Sample records for accelerates mammary tumorprogression

  1. Cyclic-glycine-proline accelerates mammary involution by promoting apoptosis and inhibiting IGF-1 function.

    PubMed

    Singh-Mallah, Gagandeep; McMahon, Christopher D; Guan, Jian; Singh, Kuljeet

    2017-12-01

    In rodents, post-lactational involution of mammary glands is characterized by the loss of mammary epithelial cells via apoptosis, which is associated with a decline in the expression of insulin-like growth factor-1 (IGF-1). Overexpression of IGF-1 delays involution by inhibiting apoptosis of epithelial cells and preserving the remaining secretory alveoli. Cyclic-glycine-proline (cGP), a metabolite of IGF-1, normalizes IGF-1 function under pathological conditions by regulating the bioavailability of IGF-1. The present study investigated the effect of cGP on the physiological decline in IGF-1 function during post-lactational mammary involution. Rat dams were gavaged with either cGP (3 mg/kg) or saline once per day from post-natal d8-22. Before collecting tissue on post-natal d23, a pair of mammary glands were sealed on d20 (72 hr-engorgement, thus representative of late-involution) and d22 (24 hr-engorgement, thus representative of mid-involution), while the remaining glands were allowed to involute naturally (early-involution). During early-involution, cGP accelerated the loss of mammary cells through apoptosis, resulting in an earlier clearance of intact secretory alveoli compared with the control group. This coincided with an earlier up-regulation of the cell survival factors, Bcl-xl and IGF-1R, in the early-involution cGP glands compared with the control glands. During late-involution, cGP reduced the bioactivity of IGF-1, which was evident through decreased phosphorylation of IGF-1R in the regressed alveoli. Maternal administration of cGP did not alter milk production and composition during early-, peak-, or late-stage of lactation. These data show that cGP accelerates post-lactational involution by promoting apoptosis and the physiological decline in IGF-1 function. © 2017 Wiley Periodicals, Inc.

  2. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3.more » Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in (Derynck and Zhang, 2003)]. Although signaling by Smads has been shown to be causally associated with the anti-proliferative effect of TGF{beta} (Datto et al., 1999; Liu et al., 1997), the role of non-Smad effectors on mediating the cellular effects of TGF{beta} is less well characterized.« less

  3. Do myoepithelial cells hold the key for breast tumorprogression?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyak, Kornelia; Hu, Min

    2005-11-18

    Mammary myoepithelial cells have been the foster child of breast cancer biology and have been largely ignored since they were considered to be less important for tumorigenesis than luminal epithelial cells from which most of breast carcinomas are thought to arise. In recent years as our knowledge in stem cell biology and the cellular microenvironment has been increasing myoepithelial cells are slowly starting to gain more attention. Emerging data raise the hypothesis if myoepithelial cells play a key role in breast tumor progression by regulating the in situ to invasive carcinoma transition and if myoepithelial cells are part of themore » mammary stem cell niche. Paracrine interactions between myoepithelial and luminal epithelial cells are known to be important for cell cycle arrest, establishing epithelial cell polarity, and inhibiting migration and invasion. Based on these functions normal mammary myoepithelial cells have been called ''natural tumor suppressors''. However, during tumor progression myoepithelial cells seem to loose these properties and eventually they themselves diminish as tumors become invasive. Better understanding of myoepithelial cell function and their role in tumor progression may lead to their exploitation for cancer therapeutic and preventative measures.« less

  4. Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats

    PubMed Central

    Mafuvadze, Benford; Benakanakere, Indira; Lopez, Franklin; Besch-Williford, Cynthia; Ellersieck, Mark R.; Hyder, Salman M.

    2011-01-01

    The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA-induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor levels, or the number of estrogen receptor-positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor-positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins. PMID:21505181

  5. Elevated circulating IGF-I promotes mammary gland development and proliferation.

    PubMed

    Cannata, Dara; Lann, Danielle; Wu, Yingjie; Elis, Sebastien; Sun, Hui; Yakar, Shoshana; Lazzarino, Deborah A; Wood, Teresa L; Leroith, Derek

    2010-12-01

    Animal studies have shown that IGF-I is essential for mammary gland development. Previous studies have suggested that local IGF-I rather than circulating IGF-I is the major mediator of mammary gland development. In the present study we used the hepatic IGF-I transgenic (HIT) and IGF-I knockout/HIT (KO-HIT) mouse models to examine the effects of enhanced circulating IGF-I on mammary development in the presence and absence of local IGF-I. HIT mice express the rat IGF-I transgene under the transthyretin promoter in the liver and have elevated circulating IGF-I and normal tissue IGF-I levels. The KO-HIT mice have no tissue IGF-I and increased circulating IGF-I. Analysis of mammary gland development reveals a greater degree of complexity in HIT mice as compared to control and KO-HIT mice, which demonstrate similar degrees of mammary gland complexity. Immunohistochemical evaluation of glands of HIT mice also suggests an enhanced degree of proliferation of the mammary gland, whereas KO-HIT mice exhibit mammary gland proliferation similar to control mice. In addition, HIT mice have a higher percentage of proliferating myoepithelial and luminal cells than control mice, whereas KO-HIT mice have an equivalent percentage of proliferating myoepithelial and luminal cells as control mice. Thus, our findings show that elevated circulating IGF-I levels are sufficient to promote normal pubertal mammary epithelial development. However, HIT mice demonstrate more pronounced mammary gland development when compared to control and KO-HIT mice. This suggests that both local and endocrine IGF-I play roles in mammary gland development and that elevated circulating IGF-I accelerates mammary epithelial proliferation.

  6. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  7. Physiologically activated mammary fibroblasts promote postpartum mammary cancer

    PubMed Central

    Guo, Qiuchen; Burchard, Julja; Spellman, Paul

    2017-01-01

    Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652

  8. Mammary stem cells: angels or demons in mammary gland?

    PubMed

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the 'seeds' of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).

  9. Mammary stem cells: angels or demons in mammary gland?

    PubMed Central

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the ‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa). PMID:29263909

  10. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3

    PubMed Central

    Sutherland, Kate D; Vaillant, François; Alexander, Warren S; Wintermantel, Tim M; Forrest, Natasha C; Holroyd, Sheridan L; McManus, Edward J; Schutz, Gunther; Watson, Christine J; Chodosh, Lewis A; Lindeman, Geoffrey J; Visvader, Jane E

    2006-01-01

    Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution. PMID:17139252

  11. The CAR agonist TCPOBOP inhibits lipogenesis and promotes fibrosis in the mammary gland of adolescent female mice.

    PubMed

    Xu, Pengfei; Hong, Fan; Wang, Jing; Dai, Shu; Wang, Jialin; Zhai, Yonggong

    2018-06-15

    Constitutive androstane receptor (CAR) is a nuclear receptor that not only regulates drug-metabolizing enzymes but also influences energy metabolism. TC, 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene (TCPOBOP) has been shown to inhibit lipogenesis in the liver and adipose tissues. The mammary gland is mainly composed of fat pads and duct systems in adolescent female mice. Here, activation of CAR by TC reduces the mammary gland weight, blocks lipid accumulation by inhibiting lipogenesis and gluconeogenesis, and accelerates collagen formation and fibrosis in the mammary fat pad of adolescent female mice. This information provides a reference for CAR activation, which may affect mammary gland development in adolescent females. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade.

    PubMed

    Park, David S; Lee, Hyangkyu; Frank, Philippe G; Razani, Babak; Nguyen, Andrew V; Parlow, Albert F; Russell, Robert G; Hulit, James; Pestell, Richard G; Lisanti, Michael P

    2002-10-01

    It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.

  13. Mammary Adipose Tissue-derived Lysophospholipids Promote Estrogen Receptor-negative Mammary Epithelial Cell Proliferation

    PubMed Central

    Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086

  14. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Plasticity of mammary development in the prepubertal bovine mammary gland.

    PubMed

    Akers, R M

    2017-12-01

    Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.

  15. Mechanisms Underlying the Very High Susceptibility of the Immature Mammary Gland to Carcinogenic Initiation

    DTIC Science & Technology

    1999-07-01

    the in vivo cytotoxicity of 3 versus 8 week old F344 mammary gland following exposure to either NMU or DMBA using a mammary cell transplantation assay...Epithelial Cell Mutant Frequencies 30E6 with Expression Period following NMU Treatment in vivo 250E-6 ]5WeExrsinPio S200E-6 S150E-6 !! i 50E-6... Dosimetry : Anesthetized rats were irradiated with 6 Mev electrons from a Clinac 2300 medical linear accelerator. The rats were laid supine on the

  16. The Ron Receptor Tyrosine Kinase Negatively Regulates Mammary Gland Branching Morphogenesis

    PubMed Central

    Meyer, Sara E.; Zinser, Glendon M.; Stuart, William D.; Pathrose, Peterson; Waltz, Susan E.

    2009-01-01

    The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK−/−). Mammary glands from RonTK−/− mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK−/− epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK−/− glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development. PMID:19576199

  17. Pleiotrophin (PTN) Expression and Function and in the Mouse Mammary Gland and Mammary Epithelial Cells

    PubMed Central

    Rosenfield, Sonia M.; Bowden, Emma T.; Cohen-Missner, Shani; Gibby, Krissa A.; Ory, Virginie; Henke, Ralf T.; Riegel, Anna T.; Wellstein, Anton

    2012-01-01

    Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development. PMID:23077670

  18. Cyclic AMP regulates formation of mammary epithelial acini in vitro

    PubMed Central

    Nedvetsky, Pavel I.; Kwon, Sang-Ho; Debnath, Jayanta; Mostov, Keith E.

    2012-01-01

    Epithelial cells form tubular and acinar structures notable for a hollow lumen. In three-dimensional culture utilizing MCF10A mammary epithelial cells, acini form due to integrin-dependent polarization and survival of cells contacting extracellular matrix (ECM), and the apoptosis of inner cells of acini lacking contact with the ECM. In this paper, we report that cyclic AMP (cAMP)-dependent protein kinase A (PKA) promotes acinus formation via two mechanisms. First, cAMP accelerates redistribution of α6-integrin to the periphery of the acinus and thus facilitates the polarization of outer acinar cells. Blocking of α6-integrin function by inhibitory antibody prevents cAMP-dependent polarization. Second, cAMP promotes the death of inner cells occupying the lumen. In the absence of cAMP, apoptosis is delayed, resulting in perturbed luminal clearance. cAMP-dependent apoptosis is accompanied by a posttranscriptional PKA-dependent increase in the proapoptotic protein Bcl-2 interacting mediator of cell death. These data demonstrate that cAMP regulates lumen formation in mammary epithelial cells in vitro, both through acceleration of polarization of outer cells and apoptosis of inner cells of the acinus. PMID:22675028

  19. DDT acceleration of mammary gland tumors induced in the male Sprague-Dawley rat by 2-acetamidophenanthrene.

    PubMed

    Scribner, J D; Mottet, N K

    1981-01-01

    2-Acetamidophenanthrene (AAP) yields adducts to rat liver DNA and RNA in amounts comparable to those found for the potent hepatocarcinogen 2-acetamidofluorene, but is not hepatocarcinogenic. This suggested that AAP might initiate liver tumors, but was incapable of causing their progression to a detectable state. To test this hypothesis, the protocol devised by Peraino was used, in which 21-day-old male Sprague-Dawley rats were fed 0.02% AAP in a grain diet for three weeks. this was followed by long-term feeding of 0.05% 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). The mean latent period of all tumors (primarily mammary tumors) was reduced about six months by the DDT feeding. No tumors were found in rats treated with DDT only. Livers in all animals appeared normal at autopsy or on laparotomy, and showed barely detectable signs of toxicity upon histological examination. Thus, we have found that a once wide-spread environmental chemical acts as a tumor accelerator on a major target for human tumors. Because this finding is in the male rat, the significance of this result for breast cancer in women is uncertain.

  20. Mouse Mammary Tumor Virus c-rel Transgenic Mice Develop Mammary Tumors

    PubMed Central

    Romieu-Mourez, Raphaëlle; Kim, Dong W.; Min Shin, Sang; Demicco, Elizabeth G.; Landesman-Bollag, Esther; Seldin, David C.; Cardiff, Robert D.; Sonenshein, Gail E.

    2003-01-01

    Amplification, overexpression, or rearrangement of the c-rel gene, encoding the c-Rel NF-κB subunit, has been reported in solid and hematopoietic malignancies. For example, many primary human breast cancer tissue samples express high levels of nuclear c-Rel. While the Rev-T oncogene v-rel causes tumors in birds, the ability of c-Rel to transform in vivo has not been demonstrated. To directly test the role of c-Rel in breast tumorigenesis, mice were generated in which overexpression of mouse c-rel cDNA was driven by the hormone-responsive mouse mammary tumor virus long terminal repeat (MMTV-LTR) promoter, and four founder lines identified. In the first cycle of pregnancy, the expression of transgenic c-rel mRNA was observed, and levels of c-Rel protein were increased in the mammary gland. Importantly, 31.6% of mice developed one or more mammary tumors at an average age of 19.9 months. Mammary tumors were of diverse histology and expressed increased levels of nuclear NF-κB. Analysis of the composition of NF-κB complexes in the tumors revealed aberrant nuclear expression of multiple subunits, including c-Rel, p50, p52, RelA, RelB, and the Bcl-3 protein, as observed previously in human primary breast cancers. Expression of the cancer-related NF-κB target genes cyclin D1, c-myc, and bcl-xl was significantly increased in grossly normal transgenic mammary glands starting the first cycle of pregnancy and increased further in mammary carcinomas compared to mammary glands from wild-type mice or virgin transgenic mice. In transient transfection analysis in untransformed breast epithelial cells, c-Rel-p52 or -p50 heterodimers either potently or modestly induced cyclin D1 promoter activity, respectively. Lastly, stable overexpression of c-Rel resulted in increased cyclin D1 and NF-κB p52 and p50 subunit protein levels. These results indicate for the first time that dysregulated expression of c-Rel, as observed in breast cancers, is capable of contributing to mammary

  1. Mammary Gland Development

    PubMed Central

    Macias, Hector

    2012-01-01

    The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial/mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development – pubertal growth, pregnancy, lactation and involution – occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone and estrogen, as well as IGF1, to create a ductal tree that fills the fat pad. Upon pregnancy the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its pre-pregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease. PMID:22844349

  2. Mechanisms Underlying the Very High Susceptibility of the Immature Mammary Gland to Carcinogenic Initiation

    DTIC Science & Technology

    2000-07-01

    induced carcinogenesis than is the mature rat mammary gland in an intact 8 week old F344 rat. Dosimetry : Anesthetized rats were irradiated with 6 Mev... electrons from a Clinac 2300 medical linear accelerator. The rats were laid supine on the treatment couch and placed into a collimated radiation...of the electrons into the body and to protect the ovaries. The top surface of the bolus was set at 100cm from the target of the accelerator

  3. Repressor of Estrogen Receptor Activity (REA) Is Essential for Mammary Gland Morphogenesis and Functional Activities: Studies in Conditional Knockout Mice

    PubMed Central

    Park, Sunghee; Zhao, Yuechao; Yoon, Sangyeon; Xu, Jianming; Liao, Lan; Lydon, John; DeMayo, Franco; O'Malley, Bert W.

    2011-01-01

    Estrogen receptor (ER) is a key regulator of mammary gland development and is also implicated in breast tumorigenesis. Because ER-mediated activities depend critically on coregulator partner proteins, we have investigated the consequences of reduction or loss of function of the coregulator repressor of ER activity (REA) by conditionally deleting one allele or both alleles of the REA gene at different stages of mammary gland development. Notably, we find that heterozygosity and nullizygosity for REA result in very different mammary phenotypes and that REA has essential roles in the distinct morphogenesis and functions of the mammary gland at different stages of development, pregnancy, and lactation. During puberty, mice homozygous null for REA in the mammary gland (REAf/f PRcre/+) showed severely impaired mammary ductal elongation and morphogenesis, whereas mice heterozygous for REA (REAf/+ PRcre/+) displayed accelerated mammary ductal elongation, increased numbers of terminal end buds, and up-regulation of amphiregulin, the major paracrine mediator of estrogen-induced ductal morphogenesis. During pregnancy and lactation, mice with homozygous REA gene deletion in mammary epithelium (REAf/f whey acidic protein-Cre) showed a loss of lobuloalveolar structures and increased apoptosis of mammary alveolar epithelium, leading to impaired milk production and significant reduction in growth of their offspring, whereas body weights of the offspring nursed by females heterozygous for REA were slightly greater than those of control mice. Our findings reveal that REA is essential for mammary gland development and has a gene dosage-dependent role in the regulation of stage-specific physiological functions of the mammary gland. PMID:21862609

  4. VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis.

    PubMed

    Seagroves, Tiffany N; Peacock, Danielle L; Liao, Debbie; Schwab, Luciana P; Krueger, Robin; Handorf, Charles R; Haase, Volker H; Johnson, Randall S

    2010-05-01

    Overexpression of hypoxia inducible factor-1 (HIF-1)alpha, which is common in most solid tumors, correlates with poor prognosis and high metastatic risk in breast cancer patients. Because HIF-1alpha protein stability is tightly controlled by the tumor suppressor von Hippel-Lindau (VHL), deletion of VHL results in constitutive HIF-1alpha expression. To determine whether VHL plays a role in normal mammary gland development, and if HIF-1alpha overexpression is sufficient to initiate breast cancer, Vhl was conditionally deleted in the mammary epithelium using the Cre/loxP system. During first pregnancy, loss of Vhl resulted in decreased mammary epithelial cell proliferation and impaired alveolar differentiation; despite these phenotypes, lactation was sufficient to support pup growth. In contrast, in multiparous dams, Vhl(-/-) mammary glands exhibited a progressive loss of alveolar epithelium, culminating in lactation failure. Deletion of Vhl in the epithelium also impacted the mammary stroma, as there was increased microvessel density accompanied by hemorrhage and increased immune cell infiltration. However, deletion of Vhl was not sufficient to induce mammary tumorigenesis in dams bred continuously for up to 24 months of age. Moreover, co-deletion of Hif1a could not rescue the Vhl(-/-)-dependent phenotype as dams were unable to successfully lactate during the first lactation. These results suggest that additional VHL-regulated genes besides HIF1A function to maintain the proliferative and regenerative potential of the breast epithelium.

  5. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  6. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    This term reflects the method used to detect murine mammary stem cells which is based on their individual ability to regenerate an entire mammary tree......mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended

  7. Differences in the Rate of In Situ Mammary Gland Development and Other Developmental Endpoints in Three Strains of Female Rat Commonly Used in Mammary Carcinogenesis Studies: Implications for Timing of Carcinogen Exposure

    PubMed Central

    Stanko, Jason P.; Kissling, Grace E.; Chappell, Vesna A.; Fenton, Suzanne E.

    2016-01-01

    The potential of chemicals to alter susceptibility to mammary tumor formation is often assessed using a carcinogen-induced study design in various rat strains. The rate of mammary gland development must be considered so that the timing of carcinogen administration is impactful. In this study, in situ mammary gland (MG) development was assessed in females of the Harlan Sprague Dawley (Hsd:SD), Charles River Sprague Dawley (Crl:SD), and Charles River Long Evans (Crl:LE) rat strains at postnatal day (PND) 25, 33, and 45. Development was evaluated by physical assessment of growth parameters, developmental scoring, and quantitative morphometric analysis. Though body weight was consistently lower and day of vaginal opening (VO) occurred latest in female Hsd:SD rats, they exhibited accelerated pre-and peripubertal MG development compared to other strains. Glands of Crl:SD and Crl:LE rats exhibited significantly more terminal end buds (TEBs) and TEB/mm than Hsd:SD rats around the time of VO. These data suggest a considerable difference in rate of MG development across commonly used strains, which is independent of body weight and timing of VO. In mammary tumor induction studies employing these strains, administration of the carcinogen should be timed appropriately, based on strain, to specifically target the peak of TEB occurrence. PMID:27613105

  8. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland.

  9. Establishment of mammary gland model in vitro: culture and evaluation of a yak mammary epithelial cell line.

    PubMed

    Fu, Mei; Chen, Yabing; Xiong, Xianrong; Lan, Daoliang; Li, Jian

    2014-01-01

    This study aimed to establish yak mammary epithelial cells (YMECs) for an in vitro model of yak mammary gland biology. The primary culture of YMECs was obtained from mammary gland tissues of lactating yak and then characterized using immunocytochemistry, RT-PCR, and western blot analysis. Whether foreign genes could be transfected into the YMECs were examined by transfecting the EGFP gene into the cells. Finally, the effect of Staphylococcus aureus infection on YMECs was determined. The established YMECs retained the mammary epithelial cell characteristics. A spontaneously immortalized yak mammary epithelial cell line was established and could be continuously subcultured for more than 60 passages without senescence. The EGFP gene was successfully transferred into the YMECs, and the transfected cells could be maintained for a long duration in the culture by continuous subculturing. The cells expressed more antimicrobial peptides upon S.aureus invasion. Therefore, the established cell line could be considered a model system to understand yak mammary gland biology.

  10. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    PubMed

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  11. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    PubMed Central

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  12. Pim-1 kinase expression during murine mammary development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gapter, Leslie A.; School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234; Magnuson, Nancy S.

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile ofmore » progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.« less

  13. Mammary and extramammary Paget's disease

    PubMed Central

    Lloyd, J; Flanagan, A

    2000-01-01

    Mammary and extramammary Paget's disease are uncommon intraepithelial adenocarcinomas. Both conditions have similar clinical features, which mimic inflammatory and infective diseases. Histological diagnostic confusion can arise between Paget's disease and other neoplastic conditions affecting the skin, with the most common differential diagnoses being malignant melanoma and atypical squamous disease. The glandular differentiation of both mammary Paget's disease and extramammary Paget's disease is indicated by morphological appearances, the presence of intracellular mucin in many cases, and positive immunohistochemical staining for glandular cytokeratins, epithelial membrane antigen, and carcinoembryonic antigen. This article provides an overview of mammary and extramammary Paget's disease and discusses recent evidence regarding the cell of origin. The concepts of primary and secondary Paget's disease are presented and the differential diagnosis is discussed with reference to immunohistochemical markers that might be of diagnostic value. Key Words: mammary Paget's disease • extramammary Paget's disease PMID:11064666

  14. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  15. Scribble Modulates the MAPK/Fra1 Pathway to Disrupt Luminal and Ductal Integrity and Suppress Tumour Formation in the Mammary Gland

    PubMed Central

    Godde, Nathan J.; Sheridan, Julie M.; Smith, Lorey K.; Pearson, Helen B.; Britt, Kara L.; Galea, Ryan C.; Yates, Laura L.; Visvader, Jane E.; Humbert, Patrick O.

    2014-01-01

    Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression. PMID:24852022

  16. Mammary gland involution is associated with rapid down regulation of major mammary Ca**2+-ATPases

    USDA-ARS?s Scientific Manuscript database

    Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca**2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca**2+-ATPases and mammary calcium transport is unknown. We found that 24 hours after stopping milk prod...

  17. Immunologic aspects of fibrosis in mouse mammary carcinomas.

    PubMed

    Vaage, J

    1992-01-02

    The nature of the fibrosis associated with mammary carcinomas MC2 and MC3 was investigated in syngeneic C3H mice. Accelerated and enhanced peri-tumor cellular and fibrotic responses and retarded tumor growth were observed in actively immunized and in adoptively immunized mice, and in mice treated with IL-2. T lymphocytes and, particularly, macrophages were closely associated with collagen deposition at the tumors. The collagen deposition frequently resulted in the encapsulation and regression of the less invasive tumor MC2. A cellular fibrous response was not observed at tumors implanted into athymic C3Hnu/nu mice. The results suggest that tumor fibrosis may in some circumstances be promoted by an immune response.

  18. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    PubMed Central

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  19. Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours

    PubMed Central

    Messal, Hendrik A.; Andersson, Agneta B.; Ruiz, E. Josue; Gerling, Marco; Douagi, Iyadh; Spencer-Dene, Bradley; Musch, Alexandra; Mitter, Richard; Bhaw, Leena; Stone, Richard; Bornhorst, Dorothee; Sesay, Abdul K.; Jonkers, Jos; Stamp, Gordon; Malanchi, Ilaria; Toftgård, Rune; Behrens, Axel

    2018-01-01

    The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or upon stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumourigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance. PMID:27798604

  20. Microenvironmental Regulation of Mammary Carcinogenesis

    DTIC Science & Technology

    2008-06-01

    cells. These models share many of the hallmarks of multistage human breast cancer development including histological disease progression and immune cell... developed by Muller and colleagues20, represents a reasonable recapitulation of late-stage human breast cancer as determined by histological progression ...Annual Progress Report d. Develop a profile of proteolytic activities in normal and neoplastic mammary tissues from mouse models of mammary

  1. Mammary Cancer and Activation of Transposable Elements

    DTIC Science & Technology

    2015-03-01

    EGFP). No other cell type in the mammary fat pad was observed to express EGFP. Wholemount and FACS analyses of mammary fat pads after involution from...were sacrificed for PI-MEC isolation in groups of up to 4 control or cancer-prone uniparous or triparous females. Both 4 th mammary fat pads were...to unknown reason (n=46), and smaller numbers of animals with various conditions (malocclusion, head tilt , dystocia, respiratory complaints, identity

  2. SOCS3 promotes apoptosis of mammary differentiated cells.

    PubMed

    Le Provost, Fabienne; Miyoshi, Keiko; Vilotte, Jean-Luc; Bierie, Brian; Robinson, Gertraud W; Hennighausen, Lothar

    2005-12-30

    Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).

