382

Electron beam ion sources for use in second generation synchrotrons for medical particle therapy  

NASA Astrophysics Data System (ADS)

Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

2014-02-01

383

Particle Acceleration Around 5-dimensional Kerr Black Hole  

E-print Network

On the lines of the 4-dimensional Kerr black hole we consider the particle acceleration near a 5-dimensional Kerr black hole which has the two rotation parameters. It turns out that the center of mass energy of the two equal mass colliding particles as expected diverges for the extremal black hole and there is a symmetry in the results for $\\theta = 0, \\pi/2$. Because of the two rotation parameters, $r=0$ can be a horizon without being a curvature singularity. It is shown that the acceleration of particles to high energies near the 5-D extreme rotating black hole avoids fine-tuning of the angular momentum of particles.

Ahmadjon Abdujabbarov; Naresh Dadhich; Bobomurat Ahmedov; Husan Eshkuvatov

2013-12-11

384

Electron beam dynamics in the DARHT-II linear induction accelerator  

Microsoft Academic Search

The DARHT-II linear induction accelerator (LIA) accelerates a 2-kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have

Carl A Ekdahl; Epifanio O Abeyta; Paul Aragon; Rita Archuleta; Gerald Cook; Dale Dalmas; Kevin Esquibel; Robert A Gallegos; Robert Garnett; James F Harrison; Jeffrey B Johnson; Edward B Jacquez; Brian T Mccuistian; Nicholas A Montoya; Subrata Nath; Kurt Nielsen; David Oro; Benjamin Prichard; Lawrence Rowton; Manolito Sanchez; Raymond Scarpetti; Martin M Schauer; Gerald Seitz; Martin Schulze; Howard A Bender; William B Broste; Carl A Carlson; Daniel K Frayer; Douglas E Johnson; C Y Tom; C Trainham; John Williams; Thomas Genoni; Thomas Hughes; Carsten Toma

2008-01-01

385

Particle Acceleration in three dimensional Reconnection Regions: A New Test Particle Approach  

E-print Network

Magnetic Reconnection is an efficient and fast acceleration mechanism by means of direct electric field acceleration parallel to the magnetic field. Thus, acceleration of particles in reconnection regions is a very important topic in plasma astrophysics. This paper shows that the conventional analytical models and numerical test particle investigations can be misleading concerning the energy distribution of the accelerated particles, since they oversimplify the electric field structure by the assumption that the field is homogeneous. These investigations of the acceleration of charged test particles are extended by considering three-dimensional field configurations characterized by localized field-aligned electric fields. Moreover, effects of radiative losses are discussed. The comparison between homogeneous and inhomogeneous electric field acceleration in reconnection regions shows dramatic differences concerning both, the maximum particle energy and the form of the energy distribution.

Rudiger Schopper; Guido T. Birk; Harald Lesch

2001-06-29

386

The phase of particle acceleration in the flare development  

Microsoft Academic Search

Evidence is given that the particle acceleration in flares is confined to the initial phase of the flare development preceding the Ha flare maximum and lasting for less than 10 min. The impulsive acceleration process is confined to a relatively small limited volume of about 5 1027 cm3 in the region of highest magnetic gradient in the flare, and

Z. vestka

1970-01-01

387

Acceleration and Trapping of Particles by Radiation Pressure  

Microsoft Academic Search

Micron-sized particles have been accelerated and trapped in stable optical potential wells using only the force of radiation pressure from a continuous laser. It is hypothesized that similar accelerations and trapping are possible with atoms and molecules using laser light tuned to specific optical transitions. The implications for isotope separation and other applications of physical interest are discussed.

A. Ashkin

1970-01-01

388

Particle Acceleration in (by) Accretion Discs  

E-print Network

I present a model for acceleration of protons by the second-order Fermi process acting on randomly scrambled magnetic flux arches above an accretion disc. The accelerated protons collide with thermal protons in the disc, producing degraded energetic protons, charged and neutral pions, and neutrons. The pions produce gamma-rays by spontaneous decay of $\\pi^0$ and by bremsstrahlung and Compton processes following the decay of $\\pi^\\pm$ to $e^\\pm$.

J. I. Katz

1992-05-04

389

Relativistic Particle Acceleration in a Folded Current Sheet  

E-print Network

Two-dimensional particle simulations of a relativistic Harris current sheet of pair plasmashave demonstrated that the system is unstable to the relativistic drift kink instability (RDKI) and that a new kind of acceleration process takes place in the deformed current sheet. This process contributes to the generation of non-thermal particles and contributes to the fast magnetic dissipation in the current sheet structure. The acceleration mechanism and a brief comparison with relativistic magnetic reconnection are presented.