  3. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer

    PubMed Central

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-01-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3−/−/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3−/−/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

  4. CLINICOPATHOLOGIC FEATURES OF MAMMARY MASSES IN CAPTIVE LIONS (PANTHERA LEO).

    PubMed

    Sadler, Ryan A; Craig, Linden E; Ramsay, Edward C; Helmick, Kelly; Collins, Darin; Garner, Michael M

    2016-03-01

    A multi-institutional retrospective analysis of 330 pathology accessions from 285 different lions found 15 captive, female African lions (Panthera leo) with confirmed mammary masses. Aside from the presence of a mammary mass, the most common initial clinical sign was inappetence. Histologic diagnoses were predominantly adenocarcinoma (n = 12), though two benign masses (mammary hyperplasia and a mammary cyst) and one squamous cell carcinoma were identified. Nine of 13 malignant tumors had metastasized to lymph nodes or viscera at the time of necropsy. Six lions with adenocarcinoma and two lions with benign mammary masses had received hormonal contraception, though little evidence of mammary lobular hyperplasia was seen in association with the adenocarcinomas. The most common concurrent disease processes found at necropsy were chronic urinary tract disease and other malignancies. These cases demonstrate that mammary malignancies occur in captive lions and frequently metastasize.

  5. Pueraria mirifica Exerts Estrogenic Effects in the Mammary Gland and Uterus and Promotes Mammary Carcinogenesis in Donryu Rats

    PubMed Central

    Kakehashi, Anna; Yoshida, Midori; Tago, Yoshiyuki; Ishii, Naomi; Okuno, Takahiro; Gi, Min; Wanibuchi, Hideki

    2016-01-01

    Pueraria mirifica (PM), a plant whose dried and powdered tuberous roots are now widely used in rejuvenating preparations to promote youthfulness in both men and women, may have major estrogenic influence. In this study, we investigated modifying effects of PM at various doses on mammary and endometrial carcinogenesis in female Donryu rats. Firstly, PM administered to ovariectomized animals at doses of 0.03%, 0.3%, and 3% in a phytoestrogen-low diet for 2 weeks caused significant increase in uterus weight. Secondly, a 4 week PM application to non-operated rats at a dose of 3% after 7,12-dimethylbenz[a]anthracene (DMBA) initiation resulted in significant elevation of cell proliferation in the mammary glands. In a third experiment, postpubertal administration of 0.3% (200 mg/kg body weight (b.w.)/day) PM to 5-week-old non-operated animals for 36 weeks following initiation of mammary and endometrial carcinogenesis with DMBA and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG), respectively, resulted in significant increase of mammary adenocarcinoma incidence. A significant increase of endometrial atypical hyperplasia multiplicity was also observed. Furthermore, PM at doses of 0.3%, and more pronouncedly, at 1% induced dilatation, hemorrhage and inflammation of the uterine wall. In conclusion, postpubertal long-term PM administration to Donryu rats exerts estrogenic effects in the mammary gland and uterus, and at a dose of 200 mg/kg b.w./day was found to promote mammary carcinogenesis initiated by DMBA. PMID:27827907

  6. Pueraria mirifica Exerts Estrogenic Effects in the Mammary Gland and Uterus and Promotes Mammary Carcinogenesis in Donryu Rats.

    PubMed

    Kakehashi, Anna; Yoshida, Midori; Tago, Yoshiyuki; Ishii, Naomi; Okuno, Takahiro; Gi, Min; Wanibuchi, Hideki

    2016-11-04

    Pueraria mirifica (PM), a plant whose dried and powdered tuberous roots are now widely used in rejuvenating preparations to promote youthfulness in both men and women, may have major estrogenic influence. In this study, we investigated modifying effects of PM at various doses on mammary and endometrial carcinogenesis in female Donryu rats. Firstly, PM administered to ovariectomized animals at doses of 0.03%, 0.3%, and 3% in a phytoestrogen-low diet for 2 weeks caused significant increase in uterus weight. Secondly, a 4 week PM application to non-operated rats at a dose of 3% after 7,12-dimethylbenz[a]anthracene (DMBA) initiation resulted in significant elevation of cell proliferation in the mammary glands. In a third experiment, postpubertal administration of 0.3% (200 mg/kg body weight (b.w.)/day) PM to 5-week-old non-operated animals for 36 weeks following initiation of mammary and endometrial carcinogenesis with DMBA and N -ethyl- N '-nitro- N -nitrosoguanidine (ENNG), respectively, resulted in significant increase of mammary adenocarcinoma incidence. A significant increase of endometrial atypical hyperplasia multiplicity was also observed. Furthermore, PM at doses of 0.3%, and more pronouncedly, at 1% induced dilatation, hemorrhage and inflammation of the uterine wall. In conclusion, postpubertal long-term PM administration to Donryu rats exerts estrogenic effects in the mammary gland and uterus, and at a dose of 200 mg/kg b.w./day was found to promote mammary carcinogenesis initiated by DMBA.

  7. The mammary cellular hierarchy and breast cancer.

    PubMed

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  8. Mammary Stem Cells: Premise, Properties, and Perspectives.

    PubMed

    Lloyd-Lewis, Bethan; Harris, Olivia B; Watson, Christine J; Davis, Felicity M

    2017-08-01

    Adult mammary stem cells (MaSCs) drive postnatal organogenesis and remodeling in the mammary gland, and their longevity and potential have important implications for breast cancer. However, despite intense investigation the identity, location, and differentiation potential of MaSCs remain subject to deliberation. The application of genetic lineage-tracing models, combined with quantitative 3D imaging and biophysical methods, has provided new insights into the mammary epithelial hierarchy that challenge classical definitions of MaSC potency and behaviors. We review here recent advances - discussing fundamental unresolved properties of MaSC potency, dynamics, and plasticity - and point to evolving technologies that promise to shed new light on this intractable debate. Elucidation of the physiological mammary differentiation hierarchy is paramount to understanding the complex heterogeneous breast cancer landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Genistein-mediated inhibition of mammary stromal adipocyte differentiation limits expansion of mammary stem/progenitor cells by paracrine signaling

    USDA-ARS?s Scientific Manuscript database

    Mammary adiposity may contribute to breast cancer development and progression by releasing cytokines and other inflammatory mediators that promote mammary epithelial proliferation. We evaluated the effects of soy isoflavone genistein (GEN) on the adipogenic differentiation of a SV40-immortalized mou...

  10. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    PubMed

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P < .0001), and the primary sites of metastatic carcinomas (P < .0001) compared with normal mammary glands. No significant differences in ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  11. Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice.

    PubMed

    Vapola, Miia H; Rokka, Aare; Sormunen, Raija T; Alhonen, Leena; Schmitz, Werner; Conzelmann, Ernst; Wärri, Anni; Grunau, Silke; Antonenkov, Vasily D; Hiltunen, J Kalervo

    2014-07-01

    To understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2(-/-) female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2(-/-) mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2(-/-)mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal β-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2(-/-) mice. The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    PubMed Central

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  13. Dicer in Mammary Tumor Stem Cell Maintenance

    DTIC Science & Technology

    2006-03-01

    we are cloning small RNAs from mammary stem cells in order to determine the regulatory niches that miRNAs may fill in this cell type. Our ultimate goal is to assess the role of Dicer in mammary tumor stem cell maintenance.

  14. Mammary Hypertrophy in an Ovariohysterectomized Cat

    PubMed Central

    Pukay, B.P.; Stevenson, D.A.

    1983-01-01

    A four year old ovariohysterectomized domestic short-haired cat under treatment for behavioral urine spraying and idiopathic alopecia developed mammary gland hypertrophy following treatment with megestrol acetate. Withdrawal of the progestin and treatment with androgen failed to cause regression of the hypertrophy. The affected mammary gland was surgically excised and recovery was uneventful. ImagesFigure 1. PMID:17422254

  15. The spectrum of STAT functions in mammary gland development

    PubMed Central

    Hughes, Katherine; Watson, Christine J.

    2012-01-01

    The signal transducer and activator of transcription (STAT) family of transcription factors have a spectrum of functions in mammary gland development. In some cases these roles parallel those of STATs in other organ systems, while in other instances the function of individual STATs in the mammary gland is specific to this tissue. In the immune system, STAT6 is associated with differentiation of T helper cells, while in the mammary gland, it has a fundamental role in the commitment of luminal epithelial cells to the alveolar lineage. STAT5A is required for the production of luminal progenitor cells from mammary stem cells and is essential for the differentiation of milk producing alveolar cells during pregnancy. By contrast, the initiation of regression following weaning heralds a dramatic and specific activation of STAT3, reflecting its pivotal role in the regulation of cell death and tissue remodeling during mammary involution. Although it has been demonstrated that STAT1 is regulated during a mammary developmental cycle, it is not yet determined whether it has a specific, non-redundant function. Thus, the mammary gland constitutes an unusual example of an adult organ in which different STATs are sequentially activated to orchestrate the processes of functional differentiation, cell death and tissue remodeling. PMID:24058764

  16. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    PubMed Central

    2011-01-01

    Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first

  17. Cutaneous metastases of a mammary carcinoma in a llama.

    PubMed Central

    Leichner, T L; Turner, O; Mason, G L; Barrington, G M

    2001-01-01

    An 8-year-old, female llama was evaluated for nonhealing, ulcerative, cutaneous lesions, which also involved the mammary gland. Biopsies of the lesions distant from and within the mammary gland area revealed an aggressive carcinoma. The tumor was confirmed at necropsy to be a mammary gland adenocarcinoma with cutaneous metastasis. Images Figure 1. PMID:11265189

  18. Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions

    PubMed Central

    Kleinberg, David L.; Wood, Teresa L.; Furth, Priscilla A.; Lee, Adrian V.

    2009-01-01

    Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer

  19. Runx2 contributes to the regenerative potential of the mammary epithelium.

    PubMed

    Ferrari, Nicola; Riggio, Alessandra I; Mason, Susan; McDonald, Laura; King, Ayala; Higgins, Theresa; Rosewell, Ian; Neil, James C; Smalley, Matthew J; Sansom, Owen J; Morris, Joanna; Cameron, Ewan R; Blyth, Karen

    2015-10-22

    Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling.

  20. Runx2 contributes to the regenerative potential of the mammary epithelium

    PubMed Central

    Ferrari, Nicola; Riggio, Alessandra I.; Mason, Susan; McDonald, Laura; King, Ayala; Higgins, Theresa; Rosewell, Ian; Neil, James C.; Smalley, Matthew J.; Sansom, Owen J.; Morris, Joanna; Cameron, Ewan R.; Blyth, Karen

    2015-01-01

    Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling. PMID:26489514

  1. Mammary Duct Ectasia

    MedlinePlus

    ... tenderness or inflammation of the clogged duct (periductal mastitis). Mammary duct ectasia most often occurs in women ... that's turned inward (inverted) A bacterial infection called mastitis also may develop in the affected milk duct, ...

  2. The male mammary gland: a target for the xenoestrogen bisphenol A

    PubMed Central

    Vandenberg, Laura N; Schaeberle, Cheryl M.; Rubin, Beverly S.; Sonnenschein, Carlos; Soto, Ana M.

    2014-01-01

    Males of some strains of mice retain their mammary epithelium even in the absence of nipples. Here, we have characterized the mammary gland in male CD-1 mice both in whole mounts and histological sections. We also examined the effects of bisphenol A (BPA), an estrogen mimic that alters development of the female mouse mammary gland. BPA was administered at a range of environmentally relevant doses (0.25 – 250 μg/kg/day) to pregnant and lactating mice and then the mammary glands of male offspring were examined at several periods in adulthood. We observed age- and dose-specific effects on mammary gland morphology, indicating that perinatal BPA exposures alter the male mammary gland in adulthood. These results may provide insight into gynecomastia, the most common male breast disease in humans, where proliferation of the mammary epithelium leads to breast enlargement. PMID:23348055

  3. Sequencing the transcriptome of milk production: milk trumps mammary tissue

    PubMed Central

    2013-01-01

    Background Studies of normal human mammary gland development and function have mostly relied on cell culture, limited surgical specimens, and rodent models. Although RNA extracted from human milk has been used to assay the mammary transcriptome non-invasively, this assay has not been adequately validated in primates. Thus, the objectives of the current study were to assess the suitability of lactating rhesus macaques as a model for lactating humans and to determine whether RNA extracted from milk fractions is representative of RNA extracted from mammary tissue for the purpose of studying the transcriptome of milk-producing cells. Results We confirmed that macaque milk contains cytoplasmic crescents and that ample high-quality RNA can be obtained for sequencing. Using RNA sequencing, RNA extracted from macaque milk fat and milk cell fractions more accurately represented RNA from mammary epithelial cells (cells that produce milk) than did RNA from whole mammary tissue. Mammary epithelium-specific transcripts were more abundant in macaque milk fat, whereas adipose or stroma-specific transcripts were more abundant in mammary tissue. Functional analyses confirmed the validity of milk as a source of RNA from milk-producing mammary epithelial cells. Conclusions RNA extracted from the milk fat during lactation accurately portrayed the RNA profile of milk-producing mammary epithelial cells in a non-human primate. However, this sample type clearly requires protocols that minimize RNA degradation. Overall, we validated the use of RNA extracted from human and macaque milk and provided evidence to support the use of lactating macaques as a model for human lactation. PMID:24330573

  4. Sequencing the transcriptome of milk production: milk trumps mammary tissue.

    PubMed

    Lemay, Danielle G; Hovey, Russell C; Hartono, Stella R; Hinde, Katie; Smilowitz, Jennifer T; Ventimiglia, Frank; Schmidt, Kimberli A; Lee, Joyce W S; Islas-Trejo, Alma; Silva, Pedro Ivo; Korf, Ian; Medrano, Juan F; Barry, Peter A; German, J Bruce

    2013-12-12

    Studies of normal human mammary gland development and function have mostly relied on cell culture, limited surgical specimens, and rodent models. Although RNA extracted from human milk has been used to assay the mammary transcriptome non-invasively, this assay has not been adequately validated in primates. Thus, the objectives of the current study were to assess the suitability of lactating rhesus macaques as a model for lactating humans and to determine whether RNA extracted from milk fractions is representative of RNA extracted from mammary tissue for the purpose of studying the transcriptome of milk-producing cells. We confirmed that macaque milk contains cytoplasmic crescents and that ample high-quality RNA can be obtained for sequencing. Using RNA sequencing, RNA extracted from macaque milk fat and milk cell fractions more accurately represented RNA from mammary epithelial cells (cells that produce milk) than did RNA from whole mammary tissue. Mammary epithelium-specific transcripts were more abundant in macaque milk fat, whereas adipose or stroma-specific transcripts were more abundant in mammary tissue. Functional analyses confirmed the validity of milk as a source of RNA from milk-producing mammary epithelial cells. RNA extracted from the milk fat during lactation accurately portrayed the RNA profile of milk-producing mammary epithelial cells in a non-human primate. However, this sample type clearly requires protocols that minimize RNA degradation. Overall, we validated the use of RNA extracted from human and macaque milk and provided evidence to support the use of lactating macaques as a model for human lactation.

  5. t10,c12-Conjugated linoleic acid stimulates mammary tumor progression in Her2/ErbB2 mice through activation of both proliferative and survival pathways

    PubMed Central

    Meng, Xiaojing; Shoemaker, Suzanne F.; McGee, Sibel O.; Ip, Margot M.

    2008-01-01

    The t10,c12 isomer of conjugated linoleic acid (CLA) inhibits rat mammary carcinogenesis, metastasis from a transplantable mouse mammary tumor and angiogenesis; however, it stimulates mammary tumorigenesis in transgenic mice overexpressing ErbB2 in the mammary epithelium (ErbB2 transgenic mice). In the current study, we report that a 4-week supplementation of the diet with 0.5% trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) stimulated the growth of established ErbB2-overexpressing mammary tumors by 30% and increased the number of new tumors from 11% to 82%. Additionally, when t10,c12-CLA supplementation of ErbB2 transgenic mice was initiated at 21 weeks of age, a time just prior to tumor appearance, overall survival was decreased from 46.4 weeks in the control to 39.0 weeks in the CLA group, and survival after detection of a palpable tumor from 7.5 to 4.6 weeks. Short-term supplementation from 10 to 14 weeks or 21 to 25 weeks of age temporarily accelerated tumor development, but over the long term, there was no significant effect on mammary tumorigenesis. Long term as well as a short 4-week supplementation increased mammary epithelial hyperplasia and lobular development, and altered the mammary stroma; this was reversible in mice returned to the control diet. t10,c12-CLA altered proliferation and apoptosis of the mammary epithelium, although this differed depending on the length of administration and/or the age of the mice. The increased tumor development with t10,c12-CLA was associated with increased phosphorylation of the IGF-I/insulin receptor, as well as increased signaling through the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways; however, neither phospho-ErbB2 nor ErbB2 was altered. PMID:18339686

  6. Histomorphometry and expression of CDC-47 and caspase-3 in mammary glands of pregnant female rats with artificial hyperthyroidism.

    PubMed

    Leite, Eveline Dias; de Freitas, Edmilson Santos; de Almeida Souza, Cintia; de Melo Ocarino, Natalia; Cassali, Geovanni Dantas; Serakides, Rogéria

    2008-01-01

    The purpose of this study was to evaluate the effect of hyperthyroidism on mammary gland development and expression of two protein markers, CDC-47 for proliferation and caspase-3 for apoptosis in pregnant female rats. Thirty-six adult female Wistar rats were used in two groups: hyperthyroid and control. Rats were mated 60 days after the onset of thyroxine administration. Six animals/group were sacrificed on gestation days 7, 14, and 19. Artificial hyperthyroidism was induced by daily administration of thyroxine in the drinking water until the end of gestation. At the end of each period, rats were sacrificed, and their inguinal mammary glands were collected and processed for morphometric analysis. The percentages of epithelium, stroma, adipose tissue, and lacteal secretion were determined. Immunohistochemical analysis was also carried out using anti-CDC-47 and anti-caspase-3 antibodies to study proliferation and apoptosis, respectively. On the 19th day of gestation, thyroxine treatment significantly increased the percentage of mammary epithelium. Hyperthyroidism, however, did not change CDC-47 expression. The hyperthyroid group presented early lactogenesis and significantly larger lacteal secretion on the 19th day of gestation. There was no significant difference in caspase-3 expression between groups in any period. We may conclude that hyperthyroidism accelerates mammary gland development and increases lacteal secretion during gestation without increasing the proliferation rate and the expression of caspase-3.

  7. Mammary gland tumors in captive African hedgehogs.

    PubMed

    Raymond, J T; Gerner, M

    2000-04-01

    From December 1995 to July 1999, eight mammary gland tumors were diagnosed in eight adult captive female African hedgehogs (Atelerix albiventris). The tumors presented as single or multiple subcutaneous masses along the cranial or caudal abdomen that varied in size for each hedgehog. Histologically, seven of eight (88%) mammary gland tumors were malignant. Tumors were classified as solid (4 cases), tubular (2 cases), and papillary (2 cases). Seven tumors had infiltrated into the surrounding stroma and three tumors had histologic evidence of neoplastic vascular invasion. Three hedgehogs had concurrent neoplasms. These are believed to be the first reported cases of mammary gland tumors in African hedgehogs.

  8. A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland

    PubMed Central

    2010-01-01

    Introduction Molecular dissection of the signaling pathways that underlie complex biological responses in the mammary epithelium is limited by the difficulty of propagating large numbers of mouse mammary epithelial cells, and by the inability of ribonucleic acid interference-based knockdown approaches to fully ablate gene function. Here we describe a method for the generation of conditionally immortalized mammary epithelial cells with defined genetic defects, and we show how such cells can be used to investigate complex signal transduction processes using the transforming growth factor beta (TGFβ)/Smad pathway as an example. Methods We intercrossed the previously described H-2Kb-tsA58 transgenic mouse (Immortomouse), which expresses a temperature-sensitive mutant of the simian virus-40 large T-antigen (tsTAg), with mice of differing Smad genotypes. Conditionally immortalized mammary epithelial cell cultures were derived from the virgin mammary glands of offspring of these crosses and were used to assess the Smad dependency of different biological responses to TGFβ. Results IMECs could be propagated indefinitely at permissive temperatures and had a stable epithelial phenotype, resembling primary mammary epithelial cells with respect to several criteria, including responsiveness to TGFβ. Using this panel of cells, we demonstrated that Smad3, but not Smad2, is necessary for TGFβ-induced apoptotic, growth inhibitory and epithelial-to-mesenchymal transition responses, whereas either Smad2 or Smad3 can support TGFβ-induced invasion as long as a threshold level of total Smad is exceeded. Conclusions The present work demonstrates the practicality and utility of generating conditionally immortalized mammary epithelial cell lines from genetically modified Immortomice for detailed investigation of complex signaling pathways in the mammary epithelium. PMID:20942910

  9. Mammary microbiota of dairy ruminants: fact or fiction?

    PubMed

    Rainard, Pascal

    2017-04-17

    Explorations of how the complex microbial communities that inhabit different body sites might contribute to health and disease have prompted research on the ways the harmonious relationship between a host and its microbiota could be used to keep animals healthy in their production conditions. In particular, there is a growing interest in the bacterial signatures that can be found in the milk of healthy or mastitic dairy cows. The concept of sterility of the healthy mammary gland of dairy ruminants has been challenged by the results of studies using bacterial DNA-based methodology. The newly obtained data have led to the concept of the intramammary microbiota composed of a complex community of diverse bacteria. Accordingly, mammary gland infections are not mere infections by a bacterial pathogen, but the consequence of mammary dysbiosis. This article develops the logical implications of this paradigm shift and shows how this concept is incompatible with current knowledge concerning the innate and adaptive immune system of the mammary gland of dairy ruminants. It also highlights how the concept of mammary microbiota clashes with results of experimental infections induced under controlled conditions or large field experiments that demonstrated the efficacy of the current mastitis control measures.

  10. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    PubMed

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis

    PubMed Central

    Haricharan, S; Li, Y

    2013-01-01

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. PMID:23541951

  12. Functional interactions between 17 β -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures.

    PubMed

    Zielniok, Katarzyna; Motyl, Tomasz; Gajewska, Malgorzata

    2014-01-01

    Mammary gland epithelium forms a network of ducts and alveolar units under control of ovarian hormones: 17-beta-estradiol (E2) and progesterone (P4). Mammary epithelial cells (MECs) cultured on reconstituted basement membrane (rBM) form three-dimensional (3D) acini composed of polarized monolayers surrounding a lumen. Using the 3D culture of BME-UV1 bovine MECs we previously demonstrated that autophagy was induced in the centrally located cells of developing spheroids, and sex steroids increased this process. In the present study we showed that E2 and P4 enhanced the expression of ATG3, ATG5, and BECN1 genes during acini formation, and this effect was accelerated in the presence of both hormones together. The stimulatory action of E2 and P4 was also reflected by increased levels of Atg5, Atg3, and LC3-II proteins. Additionally, the activity of kinases involved in autophagy regulation, Akt, ERK, AMPK, and mTOR, was examined. E2 + P4 slightly increased the level of phosphorylated AMPK but diminished phosphorylated Akt and mTOR on day 9 of 3D culture. Thus, the synergistic actions of E2 and P4 accelerate the development of bovine mammary acini, which may be connected with stimulation of ATGs expression, as well as regulation of signaling pathways (PI3K/Akt/mTOR; AMPK/mTOR) involved in autophagy induction.

  13. Leptin expression in human mammary epithelial cells and breast milk.

    PubMed

    Smith-Kirwin, S M; O'Connor, D M; De Johnston, J; Lancey, E D; Hassink, S G; Funanage, V L

    1998-05-01

    Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.

  14. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    PubMed Central

    Pai, Vaibhav P.; Hernandez, Laura L.; Stull, Malinda A.; Horseman, Nelson D.

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. PMID:25664318

  15. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia.

    PubMed

    Sun, Heng; Miao, Zhengqiang; Zhang, Xin; Chan, Un In; Su, Sek Man; Guo, Sen; Wong, Chris Koon Ho; Xu, Xiaoling; Deng, Chu-Xia

    2018-06-01

    The mammary gland is very intricately and well organized into distinct tissues, including epithelia, endothelia, adipocytes, and stromal and immune cells. Many mammary gland diseases, such as breast cancer, arise from abnormalities in the mammary epithelium, which is mainly composed of two distinct lineages, the basal and luminal cells. Because of the limitation of traditional transcriptome analysis of bulk mammary cells, the hierarchy and heterogeneity of mammary cells within these two lineages remain unclear. To this end, using single-cell RNA-Seq coupled with FACS analysis and principal component analysis, we determined gene expression profiles of mammary epithelial cells of virgin and pregnant mice. These analyses revealed a much higher heterogeneity among the mammary cells than has been previously reported and enabled cell classification into distinct subgroups according to signature gene markers present in each group. We also identified and verified a rare CDH5 + cell subpopulation within a basal cell lineage as quiescent mammary stem cells (MaSCs). Moreover, using pseudo-temporal analysis, we reconstructed the developmental trajectory of mammary epithelia and uncovered distinct changes in gene expression and in biological functions of mammary cells along the developmental process. In conclusion, our work greatly refines the resolution of the cellular hierarchy in developing mammary tissues. The discovery of CDH5 + cells as MaSCs in these tissues may have implications for our understanding of the initiation, development, and pathogenesis of mammary tumors. © 2018 Sun et al.