S. Zenitani; M. Hoshino

2005-05-24

390

Topical Issues for Particle Acceleration Mechanisms in Astrophysical Shocks  

Microsoft Academic Search

Particle acceleration at plasma shocks appears to be ubiquitous in the universe, spanning systems in the heliosphere, supernova\\u000a remnants, and relativistic jets in distant active galaxies and gamma-ray bursts. This review addresses some of the key issues\\u000a for shock acceleration theory that require resolution in order to propel our understanding of particle energization in astrophysical\\u000a environments. These include magnetic field

Matthew G. Baring

2007-01-01

391

Stochastic Particle Acceleration and the Problem of Background Plasma Overheating  

NASA Astrophysics Data System (ADS)

The origin of hard X-ray (HXR) excess emission from clusters of galaxies is still an enigma, whose nature is debated. One of the possible mechanisms to produce this emission is the bremsstrahlung model. However, previous analytical and numerical calculations showed that in this case the intracluster plasma had to be overheated very fast because suprathermal electrons emitting the HXR excess lose their energy mainly by Coulomb losses, i.e., they heat the background plasma. It was concluded also from these investigations that it is problematic to produce emitting electrons from a background plasma by stochastic (Fermi) acceleration because the energy supplied by external sources in the form of Fermi acceleration is quickly absorbed by the background plasma. In other words, the Fermi acceleration is ineffective for particle acceleration. We revisited this problem and found that at some parameter of acceleration the rate of plasma heating is rather low and the acceleration tails of nonthermal particles can be generated and exist for a long time while the plasma temperature is almost constant. We showed also that for some regime of acceleration the plasma cools down instead of being heated up, even though external sources (in the form of external acceleration) supply energy to the system. The reason is that the acceleration withdraws effectively high-energy particles from the thermal pool (analog of Maxwell demon).

Chernyshov, D. O.; Dogiel, V. A.; Ko, C. M.

2012-11-01

392

STOCHASTIC PARTICLE ACCELERATION AND THE PROBLEM OF BACKGROUND PLASMA OVERHEATING  

SciTech Connect

The origin of hard X-ray (HXR) excess emission from clusters of galaxies is still an enigma, whose nature is debated. One of the possible mechanisms to produce this emission is the bremsstrahlung model. However, previous analytical and numerical calculations showed that in this case the intracluster plasma had to be overheated very fast because suprathermal electrons emitting the HXR excess lose their energy mainly by Coulomb losses, i.e., they heat the background plasma. It was concluded also from these investigations that it is problematic to produce emitting electrons from a background plasma by stochastic (Fermi) acceleration because the energy supplied by external sources in the form of Fermi acceleration is quickly absorbed by the background plasma. In other words, the Fermi acceleration is ineffective for particle acceleration. We revisited this problem and found that at some parameter of acceleration the rate of plasma heating is rather low and the acceleration tails of nonthermal particles can be generated and exist for a long time while the plasma temperature is almost constant. We showed also that for some regime of acceleration the plasma cools down instead of being heated up, even though external sources (in the form of external acceleration) supply energy to the system. The reason is that the acceleration withdraws effectively high-energy particles from the thermal pool (analog of Maxwell demon).

Chernyshov, D. O.; Dogiel, V. A. [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute, Leninskii pr 53, 119991 Moscow (Russian Federation); Ko, C. M., E-mail: cmko@astro.ncu.edu.tw [Institute of Astronomy, National Central University, JhongLi 320, Taiwan (China)

2012-11-10

393

High-intensity ion sources for accelerators with emphasis on H-beam formation and transport  

SciTech Connect

This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

Keller, Roderich [Los Alamos National Laboratory

2009-01-01

394

Ultralow emittance electron beams from a laser-wakefield accelerator  

NASA Astrophysics Data System (ADS)

Using quadrupole scan measurements we show laser-wakefield accelerated electrons to have a normalized transverse emittance of 0.21-0.02+0.01?mmmrad at 245 MeV. We demonstrate a multishot and a single-shot method, the mean emittance values for both methods agree well. A simple model of the beam dynamics in the plasma density downramp at the accelerator exit matches the source size and divergence values inferred from the measurement. In the energy range of 245 to 300 MeV the normalized emittance remains constant.

Weingartner, R.; Raith, S.; Popp, A.; Chou, S.; Wenz, J.; Khrennikov, K.; Heigoldt, M.; Maier, A. R.; Kajumba, N.; Fuchs, M.; Zeitler, B.; Krausz, F.; Karsch, S.; Grner, F.

2012-11-01

395

Electron capture acceleration channel in a slit laser beam  

SciTech Connect

Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.

Wang, P. X.; Scheid, W.; Ho, Y. K. [Institute for Theoretical Physics, Justus-Liebig-University, Giessen (Germany); Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

2007-03-12

396

High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.  