  16. Growth hormone mRNA in mammary gland tumors of dogs and cats.

    PubMed Central

    Mol, J A; van Garderen, E; Selman, P J; Wolfswinkel, J; Rijinberk, A; Rutteman, G R

    1995-01-01

    We have shown recently that in the dog progestin administration results in mammary production of immunoreactive growth hormone (GH). At present we demonstrate the expression of the gene encoding GH in the mammary gland of dogs and cats using reverse-transcriptase PCR. GH mRNA was found in the great majority of normal mammary tissues as well as benign and malignant mammary tumors of the dog and was associated with the presence of immunoreactive GH in cryostat sections. The mammary PCR product proved to be identical to that of the pituitary. The highest expression levels were found after prolonged treatment with progestins. In carcinomas GH mRNA was also found in progesterone receptor-negative tissue samples, indicating that after malignant transformation GH gene expression may become progestin independent. GH mRNA was also present in mammary tissues of cats with progestin-induced fibroadenomatous changes. It is concluded that GH gene expression occurs in normal, hyperplastic, and neoplastic mammary tissue of the dog. The expression in normal tissue is stimulated by progestins and might mediate the progestin-stimulated development of canine mammary tumors. The demonstration of progestin-stimulated GH expression in mammary tissue of cats indicates that the phenomenon is more generalized among mammals. Images PMID:7738169

  17. Mammary fibroadenomatous hyperplasia in a male cat.

    PubMed

    Mayayo, Saray Lorna; Bo, Stefano; Pisu, Maria Carmela

    2018-01-01

    Mammary fibroadenomatous hyperplasia (MFH) is a benign pathology characterised by extensive proliferation of the ductal epithelium and mammary stroma. It typically occurs in young female cats, and seems to result from hypersensitivity to progesterone. A 2-year-old entire male European Shorthair cat presented to the veterinary clinic with enlargement of several mammary glands, which had developed within the previous 10 days. There was no prior administration of progestin in the cat's medical history. Diagnostic tests were performed to assess the basal progesterone concentration and the concentration after stimulation with gonadotropin-releasing hormone, which ruled out the presence of functional ovarian tissue. Histological examination of the testes excluded hormone-secreting testicular tumours. Histological examination of the mammary gland confirmed the diagnosis of MFH. Treatment was started with aglepristone, a selective competitor for progesterone receptors, administered subcutaneously at 15 mg/kg at days 1, 2, 8 and 15. A reduction in the size of the mammary glands was evident 6 days after the first administration, with complete remission observed after 4 weeks. To the best of our knowledge, this is the first full report of MFH in a male cat. Although the origin of the progestins responsible for MFH in this case could not be confirmed, in the light of the diagnostic tests performed and the results obtained, accidental contact with hormone-like substances seems to be the only plausible explanation for the cat's clinical signs. Inhibitor therapy was successful.

  18. Selective expression of a splice variant of decay-accelerating factor in c-erbB-2-positive mammary carcinoma cells showing increased transendothelial invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Burkhard; Mikesch, Jan-Hendrik; Simon, Ronald

    2005-04-01

    By differential-display-PCR a subclone of the SK-BR-3 cell line with high in vitro transendothelial invasiveness was identified to express increased levels of a new alternative splice variant of decay-accelerating factor (DAF). DAF seems to play an important role in some malignant tumours since on the one hand the expression of complement inhibitors on the surface of tumour cells prevents the accumulation of complement factors and in consequence cell lysis. On the other hand, DAF has been identified as a ligand for the CD97 surface receptor which induces cell migration. Immunofluorescence procedures, Western blot analyses, and cDNA clone sequencing were employedmore » to confirm the expression of DAF restricted to invasive tumour cells. Using a radioactive RNA-in situ hybridisation on freshly frozen tissue microarrays and RT-PCR on native tumour tissue, the expression of alternative spliced DAF mRNA was demonstrated in invasive breast cancer. Due to the fact that it could thereby not be detected in normal mammary tissues, it has to be confirmed in larger studies that the DAF splice variant might be a specific tumour marker for invasive breast cancer.« less

  19. Folic Acid Supplementation Promotes Mammary Tumor Progression in a Rat Model

    PubMed Central

    Deghan Manshadi, Shaidah; Ishiguro, Lisa; Sohn, Kyoung-Jin; Medline, Alan; Renlund, Richard; Croxford, Ruth; Kim, Young-In

    2014-01-01

    Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression

  20. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging

    PubMed Central

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K.; Wells, Sam; Wikswo, John P.; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    ABSTRACT We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment. PMID:28243517

  1. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    PubMed

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  2. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    PubMed Central

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  3. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis.

    PubMed

    Visvader, Jane E

    2009-11-15

    The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.

  4. Mechanical strain induces involution-associated events in mammary epithelial cells

    PubMed Central

    Quaglino, Ana; Salierno, Marcelo; Pellegrotti, Jesica; Rubinstein, Natalia; Kordon, Edith C

    2009-01-01

    Background Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture. Results We have designed and built a new device to analyze the biological consequences of applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a geometrical model that predicted the percentage of radial strain applied to the elastic substrate was developed. By microscopic image analysis, the adjustment of these calculations to the actual strain exerted on the attached cells was verified. The studies described herein were all performed in the HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition. Conclusion Here, we show for the first time, that mechanical strain is able to induce weaning-associated events in cultured mammary epithelial cells. These results were obtained using a new practical and affordable device

  5. Mammary fibroadenomatous hyperplasia in a male cat

    PubMed Central

    Mayayo, Saray Lorna; Bo, Stefano; Pisu, Maria Carmela

    2018-01-01

    Case summary Mammary fibroadenomatous hyperplasia (MFH) is a benign pathology characterised by extensive proliferation of the ductal epithelium and mammary stroma. It typically occurs in young female cats, and seems to result from hypersensitivity to progesterone. A 2-year-old entire male European Shorthair cat presented to the veterinary clinic with enlargement of several mammary glands, which had developed within the previous 10 days. There was no prior administration of progestin in the cat’s medical history. Diagnostic tests were performed to assess the basal progesterone concentration and the concentration after stimulation with gonadotropin-releasing hormone, which ruled out the presence of functional ovarian tissue. Histological examination of the testes excluded hormone-secreting testicular tumours. Histological examination of the mammary gland confirmed the diagnosis of MFH. Treatment was started with aglepristone, a selective competitor for progesterone receptors, administered subcutaneously at 15 mg/kg at days 1, 2, 8 and 15. A reduction in the size of the mammary glands was evident 6 days after the first administration, with complete remission observed after 4 weeks. Relevance and novel information To the best of our knowledge, this is the first full report of MFH in a male cat. Although the origin of the progestins responsible for MFH in this case could not be confirmed, in the light of the diagnostic tests performed and the results obtained, accidental contact with hormone-like substances seems to be the only plausible explanation for the cat’s clinical signs. Inhibitor therapy was successful. PMID:29568542

  6. Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis

    PubMed Central

    Williams, Terence M.; Sotgia, Federica; Lee, Hyangkyu; Hassan, Ghada; Di Vizio, Dolores; Bonuccelli, Gloria; Capozza, Franco; Mercier, Isabelle; Rui, Hallgeir; Pestell, Richard G.; Lisanti, Michael P.

    2006-01-01

    Here, we investigate the role of caveolin-1 (Cav-1) in breast cancer onset and progression, with a focus on epithelial-stromal interactions, ie, the tumor microenvironment. Cav-1 is highly expressed in adipocytes and is abundant in mammary fat pads (stroma), but it remains unknown whether loss of Cav-1 within mammary stromal cells affects the differentiated state of mammary epithelia via paracrine signaling. To address this issue, we characterized the development of the mammary ductal system in Cav-1−/− mice and performed a series of mammary transplant studies, using both wild-type and Cav-1−/− mammary fat pads. Cav-1−/− mammary epithelia were hyperproliferative in vivo, with dramatic increases in terminal end bud area and mammary ductal thickness as well as increases in bromodeoxyuridine incorporation, extracellular signal-regulated kinase-1/2 hyperactivation, and up-regulation of STAT5a and cyclin D1. Consistent with these findings, loss of Cav-1 dramatically exacerbated mammary lobulo-alveolar hyperplasia in cyclin D1 Tg mice, whereas overexpression of Cav-1 caused reversion of this phenotype. Most importantly, Cav-1−/− mammary stromal cells (fat pads) promoted the growth of both normal mammary ductal epithelia and mammary tumor cells. Thus, Cav-1 expression in both epithelial and stromal cells provides a protective effect against mammary hyperplasia as well as mammary tumorigenesis. PMID:17071600

  7. The Origin and Significance of Mammary Intraductal Foam Cells

    DTIC Science & Technology

    2005-09-01

    hematopoeitic origin developed in mammary tissue with both benign and malignant differentiation, depending on environmental cues. Progression of the cells...contribution of hematopoeitic precursors to the heterogeneity of cell types in benign and malignant mammary tissue.

  8. Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway

    PubMed Central

    Voutilainen, Maria; Lönnblad, Darielle; Shirokova, Vera; Elo, Teresa; Rysti, Elisa; Schmidt-Ullrich, Ruth; Schneider, Pascal; Mikkola, Marja L.

    2015-01-01

    Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants. PMID:26581094

  9. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  10. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  11. Mammary duct ectasia: a cause of bloody nipple discharge.

    PubMed Central

    Leung, Alexander K. C.; Kao, C. Pion

    2004-01-01

    We report a 13-year-old girl with bloody nipple discharge as a result of mammary duct ectasia. Our patient is the second reported case of mammary duct ectasia in a pubertal girl. Images Figure 1 PMID:15101674

  12. Metallothionein expression in canine and feline mammary and melanotic tumours.

    PubMed

    Dincer, Z; Jasani, B; Haywood, S; Mullins, J E; Fuentealba, I C

    2001-01-01

    Moderate to strong immunohistochemical metallothionein (MT) positivity (MT expression) is associated with a poor prognosis in some human tumours. The aim of this study was to determine MT expression in mammary tumours and cutaneous melanomas in dogs and cats. Canine (67) and feline (47) mammary tumours, and cutaneous melanomas (canine 40, feline 26) were immunolabelled with MT monoclonal antibody E9. The overall incidence of MT expression of these tumours was similar to that observed in various human neoplasms. However, a striking interspecies difference was detected. In dogs, MT expression occurred in 100% of benign and 57% of malignant mammary tumours. In cats, however, 30% of malignant mammary tumours expressed MT but benign mammary tumours and cases of fibroadenomatous hyperplasia did not. Moderate to strong MT immunoreactivity was detected in 30% of benign and 25% of malignant cutaneous melanomas in dogs, and in 6% of malignant melanomas in cats. The findings in feline mammary tumours resembled findings reported in human breast cancer, but the cause of tumour-associated MT expression is unknown. Studies are in progress to determine whether the MT state (apo [metal-free] or holo [metal-bound]) accounts for the paradoxical association of MT expression with individual types of tumours and the animal species in which they arise. Copyright Harcourt Publishers Ltd.

  13. Age Modifies the Effect of 2-MeV Fast Neutrons on Rat Mammary Carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Hosoki, Ayaka; Takabatake, Masaru; Kokubo, Toshiaki; Doi, Kazutaka; Showler, Kaye; Nishimura, Yukiko; Moriyama, Hitomi; Morioka, Takamitsu; Shimada, Yoshiya; Kakinuma, Shizuko

    2017-10-01

    The relative biological effectiveness (RBE) of neutrons depends on their physical nature (e.g., energy) and the biological context (e.g., end points, materials). From the perspective of radiological protection, age is an important biological context that influences radiation-related cancer risk, but very few studies have addressed its potential impact on neutron effects. We therefore investigated the influence of age on the effect of accelerator-generated fast neutrons (mean energy, ∼2 MeV) in an animal model of breast carcinogenesis. Female Sprague-Dawley rats at 1, 3 and 7 weeks of age were irradiated with fast neutrons at absorbed doses of 0.0485-0.97 Gy. All animals were kept under specific pathogen-free conditions and screened weekly for mammary tumors by palpation until they were 90 weeks old. Tumors were diagnosed based on histology. Mathematical modeling was used to analyze mammary cancer incidence, collectively using data from this study and a previously reported experiment on 137 Cs gamma rays. The results indicate that neutron irradiation elevated the risk of palpable mammary carcinoma with a linear dose response, the slope of which depended on age at time of irradiation. The RBE of neutron radiation was 7.5 ± 3.4, 9.3 ± 3.5 and 26.1 ± 8.9 (mean ± SE) for animals exposed at 1, 3 and 7 weeks of age, respectively. Our results indicate that age of the animal is an important factor influencing the effect of fast neutrons on breast cancer risk.

  14. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    NASA Astrophysics Data System (ADS)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  15. In vitro expansion of the mammary stem/progenitor cell population by xanthosinetreatment

    USDA-ARS?s Scientific Manuscript database

    Background: Mammary stem cells are critical for growth and maintenance of the mammary gland and therefore of considerable interest for improving productivity and efficiency of dairy animals. Xanthosine (Xs) treatment has been demonstrated to promote expansion of putative mammary stem cells in vivo ...

  16. Mammary blood flow regulation in the nursing rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, M.; Creasy, R.K.

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary bloodmore » flow in the nursing rabbit.« less

  17. Mammary stem cells have myoepithelial cell properties

    PubMed Central

    Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  18. Bovine mammary stem cells: Cell biology meets production agriculture

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  19. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition

    PubMed Central

    McCoy, Erica L.; Iwanaga, Ritsuko; Jedlicka, Paul; Abbey, Nee-Shamo; Chodosh, Lewis A.; Heichman, Karen A.; Welm, Alana L.; Ford, Heide L.

    2009-01-01

    Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent manner. The neoplastic lesions induced by Six1 had an in situ origin, showed diverse differentiation, and exhibited progression to aggressive malignant neoplasms, as is often observed in human carcinoma of the breast. Strikingly, the vast majority of Six1-induced tumors underwent an epithelial-mesenchymal transition (EMT) and expressed multiple targets of activated Wnt signaling, including cyclin D1. Interestingly, Six1 and cyclin D1 coexpression was found to frequently occur in human breast cancers and was strongly predictive of poor prognosis. We further show that Six1 promoted a stem/progenitor cell phenotype in the mouse mammary gland and in Six1-driven mammary tumors. Our data thus provide genetic evidence for a potent oncogenic role for Six1 in mammary epithelial neoplasia, including promotion of EMT and stem cell–like features. PMID:19726883

  20. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor.

    PubMed Central

    Ulich, T. R.; Yi, E. S.; Cardiff, R.; Yin, S.; Bikhazi, N.; Biltz, R.; Morris, C. F.; Pierce, G. F.

    1994-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF is secreted by stromal cells and affects epithelial but not mesenchymal cell proliferation. KGF injected intravenously was found to cause dramatic proliferation of mammary epithelium in the mammary glands of rats. KGF causes ductal neogenesis and intraductal epithelial hyperplasia but not lobular differentiation in nulliparous female rats. KGF causes ductal and lobular epithelial hyperplasia in male rats. KGF causes proliferation of ductal and acinar cells in the mammary glands of pregnant rats. On the other hand, the ductal epithelium of lactating postpartum rats is resistant to the proliferative action of KGF. The mammary glands of lactating rats did not express less KGF receptor mRNA than the glands of pregnant rats, suggesting that the resistance of the ductal epithelium to KGF during lactation is not related to KGF receptor mRNA down-regulation. The mammary glands of both pregnant and postpartum lactating rats express KGF mRNA with more KGF present in the glands of lactating rats. In conclusion, the KGF and KGF receptor genes are expressed in rat mammary glands and recombinant KGF is a potent growth factor for mammary epithelium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8178937

  1. Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.

    PubMed

    Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid

    2016-06-01

    In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation.

  2. Autocrine-paracrine regulation of the mammary gland.

    PubMed

    Weaver, S R; Hernandez, L L

    2016-01-01

    The mammary gland has a remarkable capacity for regulation at a local level, particularly with respect to its main function: milk secretion. Regulation of milk synthesis has significant effects on animal and human health, at the level of both the mother and the neonate. Control by the mammary gland of its essential function, milk synthesis, is an evolutionary necessity and is therefore tightly regulated at a local level. For at least the last 60 yr, researchers have been interested in elucidating the mechanisms underpinning the mammary gland's ability to self-regulate, largely without the influence from systemic hormones or signals. By the 1960s, scientists realized the importance of milk removal in the capacity of the gland to produce milk and that the dynamics of this removal, including emptying of the alveolar spaces and frequency of milking, were controlled locally as opposed to traditional systemic hormonal regulation. Using both in vitro systems and various mammalian species, including goats, marsupials, humans, and dairy cows, it has been demonstrated that the mammary gland is largely self-regulating in its capacity to support the young, which is the evolutionary basis for milk production. Local control occurs at the level of the mammary epithelial cell through pressure and stretching negative-feedback mechanisms, and also in an autocrine fashion through bioactive factors within the milk which act as inhibitors, regulating milk secretion within the alveoli themselves. It is only within the last 20 to 30 yr that potential candidates for these bioactive factors have been examined at a molecular level. Several, including parathyroid hormone-related protein, growth factors (transforming growth factor, insulin-like growth factor, epidermal growth factor), and serotonin, are synthesized within and act upon the gland and possess dynamic receptor activity resulting in diverse effects on growth, calcium homeostasis, and milk composition. This review will focus on the

  3. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments

    PubMed Central

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2004-01-01

    Introduction Women who have undergone a full-term pregnancy before the age of 20 have one-half the risk of developing breast cancer compared with women who have never gone through a full-term pregnancy. This protective effect is observed universally among women of all ethnic groups. Parity in rats and mice also protects them against chemically induced mammary carcinogenesis. Methods Seven-week-old virgin Lewis rats were given N-methyl-N-nitrosourea. Two weeks later the rats were treated with natural or synthetic estrogens and progestins for 7–21 days by subcutaneous implantation of silastic capsules. Results In our current experiment, we demonstrate that short-term sustained exposure to natural or synthetic estrogens along with progestins is effective in preventing mammary carcinogenesis in rats. Treatment with 30 mg estriol plus 30 mg progesterone for 3 weeks significantly reduced the incidence of mammary cancer. Short-term exposure to ethynyl estradiol plus megesterol acetate or norethindrone was effective in decreasing the incidence of mammary cancers. Tamoxifen plus progesterone treatment for 3 weeks was able to confer only a transient protection from mammary carcinogenesis, while 2-methoxy estradiol plus progesterone was effective in conferring protection against mammary cancers. Conclusions The data obtained in the present study demonstrate that, in nulliparous rats, long-term protection against mammary carcinogenesis can be achieved by short-term treatments with natural or synthetic estrogen and progesterone combinations. PMID:14680498

  4. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

    PubMed Central

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P.; Fulzele, Sadanand; Pei, Lirong; Chang, Chang-Sheng; Choi, Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D.; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-01-01

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment. PMID:25908435

  5. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.

    PubMed

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P; Sadanand, Fulzele; Pei, Lirong; Chang, Chang-Sheng; Choi, Jeong-Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-04-24

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

  6. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers

    PubMed Central

    2013-01-01

    Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. Methods We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. Results Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell

  7. Mammary artery harvesting using the Da Vinci Si robotic system

    PubMed Central

    Canale, Leonardo Secchin; Bonatti, Johannes

    2014-01-01

    Internal mammary artery harvesting is an essential part of any coronary artery bypass operation. Totally endoscopic coronary artery bypass graft surgery has become reality in many centers as a safe and effective alternative to conventional surgery in selected patients. Internal mammary artery harvesting is the initial part of the procedure and should be performed equally safely if one wants to achieve excellence in patency rates for the bypass. We here describe the technique for mammary harvesting with the Da Vinci Si robotic system. PMID:24896171

  8. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Brian W., E-mail: brbooth@clemson.edu; Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC 29634; Boulanger, Corinne A.

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signalingmore » pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.« less

  9. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics.

    PubMed

    Booth, Brian W; Boulanger, Corinne A; Anderson, Lisa H; Jimenez-Rojo, Lucia; Brisken, Cathrin; Smith, Gilbert H

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG(-/-) mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy.

  11. Serum acute phase protein concentrations in female dogs with mammary tumors.

    PubMed

    Tecles, Fernando; Caldín, Marco; Zanella, Anna; Membiela, Francisco; Tvarijonaviciute, Asta; Subiela, Silvia Martínez; Cerón, José Joaquín

    2009-03-01

    Acute phase proteins (APPs) are proteins whose concentrations in serum change after any inflammatory stimulus or tissue damage. The aim of the current study was to evaluate 3 positive APPs (C-reactive protein, serum amyloid A, and haptoglobin) and 1 negative APP (albumin) in female dogs with mammary neoplasia. Acute phase proteins were studied in 70 female dogs aged 8-12 years in the following groups: healthy (n = 10); mammary tumors in stages I (n = 19), II (n = 5), III (n = 6), IV (n = 5), and V (n = 7); and with mammary neoplasia plus a concomitant disease (n = 18). In animals with mammary neoplasia, significant increases of positive APPs were only detected in those that had metastasis or a neoplasm with a diameter greater than 5 cm and ulceration. Dogs with mammary neoplasia and a concomitant disease also had high C-reactive protein concentrations. Albumin concentration was decreased in animals with metastasis and with a concomitant disease. The results of the present study indicate that the acute phase response could be stimulated in female dogs with mammary gland tumors because of different factors, such as metastasis, large size of the primary mass, and ulceration or secondary inflammation of the neoplasm.

  12. Th-POK regulates mammary gland lactation through mTOR-SREBP pathway.

    PubMed

    Zhang, Rui; Ma, Huimin; Gao, Yuan; Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial; Liu, Xiaolong; Ge, Gaoxiang

    2018-02-01

    The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation.

  13. Th-POK regulates mammary gland lactation through mTOR-SREBP pathway

    PubMed Central

    Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial

    2018-01-01

    The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation. PMID:29420538

  14. Short-term exposure to pregnancy levels of estrogen prevents mammary carcinogenesis

    PubMed Central

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C.; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2001-01-01

    It is well established that pregnancy early in life reduces the risk of breast cancer in women and that this effect is universal. This phenomenon of parity protection against mammary cancer is also observed in rodents. Earlier studies have demonstrated that short-term administration of estradiol (E) in combination with progesterone mimics the protective effect of parity in rats. In this study, the lowest effective E dosage for preventing mammary cancer was determined. Rats were injected with N-methyl-N-nitrosourea at 7 weeks of age; 2 weeks later, the rats were subjected to sustained treatment with 20 μg, 100 μg, 200 μg, or 30 mg of E in silastic capsules for 3 weeks. Treatments with 100 μg, 200 μg, and 30 mg of E resulted in serum levels of E equivalent to those of pregnancy and were highly effective in preventing mammary cancer. E treatment (20 μg) did not result in pregnancy levels of E and was not effective in reducing the mammary cancer incidence. In another set of experiments, we determined the effect of different durations of E with or without progesterone treatments on mammary carcinogenesis. These experiments indicate that a period as short as one-third the period of gestation is sufficient to induce protection against mammary carcinogenesis. The pioneering aspect of our study in contrast to long-term estrogen exposure, which is thought to increase the risk of breast cancer, is that short-term sustained treatments with pregnancy levels of E can induce protection against frank mammary cancer. PMID:11573010

  15. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.

  16. The RhoGEF Net1 Is Required for Normal Mammary Gland Development

    PubMed Central

    Zuo, Yan; Berdeaux, Rebecca

    2014-01-01

    Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily-specific guanine nucleotide exchange factor that is overexpressed in human breast cancer and is required for breast cancer cell migration and invasion. However, the role of Net1 in normal mammary gland development or function has never been assessed. To understand the role of Net1 in the mammary gland, we have created a conditional Net1 knockout mouse model. Whole-body deletion of Net1 results in delayed mammary gland development during puberty characterized by slowed of ductal extension and reduced ductal branching. Epithelial cells within the developing ducts show reduced proliferation that is accompanied by diminished estrogen receptor-α expression and activity. Net1-deficient mammary glands also exhibit reduced phosphorylation of regulatory subunits of myosin light chain and myosin light-chain phosphatase, indicating that RhoA-dependent actomyosin contraction is compromised. Net1 deficiency also leads to disorganization of myoepithelial and ductal epithelial cells and increased periductal collagen deposition. Mammary epithelial cell transplantation experiments indicate that reduced ductal branching and disorganization are cell autonomous. These data identify for the first time a role for NET1 in vivo and indicate that NET1 expression is essential for the proliferation and differentiation of mammary epithelial cells in the developing mammary gland. PMID:25321414

  17. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  18. Mammary gigantism and D-penicillamine.

    PubMed

    Finer, N; Emery, P; Hicks, B H

    1984-09-01

    Mammary gigantism is a rare complication of D-penicillamine treatment. We report a further case with pathological and endocrine details together with a review of the seven cases previously reported and possible mechanisms.

  19. Investigating the Role of FIP200 in Mammary Carcinogenesis Using a Transgenic Mouse Model

    DTIC Science & Technology

    2006-04-01

    I analyzed virgin and lactating female mice in which FAK is specifically deleted in the mammary epithelium. No morphological abnormalities were found...in the mammary gland of virgin mice however, lactating mice have severe lobulo-alveolar hypoplasia in the mammary gland. 15. SUBJECT TERMS... virgin and lactating female mice in which FAK is specifically deleted in the mammary epithelium. No morphological abnormalities were found in the

  20. The mammary gland in domestic ruminants: a systems biology perspective.

    PubMed

    Ferreira, Ana M; Bislev, Stine L; Bendixen, Emøke; Almeida, André M

    2013-12-06

    Milk and dairy products are central elements in the human diet. It is estimated that 108kg of milk per year are consumed per person worldwide. Therefore, dairy production represents a relevant fraction of the economies of many countries, being cattle, sheep, goat, water buffalo, and other ruminants the main species used worldwide. An adequate management of dairy farming cannot be achieved without the knowledge on the biological mechanisms behind lactation in ruminants. Thus, understanding the morphology, development and regulation of the mammary gland in health, disease and production is crucial. Presently, innovative and high-throughput technologies such as genomics, transcriptomics, proteomics and metabolomics allow a much broader and detailed knowledge on such issues. Additionally, the application of a systems biology approach to animal science is vastly growing, as new advances in one field of specialization or animal species lead to new lines of research in other areas or/and are expanded to other species. This article addresses how modern research approaches may help us understand long-known issues in mammary development, lactation biology and dairy production. Dairy production depends upon the knowledge of the morphology and regulation of the mammary gland and lactation. High-throughput technologies allow a much broader and detailed knowledge on the biology of the mammary gland. This paper reviews the major contributions that genomics, transcriptomics, metabolomics and proteomics approaches have provided to understand the regulation of the mammary gland in health, disease and production. In the context of mammary gland "omics"-based research, the integration of results using a Systems Biology Approach is of key importance. © 2013.