PubMed

We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 510(17)cm-3. Within an embedded 100???m long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5???m transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length. PMID:24483670

Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

2013-12-13

397

Recent progress of laser driven particle acceleration at Peking University  

NASA Astrophysics Data System (ADS)

Recently, radiation pressure acceleration (RPA) has been proposed and extensively studied, which shows that circularly polarized (CP) laser pulses can accelerate mono-energetic ion bunches in a phase-stable-acceleration (PSA) way from ultrathin foils. It is found that self-organizing proton beam can be stably accelerated to GeV in the interaction of a CP laser with a planar target at 1022 W/cm2. A project called Compact LAser Plasma proton Accelerator (CLAPA) is approved by MOST in China recently. A prototype of laser driven proton accelerator (1 to 15 MeV/1 Hz) based on the PSA mechanism and plasma lens is going to be built at Peking University in the next five years. It will be upgraded to 200 MeV later for applications such as cancer therapy, plasma imaging and fast ignition for inertial confine fusion.

Yan, Xue-Qing; Lin, Chen; Lu, Hai-Yang; Zhu, Kun; Zou, Yu-Bin; Wang, Hong-Yong; Liu, Bing; Zhao, Shuan; Zhu, Jiao; Geng, Yi-Xing; Fu, He-Zheng; Shang, Yong; Cao, Chao; Shou, Yin-Ren; Song, Wei; Lu, Yuan-Rong; Yuan, Zhong-Xi; Guo, Zhi-Yu; He, Xian-Tu; Chen, Jia-Er

2013-10-01

398

Particle trajectories and acceleration during 3D fan reconnection  

E-print Network

Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.

S. Dalla; P. K. Browning

2008-11-07

399

Particle Acceleration in an Evolving Network of Unstable Current Sheets  

E-print Network

We study the acceleration of electrons and protons interacting with localized, multiple, small-scale dissipation regions inside an evolving, turbulent active region. The dissipation regions are Unstable Current Sheets (UCS), and in their ensemble they form a complex, fractal, evolving network of acceleration centers. Acceleration and energy dissipation are thus assumed to be fragmented. A large-scale magnetic topology provides the connectivity between the UCS and determines in this way the degree of possible multiple acceleration. The particles travel along the magnetic field freely without loosing or gaining energy, till they reach a UCS. In a UCS, a variety of acceleration mechanisms are active, with the end-result that the particles depart with a new momentum. The stochastic acceleration process is represented in the form of Continuous Time Random Walk (CTRW), which allows to estimate the evolution of the energy distribution of the particles. It is found that under certain conditions electrons are heated and accelerated to energies above 1 MeV in much less than a second. Hard X-ray (HXR) and microwave spectra are calculated from the electrons' energy distributions, and they are found to be compatible with the observations. Ions (protons) are also heated and accelerated, reaching energies up to 10 MeV almost simultaneously with the electrons. The diffusion of the particles inside the active region is extremely fast (anomalous super-diffusion). Although our approach does not provide insight into the details of the specific acceleration mechanisms involved, its benefits are that it relates acceleration to the energy release, and it well describes the stochastic nature of the acceleration process.

L. Vlahos; H. Isliker; F. Lepreti

2004-02-26

400

Current and future uses of accelerators in particle astrophysics  

NASA Technical Reports Server (NTRS)

Beams of artificially accelerated heavy ions, protons, antiprotons, electrons, and positrons currently available at (and planned for) numerous facilities around the world are a valuable resource to the Cosmic Ray community. Such beams have been used to test detector concepts, calibrate balloon-borne and space flight experiments and to measure fundamental nuclear physics parameter necessary for the interpretation of Cosmic Ray data. As new experiments are flown the quality and extent of Cosmic Ray measurements will continue to improve. It will be necessary to increase activity at ground based accelerators in order to test/calibrate these new instruments and to maintain (or possibly improve) the ability to interpret these data. In this area, the newly formed Transport Collaboration, supported by NASA, will be providing new nuclear interaction cross section measurements for beams with Z less than or = 58 and supporting new instrument calibrations at the Lawrence Berkeley Laboratory Bevalac accelerator.

Guzik, T. G.

1990-01-01

401

The multi-wavelength study of the effect of energetic particle beams on the chromospheric  

E-print Network

(Tenerife). The HXR and H emission in the kernels 1 and 3 is close spatially and temporally while in kernels to the precipitation either of electron (kernels 1 and 3) or protons (4 and 7). Key words: solar flares, energy to the propagation of the accelerated particle beams from the upper to lower atmospheric layers and energy

Zharkova, Valentina V.