  1. Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone

    PubMed Central

    Mukhina, Svetlana; Mertani, Hichem C.; Guo, Ke; Lee, Kok-Onn; Gluckman, Peter D.; Lobie, Peter E.

    2004-01-01

    We report here that autocrine production of human growth hormone (hGH) results in a phenotypic conversion of mammary carcinoma cells such that they exhibit the morphological and molecular characteristics of a mesenchymal cell, including expression of fibronectin and vimentin. Autocrine production of hGH resulted in reduced plakoglobin expression and relocalization of E-cadherin to the cytoplasm, leading to dissolution of cell-cell contacts and decreased cell height. These phenotypic changes were accompanied by an increase in cell motility, elevated activity of specific matrix metalloproteinases, and an acquired ability to invade a reconstituted basement membrane. Forced expression of plakoglobin significantly decreased mammary carcinoma cell migration and invasion stimulated by autocrine hGH. In vivo, autocrine hGH stimulated local invasion of mammary carcinoma cells concomitant with a prominent stromal reaction in comparison with well delineated and capsulated growth of mammary carcinoma cells lacking autocrine production of hGH. Thus, autocrine production of hGH by mammary carcinoma cells is sufficient for generation of an invasive phenotype. Therapeutic targeting of autocrine hGH may provide a mechanistic approach to prevent metastatic extension of human mammary carcinoma. PMID:15353581

  2. The Role of DN-GSK3beta in Mammary Tumorigenesis

    DTIC Science & Technology

    2006-07-01

    factors and dramatically increases their transcriptional activity. Genes up- regulated by TCF/LEF include embryologic genes, such as siamois and engrailed...and increased apoptosis occurs in the mammary epithelia (33). Overexpression of the regulator CK2a also promotes mammary tumorigenesis (34). In this

  3. Familial intra-areolar polythelia with mammary hypoplasia.

    PubMed

    Rintala, A; Norio, R

    1982-01-01

    Dysplastic divided nipples (intra-areolar polythelia) have been found bilaterally in a mother, her two daughters and one son. Two of the patients had mammary hypoplasia, one had unilateral hypoplasia of the pectoral muscle and duplication of the renal pelvis and ureter. The mammary findings are consistent with autosomal dominant inheritance. Whether they represent a new mammo-renal syndrome is uncertain. Reconstructive surgery was performed on two patients. Due to the deformity the mother was unable to nurse her children; following reconstructive surgery the daughter was able to feed her baby normally.

  4. Over-expression of mammaglobin-B in canine mammary tumors.

    PubMed

    Pandey, Mamta; Sunil Kumar, B V; Gupta, Kuldip; Sethi, Ram Saran; Kumar, Ashwani; Verma, Ramneek

    2018-06-15

    Mammaglobin, a member of secretoglobin family has been recognized as a breast cancer associated protein. Though the exact function of the protein is not fully known, its expression has been reported to be upregulated in human breast cancer.We focused on studying the expression of mammaglobin-B gene and protein in canine mammary tumor (CMT) tissue. Expression of mammaglobin-B mRNA and protein were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. High levels of mammaglobin-B mRNA expression (6.663 ± 0.841times) was observed in CMT as compared to age and breed matched healthy controls. Further, expression of mammaglobin-B protein was detected in paraffin-embedded mammary tumor tissues from the same subjects by IHC. Mammaglobin-B protein was overexpressed only in 6.67% of healthy mammary glands while, a high level of its expression was scored in 76.7% of the CMT subjects. Moreover, no significant differences in terms of IHC score and qRT-PCR score with respect to CMT histotypes or tumor grades were observed, indicating that mammaglobin-B over-expression occurred irrespective of CMT types or grades. Overall, significantly increased expression of mammaglobin-B protein was found in CMTs with respect to healthy mammary glands, which positively correlates to its transcript. These findings suggest that overexpression of mammaglobin-B is associated with tumors of canine mammary glands.

  5. Mammary fibroadenomatous hyperplasia in a young cat attributed to treatment with megestrol acetate.

    PubMed

    MacDougall, Lori D

    2003-03-01

    A male, neutered cat was presented for lethargy, reluctance to walk, and mammary enlargement after recent treatment with megestrol acetate. Mammary fibroadenomatous hyperplasia was diagnosed on the basis of history, clinical signs, and histopathological findings. Pathogenesis, clinical signs, and treatment options for mammary fibroadenomatous hyperplasia attributed to megestrol acetate treatment are discussed.

  6. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    PubMed

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  7. Notch3 marks clonogenic mammary luminal progenitor cells in vivo

    PubMed Central

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis

    2013-01-01

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive “triple negative” human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2SAT transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells. PMID:24100291

  8. Relationship between histology, development and tumorigenesis of mammary gland in female rat

    PubMed Central

    LÍŠKA, Ján; BRTKO, Július; DUBOVICKÝ, Michal; MACEJOVÁ, Dana; KISSOVÁ, Viktória; POLÁK, Štefan; UJHÁZY, Eduard

    2015-01-01

    The mammary gland is a dynamic organ that undergoes structural and functional changes associated with growth, reproduction, and post-menopausal regression. The postnatal transformations of the epithelium and stromal cells of the mammary gland may contribute to its susceptibility to carcinogenesis. The increased cancer incidence in mammary glands of humans and similarly of rodents in association with their development is believed to be partly explained by proliferative activity together with lesser degree of differentiation, but it is not completely understood how the virgin gland retains its higher susceptibility to carcinogenesis. During its developmental cycle, the mammary gland displays many of the properties associated with breast cancer. An early first full-term pregnancy may have a protective effect. Rodent models are useful for investigating potential breast carcinogens. The purpose of this review is to help recognizing histological appearance of the epithelium and the stroma of the normal mammary gland in rats, and throughout its development in relation to tumorigenic potential. PMID:26424555

  9. The Analysis of Cell Population Dynamics in Mammary Gland Development and Tumorigenesis

    DTIC Science & Technology

    2005-08-01

    AD Award Number: DAMD17-03-1-0498 TITLE: The Analysis of Cell Population Dynamics in Mammary Gland Development and Tumorigenesis PRINCIPAL...Summary 1 Aug 2004 - 31 Jul 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER The Analysis of Cell Population Dynamics in Mammary Gland Development and...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The mammary gland is made up of several epithelial cell

  10. From genes to milk: genomic organization and epigenetic regulation of the mammary transcriptome.

    PubMed

    Lemay, Danielle G; Pollard, Katherine S; Martin, William F; Freeman Zadrowski, Courtneay; Hernandez, Joseph; Korf, Ian; German, J Bruce; Rijnkels, Monique

    2013-01-01

    Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin state contributes to the co-regulation of gene neighborhoods. The mammary gland represents a unique evolutionary model, due to its recent appearance, in the context of vertebrate genomes. An understanding of how the mammary gland is regulated to produce milk is also of biomedical and agricultural importance for human lactation and dairying. Here, we integrate epigenomic and transcriptomic data to develop a comprehensive regulatory model. Neighborhoods of mammary-expressed genes were determined using expression data derived from pregnant and lactating mice and a neighborhood scoring tool, G-NEST. Regions of open and closed chromatin were identified by ChIP-Seq of histone modifications H3K36me3, H3K4me2, and H3K27me3 in the mouse mammary gland and liver tissue during lactation. We found that neighborhoods of genes in regions of uniquely active chromatin in the lactating mammary gland, compared with liver tissue, were extremely rare. Rather, genes in most neighborhoods were suppressed during lactation as reflected in their expression levels and their location in regions of silenced chromatin. Chromatin silencing was largely shared between the liver and mammary gland during lactation, and what distinguished the mammary gland was mainly a small tissue-specific repertoire of isolated, expressed genes. These findings suggest that an advantage of the neighborhood organization is in the collective repression of groups of genes via a shared mechanism of chromatin repression. Genes essential to the mammary gland's uniqueness are isolated from neighbors, and likely have less tolerance for variation in expression, properties they share with genes responsible for an organism's survival.

  11. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    PubMed

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  12. Mammary fibroadenomatous hyperplasia in a young cat attributed to treatment with megestrol acetate

    PubMed Central

    MacDougall, Lori D.

    2003-01-01

    A male, neutered cat was presented for lethargy, reluctance to walk, and mammary enlargement after recent treatment with megestrol acetate. Mammary fibroadenomatous hyperplasia was diagnosed on the basis of history, clinical signs, and histopathological findings. Pathogenesis, clinical signs, and treatment options for mammary fibroadenomatous hyperplasia attributed to megestrol acetate treatment are discussed. PMID:12677692

  13. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    NASA Technical Reports Server (NTRS)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  14. Histochemical properties of bovine and ovine mammary glands during fetal development.

    PubMed

    Hara, Asuka; Abe, Tomoyuki; Hirao, Atsushi; Sanbe, Kazuhiro; Ayakawa, Hiromichi; Sarantonglaga, Borjigin; Yamaguchi, Mio; Sato, Akane; Khurchabilig, Atchalalt; Ogata, Kazuko; Fukumori, Rika; Sugita, Shoei; Nagao, Yoshikazu

    2018-02-20

    In order to obtain more information on the development of bovine and ovine fetal mammary glands, a series of mammary glands from fetuses of different ages were analyzed. A total of 16 bovine fetuses with curved crown rump lengths ranging from 12 cm (80 days) to 75 cm (240 days) and 15 ovine fetuses ranging from 55 days to 131 days were examined. We used hematoxylin and eosin stain and Oil-Red-O stain to analyze the developmental and morphogenetic processes of mammary glands. In addition, we used immunohistochemical staining to determine the pattern of expression of cytokeratin 18 (CK18) during luminal epithelial differentiation, α-smooth-muscle actin (α-SMA) for myoepithelial differentiation, Ki-67 for cell proliferation, and estrogen receptor α (ERα). Our analyzes showed: (a) The primary mammary duct begin to proliferate in a lengthwise within the teat at 90 days in bovine fetuses and 63 days in ovine fetus; (b) luminal epithelial cells and myoepithelial cells appeared from 90 days in bovine fetuses and 63 days in ovine fetus; (c) proliferation of epithelial cells appeared to coincide with the development of the primary and secondary ducts; and (d) ERα was not found in the fetal mammary gland, but adipocytes showed the presence of ERα. Overall, these results indicate that the sequence of events in the prenatal development of the mammary gland of sheep is similar to that of cattle.

  15. Histochemical properties of bovine and ovine mammary glands during fetal development

    PubMed Central

    HARA, Asuka; ABE, Tomoyuki; HIRAO, Atsushi; SANBE, Kazuhiro; AYAKAWA, Hiromichi; SARANTONGLAGA, Borjigin; YAMAGUCHI, Mio; SATO, Akane; KHURCHABILIG, Atchalalt; OGATA, Kazuko; FUKUMORI, Rika; SUGITA, Shoei; NAGAO, Yoshikazu

    2017-01-01

    In order to obtain more information on the development of bovine and ovine fetal mammary glands, a series of mammary glands from fetuses of different ages were analyzed. A total of 16 bovine fetuses with curved crown rump lengths ranging from 12 cm (80 days) to 75 cm (240 days) and 15 ovine fetuses ranging from 55 days to 131 days were examined. We used hematoxylin and eosin stain and Oil-Red-O stain to analyze the developmental and morphogenetic processes of mammary glands. In addition, we used immunohistochemical staining to determine the pattern of expression of cytokeratin 18 (CK18) during luminal epithelial differentiation, α-smooth-muscle actin (α-SMA) for myoepithelial differentiation, Ki-67 for cell proliferation, and estrogen receptor α (ERα). Our analyzes showed: (a) The primary mammary duct begin to proliferate in a lengthwise within the teat at 90 days in bovine fetuses and 63 days in ovine fetus; (b) luminal epithelial cells and myoepithelial cells appeared from 90 days in bovine fetuses and 63 days in ovine fetus; (c) proliferation of epithelial cells appeared to coincide with the development of the primary and secondary ducts; and (d) ERα was not found in the fetal mammary gland, but adipocytes showed the presence of ERα. Overall, these results indicate that the sequence of events in the prenatal development of the mammary gland of sheep is similar to that of cattle. PMID:29249731

  16. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    EPA Science Inventory

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  17. Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk

    PubMed Central

    Leung, Yuet-Kin; Govindarajah, Vinothini; Cheong, Ana; Veevers, Jennifer; Song, Dan; Gear, Robin; Zhu, Xuegong; Ying, Jun; Kendler, Ady; Medvedovic, Mario; Belcher, Scott

    2017-01-01

    In utero exposure to bisphenol A (BPA) increases mammary cancer susceptibility in offspring. High-fat diet is widely believed to be a risk factor of breast cancer. The objective of this study was to determine whether maternal exposure to BPA in addition to high-butterfat (HBF) intake during pregnancy further influences carcinogen-induced mammary cancer risk in offspring, and its dose–response curve. In this study, we found that gestational HBF intake in addition to a low-dose BPA (25 µg/kg BW/day) exposure increased mammary tumor incidence in a 50-day-of-age chemical carcinogen administration model and altered mammary gland morphology in offspring in a non-monotonic manner, while shortening tumor-free survival time compared with the HBF-alone group. In utero HBF and BPA exposure elicited differential effects at the gene level in PND21 mammary glands through DNA methylation, compared with HBF intake in the absence of BPA. Top HBF + BPA-dysregulated genes (ALDH1B1, ASTL, CA7, CPLX4, KCNV2, MAGEE2 and TUBA3E) are associated with poor overall survival in The Cancer Genomic Atlas (TCGA) human breast cancer cohort (n = 1082). Furthermore, the prognostic power of the identified genes was further enhanced in the survival analysis of Caucasian patients with estrogen receptor-positive tumors. In conclusion, concurrent HBF dietary and a low-dose BPA exposure during pregnancy increases mammary tumor incidence in offspring, accompanied by alterations in mammary gland development and gene expression, and possibly through epigenetic reprogramming. PMID:28487351

  18. Effects of milk replacer formulation on measures of mammary growth and composition in Holstein heifers.

    PubMed

    Daniels, K M; Capuco, A V; McGilliard, M L; James, R E; Akers, R M

    2009-12-01

    Overfeeding prepubertal heifers may impair mammary parenchymal growth and reduce milk production, but evidence suggests that increased intake of a high-protein milk replacer before weaning may be beneficial. This study was designed to evaluate effects of milk replacer (MR) composition on mass and composition of mammary parenchyma and fat pad, growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis gene expression, and putative mammary epithelial stem cells. Specifically, we hypothesized that positive effects of faster rates of gain during the preweaning period alter the development, persistence, or activity of populations of putative mammary epithelial stem cells, possibly through involvement of GH/IGF-I axis molecules. Twenty-four newborn heifers were fed 1 of 4 MR diets (n = 6/diet): control [20% crude protein (CP), 21% fat MR fed at 441 g of dry matter (DM)/d], high protein, low fat (28% CP, 20% fat MR fed at 951 g of DM/d), high protein, high fat (27% CP, 28% fat MR fed at 951 g of DM/d), and high protein, high fat+ (27% CP, 28% fat MR fed at 1,431 g of DM/d). Water and starter (20% CP, 1.43% fat) were offered ad libitum. Animals were killed on d 65 and mammary tissue was subjected to biochemical, molecular, and histological examination. No differences in mammary parenchymal mass or composition, with or without adjusting for empty body weight, were detected. Mass was increased and composition of the mammary fat pad was altered by nutrient intake. No diet differences in putative mammary epithelial stem cell abundance or abundance of transcripts for genes of the GH/IGF-I axis were detected. In this study, growth of the mammary epithelium, size of the mammary epithelial stem cell population, and components of the GH/IGF-I axis did not depend on diet. However, an underlying positive correlation between telomerase, a marker of mammary stem cells, and growth of the mammary parenchyma was detected. Implications of diet-induced effects on mammary fat pad and

  19. ApcMin, A Mutation in the Murine Apc Gene, Predisposes to Mammary Carcinomas and Focal Alveolar Hyperplasias

    NASA Astrophysics Data System (ADS)

    Moser, Amy Rapaich; Mattes, Ellen M.; Dove, William F.; Lindstrom, Mary J.; Haag, Jill D.; Gould, Michael N.

    1993-10-01

    ApcMin (Min, multiple intestinal neoplasia) is a point mutation in the murine homolog of the APC gene. Min/+ mice develop multiple intestinal adenomas, as do humans carrying germ-line mutations in APC. Female mice carrying Min are also prone to develop mammary tumors. Min/+ mammary glands are more sensitive to chemical carcinogenesis than are +/+ mammary glands. Transplantation of mammary cells from Min/+ or +/+ donors into +/+ hosts demonstrates that the propensity to develop mammary tumors is intrinsic to the Min/+ mammary cells. Long-term grafts of Min/+ mammary glands also gave rise to focal alveolar hyperplasias, indicating that the presence of the Min mutation also has a role in the development of these lesions.

  20. Mammary stem cells and the differentiation hierarchy: current status and perspectives

    PubMed Central

    Visvader, Jane E.; Stingl, John

    2014-01-01

    The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the “cells of origin” and molecular perturbations that drive breast cancer. PMID:24888586

  1. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol

    PubMed Central

    CRUZ, PAMELA; TORRES, CRISTIAN; RAMÍREZ, MARÍA EUGENIA; EPUÑÁN, MARÍA JOSÉ; VALLADARES, LUIS EMILIO; SIERRALTA, WALTER DANIEL

    2010-01-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E2) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E2, and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E2 in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E2-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels. PMID:22993572

  2. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol.

    PubMed

    Cruz, Pamela; Torres, Cristian; Ramírez, María Eugenia; Epuñán, María José; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2010-05-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E(2)) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E(2), and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E(2) in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E(2)-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels.

  3. Progesterone receptor isoforms in the mammary gland of cats and dogs.

    PubMed

    Gracanin, A; de Gier, J; Zegers, K; Bominaar, M; Rutteman, G R; Schaefers-Okkens, A C; Kooistra, H S; Mol, J A

    2012-12-01

    Progesterone exerts its effect by binding to specific progesterone receptors (PR) within the cell. In dogs and cats, no data are available on PR isoforms as found in other species. We therefore investigated the sequence of the PR gene and encoded protein in dogs and cats, the expression of PR isoforms in mammary tissue using Western blots and the presence of PR in mammary tissue using immunohistochemistry. Comparison of the amino acid sequence of the canine and feline PR with human PR revealed major differences in the PR-B-specific upstream segment (BUS). However, the essential activation function 3 (AF3) domain was intact in the cat but mutated in the dog. The DNA and ligand-binding domains were highly similar among the species. In cats with fibroadenomatous hyperplasia (FAH), high expression of PR mRNA together with growth hormone (GH), GH receptor (GHR) and IGF-I mRNA was found in comparison with feline mammary carcinomas. Immunohistochemical analysis showed strong nuclear as well as cytoplasmic staining for PR in FAH. Western blot analysis revealed expression of the PR-A and PR-B isoforms in the feline mammary gland. In canine mammary tissue, the most abundant PR staining was found in proliferative zones of the mammary gland. Western blot analyses showed mainly staining for PR-A with lower PR-B staining. It is concluded that in dogs and cats both PR isoforms are expressed. The role of mutations found in the canine PR-B is discussed. © 2012 Blackwell Verlag GmbH.

  4. Evaluation of serum haptoglobin and C-reactive protein in dogs with mammary tumors.

    PubMed

    Planellas, Marta; Bassols, Anna; Siracusa, Carlo; Saco, Yolanda; Giménez, Mercè; Pato, Raquel; Pastor, Josep

    2009-09-01

    In veterinary medicine, there is increasing interest in measuring acute phase proteins as a tool in the diagnosis and monitoring of neoplastic diseases. Although mammary neoplasms are the most common type of cancer in dogs, acute phase proteins have not been extensively evaluated in dogs with mammary tumors. The aim of this study was to evaluate serum haptoglobin (Hp) and C-reactive protein (CRP) concentrations in the dogs with mammary tumors and assess their potential association with malignancy. A retrospective study of dogs with mammary tumors was performed. Serum concentrations of CRP and Hp were determined in healthy control dogs (n=20) and dogs with mammary tumors before surgery (n=41). Mammary tumors were grouped as carcinomas (n=24), fibrosarcoma (n=1), malignant mixed tumors (n=7), benign mixed tumors (n=6), and adenomas (n=3). CRP and Hp concentrations were compared in dogs with different tumor types and were also compared based on tumor size, lymph node infiltration, skin ulceration, fixation to underlying tissue, and time between tumor identification and removal. Hp concentration was significantly (P<.043) higher in dogs with mammary tumors (median 2.03 g/L, range 0.09-2.94 g/L) compared with controls (1.38 g/L, range 0.08-3.00 g/L), but the range of values overlapped considerably. CRP concentration was higher in dogs with carcinomas (4.70 mg/L, range 0.63-128.96 mg/L) vs controls (2.11 mg/L, range 0.25-6.57 mg/L) (P=.0008) and in dogs with ulcerated skin (14.8 mg/L, range 5.7-128.9 mg/L, n=3) compared with those without ulceration (2.4 mg/L, range 0.11-30.3 mg/L, n=38) (P=.048). Serum Hp and CRP do not appear to have value in diagnosing or predicting malignancy of mammary tumors in dogs. Higher CRP concentrations in dogs with mammary carcinoma suggest a role for inflammation in this tumor type.

  5. From Genes to Milk: Genomic Organization and Epigenetic Regulation of the Mammary Transcriptome

    PubMed Central

    Lemay, Danielle G.; Pollard, Katherine S.; Martin, William F.; Freeman Zadrowski, Courtneay; Hernandez, Joseph; Korf, Ian; German, J. Bruce; Rijnkels, Monique

    2013-01-01

    Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin state contributes to the co-regulation of gene neighborhoods. The mammary gland represents a unique evolutionary model, due to its recent appearance, in the context of vertebrate genomes. An understanding of how the mammary gland is regulated to produce milk is also of biomedical and agricultural importance for human lactation and dairying. Here, we integrate epigenomic and transcriptomic data to develop a comprehensive regulatory model. Neighborhoods of mammary-expressed genes were determined using expression data derived from pregnant and lactating mice and a neighborhood scoring tool, G-NEST. Regions of open and closed chromatin were identified by ChIP-Seq of histone modifications H3K36me3, H3K4me2, and H3K27me3 in the mouse mammary gland and liver tissue during lactation. We found that neighborhoods of genes in regions of uniquely active chromatin in the lactating mammary gland, compared with liver tissue, were extremely rare. Rather, genes in most neighborhoods were suppressed during lactation as reflected in their expression levels and their location in regions of silenced chromatin. Chromatin silencing was largely shared between the liver and mammary gland during lactation, and what distinguished the mammary gland was mainly a small tissue-specific repertoire of isolated, expressed genes. These findings suggest that an advantage of the neighborhood organization is in the collective repression of groups of genes via a shared mechanism of chromatin repression. Genes essential to the mammary gland's uniqueness are isolated from neighbors, and likely have less tolerance for variation in expression, properties they share with genes responsible for an organism's survival

  6. Mouse mammary tumour virus (MMTV) and human breast cancer with neuroendocrine differentiation.

    PubMed

    Js, Lawson; Cc, Ngan; Wk, Glenn; Dd, Tran

    2017-01-01

    Mouse mammary tumour viruses (MMTVs) may have a role in a subset of human breast cancers. MMTV positive human breast cancers have similar histological characteristics to neuroendocrine breast cancers and to MMTV positive mouse mammary tumours. The purpose of this study was to investigate the expression of neuroendocrine biomarkers - synaptophysin and chromogranin, to determine if these histological characteristics and biomarker expression were due to the influences of MMTV. Immunohistochemistry analyses to identify synaptophysin and chromogranin were conducted on a series of human breast cancers in which (i) MMTV had been previously identified and had similar histological characteristics to MMTV positive mouse mammary tumours and (ii) MMTV positive mouse mammary tumours. The expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumors were all positive (7 of 7 specimens - 100% positive). The expression of synaptophysin and chromogranin in MMTV positive human breast cancers was much less prevalent (3 of 22 - 14%). There was no expression of synaptophysin and chromogranin in the normal breast tissue control specimens. It is not possible to draw any firm conclusions from these observations. However, despite the small numbers of MMTV positive mouse mammary tumours in this study, the universal expression in these specimens of synaptophysin and chromogranin proteins is striking. This pattern of synaptophysin and chromogranin expression is very different from their expression in MMTV positive human breast cancers. The reason for these differences is not known. The high prevalence of positive expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumours and low expression of synaptophysin and chromogranin in MMTV positive human breast cancers indicates that MMTV is not usually associated with neuroendocrine human breast cancers.

  7. Mammary development, hyperestrogenemia, and hypocortisolemia in a male cat with an adrenal cortical carcinoma.

    PubMed

    Nadolski, Amy C; Markovich, Jessica E; Jennings, Samuel H; Mahony, Orla M

    2016-10-01

    A 14-year-old neutered male domestic shorthaired cat was diagnosed with an adrenal cortical carcinoma causing hyperestrogenemia that resulted in mammary hyperplasia and sexual behavior. A right adrenalectomy and mammary gland biopsy were performed. Adrenal cortical neoplasia should be ruled out in any neutered male cat with mammary development and/or exhibiting sexual behavior.