402

Particle Acceleration and Associated Emission from Relativistic Shocks  

NASA Technical Reports Server (NTRS)

Five talks consist of a research program consisting of numerical simulations and theoretical development designed to provide an understanding of the emission from accelerated particles in relativistic shocks. The goal of this lecture is to discuss the particle acceleration, magnetic field generation, and radiation along with the microphysics of the shock process in a self-consistent manner. The discussion involves the collisionless shocks that produce emission from gamma-ray bursts and their afterglows, and producing emission from supernova remnants and AGN relativistic jets. Recent particle-in-cell simulation studies have shown that the Weibel (mixed mode two-stream filamentation) instability is responsible for particle (electron, positron, and ion) acceleration and magnetic field generation in relativistic collisionless shocks. 3-D RPIC code parallelized with MPI has been used to investigate the dynamics of collisionless shocks in electron-ion and electron-positron plasmas with and without initial ambient magnetic fields. In this lecture we will present brief tutorials of RPIC simulations and RMHD simulations, a brief summary of recent RPIC simulations, mechanisms of particle acceleration in relativistic shocks, and calculation of synchrotron radiation by tracing particles. We will discuss on emission from the collisionless shocks, which will be calculated during the simulation by tracing particle acceleration self-consistently in the inhomogeneous magnetic fields generated in the shocks. In particular, we will discuss the differences between standard synchrotron radiation and the jitter radiation that arises in turbulent magnetic fields.

Nishkawa, Ken-Ichi

2009-01-01

403

Thermal Particle Injection in Nonlinear Diffusive Shock Acceleration  

E-print Network

Particle acceleration in collisionless astrophysical shocks, i.e., diffusive shock acceleration (DSA), is the most likely mechanism for producing cosmic rays, at least below 10^{15} eV. Despite the success of this theory, several key elements, including the injection of thermal particles, remains poorly understood. We investigate injection in strongly nonlinear shocks by comparing a semi-analytic model of DSA with a Monte Carlo model. These two models treat injection quite differently and we show, for a particular set of parameters, how these differences influence the overall acceleration efficiency and the shape of the broad-band distribution function.

Donald C. Ellison; Pasquale Blasi; Stefano Gabici

2005-07-05

404

Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning  

Microsoft Academic Search

The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen

F Osmic; M Feurstein; A Gyorgy; A Kerschbaum; M Repovz; S Schwarz; W Neustadt; G Burtin

2012-01-01

405

Thermal equilibrium theory of periodically focused charged-particle beams  

E-print Network

A thermal equilibrium theory of periodically focused charged-particle beams is presented in the framework of both warm-fluid and kinetic descriptions. In particular, the thermal beam equilibria are discussed for paraxial ...

Samokhvalova, Ksenia R

2008-01-01

406

Trends for Electron Beam Accelerator Applications in Industry  

NASA Astrophysics Data System (ADS)

Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

Machi, Sueo

2011-02-01

407

Negative hydrogen ion source research and beam parameters for accelerators  

Microsoft Academic Search

H beams are useful for multi-turn charge-exchange stripping injection into circular accelerators. Studies on a modified ion source for this purpose are presented. This paper includes some theory about a H magnetron discharge, ion-electron emission, emittance and problems linked with emittance measurement and calculations. Investigated parameters of the emittance probe for optimal performance give a screen voltage of 150 V

Timofey V. Zolkin

2006-01-01

408

Particle Acceleration in Relativistic Jets due to Weibel Instability  

E-print Network

Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev 2000) from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

K. -I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

2003-06-04

409

Particle Acceleration in Relativistic Jets Due to Weibel Instability  

NASA Technical Reports Server (NTRS)

Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

2004-01-01

410

Turbulence Evolution and Shock Acceleration of Solar Energetic Particles  

NASA Technical Reports Server (NTRS)

We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.

Chee, Ng K.

2007-01-01

411

Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media Ido Dolev,1  

E-print Network

, experiments with Airy beams in quadratic media include the generation and manipulation of Airy beams throughExperimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media Ido Dolev,1 Ido present the experimental observation of 1D and 2D self-accelerating nonlinear beams in quadratic media

Arie, Ady

412

Particle Acceleration by Fast Modes in Solar Flares  

E-print Network

We address the problem of particle acceleration in solar flares by fast modes which may be excited during the reconnection and undergo cascade and are subjected to damping. We extend the calculations beyond quasilinear approximation and compare the acceleration and scattering by transit time damping and gyroresonance interactions. We find that the acceleration is dominated by the so called transit time damping mechanism. We estimate the total energy transferred into particles, and show that our approach provides sufficiently accurate results We compare this rate with energy loss rate. Scattering by fast modes appears to be sufficient to prevent the protons from escaping the system during the acceleration. Confinement of electrons, on the other hand, requires the existence of plasma waves. Electrons can be accelerated to GeV energies through the process described here for solar flare conditions.

Huirong Yan; A. Lazarian; V. Petrosian

2008-05-08

413

Self-consistent radiative effect on relativistic electromagnetic particle acceleration  

E-print Network

We study the radiation damping effect on the relativistic acceleration of electron-positron plasmas with two-and-half-dimensional particle-in-cell (PIC) simulation. Particles are accelerated by Poynting flux via the diamagnetic relativistic pulse accelerator (DRPA), and decelerated by the self-consistently solved radiation damping force. With $\\Omega_{ce}/\\omega_{pe}\\geq 10$, the Lorentz factor of the highest energy particles reaches gamma>100, and the acceleration still continues. The emitted radiation is peaked within few degrees from the direction of Poynting flux and strongly linearly polarized, which may be detectable in gamma-ray burst(GRB) observations. We also show that the DRPA is insensitive to the initial supporting currents.

K. Noguchi; E. Liang; K. Nishimura

2005-04-27

414

Particle acceleration from reconnection in the geomagnetic tail  

SciTech Connect

Acceleration of charged particles in the near geomagnetic tail, associated with a dynamic magnetic reconnection process, was investigated by a combined effort of data analysis, using Los Alamos data from geosynchronous orbit, MHD modeling of the dynamic evolution of the magnetotail, and test particle tracing in the electric and magnetic fields obtained from the MHD simulation.

Birn, J.; Borovsky, J.E.; Thomsen, M.F.; McComas, D.J.; Reeves, G.D.; Belian, R.D. [Los Alamos National Lab., NM (United States); Hesse, M. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Schindler, K. [Ruhr-Univ., Bochum (Germany)

1997-08-01

415

Gamma-Ray Bursts and Particle Acceleration  

SciTech Connect

Gamma-ray bursts (GRBs) are possible sources of ultra-high-energy cosmic rays (UHE-CRs). To test the GRB origin of UHECRs, it is essential to search for characteristic, proton-induced signatures of secondary radiation. In this paper we present our recent results of Monte Carlo simulations that model the broadband prompt emission of GRBs including various processes associated with electrons and protons accelerated to high energies. The most notable effect of accelerated protons on the high-energy spectra is the synchrotron emission from secondary electron-positron pairs injected by photomeson interactions. Secondary photons tend to make the spectra flat, so a spectral flattening in the GeV-TeV bands may serve as a signature of UHECR acceleration. In some cases, the proton-induced photons overwhelm the photon field, resulting in a spectral peak due to inverse Compton emission from secondary pairs located around 10{sup 7} eV. We can expect to detect synchrotron photons from protons or muons. Observations with GLAST or with atmospheric Cerenkov telescopes can provide useful estimates of the bulk Lorents factor and can constrain the proton acceleration efficiency.

Asano, Katsuaki [Interactive Research Center for Science, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

2008-08-28

416

The use of electromagnetic particle-in-cell codes in accelerator applications  

SciTech Connect

The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs.

Eppley, K.

1988-12-01

417

Efficient acceleration of monoenergetic proton beam by sharp front laser pulse  

NASA Astrophysics Data System (ADS)

Stable acceleration of relativistic ions by the radiation pressure of a superintense, circularly polarized laser pulse with sharp front is investigated by analytical modeling and particle-in-cell simulation. For foils with given density and thickness, the suitable steepness of the laser front is found to suppress instabilities and efficiently drive a stable monoenergetic ion beam. With a laser pulse of peak amplitude a0=200, a proton beam of energy about 10 GeV can be generated. The dynamics of the laser-compressed electron layer and the ions in the hole-boring stage are investigated. In the case studied, the ions initially in the middle of the target are found to be accelerated to the back surface of the target ahead of the other ions.

Wang, W. P.; Shen, B. F.; Zhang, X. M.; Ji, L. L.; Wen, M.; Xu, J. C.; Yu, Y. H.; Li, Y. L.; Xu, Z. Z.

2011-01-01

418

Quasimonoenergetic collimated electron beams from a laser wakefield acceleration in low density pure nitrogen  

SciTech Connect

A laser wakefield acceleration (LWFA) experiment is performed using 30 TW, 30 fs, and 800?nm laser pulses, focused onto pure nitrogen plasma having relatively low densities in the range of 0.810{sup 18}?cm{sup ?3} to 2.710{sup 18}?cm{sup ?3}. Electron beams having a low divergence of ?3??mrad (full-width at half-maximum) and quasi-monoenergetic peak energies of ?105??MeV are achieved over 4-mm interaction length. The total electron beam charge reached to 2 nC, however, only 1%2% of this (tens of pC) had energies >35?MeV. We tried different conditions to optimize the electron beam acceleration; our experiment verifies that lower nitrogen plasma densities are generating electron beams with high quality in terms of divergence, charge, pointing stability, and maximum energy. In addition, if LWFA is to be widely used as a basis for compact particle accelerators in the future, therefore, from the economic and safety points of view we propose the use of nitrogen gas rather than helium or hydrogen.