  8. Expression of novel, putative stem cell markers in prepubertal and lactating mammary glands of bovine

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) are essential for growth and maintenance of the mammary epithelium. Two main phases of mammary growth include ductal elongation prior to puberty and lobulo-alveolar growth and development during pregnancy. Some studies have utilized morphological characteristics and retenti...

  9. Genistein and resveratrol: mammary cancer chemoprevention and mechanisms of action in the rat.

    PubMed

    Whitsett, Timothy G; Lamartiniere, Coral A

    2006-12-01

    The environment, including diet, plays a critical role in a woman's subsequent risk of breast cancer. Two dietary polyphenols that have received attention from the health and research communities for their ability to protect against breast cancer are: genistein, a component of soy; and resveratrol, a phytoalexin found in red grapes and red wine. We and others have shown that both genistein and resveratrol can protect against mammary cancer in rodents. The timing of exposure to genistein appears critical for its mammary protective effects. It has been reported that genistein early in life causes enhanced mammary gland differentiation, alterations in cell proliferation and apoptosis, and upregulation of tumor-suppressor genes. With resveratrol in the diet, changes in cell proliferation and apoptosis in terminal ductal structures of the mammary gland might help to explain its protective effects. We conclude that genistein and resveratrol can protect against breast cancer by regulating important mammary growth and differentiation pathways.

  10. Polyurethane-covered mammary implants: a 12-year experience.

    PubMed

    Gasperoni, C; Salgarello, M; Gargani, G

    1992-10-01

    Polyurethane-covered mammary implants are the implants of choice in aesthetic and reconstructive mammary surgery. These implants give very good results in regard to breast contour and consistency, and have a very low complication rate. We present our 12-year experience using polyurethane-covered prostheses. We place the implant mostly in the subglandular or subcutaneous site, and their capsular contracture rate is extremely low (3.3%). Based on our experience, we also review the other complications and side effects occurring with polyurethane prostheses and discuss them in detail.

  11. The contribution of growth hormone to mammary neoplasia

    PubMed Central

    Perry, Jo K; Mohankumar, Kumarasamypet M; Emerald, B Starling; Mertani, Hichem C; Lobie, Peter E

    2008-01-01

    While the effects of growth hormone (GH) on longitudinal growth are well established, the observation that GH contributes to neoplastic progression is more recent. Accumulating literature implicates GH-mediated signal transduction in the development and progression of a wide range malignancies including breast cancer. Recently autocrine human GH been demonstrated to be an orthotopically expressed oncogene for the human mammary gland. This review will highlight recent evidence linking GH and mammary carcinoma and discuss GH-antagonism as a potential therapeutic approach for treatment of breast cancer. PMID:18253708

  12. Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo

    PubMed Central

    Bussard, Karen M.; Smith, Gilbert H.

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468

  13. Mammary development, hyperestrogenemia, and hypocortisolemia in a male cat with an adrenal cortical carcinoma

    PubMed Central

    Nadolski, Amy C.; Markovich, Jessica E.; Jennings, Samuel H.; Mahony, Orla M.

    2016-01-01

    A 14-year-old neutered male domestic shorthaired cat was diagnosed with an adrenal cortical carcinoma causing hyperestrogenemia that resulted in mammary hyperplasia and sexual behavior. A right adrenalectomy and mammary gland biopsy were performed. Adrenal cortical neoplasia should be ruled out in any neutered male cat with mammary development and/or exhibiting sexual behavior. PMID:27708447

  14. Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers.

    PubMed

    Wicik, Z; Gajewska, M; Majewska, A; Walkiewicz, D; Osińska, E; Motyl, T

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that participate in the regulation of gene expression. Their role during mammary gland development is still largely unknown. In this study, we performed a microarray analysis to identify miRNAs associated with high mammogenic potential of the bovine mammary gland. We identified 54 significantly differentially expressed miRNAs between the mammary tissue of dairy (Holstein-Friesian, HF) and beef (Limousin, LM) postpubertal heifers. Fifty-two miRNAs had higher expression in the mammary tissue of LM heifers. The expression of the top candidate miRNAs (bta-miR-10b, bta-miR-29b, bta-miR-101, bta-miR-375, bta-miR-2285t, bta-miR-146b, bta-let7b, bta-miR-107, bta-miR-1434-3p) identified in the microarray experiment was additionally evaluated by qPCR. Enrichment analyses for targeted genes revealed that the major differences between miRNA expression in the mammary gland of HF versus LM were associated with the regulation of signalling pathways that are crucial for mammary gland development, such as TGF-beta, insulin, WNT and inflammatory pathways. Moreover, a number of genes potentially targeted by significantly differentially expressed miRNAs were associated with the activity of mammary stem cells. These data indicate that the high developmental potential of the mammary gland in dairy cattle, leading to high milk productivity, depends also on a specific miRNA expression pattern. © 2015 Blackwell Verlag GmbH.

  15. Precocious mammary development in an 8-month-old Holstein heifer

    PubMed Central

    Ambrose, Divakar J.; Emmanuel, Daya G.V.

    2008-01-01

    An 8-month-old, virgin Holstein heifer with precocious mammary development was presented for examination. Protein, fat, and lactose in the mammary secretion were 14.90%, 0.12%, and 0.20%, respectively; somatic cell count was 3.9 × 106/mL, with no bacterial infection. The heifer was inseminated at 15 months of age, confirmed pregnant, and subsequently slaughtered. PMID:18978977

  16. Maternal handling during pregnancy reduces DMBA-induced mammary tumorigenesis among female offspring.

    PubMed Central

    Hilakivi-Clarke, L.

    1997-01-01

    The present study investigated whether handling of pregnant rats would affect mammary tumorigenesis in their female offspring. Pregnant Sprague-Dawley rats were injected daily with 0.05 ml of vehicle between days 14 and 20 of gestation or were left undisturbed. Handling did not have any effects on pregnancy or early development of the offspring. The female offspring were administered 10 mg of 7,12-dimethylbenz(a)anthracene (DMBA) at the age of 55 days. The rats whose mothers were handled during pregnancy had a significantly reduced mammary tumour incidence when compared with the offspring of non-handled mothers. Thus, on week 18 after DMBA exposure, 15% of the handled offspring had developed mammary tumours, whereas 44% of the non-handled offspring had tumours. No significant differences in the latency to tumour appearance, in the size of the tumours or in their growth rates were noted. Daily handling performed during post-natal days 5 and 20 produced similar data to that obtained for prenatal handling; on week 18 after DMBA exposure, the mammary tumour incidence among the post-natally handled rats was 22% and among the non-handled rats 44%. Possible deviations in hormonal parameters were also studied in adult female rats exposed in utero to handling. The onset of puberty tended to occur later among the handled offspring, but no differences in the uterine wet weights or serum oestradiol levels between the groups were noted. In conclusion, maternal handling reduced the offspring's risk to develop mammary tumours, and this effect was independent of the oestrogenic environment at adulthood. We propose that handling of a pregnant rat reduces mammary tumorigenesis in her offspring by means of changing the morphology of the mammary gland, the pattern of expression of specific genes and/or immune functions. PMID:9231913

  17. DNA Methylation Status of the Estrogen Receptor α Gene in Canine Mammary Tumors.

    PubMed

    Brandão, Yara de Oliveira; Toledo, Mariana Busato; Chequin, Andressa; Cristo, Thierry Grima; Sousa, Renato Silva; Ramos, Edneia Amancio Souza; Klassen, Giseli

    2018-01-01

    Estrogen receptor α (ERα) has an important role in mammary carcinogenesis, prognosis, and treatment. In human and canine mammary cancer, the most aggressive tumors show loss of ERα expression, which in human breast cancer has been attributed to methylation of the cytosine followed by guanine (CpG) island within the estrogen receptor α gene ( ESR1) promoter. This study aimed to investigate the role of ESR1 CpG island (CGI) methylation in ERα expression in canine mammary tumors. Twenty-one canine mammary samples were sorted into three groups: malignant tumor (n = 9), benign tumor (n = 8), and normal gland (n = 4). Immunohistochemical analysis and reverse-transcription quantitative real-time PCR were performed to assess ERα expression and ESR1 mRNA levels. The methylation status was determined using sodium-bisulfite-treated DNA sequencing. All normal mammary glands and benign tumors showed high ERα expression (score range, 5-8). Six of the nine malignant tumors did not show ERα expression (score 0), two had score 2, and one had score 4. Lower ERα ( P < .005) and ESR1 mRNA levels ( P < .005) were found in malignant mammary tumors than in the other two groups. Canine ESR1 has an intragenic and non-promoter-associated CGI, different from humans. No significant variation in methylation percentage was observed among the groups, suggesting that ESR1 is not regulated by DNA methylation, unlike that in humans. This difference should be considered in further research using ERα as a biomarker for mammary tumors in canine studies on ERα-targeting therapy.

  18. Early detection, aggressive therapy: optimizing the management of feline mammary masses.

    PubMed

    Giménez, Fernanda; Hecht, Silke; Craig, Linden E; Legendre, Alfred M

    2010-03-01

    This article reviews the incidence, etiology, diagnosis, treatment and prognosis of mammary tumors in cats. Approximately 80% of feline mammary masses are malignant, with adenocarcinoma being the most common tumor type. Early diagnosis is, therefore, essential to improve the prognosis and quality of life of affected cats. Surgery is the most widely used treatment for malignant tumors. However, as mammary tumors are often advanced and metastasis has already occurred by the time of diagnosis, surgery routinely does not provide a cure. Ovariohysterectomy or hormonal therapy are the treatments of choice for fibroadenomatous hyperplasia (the most common benign mass) and usually lead to a successful outcome. Copyright 2010. Published by Elsevier Ltd.

  19. High relative biologic effectiveness of carbon ion radiation on induction of rat mammary carcinoma and its lack of H-ras and Tp53 mutations.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Hatano, Yukiko; Ohmachi, Yasushi; Yoshinaga, Shinji; Kawano, Akihiro; Maekawa, Akihiko; Shimada, Yoshiya

    2007-09-01

    The high relative biologic effectiveness (RBE) of high-linear energy transfer (LET) heavy-ion radiation has enabled powerful radiotherapy. The potential risk of later onset of secondary cancers, however, has not been adequately studied. We undertook the present study to clarify the RBE of therapeutic carbon ion radiation and molecular changes that occur in the rat mammary cancer model. We observed 7-8-week-old rats (ACI, F344, Wistar, and Sprague-Dawley) until 1 year of age after irradiation (0.05-2 Gy) with either 290 MeV/u carbon ions with a spread out Bragg peak (LET 40-90 keV/mum) generated from the Heavy-Ion Medical Accelerator in Chiba or (137)Cs gamma-rays. Carbon ions significantly induced mammary carcinomas in Sprague-Dawley rats but less so in other strains. The dose-effect relationship for carcinoma incidence in the Sprague-Dawley rats was concave downward, providing an RBE of 2 at a typical therapeutic dose per fraction. In contrast, approximately 10 should be considered for radiation protection at low doses. Immunohistochemically, 14 of 18 carcinomas were positive for estrogen receptor alpha. All carcinomas examined were free of common H-ras and Tp53 mutations. Importantly, lung metastasis (7%) was characteristic of carbon ion-irradiated rats. We found clear genetic variability in the susceptibility to carbon ion-induced mammary carcinomas. The high RBE for carbon ion radiation further supports the importance of precise dose localization in radiotherapy. Common point mutations in H-ras and Tp53 were not involved in carbon ion induction of rat mammary carcinomas.

  20. Polythelia pilosa: a particular form of accessory mammary tissue.

    PubMed

    Camacho, F; González-Cámpora, R

    1998-01-01

    The old Kajawa classification which considered eight possible forms of aberrant mammary tissue has been recently modified into a simpler one that considers this condition only when there is glandular parenchyma or when the aberrant tissue is not a glandular tissue but a nipple, an areola or both. This new classification disregards 'polythelia pilosa' defined as an 'isolated patch of hairs only'. To demonstrate that polythelia pilosa is at least a marker of subjacent accessory mammary tissue and, consequently, that the term should be incorporated into the current classification. Among 72 cases of aberrant or accessory mammary tissue, we have studied 14 cases (7 men and 7 women) that were clinically diagnosed as 'visible isolated patches of hairs, apparently without pigmentation nor structures of areola or nipple'. We excised such isolated patches in 3 women. The histopathological examination showed an acanthotic and hyperpigmented epithelium with central depression closed by keratin plugs; in the dermis there were follicles with hairs surrounded by hypertrophic sebaceous glands. In the deepest portion, abundant secretory glomerules and excretory ducts of apocrine gland type could be observed. Since the biopsy of isolated patches of hairs demonstrated structures of either areolar or apocrine glandular tissue, we think that the term 'polythelia pilosa' should be reinstated into the classification as it is at least a marker of true aberrant mammary structures in men and hirsute women.

  1. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland

    PubMed Central

    Hewit, Kay D.; Pallas, Kenneth J.; Cairney, Claire J.; Lee, Kit M.; Hansell, Christopher A.; Stein, Torsten

    2017-01-01

    Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes. PMID:27888192

  2. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis.

    PubMed

    Ren, Mingqiang; Reilly, R Todd; Sacchi, Nicoletta

    2004-01-01

    Bamboo grass leaves of different Sasa species have been widely used in food and medicine in Eastern Asia for hundreds of years. Of special interest are Kumazasa (Sasa senanensis rehder) leaves used to prepare an alkaline extract known as Sasa Health. This extract was reported to inhibit both the development and growth of mammary tumors in a mammary tumor strain of virgin SHN mice (1). We found that Sasa Health exerts a significant protective effect on spontaneous mammary tumorigenesis in another mouse model of human breast cancer, the transgenic FVB-Her2/NeuN mouse model. Two cohorts of Her2/NeuN female mice of different age (eleven-week-old and twenty-four-week-old) chronically treated with Sasa Health in drinking water showed both a delay in the development of tumors and reduced tumor multiplicity. Sasa Health also induced inhibition of mammary duct branching and side bud development in association with reduced angiogenesis. Altogether these findings indicate that Sasa Health contains phytochemicals that can effectively retard spontaneous mammary tumorigenesis.

  3. The Mammary Stem Cell Hierarchy: A Looking Glass into Heterogeneous Breast Cancer Landscapes

    PubMed Central

    Sreekumar, Amulya; Roarty, Kevin; Rosen, Jeffrey M.

    2015-01-01

    The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types, and signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective. PMID:26206777

  4. Morphological and immunohistochemical characterization of spontaneous mammary tumours in European hedgehogs (Erinaceus europaeus).

    PubMed

    Döpke, C; Fehr, M; Thiele, A; Pohlenz, J; Wohlsein, P

    2007-07-01

    Mammary tumour samples (11 surgical and five post-mortem) from 16 adult European hedgehogs submitted between 1980 and 2004 were examined. Histologically, the tumours were classified as simple tubulo-papillary carcinomas with local invasive growth. In six cases, tumour cell emboli were present in blood vessels or lymphatic vessels, or both. However, metastasis to regional lymph nodes was found only in one hedgehog. Malignant neoplastic epithelial cells were immunolabelled by antibodies specific for various cytokeratins (CKs), including CK1-8, 10, 13-16, 19 and 20. CK expression did not differ from that in normal mammary gland tissue. CK20 was expressed in the mammary tissue of hedgehogs, in contrast to that of dogs and cats; CK7 immunolabelling, however, which commonly occurs in mammary epithelial cells, was negative. CK20 expression, together with the lack of CK7 as determined by a protein-specific antibody, represented an important difference from the CK profile shown by mammary epithelial cells of other mammalian species, including the dog and cat.

  5. Oxytocin binding sites in bovine mammary tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressinmore » binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.« less

  6. Induction of a Pregnancy-Like Mammary Gland Differentiation by Docosapentaenoic Omega-3 Fatty Acid

    DTIC Science & Technology

    2008-09-01

    xylenes, and stored in methyl salicylate . Morphological Assessment of Mammary Gland—Whole inguinal mammary glands were removed from virgin control as...respectively, defatted in xylenes, and stored in methyl salicylate . Quantitative RT-PCR analyses RNA was isolated and subjected to real time PCR analysis... methylation , and fatty acid analysis were performed as previously described [28,48]. Briefly, an ali- quot of mammary tissue homogenate in a glass

  7. Effects of Chronic Genistein Treatment in Mammary Gland, Uterus, and Vagina

    PubMed Central

    Rimoldi, Guillermo; Christoffel, Julie; Seidlova-Wuttke, Dana; Jarry, Hubertus; Wuttke, Wolfgang

    2007-01-01

    Background The isoflavone genistein (GEN) is found in soy (Glycine max) and red clover (Trifolium pratense). The estrogenic activity of GEN is known, and it is widely advertised as a phytoestrogen useful in alleviating climacteric complaints and other postmenopausal disorders. Knowledge of effects of long-term administration of GEN in laboratory animals is scarce, and effects in the uterus and mammary gland after long-term administration have not been studied. The uterus and mammary gland are known to be negatively influenced by estrogens used in hormone therapy. Objectives We administered two doses of GEN [mean daily uptake 5.4 (low) or 54 mg/kg (high) body weight (bw)] orally over a period of 3 months to ovariectomized (ovx) rats and compared the effects with a treatment with two doses of 17β-estradiol [E2; 0.17 (low) or 0.7 mg/kg bw (high)]. Mammary glands, vaginae, and uteri were investigated morphologically and immunohistochemically. We quantified the expression of proliferating cell nuclear antigen (PCNA) and progesterone receptor (PR) in the mammary gland. Results In rats treated with either of the E2 doses or the high GEN dose, we found increased uterine weight, and histologic analysis showed estrogen-induced features in the uteri. In vaginae, either E2 dose or GEN high induced hyperplastic epithelium compared with the atrophic controls. In the mammary gland, E2 (either dose) or GEN increased proliferation and PR expression. Serum levels of luteinizing hormone were decreased by E2 (both doses) but not by GEN. Conclusions In summary, E2 and GEN share many effects in the studied organs, particularly in the vagina, uterus, and mammary gland but not in the hypothalamo/pituitary unit. PMID:18174952

  8. Adipose and mammary epithelial tissue engineering.

    PubMed

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  9. Adipose and mammary epithelial tissue engineering

    PubMed Central

    Zhu, Wenting; Nelson, Celeste M.

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872

  10. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    PubMed

    Casey, Alison E; Sinha, Ankit; Singhania, Rajat; Livingstone, Julie; Waterhouse, Paul; Tharmapalan, Pirashaanthy; Cruickshank, Jennifer; Shehata, Mona; Drysdale, Erik; Fang, Hui; Kim, Hyeyeon; Isserlin, Ruth; Bailey, Swneke; Medina, Tiago; Deblois, Genevieve; Shiah, Yu-Jia; Barsyte-Lovejoy, Dalia; Hofer, Stefan; Bader, Gary; Lupien, Mathieu; Arrowsmith, Cheryl; Knapp, Stefan; De Carvalho, Daniel; Berman, Hal; Boutros, Paul C; Kislinger, Thomas; Khokha, Rama

    2018-06-19

    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology. © 2018 Casey et al.

  11. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.

    PubMed

    Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P

    2012-06-01

    Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.

  12. Lgr4 regulates mammary gland development and stem cell activity through the pluripotency transcription factor Sox2.

    PubMed

    Wang, Ying; Dong, Jie; Li, Dali; Lai, Li; Siwko, Stefan; Li, Yi; Liu, Mingyao

    2013-09-01

    The key signaling networks regulating mammary stem cells are poorly defined. The leucine-rich repeat containing G protein-coupled receptor (Lgr) family has been implicated in intestinal, gastric, and epidermal stem cell functions. We investigated whether Lgr4 functions in mammary gland development and mammary stem cells. We found that Lgr4(-/-) mice had delayed ductal development, fewer terminal end buds, and decreased side-branching. Crucially, the mammary stem cell repopulation capacity was severely impaired. Mammospheres from Lgr4(-/-) mice showed decreased Wnt signaling. Wnt3a treatment prevented the adverse effects of Lgr4 loss on organoid formation. Chromatin immunoprecipitation analysis indicated that Sox2 expression was controlled by the Lgr4/Wnt/β-catenin/Lef1 pathway. Importantly, Sox2 overexpression restored the in vivo mammary regeneration potential of Lgr4(-/-) mammary stem cells. Therefore, Lgr4 activates Sox2 to regulate mammary development and stem cell functions via Wnt/β-catenin/Lef1. © AlphaMed Press.

  13. Synergistic effects of androgen and estrogen on the mouse uterus and mammary gland.

    PubMed

    Zhang, Jian; Sun, Yibin; Liu, Yunhai; Sun, Yi; Liao, Dezhong Joshua

    2004-10-01

    Many studies have suggested that elevated estrogens and androgens may be etiologically related to the development of breast cancer, endometrial cancer and uterine leiomyomas. We and other investigators have previously shown that estrogen and androgen are synergistic in the induction of mammary carcinogenesis in the Noble rat. However, the mechanisms behind the synergy is unknown, and it is unclear whether such synergy is unique for the Noble rat and for the mammary gland. In this study we treated female FVB mice with 17beta-estradiol (E2) and 5alpha-dihydrotestosterone-bezonate (DHT-B), alone and in combination, using silastic tubing for 2-7 months. The results showed that DHT-B alone induced proliferation of uterine endometrial epithelium and myometrial smooth muscle cells, whereas E2 alone induced much more pronounced growth of endometrial epithelium without affecting smooth muscle cells. Combined treatment with E2+DHT-B caused an even more severe hyperplasia of endometrial epithelium and myometrial muscle cells, compared with the treatment with each hormone alone. Uterine leiomyomas were observed in 2 of 6 mice at 7 months of combined treatment but not in any of 6 or 7 mice receiving each single hormone. DHT-B alone induced growth and secretion of mammary ductal cells, as well as growth of mammary stroma. E2 alone stimulated much more pronounced growth of both ductal cells and alveolar cells and secretion of alveolar cells, but had no effect on mammary stroma. Treatment with both E2 and DHT-B caused more severe hyperplasia of mammary ducts and alveoli, compared to the treatment with each hormone alone. Intraductal hyperplasia occurred early and frequently in the E2+DHT-B- treated mice, but no mammary tumors were observed. These results suggest that E2 and DHT-B have synergistic effects on the growth of uterine endometrial epithelium and myometrial muscle cells, as well as mammary epithelial ducts and alveoli.

  14. Physical Confirmation and Comparative Genomics of the Rat Mammary carcinoma susceptibility 3 Quantitative Trait Locus.

    PubMed

    Le, Saasha; Martin, Zachary C; Samuelson, David J

    2017-06-07

    Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 ( Mcs3 )-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 ( RNO1 ). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1 -segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 ( RNO1 :143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10 -7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3 -orthologous regions with potential association to risk (10 -7  <  p  < 10 -3 ) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14 -a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes. Copyright © 2017 Le et al.

  15. Mammary stem cells: Novel markers and novel approaches to increase lactation efficiency

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue r...

  16. Un(MaSC)ing Stem Cell Dynamics in Mammary Branching Morphogenesis.

    PubMed

    Greenwood, Erin; Wrenn, Emma D; Cheung, Kevin J

    2017-02-27

    The properties of stem cells that participate in mammary gland branching morphogenesis remain contested. Reporting in Nature, Scheele et al. (2017) establish a model for post-pubertal mammary branching morphogenesis in which position-dependent, lineage-restricted stem cells undergo cell mixing in order to contribute to long-term growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Canonical Wnt Signaling as a Specific Marker of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2010-02-01

    for mammary stem cells and be a target for transformation that results in the formation of aggressive mammary tumors. Breast cancer stem cells, Wnt...tumorigenesis, and human breast cancer. In addition, increasing evidence suggests that tumors arise from either normal stem or progenitor cells...population of mammary tumor cells that are CD24+/CD49++. Since Wnt pathway activation occurs in human breast cancer and is required for

  18. Investigating the Role of FIP200 in Mammary Carcinogenesis Using a Transgenic Mouse Model

    DTIC Science & Technology

    2007-04-01

    analysis of virgin and lactating female mice in which FAK was specifically deleted in the mammary epithelium. No morphological abnormalities were found in...the mammary gland of virgin mice however, lactating mice have severe lobulo-alveolar hypoplasia in the mammary gland. After completing the analysis...were collected to prepare protein extracts. Organs were first snap-frozen in liquid nitrogen and then were ground using a mortar and a pestle

  19. Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model

    PubMed Central

    2013-01-01

    Background Efficacy of withaferin A (WA), an Ayurvedic medicine constituent, for prevention of mammary cancer and its associated mechanisms were investigated using mouse mammary tumor virus–neu (MMTV-neu) transgenic model. Methods Incidence and burden of mammary cancer and pulmonary metastasis were scored in female MMTV-neu mice after 28 weeks of intraperitoneal administration with 100 µg WA (three times/week) (n = 32) or vehicle (n = 29). Mechanisms underlying mammary cancer prevention by WA were investigated by determination of tumor cell proliferation, apoptosis, metabolomics, and proteomics using plasma and/or tumor tissues. Spectrophotometric assays were performed to determine activities of complex III and complex IV. All statistical tests were two-sided. Results WA administration resulted in a statistically significant decrease in macroscopic mammary tumor size, microscopic mammary tumor area, and the incidence of pulmonary metastasis. For example, the mean area of invasive cancer was lower by 95.14% in the WA treatment group compared with the control group (mean = 3.10 vs 63.77mm2, respectively; difference = –60.67mm2; 95% confidence interval = –122.50 to 1.13mm2; P = .0536). Mammary cancer prevention by WA treatment was associated with increased apoptosis, inhibition of complex III activity, and reduced levels of glycolysis intermediates. Proteomics confirmed downregulation of many glycolysis-related proteins in the tumor of WA-treated mice compared with control, including M2-type pyruvate kinase, phospho glycerate kinase, and fructose-bisphosphate aldolase A isoform 2. Conclusions This study reveals suppression of glycolysis in WA-mediated mammary cancer prevention in a clinically relevant mouse model. PMID:23821767

  20. [Clinical results of double versus single mammary artery myocardiac revascularization: 15 years of follow-up].