Tao, Mengze [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Liming [Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2014-07-15

419

Particle acceleration by ultra-relativistic shocks: theory and simulations  

E-print Network

We consider the acceleration of charged particles near ultra-relativistic shocks, with Lorentz factor Gamma_s >> 1. We present simulations of the acceleration process and compare these with results from semi-analytical calculations. We show that the spectrum that results from acceleration near ultra-relativistic shocks is a power law, N(E) \\propto E^{-s}, with a nearly universal value s \\approx 2.2 - 2.3 for the slope of this power law. We confirm that the ultra-relativistic equivalent of Fermi acceleration at a shock differs from its non-relativistic counterpart by the occurence of large anisotropies in the distribution of the accelerated particles near the shock. In the rest frame of the upstream fluid, particles can only outrun the shock when their direction of motion lies within a small loss cone of opening angle theta_c \\approx 1/Gamma_s around the shock normal. We also show that all physically plausible deflection or scattering mechanisms can change the upstream flight direction of relativistic particles originating from downstream by only a small amount: Delta theta ~ 1/Gamma_s. This limits the energy change per shock crossing cycle to Delta E ~ E, except for the first cycle where particles originate upstream. In that case the upstream energy is boosted by a factor ~ Gamma_s^2 for those particles that are scattered back across the shock into the upstream region.

Abraham Achterberg; Yves A. Gallant; John G. Kirk; Axel W. Guthmann

2001-07-27

420

Radiative Effects on Particle Acceleration in Electromagnetic Dominated Outflows  

E-print Network

Plasma outflows from gamma-ray bursts (GRB), pulsar winds, relativistic jets, and ultra-intense laser targets radiate high energy photons. However, radiation damping is ignored in conventional PIC simulations. In this letter, we study the radiation damping effect on particle acceleration via Poynting fluxes in two-and-half-dimensional particle-in-cell (PIC) plasma simulation of electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle and reduces the net acceleration force. The emitted radiation is peaked within a few degrees from the direction of Poynting flux and strongly linear-polarized.

Koichi Noguchi; Edison Liang; Kazumi Nishimura

2005-07-16

421

Reversed Gravitational Acceleration for High-speed Particles  

E-print Network

Examination of the free-fall motion of particles of extremely high-speed in the Schwarzschild geometry reveals that the gravitational acceleration of such particles is reversed when measured in Schwarzschild coordinates. High-speed particles decelerate when moving radially downward, and they accelerate when moving upward. The onset of this abnormal behavior occurs at a speed of 1/Sqrt(3) times the local value of the speed of light. However, the gravitational force always remains attractive. PACS numbers: 04.20.-q, 04.20.Cv, 01.65+g

Hans C. Ohanian

2011-11-17

422

Monte Carlo simulation of particle acceleration at astrophysical shocks  

NASA Technical Reports Server (NTRS)

A Monte Carlo code was developed for the simulation of particle acceleration at astrophysical shocks. The code is implemented in Turbo Pascal on a PC. It is modularized and structured in such a way that modification and maintenance are relatively painless. Monte Carlo simulations of particle acceleration at shocks follow the trajectories of individual particles as they scatter repeatedly across the shock front, gaining energy with each crossing. The particles are assumed to scatter from magnetohydrodynamic (MHD) turbulence on both sides of the shock. A scattering law is used which is related to the assumed form of the turbulence, and the particle and shock parameters. High energy cosmic ray spectra derived from Monte Carlo simulations have observed power law behavior just as the spectra derived from analytic calculations based on a diffusion equation. This high energy behavior is not sensitive to the scattering law used. In contrast with Monte Carlo calculations diffusive calculations rely on the initial injection of supra-thermal particles into the shock environment. Monte Carlo simulations are the only known way to describe the extraction of particles directly from the thermal pool. This was the triumph of the Monte Carlo approach. The question of acceleration efficiency is an important one in the shock acceleration game. The efficiency of shock waves efficient to account for the observed flux of high energy galactic cosmic rays was examined. The efficiency of the acceleration process depends on the thermal particle pick-up and hence the low energy scattering in detail. One of the goals is the self-consistent derivation of the accelerated particle spectra and the MHD turbulence spectra. Presumably the upstream turbulence, which scatters the particles so they can be accelerated, is excited by the streaming accelerated particles and the needed downstream turbulence is convected from the upstream region. The present code is to be modified to include a better description of particle scattering (pitch-angle instead of hard-sphere) and as iterative procedure for treating the self-excitation of the MHD turbulence.

Campbell, Roy K.

1989-01-01

423

A DSP based data acquisition module for colliding beam accelerators  

SciTech Connect

In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented.

Mead, J.A.; Shea, T.J.

1995-10-01

424

Negative hydrogen ion source research and beam parameters for accelerators  

SciTech Connect

H{sup -} beams are useful for multi-turn charge-exchange stripping injection into circular accelerators. Studies on a modified ion source for this purpose are presented. This paper includes some theory about a H{sup -} magnetron discharge, ion-electron emission, emittance and problems linked with emittance measurement and calculations. Investigated parameters of the emittance probe for optimal performance give a screen voltage of 150 V and a probe step of about 5 mil. Normalized 90% emittance obtained for this H{sup -} source is 0.22 {pi} mm-mr, for an extraction voltage of 18 kV at a beam energy of 30 keV and a beam current of 11 mA.

Zolkin, Timofey V.; /Fermilab

2006-09-01

425

Resolving EMI Issues To Optimize Accelerator Beam Diagnostic Performance  

SciTech Connect

If you have struggled to get the last bit of performance from a beam diagnostic only to find your dynamic range limited by external sources of electromagnetic interference (EMI) once the system is installed, then you will find this tutorial on electromagnetic compatibility and grounding useful. The tutorial will provide some simple, direct methods to analyze, understand and mitigate the impact of EMI on beam diagnostic systems. Several common and unique accelerator EMI sources will be characterized. The dependencies of source frequency and distance to the source on the optimal choice of grounding and shielding methods will be illustrated. The emphasis is on a stepwise process that leads to understanding and cost-effective resolution of EMI impacts on beam diagnostic systems.

Thuot, Michael [Los Alamos National Laboratory, LANSCE Division, Los Alamos, New Mexico (United States)

2004-11-10

426

In-situ Particle Acceleration in Collisionless Shocks  

E-print Network

The outflows from gamma ray bursts, active galactic nuclei and relativistic jets in general interact with the surrounding media through collisionless shocks. With three dimensional relativistic particle-in-cell simulations we investigate such shocks. The results from these experiments show that small--scale magnetic filaments with strengths of up to percents of equipartition are generated and that electrons are accelerated to power law distributions N(E)~E^{-p} in the vicinity of the filaments through a new acceleration mechanism. The acceleration is locally confined, instantaneous and differs from recursive acceleration processes such as Fermi acceleration. We find that the proposed acceleration mechanism competes with thermalization and becomes important at high Lorentz factors.

C. B. Hededal; T. Haugboelle; J. T. Frederiksen; . Nordlund

2005-02-18

427

Illinois PER Interactive Examples: Particle Beam  

NSDL National Science Digital Library

This interactive homework problem shows a particle beam made up of many protons each with a kinetic energy of 3.2510-15J. Using information given in the problem, the user is asked to find the magnitude of a uniform electric field that will stop these protons at a distance of 2 m. The problem is accompanied by a Socratic-dialog "help" sequence designed to encourage critical thinking as users do a guided conceptual analysis before attempting the mathematics. Immediate feedback for both correct and incorrect responses is provided through each step of the problem-solving. This item is part of a larger collection of interactive problems developed by the Illinois Physics Education Research Group.

Gladding, Gary

2008-08-12

428

Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams  

SciTech Connect

Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

2001-08-30

429

Spacetime noncommutative effect on black hole as particle accelerators  

E-print Network

We study the spacetime noncommutative effect on black hole as particle accelerators and, find that particle falling from infinity with zero velocity cannot collide with unbound energy when the noncommutative Kerr black hole is exactly extremal. Our results also show that the bigger of the spinning black hole's mass is, the higher of center of mass energy that the particles obtain. For small and medium noncommutative Schwarzschild black hole, the collision energy depends on the black holes' mass.

Chikun Ding; Changqing Liu; Qian Guo

2013-01-08

430

Fluid particle accelerations in fully developed turbulence  

Microsoft Academic Search

The motion of fluid particles as they are pushed along erratic trajectories\\u000aby fluctuating pressure gradients is fundamental to transport and mixing in\\u000aturbulence. It is essential in cloud formation and atmospheric transport,\\u000aprocesses in stirred chemical reactors and combustion systems, and in the\\u000aindustrial production of nanoparticles. The perspective of particle\\u000atrajectories has been used successfully to describe mixing

Greg A. Voth; Alice M. Crawford; Jim Alexander; Eberhard Bodenschatz; A. La Porta

2001-01-01

431

Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results  

NASA Technical Reports Server (NTRS)

Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

Parker, L. Neergaard; Zank, G. P.