    PubMed

    López Rodríguez, F J; Voces, R; Lima, P; Reyes, G; Silva, J; Ruiz, M; Rico, M; González De Diego, F; Fortuny, R; Garrido, G; González Santos, J M; Albertos, J; Fernández Calella, D; Vallejo, J L

    2001-07-01

    Use of the left internal mammary artery to bypass the left anterior descending coronary artery reduces cardiac events and increases survival. However, there is some controversy as to the benefits of using both mammary arteries. To assess the long-term outcome of the use of both mammary arteries in comparison with the use of only one. A retrospective cohort study with a mean follow-up of 9.0 +/- 4.2 years was performed including 108 patients consecutively revascularized using both mammary arteries (II) and 108 patients randomly chosen in whom one mammary artery (I) was used for this purpose. Both groups were similar. There were no differences between the groups in operative morbidity or mortality. The survival at 10 years was similar (II: 84.61 +/- 4%; I: 85.18 +/- 3.8%), whereas recurrence of angina (II: 29.63 +/- 5.3%; I: 47.55 +/- 5.6%) (p = 0.012), the requirement for percutaneous angioplasty (II: 3.98 +/- 2%; I: 12.99 +/- 4.1%) (p = 0.009) and cardiologic events (II: 33.48 +/- 5.5%; I: 48.48 +/- 5.5%)(p = 0.022) were all lower in the group in which both mammary arteries were used. In the multivariate analysis, the use of both mammary arteries was an independent protective factor against angina recurrence (RR = 0.55), angioplasty (RR = 0.18) and cardiologic event (RR = 0.60). The use of both mammary arteries for revascularization does not increase operative morbidity. Since this procedure acts as an independent factor against angina recurrence, angioplasty and cardiologic event

  1. Regulation of gene expression in human mammary epithelium: effect of breast pumping

    USDA-ARS?s Scientific Manuscript database

    Little is known of the molecular regulation of human milk production because of limitations in obtaining mammary tissue from lactating women. Our objectives were to evaluate whether RNA isolated from breast milk fat globules (MFGs) could be an alternative to mammary biopsies and to determine whether...

  2. [Degradation of prolactin 125-I in the mammary gland of lactating rats].

    PubMed

    Marinchenko, G V; Taranenko, A G

    1977-01-01

    Prolactin-125I metabolism in the mammary gland of lactating rats was studied; the hormone was injected intraperitoneally. Radioactive products accumulated by the mammary gland tissue were extracted with isotonic medium. Tissue extracts, blood serum and milk were analyzed by gel filtration on Sephadex G-200. The Blood displayed a gradual reduction of prolactin-125I content as a result of its splitting in the organs and binding with blood proteins; as to the mammary gland--there occurred accumulation of the products of prolactin-125I degradation. Some hormone was inactivated losing immunological properties without any significant changes in the molecular weight. Besides, the mammary gland displayed an intensive accumulation of the products of prolactin-125I splitting in the other organs and in the gland proper. Radioactivity accumulated in the milk was mainly referred to the products of prolactin-125I degradation. There was also shown the presence of immunologically active prolactin-125I in the milk.

  3. Principles of treatment for mammary gland tumors.

    PubMed

    Novosad, C Andrew

    2003-05-01

    The mammary glands are frequent locations for the development of tumors. In the dog and cat, early detection and rapid therapy are necessary to prevent both local and distant metastasis. In the dog, this disease can have a range of biologic behaviors, whereas in the cat it is almost always an extremely aggressive disease. Treatment options depend on tumor staging and can include surgery, radiation therapy, chemotherapy, or a combination. As we become better at early diagnosis and are able to implement aggressive therapy, we are becoming more and more successful in the treatment of this disease. In the following article, we will discuss current thoughts surrounding the diagnosis and treatment options for both canine and feline mammary gland tumors.

  4. The transcriptome of estrogen-independent mammary growth reveals that not all mammary glands are created equally

    USDA-ARS?s Scientific Manuscript database

    Allometric growth of ducts in the mammary glands (MG) is widely-held to be estrogen (E)-dependent. We previously discovered that the dietary fatty acid trans-10, cis-12 conjugated linoleic acid (CLA) stimulates E-independent allometric growth and TEB formation in ovariectomized mice. Given the simil...

  5. Selective expression of neuropeptides in the rat mammary gland: somatostatin gene is expressed during lactation.

    PubMed

    Chen, A; Laskar-Levy, O; Koch, Y

    1999-12-01

    The existence of numerous neuropeptides in milk, in concentrations that exceed those in maternal plasma, is well established. It is still unclear whether these neuropeptides are produced by the mammary gland or that the gland concentrates them from the general circulation. In this study, we have examined the possibility that the genes of these neuropeptides are expressed in the rat mammary gland. RNA was extracted from the mammary glands of female rats during different stages of reproduction as well as from other tissues such as hypothalami, pancreas, pineal glands, small intestine, and ovaries. Following RT reaction, the resulting cDNA were amplified by radioactive PCR using specific oligonucleotide primers. We have used specific primers for the following neuropeptides: galanin, somatostatin, vasoactive intestinal peptide, TRH, GH-releasing hormone, cholecystokinin, neurotensin, oxytocin, and relaxin. We have also used primers for serotonin N-acetyl-transferase, the enzyme that is involved in melatonin biosynthesis. The ribosomal protein S-16 served as an internal control. Among all the neuropeptides that have been examined, somatostatin was the only one that was found to be expressed in the mammary gland. Somatostatin was expressed in the mammary gland of lactating rats, but not of virgin rats. Expression of the somatostatin gene was confirmed by Southern blot analysis and by sequencing of the PCR products. Immunohistochemical studies demonstrated somatostatin immunoreactivity in the epithelial cells that compose the secretory alveoli and in the secretory material. In addition, we have found that the mammary glands of the lactating rat express the PC-1 proteinase gene that process prosomatostatin to generate somatostatin-14, but do not express furin, the enzyme that is responsible for somatostatin-28 production. This finding substantiates previous studies that demonstrated that only somatostatin-14 is present in milk. The finding that most of the neuropeptides

  6. Endocrine hormones and local signals during the development of the mouse mammary gland.

    PubMed

    Brisken, Cathrin; Ataca, Dalya

    2015-01-01

    Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  7. Apples prevent mammary tumors in rats.

    PubMed

    Liu, Rui Hai; Liu, Jiaren; Chen, Bingqing

    2005-03-23

    Regular consumption of fruits and vegetables has been consistently shown to be associated with reduced risk of developing chronic diseases such as cancer and cardiovascular disease. Apples are commonly consumed and are the major contributors of phytochemicals in human diets. It was previously reported that apple extracts exhibit strong antioxidant and antiproliferative activities and that the major part of total antioxidant activity is from the combination of phytochemicals. Phytochemicals, including phenolics and flavonoids, are suggested to be the bioactive compounds contributing to the health benefits of apples. Here it is shown that whole apple extracts prevent mammary cancer in a rat model in a dose-dependent manner at doses comparable to human consumption of one, three, and six apples a day. This study demonstrated that whole apple extracts effectively inhibited mammary cancer growth in the rat model; thus, consumption of apples may be an effective strategy for cancer protection.

  8. Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk

    PubMed Central

    Sumis, Allison; Cook, Katherine L; Andrade, Fabia O; Hu, Rong; Kidney, Emma; Zhang, Xiyuan; Kim, Dominic; Carney, Elissa; Nguyen, Nguyen; Yu, Wei; Bouker, Kerrie B; Cruz, Idalia; Clarke, Robert; Hilakivi-Clarke, Leena

    2018-01-01

    Social isolation is a strong predictor of early all-cause mortality and consistently increases breast cancer risk in both women and animal models. Because social isolation increases body weight, we compared its effects to those caused by a consumption of obesity-inducing diet (OID) in C57BL/6 mice. Social isolation and OID impaired insulin and glucose sensitivity. In socially isolated, OID-fed mice (I-OID), insulin resistance was linked to reduced Pparg expression and increased neuropeptide Y levels, but in group-housed OID fed mice (G-OID), it was linked to increased leptin and reduced adiponectin levels, indicating that the pathways leading to insulin resistance are different. Carcinogen-induced mammary tumorigenesis was significantly higher in I-OID mice than in the other groups, but cancer risk was also increased in socially isolated, control diet-fed mice (I-C) and G-OID mice compared with that in controls. Unfolded protein response (UPR) signaling (GRP78; IRE1) was upregulated in the mammary glands of OID-fed mice, but not in control diet-fed, socially isolated I-C mice. In contrast, expression of BECLIN1, ATG7 and LC3II were increased, and p62 was downregulated by social isolation, indicating increased autophagy. In the mammary glands of socially isolated mice, but not in G-OID mice, mRNA expressions of p53 and the p53-regulated autophagy inducer Dram1 were upregulated, and nuclear p53 staining was strong. Our findings further indicated that autophagy and tumorigenesis were not increased in Atg7+/− mice kept in social isolation and fed OID. Thus, social isolation may increase breast cancer risk by inducing autophagy, independent of changes in body weight. PMID:27550962

  9. Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk.

    PubMed

    Sumis, Allison; Cook, Katherine L; Andrade, Fabia O; Hu, Rong; Kidney, Emma; Zhang, Xiyuan; Kim, Dominic; Carney, Elissa; Nguyen, Nguyen; Yu, Wei; Bouker, Kerrie B; Cruz, Idalia; Clarke, Robert; Hilakivi-Clarke, Leena

    2016-10-01

    Social isolation is a strong predictor of early all-cause mortality and consistently increases breast cancer risk in both women and animal models. Because social isolation increases body weight, we compared its effects to those caused by a consumption of obesity-inducing diet (OID) in C57BL/6 mice. Social isolation and OID impaired insulin and glucose sensitivity. In socially isolated, OID-fed mice (I-OID), insulin resistance was linked to reduced Pparg expression and increased neuropeptide Y levels, but in group-housed OID fed mice (G-OID), it was linked to increased leptin and reduced adiponectin levels, indicating that the pathways leading to insulin resistance are different. Carcinogen-induced mammary tumorigenesis was significantly higher in I-OID mice than in the other groups, but cancer risk was also increased in socially isolated, control diet-fed mice (I-C) and G-OID mice compared with that in controls. Unfolded protein response (UPR) signaling (GRP78; IRE1) was upregulated in the mammary glands of OID-fed mice, but not in control diet-fed, socially isolated I-C mice. In contrast, expression of BECLIN1, ATG7 and LC3II were increased, and p62 was downregulated by social isolation, indicating increased autophagy. In the mammary glands of socially isolated mice, but not in G-OID mice, mRNA expressions of p53 and the p53-regulated autophagy inducer Dram1 were upregulated, and nuclear p53 staining was strong. Our findings further indicated that autophagy and tumorigenesis were not increased in Atg7(+/-) mice kept in social isolation and fed OID. Thus, social isolation may increase breast cancer risk by inducing autophagy, independent of changes in body weight. © 2016 Society for Endocrinology.

  10. [Pathomorphosis of the mammary gland tissue during radical interventions using high-frequency electrosurgical welding].

    PubMed

    Bondar', G V; Sedakov, I E; Kobets, R A

    2011-04-01

    High-frequency electric welding of a live soft tissues (HFEW LST) is applied widely in all surgical specialties. Its application in surgery of mammary gland cancer constitutes a perspective trend. The impact of HFEW LST and monopolar electrocoagulation on tissues while performing radical operations in patients-women for mammary gland cancer was studied up. Basing on analysis of pathomorphological investigations data, the possibility and perspective of the welding technologies application, while performing radical operations on mammary glands, were established.

  11. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMVmore » by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.« less

  12. Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity.

    PubMed

    Wanyonyi, Stephen S; Sharp, Julie A; Khalil, Elie; Lefevre, Christophe; Nicholas, Kevin R

    2011-11-01

    Cathelicidins secreted in milk may be central to autocrine feedback in the mammary gland for optimal development in addition to conferring innate immunity to both the mammary gland and the neonate. This study exploits the unique reproductive strategy of the tammar wallaby (Macropus eugenii) model to analyse differential splicing of cathelicidin genes and to evaluate the bactericidal activity and effect of the protein on mammary epithelial cell proliferation. Two linear peptides, Con73 and Con218, derived from the heterogeneous carboxyl end of cathelicidin transcripts, MaeuCath1 and MaeuCath7 respectively, were evaluated for antimicrobial activity. Both Con73 and Con218 significantly inhibited the growth of Staphylococcus aureus, Pseudomonas aureginosa, Enterococcus faecalis and Salmonella enterica. In addition both MaeuCath1 and MaeuCath7 stimulated proliferation of primary tammar wallaby mammary epithelial cells (WallMEC). Lactation-phase specific alternate spliced transcripts were determined for MaeuCath1 showing utilisation of both antimicrobial and proliferative functions are required by the mammary gland and the suckled young. The study has shown for the first time that temporal regulation of milk cathelicidins may be crucial in antimicrobial protection of the mammary gland and suckled young and mammary cell proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Advanced Imaging Approaches to Characterize Stromal and Metabolic Changes in In Vivo Mammary Tumor Models

    DTIC Science & Technology

    2013-03-01

    characterization and toward future intravital studies. Preliminary fluorescence lifetime images were also collected intravitally through a mammary imaging window...intend to use this characterization to understand shifts in fluorescence lifetime collected by intravital imaging using a mammary imaging window...collected intravitally through a mammary imaging window implanted in a female, PyVT positive, Col1a1 heterozygote, mouse (Figure 7). A paper has

  14. Characterization of immortalized human mammary epithelial cell line HMEC 2.6.

    PubMed

    Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna

    2017-10-01

    Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.

  15. Varying Susceptibility of the Female Mammary Gland to In Utero Windows of BPA Exposure.

    PubMed

    Hindman, Andrea R; Mo, Xiaokui Molly; Helber, Hannah L; Kovalchin, Claire E; Ravichandran, Nanditha; Murphy, Alina R; Fagan, Abigail M; St John, Pamela M; Burd, Craig J

    2017-10-01

    In utero exposure to the endocrine disrupting compound bisphenol A (BPA) is known to disrupt mammary gland development and increase tumor susceptibility in rodents. It is unclear whether different periods of in utero development might be more susceptible to BPA exposure. We exposed pregnant CD-1 mice to BPA at different times during gestation that correspond to specific milestones of in utero mammary gland development. The mammary glands of early-life and adult female mice, exposed in utero to BPA, were morphologically and molecularly (estrogen receptor-α and Ki67) evaluated for developmental abnormalities. We found that BPA treatment occurring before mammary bud invasion into the mesenchyme [embryonic day (E)12.5] incompletely resulted in the measured phenotypes of mammary gland defects. Exposing mice up to the point at which the epithelium extends into the precursor fat pad (E16.5) resulted in a nearly complete BPA phenotype and exposure during epithelial extension (E15.5 to E18.5) resulted in a partial phenotype. Furthermore, the relative differences in phenotypes between exposure windows highlight the substantial correlations between early-life molecular changes (estrogen receptor-α and Ki67) in the stroma and the epithelial elongation defects in mammary development. These data further implicate BPA action in the stroma as a critical mediator of epithelial phenotypes. Copyright © 2017 Endocrine Society.

  16. Trans-Fatty Acid-Stimulated Mammary Gland Growth in Ovariectomized Mice is Fatty Acid Type and Isomer Specific.

    PubMed

    Berryhill, Grace E; Miszewski, Susan G; Trott, Josephine F; Kraft, Jana; Lock, Adam L; Hovey, Russell C

    2017-03-01

    We previously reported that the trans-18:2 fatty acid trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) stimulates mammary gland development independent of estrogen and its receptor. Given the negative consequences of dietary trans-fatty acids on various aspects of human health, we sought to establish whether other trans-fatty acids could similarly induce ovary-independent mammary gland growth in mice. Prepubertal BALB/cJ mice were ovariectomized at 21 days of age then were fed diets enriched with cis-9, trans-11 CLA (c9,t11-CLA), or mixtures of trans-18:1 fatty acids supplied by partially hydrogenated sunflower, safflower, or linseed oil. The resultant mammary phenotype was evaluated 3 weeks later and compared to the growth response elicited by t10,c12-CLA, or the defined control diet. Whereas partially hydrogenated safflower oil increased mammary gland weight, none of the partially hydrogenated vegetable oils promoted mammary ductal growth. Similarly, the c9,t11-CLA supplemented diet was without effect on mammary development. Taken together, our data emphasize a unique effect of t10,c12-CLA in stimulating estrogen-independent mammary gland growth manifest as increased mammary ductal area and elongation that was not recapitulated by c9,t11-CLA or the partially hydrogenated vegetable oil diets.

  17. EMMPRIN (basigin/CD147) expression is not correlated with MMP activity during adult mouse mammary gland development.

    PubMed

    Szymanowska, Malgorzata; Hendry, Kay A K; Robinson, Claire; Kolb, Andreas F

    2009-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co-transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non-mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. 2008 Wiley-Liss, Inc.

  18. CLOCK regulates mammary epithelial cell growth and differentiation

    PubMed Central

    Crodian, Jennifer; Suárez-Trujillo, Aridany; Erickson, Emily; Weldon, Bethany; Crow, Kristi; Cummings, Shelby; Chen, Yulu; Shamay, Avi; Mabjeesh, Sameer J.; Plaut, Karen

    2016-01-01

    Circadian clocks influence virtually all physiological processes, including lactation. Here, we investigate the role of the CLOCK gene in regulation of mammary epithelial cell growth and differentiation. Comparison of mammary morphology in late-pregnant wild-type and ClockΔ19 mice, showed that gland development was negatively impacted by genetic loss of a functional timing system. To understand whether these effects were due, in part, to loss of CLOCK function in the gland, the mouse mammary epithelial cell line, HC11, was transfected with short hairpin RNA that targeted Clock (shClock). Cells transfected with shClock expressed 70% less Clock mRNA than wild-type (WT) HC11 cultures, which resulted in significantly depressed levels of CLOCK protein (P < 0.05). HC11 lines carrying shClock had four-fold higher growth rates (P < 0.05), and the percentage of cells in G1 phase was significantly higher (90.1 ± 1.1% of shClock vs. 71.3 ± 3.6% of WT-HC11) following serum starvation. Quantitative-PCR (qPCR) analysis showed shClock had significant effects (P < 0.0001) on relative expression levels of Ccnd1, Wee1, and Tp63. qPCR analysis of the effect of shClock on Fasn and Cdh1 expression in undifferentiated cultures and cultures treated 96 h with dexamethasone, insulin, and prolactin (differentiated) found levels were reduced by twofold and threefold, respectively (P < 0.05), in shClock line relative to WT cultures. Abundance of CDH1 and TP63 proteins were significantly reduced in cultures transfected with shClock. These data support how CLOCK plays a role in regulation of epithelial cell growth and differentiation in the mammary gland. PMID:27707717

  19. Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development.

    PubMed

    Ha, Woo Tae; Jeong, Ha Yeon; Lee, Seung Yoon; Song, Hyuk

    2016-09-01

    The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.

  20. The Role of Nuclear Receptor Coactivator A1B1 in Growth Factor-Mediated Mammary Tumorigenesis

    DTIC Science & Technology

    2007-03-01

    study display dwarfism and the retardation of mammary gland growth [9]. At the 4-month time point, I similarly observed an overall decrease in mammary...Coactivator A1B1 in Growth Factor- Mediated Mammary Tumorigenesis PRINCIPAL INVESTIGATOR: Mark P Fereshteh (BS) CONTRACTING ORGANIZATION...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION

  1. Management of mastitis and abscessation of mammary glands secondary to fibroadenomatous hyperplasia in a primiparturient cat.

    PubMed

    Burstyn, Uri

    2010-02-01

    A 1-year-old sexually intact female domestic shorthair cat was evaluated because of an 8-week history of pronounced mammary gland hyperplasia that had progressed to mastitis and abscessation of the mammary glands since parturition 7 days earlier. The cat was anorectic, was febrile, and had signs of discomfort. Its kittens were weak and appeared to have difficulty nursing. Physical examination revealed pyrexia, mastitis with abscessation in the 6 caudal mammary glands, skin ulceration over the nipples, and areas of skin necrosis over the abscessed mammary glands. A CBC revealed nonregenerative anemia and leukocytosis with a left shift (2.160 x 10(9) band cells/L) and toxic changes. Mastitis and incipient septicemia were considered the most likely causes. The history of mammary gland hyperplasia since the second week of pregnancy suggested a diagnosis of fibroadenomatous hyperplasia that predisposed the cat to subsequent mastitis. Surgical drainage of the abscessed mammary glands, debridement of necrotic skin, and placement of a Penrose drain resulted in rapid improvement in clinical status. Broad-spectrum antimicrobial treatment (amoxicillin-clavulanic acid) was prescribed, and the cat was discharged from the hospital. Mastitis and fibroadenomatous mammary gland hyperplasia resolved rapidly afterward. Management of abscessed mammary glands through surgical drainage and drain placement is an option for treatment of cats with complications of fibroadenomatous hyperplasia. In the cat of this report, the treatment approach resulted in rapid resolution of mastitis, was less invasive than mastectomy, and avoided the potential complications of treatment with a progesterone-receptor antagonist.

  2. A simple ductal mammary papilloma in a male maned wolf (Chrysocyon brachyurus).

    PubMed

    Cassali, Geovanni D; Bertagnolli, Angélica C; Ferreira, Enio; Malta, Marcelo C C

    2009-01-01

    A 1-cm-diameter nodule was identified in the left inguinal mammary gland of a 9-year-old male maned wolf (Chrysocyon brachyurus). The mass was surgically excised and examined histologically. Microscopically, the neoplasm consisted of papillary proliferations of epithelial cells on well-defined fibrovascular stalks. A myoepithelial layer was located between the single layer of epithelial cells and the fibrovascular stalk. This histologic appearance was compatible with a diagnosis of simple ductal mammary papilloma. Immunohistochemical staining was positive for p63, cytokeratins AE1/AE3, and estrogen receptors. The clinical and histologic observations in the present case indicate that male maned wolves may develop mammary tumors that are similar to those observed in domestic dogs and humans.

  3. FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis

    PubMed Central

    Bernardo, Gina M.; Lozada, Kristen L.; Miedler, John D.; Harburg, Gwyndolen; Hewitt, Sylvia C.; Mosley, Jonathan D.; Godwin, Andrew K.; Korach, Kenneth S.; Visvader, Jane E.; Kaestner, Klaus H.; Abdul-Karim, Fadi W.; Montano, Monica M.; Keri, Ruth A.

    2010-01-01

    FOXA1, estrogen receptor α (ERα) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERα and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERα expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERα and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERα expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERα-positive breast cancers, at least in part, through its control of ERα expression. PMID:20501593

  4. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols.

    PubMed

    Maciel, María Eugenia; Castro, José Alberto; Castro, Gerardo Daniel

    2011-07-01

    We previously reported that the microsomal fraction from rat mammary tissue is able to oxidize ethanol to acetaldehyde, a mutagenic-carcinogenic metabolite, depending on the presence of NADPH and oxygen but not inhibited by carbon monoxide or other cytochrome P450 inhibitors. The process was strongly inhibited by diphenyleneiodonium, a known inhibitor of NADPH oxidase, and by nordihydroguaiaretic acid, an inhibitor of lipoxygenases. This led us to suggest that both enzymes could be involved. With the purpose of identifying natural compounds present in food with the ability to decrease the production of acetaldehyde in mammary tissue, in the present studies, several plant polyphenols having inhibitory effects on lipoxygenases and of antioxidant nature were tested as potential inhibitors of the rat mammary tissue microsomal pathway of ethanol oxidation. We included in the present screening study 32 polyphenols having ready availability and that were also tested against the rat mammary tissue cytosolic metabolism of ethanol to acetaldehyde. Several polyphenols were also able to inhibit the microsomal ethanol oxidation at concentrations as low was 10-50 μM. The results of these screening experiments suggest the potential of several plant polyphenols to prevent in vivo production and accumulation of acetaldehyde in mammary tissue.

  5. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow.

    PubMed

    Lin, Ye; Sun, Xiaoxu; Hou, Xiaoming; Qu, Bo; Gao, Xuejun; Li, Qingzhang

    2016-05-26

    Lactose, as the primary osmotic component in milk, is the major determinant of milk volume. Glucose is the primary precursor of lactose. However, the effect of glucose on lactose synthesis in dairy cow mammary glands and the mechanism governing this process are poorly understood. Here we showed that glucose has the ability to induce lactose synthesis in dairy cow mammary epithelial cells, as well as increase cell viability and proliferation. A concentration of 12 mM glucose was the optimum concentration to induce cell growth and lactose synthesis in cultured dairy cow mammary epithelial cells. In vitro, 12 mM glucose enhanced lactose content, along with the expression of genes involved in glucose transportation and the lactose biosynthesis pathway, including GLUT1, SLC35A2, SLC35B1, HK2, β4GalT-I, and AKT1. In addition, we found that AKT1 knockdown inhibited cell growth and lactose synthesis as well as expression of GLUT1, SLC35A2, SLC35B1, HK2, and β4GalT-I. Glucose induces cell growth and lactose synthesis in dairy cow mammary epithelial cells. Protein kinase B alpha acts as a regulator of metabolism in dairy cow mammary gland to mediate the effects of glucose on lactose synthesis.