2013-01-01

432

Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators.  

PubMed

This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter-free ("FFF") photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of "beam matching" between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of "beam matching" between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (< 5 cm) probably due to the differences in the flattening filter design. A difference in the penumbra shape was observed between the TrueBeam and the other linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences in the profile shapes at a distance greater than 20 cm from the central axis, and this was more notable for the 15 MV energy. Output factor differences were found primarily at the ends of the field size spectrum, with observed differences of less than 2% as compared to the other linear accelerators. The TrueBeam's output factor varied less as a function of field size than the output factors for the previous models; this was especially true for the 6 MV. Photon beam data were found to be reproducible between different TrueBeam linear accelerators well within the accepted clinical tolerance of 2%. The results indicate reproducibility in the TrueBeam machine head construction and a potential for beam matching between these types of linear accelerators. Photon beam data (6 MV and 15 MV) from the Trilogy and Clinac 2100 showed several similarities and some small variations when compared to the same data measured on the TrueBeam linear accelerator. The differences found could affect small field data and also very large field sizes in beam matching considerations between the TrueBeam and previous linear accelerator models from the same manufacturer, but should be within the accepted clinical tolerance for standard field sizes and standard treatments. PMID:23318395

Beyer, Gloria P

2013-01-01

433

Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets  

NASA Technical Reports Server (NTRS)

Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

2006-01-01

434

Particle Acceleration at the Sun and in the Heliosphere  

NASA Technical Reports Server (NTRS)

Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. They come from solar flares in the low corona, from shock waves driven outward by coronal mass ejections (CMEs), from planetary magnetospheres and bow shocks. They come from corotating interaction regions (CIRs) produced by high-speed streams in the solar wind, and from the heliospheric termination shock at the outer edge of the heliospheric cavity. We sample all these populations near Earth, but can distinguish them readily by their element and isotope abundances, ionization states, energy spectra, angular distributions and time behavior. Remote spacecraft have probed the spatial distributions of the particles and examined new sources in situ. Most acceleration sources can be "seen" only by direct observation of the particles; few photons are produced at these sites. Wave-particle interactions are an essential feature in acceleration sources and, for shock acceleration, new evidence of energetic-proton-generated waves has come from abundance variations and from local cross-field scattering. Element abundances often tell us the physics the source plasma itself, prior to acceleration. By comparing different populations, we learn more about the sources, and about the physics of acceleration and transport, than we can possibly learn from one source alone.

Reames, Donald V.

1999-01-01

435

Acceleration of inertial particles in wall bounded flows: DNS and LES with stochastic modelling of the subgrid acceleration  

E-print Network

Acceleration of inertial particles in wall bounded flows: DNS and LES with stochastic modelling)" DOI : 10.1088/1742-6596/318/5/052026 #12;Acceleration of inertial particles in wall bounded flows: DNS particle acceleration statistics are analyzed using DNS for turbulent channel flow. Along with effects

Boyer, Edmond

436

Solid particle acceleration in a high Reynolds number channel flow: DNS and LES with stochastic modelling of subgrid acceleration  

E-print Network

Solid particle acceleration in a high Reynolds number channel flow: DNS and LES with stochastic for more Home Search Collections Journals About Contact us My IOPscience #12;Solid particle acceleration.vinkovic@univ-lyon1.fr Abstract. Inertial particle acceleration statistics are analyzed using DNS in the case

Boyer, Edmond

437

Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data  

E-print Network

Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration, time- varying laser wakefield particle accelerator simulation data. We ex- tend histogram in conventional particle accelerators. LWFAs accelerate particles to high energies of 1GeV within 3cm compared

438

A compact solution for ion beam therapy with laser accelerated protons  

NASA Astrophysics Data System (ADS)

The recent advancements in the field of laser-driven particle acceleration have made Laser-driven Ion Beam Therapy (L-IBT) an attractive alternative to the conventional particle therapy facilities. To bring this emerging technology to clinical application, we introduce the broad energy assorted depth dose deposition model which makes efficient use of the large energy spread and high dose-per-pulse of Laser Accelerated Protons (LAP) and is capable of delivering homogeneous doses to tumors. Furthermore, as a key component of L-IBT solution, we present a compact iso-centric gantry design with 360 rotation capability and an integrated shot-to-shot energy selection system for efficient transport of LAP with large energy spread to the patient. We show that gantry size could be reduced by a factor of 2-3 compared to conventional gantry systems by utilizing pulsed air-core magnets.

Masood, U.; Bussmann, M.; Cowan, T. E.; Enghardt, W.; Karsch, L.; Kroll, F.; Schramm, U.; Pawelke, J.

2014-10-01

439