  6. Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation

    PubMed Central

    Cox, R F; Hernandez-Santana, A; Ramdass, S; McMahon, G; Harmey, J H; Morgan, M P

    2012-01-01

    Background: Mammographic microcalcifications represent one of the most reliable features of nonpalpable breast cancer yet remain largely unexplored and poorly understood. Methods: We report a novel model to investigate the in vitro mineralisation potential of a panel of mammary cell lines. Primary mammary tumours were produced by implanting tumourigenic cells into the mammary fat pads of female BALB/c mice. Results: Hydroxyapatite (HA) was deposited only by the tumourigenic cell lines, indicating mineralisation potential may be associated with cell phenotype in this in vitro model. We propose a mechanism for mammary mineralisation, which suggests that the balance between enhancers and inhibitors of physiological mineralisation are disrupted. Inhibition of alkaline phosphatase and phosphate transport prevented mineralisation, demonstrating that mineralisation is an active cell-mediated process. Hydroxyapatite was found to enhance in vitro tumour cell migration, while calcium oxalate had no effect, highlighting potential consequences of calcium deposition. In addition, HA was also deposited in primary mammary tumours produced by implanting the tumourigenic cells into the mammary fat pads of female BALB/c mice. Conclusion: This work indicates that formation of mammary HA is a cell-specific regulated process, which creates an osteomimetic niche potentially enhancing breast tumour progression. Our findings point to the cells mineralisation potential and the microenvironment regulating it, as a significant feature of breast tumour development. PMID:22233923

  7. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows.

    PubMed

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative

  8. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows

    PubMed Central

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative

  9. Cystic Mammary Adenocarcinoma Associated with a Prolactin-secreting Pituitary Adenoma in a New Zealand White Rabbit (Oryctolagus cuniculus)

    PubMed Central

    Sikoski, Paul; Trybus, James; Cline, J Mark; Muhammad, F Salih; Eckhoff, Andrew; Tan, Josh; Lockard, Mandy; Jolley, Tammy; Britt, Susan; Kock, Nancy D

    2008-01-01

    A 44-mo-old, female, nulliparous New Zealand White Rabbit (Oryctolagus cuniculus) presented with bilaterally diffusely enlarged mammary glands with enlarged, discolored teats that exuded brown, mucoid discharge. The complete blood count and serum chemistry panels were within normal limits, bacteria were not isolated from a culture of the discharge, and the clinical signs did not resolve with antibiotic treatment. Computed tomography and serum prolactin levels supported the diagnosis of mammary gland dysplasia, possibly due to a prolactin-secreting pituitary adenoma. Histologic evaluation confirmed the presence of a pituitary adenoma, mammary hyperplasia, dysplasia, and cystic mammary adenocarcinoma. Immunohistochemical staining confirmed the presence of abundant prolactin secreting cells in the pituitary adenoma. This is the second report of hyperprolactinemia with mammary dysplasia in rabbits, and the first report of cystic mammary adenocarcinoma associated with a prolactin-secreting pituitary adenoma in a rabbit. PMID:18589874

  10. Peripheral Serotonin Regulates Maternal Calcium Trafficking in Mammary Epithelial Cells during Lactation in Mice

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Vezina, Chad M.; Hernandez, Laura L.

    2014-01-01

    Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122

  11. SU-E-I-59: Investigation of the Usefulness of a Standard Deviation and Mammary Gland Density as Indexes for Mammogram Classification.

    PubMed

    Takarabe, S; Yabuuchi, H; Morishita, J

    2012-06-01

    To investigate the usefulness of the standard deviation of pixel values in a whole mammary glands region and the percentage of a high- density mammary glands region to a whole mammary glands region as features for classification of mammograms into four categories based on the ACR BI-RADS breast composition. We used 36 digital mediolateral oblique view mammograms (18 patients) approved by our IRB. These images were classified into the four categories of breast compositions by an experienced breast radiologist and the results of the classification were regarded as a gold standard. First, a whole mammary region in a breast was divided into two regions such as a high-density mammary glands region and a low/iso-density mammary glands region by using a threshold value that was obtained from the pixel values corresponding to a pectoral muscle region. Then the percentage of a high-density mammary glands region to a whole mammary glands region was calculated. In addition, as a new method, the standard deviation of pixel values in a whole mammary glands region was calculated as an index based on the intermingling of mammary glands and fats. Finally, all mammograms were classified by using the combination of the percentage of a high-density mammary glands region and the standard deviation of each image. The agreement rates of the classification between our proposed method and gold standard was 86% (31/36). This result signified that our method has the potential to classify mammograms. The combination of the standard deviation of pixel values in a whole mammary glands region and the percentage of a high-density mammary glands region to a whole mammary glands region was available as features to classify mammograms based on the ACR BI- RADS breast composition. © 2012 American Association of Physicists in Medicine.

  12. Cripto-1 Ablation Disrupts Alveolar Development in the Mouse Mammary Gland through a Progesterone Receptor–Mediated Pathway

    PubMed Central

    Klauzinska, Malgorzata; McCurdy, David; Rangel, Maria Cristina; Vaidyanath, Arun; Castro, Nadia P.; Shen, Michael M.; Gonzales, Monica; Bertolette, Daniel; Bianco, Caterina; Callahan, Robert; Salomon, David S.; Raafat, Ahmed

    2016-01-01

    Cripto-1, a member of the epidermal growth factor–Cripto-1/FRL-1/Cryptic family, is critical for early embryonic development. Together with its ligand Nodal, Cripto-1 has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Several studies have clearly shown that Cripto-1 is involved in regulating branching morphogenesis and epithelial-mesenchymal transition of the mammary gland both in vitro and in vivo and together with the cofactor GRP78 is critical for the maintenance of mammary stem cells ex vivo. Our previous studies showed that mammary-specific overexpression of human Cripto-1 exhibited dramatic morphological alterations in nulliparous mice mammary glands. The present study shows a novel mechanism for Cripto-1 regulation of mammary gland development through direct effects on progesterone receptor expression and pathways regulated by progesterone in the mammary gland. We demonstrate a strict temporal regulation of mouse Cripto-1 (mCripto-1) expression that occurs during mammary gland development and a stage-specific function of mCripto-1 signaling during mammary gland development. Our data suggest that Cripto-1, like the progesterone receptor, is not required for the initial ductal growth but is essential for subsequent side branching and alveologenesis during the initial stages of pregnancy. Dissection of the mechanism by which this occurs indicates that mCripto-1 activates receptor activator NF-κB/receptor activator NF-κB ligand, and NF-κB signaling pathways. PMID:26429739

  13. Experimental infection of bovine mammary gland with prototheca zopfii genotype 1.

    PubMed

    Ito, Takaaki; Kano, Rui; Sobukawa, Hideto; Ogawa, Jin; Honda, Yayoi; Hosoi, Yoshihiro; Shibuya, Hisashi; Sato, Tsuneo; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2011-01-01

    Prototheca zopfii is divided into three genotypes, one of which, P. zopfii genotype 2, appears to be the main causative agent of bovine protothecal mastitis. However, the difference in pathogenicity between genotypes 1 and 2 has not been well investigated. In the present study, we experimentally infected normal bovine mammary gland with P. zopfii genotype 1 to investigate its pathogenicity. The mammary gland infected with P. zopfii genotype 1 showed no clinical signs. However, the histopathologic features of the infected mammary gland consisted of interstitial infiltrates of macrophages, plasma cells, lymphocytes, and fibroblasts with neutrophils in acinar lumens. Algae were present in macrophages and free in the alveolar lumens and the interstitium. Histopathology of the resultant tissue samples revealed that genotype 1 also induced a granulomatous lesion in the cow teat, similar to the mastitis lesion due to genotype 2.

  14. Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis

    PubMed Central

    Arumugam, Arunkumar; Agullo, Pamela; Boopalan, Thiyagarajan; Nandy, Sushmita; Lopez, Rebecca; Gutierrez, Christina; Narayan, Mahesh; Rajkumar, Lakshmanaswamy

    2014-01-01

    Plant-based medicines are useful in the treatment of cancer. Many breast cancer patients use complementary and alternative medicine in parallel with conventional treatments. Neem is historically well known in Asia and Africa as a versatile medicinal plant with a wide spectrum of biological activities. The experiments reported herein determined whether the administration of an ethanolic fraction of Neem leaf (EFNL) inhibits progression of chemical carcinogen-induced mammary tumorigenesis in rat models. Seven-week-old female Sprague Dawley rats were given a single intraperitoneal injection of N-methyl-N-nitrosourea (MNU). Upon the appearance of palpable mammary tumors, the rats were divided into vehicle-treated control groups and EFNL-treated groups. Treatment with EFNL inhibited MNU-induced mammary tumor progression. EFNL treatment was also highly effective in reducing mammary tumor burden and in suppressing mammary tumor progression even after the cessation of treatment. Further, we found that EFNL treatment effectively upregulated proapoptotic genes and proteins such as p53, B cell lymphoma-2 protein (Bcl-2)-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad) caspases, phosphatase and tensin homolog gene (PTEN), and c-Jun N-terminal kinase (JNK). In contrast, EFNL treatment caused downregulation of anti-apoptotic (Bcl-2), angiogenic proteins (angiopoietin and vascular endothelial growth factor A [VEGF-A]), cell cycle regulatory proteins (cyclin D1, cyclin-dependent kinase 2 [Cdk2], and Cdk4), and pro-survival signals such as NFκB, mitogen-activated protein kinase 1 (MAPK1). The data obtained in this study demonstrate that EFNL exert a potent anticancer effect against mammary tumorigenesis by altering key signaling pathways. PMID:24146019

  15. Left-right analysis of mammary gland development in retinoid X receptor-α+/- mice.

    PubMed

    Robichaux, Jacqulyne P; Fuseler, John W; Patel, Shrusti S; Kubalak, Steven W; Hartstone-Rose, Adam; Ramsdell, Ann F

    2016-12-19

    Left-right (L-R) differences in mammographic parenchymal patterns are an early predictor of breast cancer risk; however, the basis for this asymmetry is unknown. Here, we use retinoid X receptor alpha heterozygous null (RXRα +/- ) mice to propose a developmental origin: perturbation of coordinated anterior-posterior (A-P) and L-R axial body patterning. We hypothesized that by analogy to somitogenesis-in which retinoic acid (RA) attenuation causes anterior somite pairs to develop L-R asynchronously-that RA pathway perturbation would likewise result in asymmetric mammary development. To test this, mammary glands of RXRα +/- mice were quantitatively assessed to compare left- versus right-side ductal epithelial networks. Unlike wild-type controls, half of the RXRα +/- thoracic mammary gland (TMG) pairs exhibited significant L-R asymmetry, with left-side reduction in network size. In RXRα +/- TMGs in which symmetry was maintained, networks had bilaterally increased size, with left networks showing greater variability in area and pattern. Reminiscent of posterior somites, whose bilateral symmetry is refractory to RA attenuation, inguinal mammary glands (IMGs) also had bilaterally increased network size, but no loss of symmetry. Together, these results demonstrate that mammary glands exhibit differential A-P sensitivity to RXRα heterozygosity, with ductal network symmetry markedly compromised in anterior but not posterior glands. As TMGs more closely model human breast development than IMGs, these findings raise the possibility that for some women, breast cancer risk may initiate with subtle axial patterning defects that result in L-R asymmetric growth and pattern of the mammary ductal epithelium.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  16. Distinct Luminal-Type Mammary Carcinomas Arise from Orthotopic Trp53-Null Mammary Transplantation of Juvenile versus Adult Mice

    DOE PAGES

    Nguyen, David H.; Ouyang, Haoxu; Mao, Jian-Hua; ...

    2014-12-01

    Age and physiologic status, such as menopause, are risk factors for breast cancer. Less clear is what factors influence the diversity of breast cancer. In this study, we investigated the effect of host age on the distribution of tumor subtypes in mouse mammary chimera consisting of wild-type hosts and Trp53 nullizygous epithelium, which undergoes a high rate of neoplastic transformation. Wild-type mammary glands cleared of endogenous epithelium at 3 weeks of age were subsequently transplanted during puberty (5 weeks) or at maturation (10 weeks) with syngeneic Trp53-null mammary tissue fragments and monitored for one year. Tumors arose sooner from adultmore » hosts (AH) compared with juvenile hosts (JH). However, compared with AH tumors, JH tumors grew several times faster, were more perfused, exhibited a two-fold higher mitotic index, and were more highly positive for insulin-like growth factor receptor phosphorylation. Most tumors in each setting were estrogen receptor (ER)-positive (80% JH vs. 70% AH), but JH tumors were significantly more ER-immunoreactive (P = 0.0001) than AH tumors. A differential expression signature (JvA) of juvenile versus adult tumors revealed a luminal transcriptional program. Centroids of the human homologs of JvA genes showed that JH tumors were more like luminal A tumors and AH tumors were more like luminal B tumors. Hierarchical clustering with the JvA human ortholog gene list segregated luminal A and luminal B breast cancers across datasets. Lastly, these data support the notion that age-associated host physiology greatly influences the intrinsic subtype of breast cancer.« less

  17. Distinct Luminal-Type Mammary Carcinomas Arise from Orthotopic Trp53-Null Mammary Transplantation of Juvenile versus Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, David H.; Ouyang, Haoxu; Mao, Jian-Hua

    Age and physiologic status, such as menopause, are risk factors for breast cancer. Less clear is what factors influence the diversity of breast cancer. In this study, we investigated the effect of host age on the distribution of tumor subtypes in mouse mammary chimera consisting of wild-type hosts and Trp53 nullizygous epithelium, which undergoes a high rate of neoplastic transformation. Wild-type mammary glands cleared of endogenous epithelium at 3 weeks of age were subsequently transplanted during puberty (5 weeks) or at maturation (10 weeks) with syngeneic Trp53-null mammary tissue fragments and monitored for one year. Tumors arose sooner from adultmore » hosts (AH) compared with juvenile hosts (JH). However, compared with AH tumors, JH tumors grew several times faster, were more perfused, exhibited a two-fold higher mitotic index, and were more highly positive for insulin-like growth factor receptor phosphorylation. Most tumors in each setting were estrogen receptor (ER)-positive (80% JH vs. 70% AH), but JH tumors were significantly more ER-immunoreactive (P = 0.0001) than AH tumors. A differential expression signature (JvA) of juvenile versus adult tumors revealed a luminal transcriptional program. Centroids of the human homologs of JvA genes showed that JH tumors were more like luminal A tumors and AH tumors were more like luminal B tumors. Hierarchical clustering with the JvA human ortholog gene list segregated luminal A and luminal B breast cancers across datasets. Lastly, these data support the notion that age-associated host physiology greatly influences the intrinsic subtype of breast cancer.« less

  18. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1971-01-01

    1. Ribosomes prepared from bovine lactating mammary gland are able to synthesize protein, whereas similar preparations from non-lactating glands are not. Washing the ribosome suspensions through a medium containing 0.5m-ammonium chloride enhanced their ability to incorporate phenylalanine into polyphenylalanine. 2. Ribosomes isolated from non-lactating bovine mammary gland, in contrast with those from rat liver and lactating mammary gland, contained significant amounts of extraneous nucleases. These enzymes could be removed by washing with a medium A buffer containing 0.5m-ammonium chloride. 3. Only those ribosomes from functionally active tissues were able to bind polyuridylic acid and phenylalanyl-tRNA. PMID:5165653

  19. Mammary and femoral hydatid cysts.

    PubMed

    Shamim, Muhammad

    2010-08-01

    Hydatid cyst disease most commonly affects liver and lungs, but it can affect all viscera and soft tissues of the body. Simultaneous mammary and femoral hydatid cysts, without any other visceral involvement, are extremely rare. This is a case report of 25-years-old female, presenting with lump in left breast mimicking fibroadenoma and lump in right thigh mimicking fibroma. Both turned out to be hydatid cysts.

  20. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.

    PubMed

    Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S

    2010-01-01

    The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena

  1. Salvia officinalis L. induces alveolar bud growing in adult female rat mammary glands

    PubMed Central

    Monsefi, Malihezaman; Abedian, Mehrnaz; Azarbahram, Zahra; Ashraf, Mohammad Javad

    2015-01-01

    Objectives: In traditional medicine Salvia officinalis (sage) has been used as menstrual cycle regulator. In the present study the effects of sage extract on breast tissue were examined. Materials and Methods: Fourteen female rats were divided into two groups: 1) Distilled water-treated rats (Con) that were gavaged with 1ml distilled water and 2) Saliva officinalis hydroalcoholic extract (SHE)-treated rats that were gavaged with 30mg/kg/body weight of sage extract for 30 days. The estrus cycle changes were monitored by daily examination of vaginal smear. Whole mounts of right pelvic breast were spread on the slide and stained by carmine. The number of alveolar buds (ABs) type 1 and 2 and lobules of mammary gland were scored. Tissue sections of left pelvic mammary gland were prepared and its histomorphometrical changes were measured. Blood samples were taken from dorsal aorta and estradiol and progesterone concentrations were measured using radioimmunoassay. Results: Estrous cycles decreased significantly in SHE-treated animals. The number of alveolar buds and lobules in mammary gland whole mount of SHE-treated group were higher than the Con group. The number and diameter of ducts in histological section of mammary gland in SHE-treated group increased as compared to the Con group. Conclusion: Sage promotes alveologenesis of mammary glands and it can be used as a lactiferous herb. PMID:26693413

  2. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE PAGES

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; ...

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  3. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengju; Lo, Alvin; Huang, Yurong

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  4. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia.

    PubMed

    Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G

    2009-09-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.

  5. Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia

    PubMed Central

    Li, Xin; Gonzalez, Maria E.; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D.; Kleer, Celina G.

    2009-01-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with β-catenin, inducing β-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/β-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with β-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma. PMID:19661437

  6. Complex mammary carcinoma with metastases to lymph nodes, subcutaneous tissue, and multiple joints in a dog.

    PubMed

    McCourt, Maggie R; Dieterly, Alexandra M; Mackey, Paige E; Lyon, Shane D; Rizzi, Theresa E; Ritchey, Jerry W

    2018-05-07

    An 8-year-old, intact female, mixed-breed dog presented to the Oklahoma State University Boren Veterinary Medical Teaching Hospital for evaluation of progressive lameness and joint effusion of multiple joints. Physical examination revealed joint effusion of the elbow, hock, and stifle joints bilaterally, enlarged left axillary and right popliteal lymph nodes, a subcutaneous mass over the left elbow, and a subcutaneous mass involving the left second and third mammary glands. Cytologic examination of the mammary mass, enlarged lymph nodes, and joint fluid from most affected joints revealed a monomorphic population of loosely cohesive neoplastic epithelial cells. The patient was humanely euthanized, and subsequent necropsy with histopathologic examination revealed a complex mammary carcinoma with metastases to enlarged lymph nodes, subcutaneous tissue over the left elbow, and the synovium of multiple joints. Immunohistochemical stains were performed and showed diffusely positive pan cytokeratin, CK8/18, and CK19 staining in the neoplastic luminal epithelial cells of the mammary carcinoma, synovium, and lymph nodes, and showed diffusely positive vimentin staining of the myoepithelial cells. Myoepithelial calponin positivity was diffuse in the mammary mass and lymph nodes but minimal in the synovium. Only the mammary mass showed p63 positivity. Metastatic mammary neoplasia is relatively common in dogs; however, metastasis to the synovium has only been reported once previously in the literature. This is the first case utilizing immunohistochemistry for confirmation and characterization of metastases. © 2018 American Society for Veterinary Clinical Pathology.

  7. Metabolomics Reveals Aryl Hydrocarbon Receptor Activation Induces Liver and Mammary Gland Metabolic Dysfunction in Lactating Mice.

    PubMed

    Belton, Kerry R; Tian, Yuan; Zhang, Limin; Anitha, Mallappa; Smith, Philip B; Perdew, Gary H; Patterson, Andrew D

    2018-04-06

    The liver and the mammary gland have complementary metabolic roles during lactation. Substrates synthesized by the liver are released into the circulation and are taken up by the mammary gland for milk production. The aryl hydrocarbon receptor (AHR) has been identified as a lactation regulator in mice, and its activation has been associated with myriad morphological, molecular, and functional defects such as stunted gland development, decreased milk production, and changes in gene expression. In this study, we identified adverse metabolic changes in the lactation network (mammary, liver, and serum) associated with AHR activation using 1 H nuclear magnetic resonance (NMR)-based metabolomics. Pregnant mice expressing Ahr d (low affinity) or Ahr b (high affinity) were fed diets containing beta naphthoflavone (BNF), a potent AHR agonist. Mammary, serum, and liver metabolomics analysis identified significant changes in lipid and TCA cycle intermediates in the Ahr b mice. We observed decreased amino acid and glucose levels in the mammary gland extracts of Ahr b mice fed BNF. The serum of BNF fed Ahr b mice had significant changes in LDL/VLDL (increased) and HDL, PC, and GPC (decreased). Quantitative PCR analysis revealed ∼50% reduction in the expression of key lactogenesis mammary genes including whey acid protein, α-lactalbumin, and β-casein. We also observed morphologic and developmental disruptions in the mammary gland that are consistent with previous reports. Our observations support that AHR activity contributes to metabolism regulation in the lactation network.

  8. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  9. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells

    USDA-ARS?s Scientific Manuscript database

    Mammary adipose tissue may contribute to breast cancer development and progression by altering neighboring epithelial cell behavior and phenotype through paracrine signaling. Dietary exposure to soy foods is associated with lower mammary tumor risk and reduced body weight and adiposity in humans and...

  10. Experimental study on the clinical effects of Xiaoru Sanjie Jiaonang on mammary glands hyperplasia and ki-67

    PubMed Central

    Zheng, Zi-Hao; Liu, Lin; Zou, Shi-Fang; Xu, Yu-Ting; Chen, Cui-Cui; Liang, Wen-Long; Guo, Bao-Liang; Wang, Yu; Zhu, Kai-Yuan; Liu, Jie-Na; Xu, Dan-Dan; Wang, Ji-Yan; Lin, Jia-Yan; Liu, Li; Zhang, Jian Guo; Chen, Xi

    2018-01-01

    Objective: This study aims to observe the effect and mechanism of Xiaoru Sanjie Jiaonang (XRSJ) on the treatment of mammary gland hyperplasia, and provide a theoretical basis and clinical evidence for clinical expansion. Methods: Japanese white rabbits were randomly divided into three groups: high-, middle- and low-dose groups; Xiaoyao Pill group; model control group; normal control group. The observation points were as follows: before XRSJ administration, three months after XRSJ administration, and three months after XRSJ discontinuance. Changes in breast height, morphological changes of the mammary gland under a light and electron microscope, and the expression of ki-67 were observed. At the same time, patients diagnosed with mammary gland hyperplasia at an Outpatient Clinic were selected and divided into treatment groups. These patients received XRSJ and Xiaoyao Pills, respectively, for one month, while patients in the control group did not receive any drug treatment. Clinical efficacy was observed while rechecking at the Outpatient Clinic after three months. Treatment with a therapeutic dose of XRSJ could significantly reduce breast height, decrease the number of lobules and acini in hyperplastic mammary glands and the layer number of ductal glandular epithelial cells, substantially lower the content of serum estradiol (E2), significantly downregulate the expression of ki-67 protein in mammary tissues, and inhibit mammary gland hyperplasia. Conclusion: XRSJ treatment can relieve mammary tissue hyperplastic lesions, reduce E2 levels and downregulate the expression of ki-67. It has a significant therapeutic effect on mammary gland hyperplasia. PMID:29636873

  11. Cripto-1 ablation disrupts alveolar development in the mouse mammary gland through a progesterone receptor-mediated pathway.

    PubMed

    Klauzinska, Malgorzata; McCurdy, David; Rangel, Maria Cristina; Vaidyanath, Arun; Castro, Nadia P; Shen, Michael M; Gonzales, Monica; Bertolette, Daniel; Bianco, Caterina; Callahan, Robert; Salomon, David S; Raafat, Ahmed

    2015-11-01

    Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic family, is critical for early embryonic development. Together with its ligand Nodal, Cripto-1 has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Several studies have clearly shown that Cripto-1 is involved in regulating branching morphogenesis and epithelial-mesenchymal transition of the mammary gland both in vitro and in vivo and together with the cofactor GRP78 is critical for the maintenance of mammary stem cells ex vivo. Our previous studies showed that mammary-specific overexpression of human Cripto-1 exhibited dramatic morphological alterations in nulliparous mice mammary glands. The present study shows a novel mechanism for Cripto-1 regulation of mammary gland development through direct effects on progesterone receptor expression and pathways regulated by progesterone in the mammary gland. We demonstrate a strict temporal regulation of mouse Cripto-1 (mCripto-1) expression that occurs during mammary gland development and a stage-specific function of mCripto-1 signaling during mammary gland development. Our data suggest that Cripto-1, like the progesterone receptor, is not required for the initial ductal growth but is essential for subsequent side branching and alveologenesis during the initial stages of pregnancy. Dissection of the mechanism by which this occurs indicates that mCripto-1 activates receptor activator NF-κB/receptor activator NF-κB ligand, and NF-κB signaling pathways. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis.

    PubMed

    Hulit, J; Di Vizio, D; Pestell, R G

    2001-01-01

    Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway.

  13. Regulation of mammary gland sensitivity to thyroid hormones during the transition from pregnancy to lactation.

    PubMed

    Capuco, A V; Connor, E E; Wood, D L

    2008-10-01

    Thyroid hormones are galactopoietic and help to establish the mammary gland's metabolic priority during lactation. Expression patterns for genes that can alter tissue sensitivity to thyroid hormones and thyroid hormone activity were evaluated in the mammary gland and liver of cows at 53, 35, 20, and 7 days before expected parturition, and 14 and 90 days into the subsequent lactation. Transcript abundance for the three isoforms of iodothyronine deiodinase, type I (DIO1), type II (DIO2) and type III (DIO3), thyroid hormone receptors alpha1 (TRalpha1), alpha2 (TRalpha2) and beta1 (TRbeta1), and retinoic acid receptors alpha (RXRalpha) and gamma (RXRgamma), which act as coregulators of thyroid hormone receptor action, were evaluated by quantitative RT-PCR. The DIO3 is a 5-deiodinase that produces inactive iodothyronine metabolites, whereas DIO1 and DIO2 generate the active thyroid hormone, triiodothyronine, from the relatively inactive precursor, thyroxine. Low copy numbers of DIO3 transcripts were present in mammary gland and liver. DIO2 was the predominant isoform expressed in mammary gland and DIO1 was the predominant isoform expressed in liver. Quantity of DIO1 mRNA in liver tissues did not differ with physiological state, but tended to be lowest during lactation. Quantity of DIO2 mRNA in mammary gland increased during lactation (P < 0.05), with copy numbers at 90 days of lactation 6-fold greater than at 35 and 20 days prepartum. When ratios of DIO2/DIO3 mRNA were evaluated, the increase was more pronounced (>100-fold). Quantity of TRbeta1 mRNA in mammary gland increased with onset of lactation, whereas TRalpha1 and TRalpha2 transcripts did not vary with physiological state. Conversely, quantity of RXRalpha mRNA decreased during late gestation to low levels during early lactation. Data suggest that increased expression of mammary TRbeta1 and DIO2, and decreased RXRalpha, provide a mechanism to increase thyroid hormone activity within the mammary gland during

  14. Goat mammary gland expression of Cecropin B to inhibit bacterial pathogens causing mastitis.

    PubMed

    Luo, Chao-chao; Yin, De-yun; Gao, Xue-jun; Li, Qing-zhang; Zhang, Li

    2013-01-01

    The antibacterial peptide Cecropin B (CB), isolated from the giant silk moth, has been shown to effectively eliminate bacteria. In this study, the effects of transgenic CB on dairy goat mammary epithelial cells (DGMECs) and dairy goat mammary gland were investigated. The DNA of CB from silkworm was amplified by reverse transcription PCR (RT-PCR) and then fused to the eukaryotic expression vector pECFP-C1. The recombinant plasmid pECFP-Cecropin B (pECFP-CB) was used for the transfection of DGMECs, and the expression of transgenic CB and the antibacterial activity of it were confirmed by western blot and agar diffusion reaction respectively. The stable DGMEC line transfected by pECFP-CB was obtained by screening with G418. In vivo experiment, pECFP-CB was injected into dairy goat mammary gland, and also the expression and antibacterial activity of transgenic CB were confirmed. Results of this study: transgenic CB can be expressed in DGMECs and dairy goat mammary gland, and inhibit the mastitis caused by Staphylococcus aureus.

  15. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.

    PubMed

    Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun

    2012-03-01

    To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.

  16. The effects of spaceflight on mammary metabolism in pregnant rats

    NASA Technical Reports Server (NTRS)

    Plaut, K.; Maple, R.; Vyas, C.; Munaim, S.; Darling, A.; Casey, T.; Alberts, J. R.

    1999-01-01

    The effects of spaceflight on mammary metabolism of 10 pregnant rats was measured on Day 20 of pregnancy and after parturition. Rats were flown on the space shuttle from Day 11 through Day 20 of pregnancy. After their return to earth, glucose oxidation to carbon dioxide increased 43% (P < 0.05), and incorporation into fatty acids increased 300% (P < 0.005) compared to controls. It is unclear whether the enhanced glucose use is due to spaceflight or a response to landing. Casein mRNA and gross histology were not altered at Day 20 of pregnancy. Six rats gave birth (on Day 22 to 23 of pregnancy) and mammary metabolic activity was measured immediately postpartum. The earlier effects of spaceflight were no longer apparent. There was also no difference in expression of beta-casein mRNA. It is clear from these studies that spaceflight does not impair the normal development of the mammary gland, its ability to use glucose, nor the ability to express mRNA for a major milk protein.

  17. Hierarchy within the mammary STAT5-driven Wap super-enhancer

    PubMed Central

    Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar

    2016-01-01

    Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes. PMID:27376239

  18. Enhanced mammary progesterone receptor-A isoform activity in the promotion of mammary tumor progression by dietary soy in rats

    USDA-ARS?s Scientific Manuscript database

    Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-Methyl-N-Nitrosou...

  19. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    PubMed Central

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  20. Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox

    PubMed Central

    Guo, Qiuchen; Betts, Courtney; Pennock, Nathan; Mitchell, Elizabeth; Schedin, Pepper

    2017-01-01

    Transforming Growth Factor-β (TGF-β) signaling in cancer has been termed the “TGF-β paradox”, acting as both a tumor suppresser and promoter. The complexity of TGF-β signaling within the tumor is context dependent, and greatly impacted by cellular crosstalk between TGF-β responsive cells in the microenvironment including adjacent epithelial, endothelial, mesenchymal, and hematopoietic cells. Here we utilize normal, weaning-induced mammary gland involution as a tissue microenvironment model to study the complexity of TGF-β function. This article reviews facets of mammary gland involution that are TGF-β regulated, namely mammary epithelial cell death, immune activation, and extracellular matrix remodeling. We outline how distinct cellular responses and crosstalk between cell types during physiologically normal mammary gland involution contribute to simultaneous tumor suppressive and promotional microenvironments. We also highlight alternatives to direct TGF-β blocking anti-cancer therapies with an emphasis on eliciting concerted microenvironmental-mediated tumor suppression. PMID:28098775

  1. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    PubMed

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-06-07

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.

  2. Discovery of Novel Mammary Developmental and Cancer Genes Using ENU Mutagenesis

    DTIC Science & Technology

    2002-10-01

    death rates we need new therapeutic targets, currently a major challenge facing cancer researchers This requires an understanding of the undiscovered pathways that operate to drive breast cancer cell proliferation, cell survival and cell differentiation, pathways which are also likely to operate during normal mammary development, and which go awry in cancer The discovery of signalling pathways operative in breast cancer has utilised examination of mammary gland development following systemic endocrine ablation or viral insertion, positional cloning in affected families and

  3. Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis

    PubMed Central

    Mack, David L; Boulanger, Corinne A; Callahan, Robert; Smith, Gilbert H

    2007-01-01

    Introduction Int6 has been shown to be an interactive participant with the protein translation initiation complex eIF3, the COP9 signalosome and the regulatory lid of the 26S proteasome. Insertion of mouse mammary tumor virus into the Int6 locus creates a C-terminally truncated form of the protein. Expression of the truncated form of Int6 (Int6sh) in stably transfected human and mouse mammary epithelial cell lines leads to cellular transformation. In addition, decreased expression of Int6/eIF3e is observed in approximately one third of all human breast carcinomas. Methods To validate that Int6sh has transforming activity in vivo, a transgenic mouse model was designed using the whey acidic protein (Wap) promoter to target expression of truncated Int6 to differentiating alveolar epithelial cells in the mammary gland. Microarray analyses were performed on normal, premalignant and malignant WapInt6sh expressing tissues. Results Mammary tumors developed in 42% of WapInt6sh heterozygous parous females at an average age of 18 months. In WapInt6sh mice, the contralateral mammary glands from both tumorous and non-tumorous tissues contained widespread focal alveolar hyperplasia. Only 4% of WapInt6sh non-breeding females developed tumors by 2 years of age. The Wap promoter is active only during estrus in the mammary tissue of cycling non-pregnant mice. Microarray analyses of mammary tissues demonstrated that Int6sh expression in the alveolar tissue altered the mammary transcriptome in a specific manner that was detectable even in the first pregnancy. This Int6sh-specific transcriptome pattern subsequently persisted in both the Int6sh-expressing alveolar hyperplasia and mammary tumors. These observations are consistent with the conclusion that WapInt6sh-expressing alveolar cells survive involution following the cessation of lactation, and subsequently give rise to the mammary tumors that arise in aging multiparous females. Conclusion These observations provide direct in vivo

  4. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    PubMed

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  5. Effect of DETA-NONOate and papaverine on vasodilation of human internal mammary artery.

    PubMed

    Rahimi, Nastaran; Dehpour, Ahmad R; Javadi-Paydar, Mehrak; Sohanaki, Hamid; Rabbani, Shahram; Ansari, Mohammad; Tafti, Seyed Hossein Ahmadi

    2011-12-01

    In this study, the relaxatory effect of DETA-NONOate is compared with that of papaverine on isolated human internal mammary artery. We investigated the inhibitory effects of DETA-NONOate and papaverine on phenylephrine-induced contractile response in internal mammary artery segments. The internal mammary artery segments, taken from methodologically matched patients who underwent coronary artery bypass grafting, were prepared, placed in an organ bath, and contracted with phenylephrine (10(-9) to 10(-4) mol/L) to investigate their relaxatory response to DETA-NONOate or papaverine. Phenylephrine dose-response contraction was obtained after 1, 2, and 3 h in segments pre-incubated with DETA-NONOate or papaverine for 30 min. The EC50 that presented for internal mammary artery segments incubated with DETA-NONOate was 3.523 ± 1.2696 × 10(-7) mol/L, and for papaverine was 3.467 ± 1.2145 × 10(-6) mol/L. In segments pre-incubated with DETA-NONOate, the contractile response to phenylephrine was suppressed in the first 2 h post-incubation, compared with control responsive groups (p < 0.05), but this inhibition was revoked after 3 h post-incubation. We showed that DETA-NONOate has a more significant relaxative effect by comparison with papaverine; moreover, continuous and long-lasting nitric oxide production by DETA-NONOate might be of great importance for the outcome from coronary artery bypass grafting, when internal mammary artery is used as a conduit.

  6. Duodenal infusions of palmitic, stearic or oleic acids differently affect mammary gland metabolism of fatty acids in lactating dairy cows.

    PubMed

    Enjalbert, F; Nicot, M C; Bayourthe, C; Moncoulon, R

    1998-09-01

    The effect of dietary lipids on the fatty acid (FA) profile of cows' milk fat is mainly dependent on digestive processes and mammary gland uptake and metabolism of FA. The objective of this study was to determine the separate effects of high arterial concentrations of 16:0, 18:0 and cis-18:1(n-9) on uptake, synthesis and 18:0 desaturation rate in the mammary gland of lactating dairy cows, via arterio-venous differences and mammary gland balance of FA. In a 4 x 4 Latin square, four lactating Holstein cows with cannula in the proximal duodenum were infused duodenally with a mixture providing daily 0 (C treatment) or 500 g FA with mainly 16:0 (P treatment), 18:0 (S treatment) or cis-18:1(n-9) (O treatment). Significantly higher arterial concentrations of infused FA in arterial plasma nonesterified FA and triglycerides (NETGFA) were observed with P and O treatments, but the effect of the S treatment was much lower. Arterio-venous differences of NETGFA increased with arterial concentrations. The number of synthesized FA in the mammary gland was not significantly affected by duodenal infusion of FA. Mean chain length was significantly reduced by P and O treatments, suggesting an effect of mammary gland uptake of long-chain FA on the termination process of mammary gland synthesis of FA. Across all treatments, 4:0 mammary gland balance increased linearly (r = 0.67, P = 0.004) with mammary gland FA uptake. Mammary gland desaturation of 18:0 to cis-18:1(n-9) averaged 52% and was not significantly affected by treatments, but was reduced by trans-18:1 mammary gland uptake. Uptake, synthesis and desaturation of FA by the mammary gland of dairy cows are affected by arterial concentrations of 16:0, 18:0 and cis-18:1(n-9).

  7. Prevention of Human Mammary Carcinogenesis

    DTIC Science & Technology

    1995-06-30

    selected naturally-occurring agents (-)- epigallocatechin gallate ( EGCG ), indole-3-carbinol (13C) and genistein (GEN) for growth inhibition of 184-B5...mechanisms of BP-induced and GEN-induced alterations in cell cycle are being investigated in the ongoing studies. In addition, effects of 13C and EGCG are...rodent mammary tumorigenesis. The maximally nontoxic doses of EGCG , 13C and GEN identified by initial dose-response experiments, were used. The data

  8. Isoenzymes of protein kinase C in rat mammary tissue: changes in properties and relative amounts during pregnancy and lactation.

    PubMed

    Connor, K; Clegg, R A

    1993-05-01

    Protein kinase isoenzymes belonging to the protein kinase C (PK-C) family present in rat mammary tissue have been resolved from one another by chromatography on hydroxyapatite, and characterized. PK-C alpha is the predominant isoenzyme and is present at a constant level of activity throughout mammary-gland development and differentiation. In contrast, marked changes in the relative abundance of other mammary PK-C isoenzymes accompany the transition from pregnancy to lactation. The sensitivity of mammary PK-C alpha to Ca2+ is greater in tissue from pregnant than from lactating rats. This isoenzyme has other atypical properties consistent with its being more highly phosphorylated than PK-C alpha in rat brain and spleen. One of the protein kinase isoenzymes resolved from mammary tissue recognizes the peptide substrate used to assay AMP-activated kinase and may thus interfere in the determination of this activity. Another is fully active in the absence of Ca2+ and is more than 80% active in the absence of added lipid effectors. A 'housekeeping' role is proposed for PK-C alpha in mammary tissue, whereas the less abundant PK-C isoenzymes may be involved in mammary cell proliferation and differentiation.

  9. Increased levels of interleukins 8 and 10 as findings of canine inflammatory mammary cancer.

    PubMed

    de Andrés, Paloma Jimena; Illera, Juan Carlos; Cáceres, Sara; Díez, Lucía; Pérez-Alenza, Maria Dolores; Peña, Laura

    2013-04-15

    Inflammatory mammary cancer (IMC) is a distinct form of mammary cancer that affects dogs and women [in humans, IMC is known as inflammatory breast cancer (IBC)], and is characterized by a sudden onset and an aggressive clinical course. Spontaneous canine IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as the best spontaneous animal model for studying IBC, although several aspects remain unstudied. Interleukins (ILs) play an important role in cancer as potential modulators of angiogenesis, leukocyte infiltration and tumor growth. The aims of the present study were to assess serum and tumor levels of several ILs (IL-1α, IL-1β, IL-6, IL-8 and IL-10) by enzyme-immunoassay in dogs bearing benign and malignant mammary tumors, including dogs with IMC, for a better understanding of this disease. Forty-eight dogs were prospectively included. Animals consisted of 7 healthy Beagles used as donors for normal mammary glands (NMG) and serum controls (SCs), 10 dogs with hyperplasias and benign mammary tumors (HBMT), 24 with non-inflammatory malignant mammary tumors (non-IMC MMT) and 7 dogs with clinical and pathological IMC. IL-8 (serum) and IL-10 (serum and tissue homogenate) levels were higher in the dogs with IMC compared with the non-IMC MMT group. ILs were increased with tumor malignancy as follows: in tumor homogenates IL-6 levels were higher in malignant tumors (IMC and non-IMC MMT) versus HBMT and versus NMG and tumor IL-8 was increased in malignant tumors versus NMG; in serum, IL-1α and IL-8 levels were higher in the malignant groups respect to HBMT and SCs; interestingly, IL-10 was elevated only in the serum of IMC animals. To the best of our knowledge, this is the first report that analyzes ILs in IMC and IL-10 in canine mammary tumors. Our results indicate a role for IL-6, IL-8 and IL-10 in canine mammary malignancy and specific differences in ILs content in IMC versus non-IMC MMT that could

  10. Canine mammary tumors as a model for human disease.

    PubMed

    Abdelmegeed, Somaia M; Mohammed, Sulma

    2018-06-01

    Animal models for examining human breast cancer (HBC) carcinogenesis have been extensively studied and proposed. With the recent advent of immunotherapy, significant attention has been focused on the dog as a model for human cancer. Dogs develop mammary tumors and other cancer types spontaneously with an intact immune system, which exhibit a number of clinical and molecular similarities to HBC. In addition to the spontaneous tumor presentation, the clinical similarities between human and canine mammary tumors (CMT) include the age at onset, hormonal etiology and course of the diseases. Furthermore, factors that affect the disease outcome, including tumor size, stage and lymph node invasion, are similar in HBC and CMT. Similarly, the molecular characteristics of steroid receptor, epidermal growth factor, proliferation marker, metalloproteinase and cyclooxygenase expression, and the mutation of the p53 tumor suppressor gene in CMT, mimic HBC. Furthermore, ductal carcinomas in situ in human and canine mammary glands are particularly similar in their pathological, molecular and visual characteristics. These CMT characteristics and their similarities to HBC indicate that the dog could be an excellent model for the study of human disease. These similarities are discussed in detail in the present review, and are compared with the in vitro and other in vivo animal models available.

  11. Reconstruction of Mammary Gland Structure Using Three-Dimensional Computer-Based Microscopy

    DTIC Science & Technology

    2001-08-01

    Segmentation of Mammary Gland Ductal Structure Using Geometric Methods. P.l.’s Malladi R . and Ortiz de Solorzano C. Submitted to the LBNL Laboratory...mammary gland biology". Fernandez-Gonzalez, R ., Jones A., Garcia-Rodriguez E., Knowles D., Sudar D. Ortiz de Solorzano, C. Proceedings of Microscopy...the text. 25 3DRcn4rclr FieC4 eto m oosOtosMCUCP suto 5 2 3p4 eto 6 ’lw r 26o W ~Fl. Case Section Area Tools Opt~ons Micoscope

  12. A Study of Using Massage Therapy Accompanied with Stretching Exercise for Rehabilitation of Mammary Gland Hyperplasia.

    PubMed

    Lv, Pin; Chong, Yuping; Zou, Huagang; Chen, Xiangxian

    2016-01-01

    To apply massage therapy accompanied with stretching exercises for treatment of mammary gland hyperplasia, evaluate the clinical outcome in patients, and estimate the therapy as a novel treatment method for mammary hyperplasia. 28 adult female patients were selected and treated with massage therapy and stretching exercises focusing on skeleton muscles of chest, abdomen, and axilla. The mammary gland oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoxyHb) levels were detected before and after treatment after 15, 30, and 45 days. In this cohort, pretreatment OxyHb (mean ± SD) is 1.32 ± 0.14 (medium-high), and DeoxyHb is 0.87 ± 0.13 (normal). All patients were clinically diagnosed with benign mammary gland hyperplasia and mastitis. The posttreatment OxyHb levels are 1.23 ± 0.09 (normal-medium, 15-day), 1.16 ± 0.08 (normal, 30-day), and 1.05 ± 0.04 (normal, 45-day), and DeoxyHb levels are 0.90 ± 0.11 (normal, 15-day), 0.94 ± 0.18 (normal, 30-day), and 0.98 ± 0.12 (normal, 45-day). Patients were diagnosed with decreased hyperplasia 15 and 30 days after treatment and with no symptom of hyperplasia in mammary gland 45 days after treatment. Mammary gland hyperplasia is closely correlated with pathological changes of skeletal muscles and could be significantly improved by massage therapy and stretching exercises targeting neighboring skeletal muscles.

  13. Protein quality and quantity and insulin control of mammary gland glucose utilization during lactation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masor, M.L.

    1987-01-01

    Virgin Sprague-Dawley rats were bred, and fed laboratory stock (STOCK), 13% casein plus methionine, 13% wheat gluten, or 5% casein plus methionine through gestation and 4 days of lactation. Diets were switched at parturition to determine the effects of dietary protein quality and quantity fed during gestation and/or lactation on insulin stimulation of mammary glucose utilization. On day 20 of gestation (20G) and day 4 of lactation (4L) the right inguinal-abdominal mammary glands were removed, and acini and tissue slices were incubated in Krebs buffer with or without insulin containing (U-/sup 14/C)-glucose and 5mM glucose for 1 hour at 37/degrees/C.more » Glucose incorporation into CO/sub 2/, lipid and lactose was determined. Glucose incorporation into CO/sub 2/ and lipid, but not lactose was stimulated by insulin in mammary slices. Diet effects on glucose utilization in acini were confirmed in slices for basal and insulin stimulated levels. Treatment affected the absolute increase of insulin stimulation. Regression analysis significantly correlated pup weight gain with total glucose utilization. Poor dietary protein quality and quantity fed during gestation impaired both overall response of mammary glucose utilization to insulin stimulation, and mammary development during pregnancy. Improving protein value at parturition did not overcome those deficits by 4L.« less

  14. Epithelial Xbp1 Is Required for Cellular Proliferation and Differentiation during Mammary Gland Development

    PubMed Central

    Hasegawa, Daisuke; Calvo, Veronica; Avivar-Valderas, Alvaro; Lade, Abigale; Chou, Hsin-I; Lee, Youngmin A.; Farias, Eduardo F.; Aguirre-Ghiso, Julio A.

    2015-01-01

    Xbp1, a key mediator of the unfolded protein response (UPR), is activated by IRE1α-mediated splicing, which results in a frameshift to encode a protein with transcriptional activity. However, the direct function of Xbp1 in epithelial cells during mammary gland development is unknown. Here we report that the loss of Xbp1 in the mammary epithelium through targeted deletion leads to poor branching morphogenesis, impaired terminal end bud formation, and spontaneous stromal fibrosis during the adult virgin period. Additionally, epithelial Xbp1 deletion induces endoplasmic reticulum (ER) stress in the epithelium and dramatically inhibits epithelial proliferation and differentiation during lactation. The synthesis of milk and its major components, α/β-casein and whey acidic protein (WAP), is significantly reduced due to decreased prolactin receptor (Prlr) and ErbB4 expression in Xbp1-deficient mammary epithelium. Reduction of Prlr and ErbB4 expression and their diminished availability at the cell surface lead to reduced phosphorylated Stat5, an essential regulator of cell proliferation and differentiation during lactation. As a result, lactating mammary glands in these mice produce less milk protein, leading to poor pup growth and postnatal death. These findings suggest that the loss of Xbp1 induces a terminal UPR which blocks proliferation and differentiation during mammary gland development. PMID:25713103

  15. The mouse mammary gland as a sentinel organ: distinguishing 'control' populations with diverse environmental histories.

    PubMed

    Kolla, SriDurgaDevi; Pokharel, Aastha; Vandenberg, Laura N

    2017-03-09

    There are numerous examples of laboratory animals that were inadvertently exposed to endocrine disrupting chemicals (EDCs) during the process of conducting experiments. Controlling contaminations in the laboratory is challenging, especially when their source is unknown. Unfortunately, EDC contaminations can interfere with the interpretation of data during toxicological evaluations. We propose that the male CD-1 mouse mammary gland is a sensitive bioassay to evaluate the inadvertent contamination of animal colonies. We evaluated mammary glands collected from two CD-1 mouse populations with distinct environmental histories. Population 1 was born and raised in a commercial laboratory with unknown EDC exposures; Population 2 was the second generation raised in an animal facility with limited exposures to xenoestrogens from caging, feed, etc. Mammary glands were collected from all animals and evaluated using morphometric techniques to quantify morphological characteristics of the mammary gland. Population 1 (with suspected history of environmental chemical exposure) and Population 2 (with known limited history of xenoestrogen exposure) were morphologically distinguishable in adult males, prepubertal females, and pubertal females. Mammary glands from males raised in the commercial animal facility were significantly more developed, with larger ductal trees and more branching points. The appearance of these mammary glands was consistent with prior reports of male mice exposed to low doses of bisphenol A (BPA) during early development. In females, the two populations were morphologically distinct at both prepuberty and puberty, with the most striking differences observed in the number, size, and density of terminal end buds, e.g. highly proliferative structures found in the developing mammary gland. Collectively, these results suggest that the mouse mammary gland has the potential to be used as a sentinel organ to evaluate and distinguish animal colonies raised in different

  16. Inhibition of peripubertal sheep mammary gland development by cysteamine through reducing progesterone and growth factor production.

    PubMed

    Zhao, Yong; Feng, Yanni; Zhang, Hongfu; Kou, Xin; Li, Lan; Liu, Xinqi; Zhang, Pengfei; Cui, Liantao; Chu, Meiqiang; Shen, Wei; Min, Lingjiang

    2017-02-01

    Cysteamine has been used for treating cystinosis for many years, and furthermore it has also been used as a therapeutic agent for different diseases including Huntington's disease, Parkinson's disease (PD), nonalcoholic fatty liver disease, malaria, cancer, and others. Although cysteamine has many potential applications, its use may also be problematic. The effects of low doses of cysteamine on the reproductive system, especially the mammary glands are currently unknown. In the current investigation, low dose (10 mg/kg BW/day) of cysteamine did not affect sheep body weight gain or organ index of the liver, spleen, or heart; it did, however, increase the levels of blood lymphocytes, monocytes, and platelets. Most interestingly, it inhibited mammary gland development after 2 or 5 months of treatment by reducing the organ index and the number of mammary gland ducts. Plasma growth hormone and estradiol remained unchanged; however, plasma progesterone levels and the protein level of HSD3β1 in sheep ovaries were decreased by cysteamine. In addition to steroid hormones, growth factors produced in the mammary glands also play crucial roles in mammary gland development. Results showed that protein levels of HGF, GHR, and IGF1R were decreased after 5 months of cysteamine treatment. These findings together suggest that progesterone and local growth factors in mammary glands might be involved in cysteamine initiated inhibition of pubertal ovine mammary gland development. Furthermore, it may lead to a reduction in fertility. Therefore, cysteamine should be used with great caution until its actions have been further investigated and its limitations overcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice.

    PubMed

    La Merrill, Michele; Harper, Rachel; Birnbaum, Linda S; Cardiff, Robert D; Threadgill, David W

    2010-05-01

    RESULTS from previous studies have suggested that breast cancer risk correlates with total lifetime exposure to estrogens and that early-life 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or diets high in fat can also increase cancer risk. Because both TCDD and diet affect the estrogen pathway, we examined how TCDD and a high-fat diet (HFD) interact to alter breast cancer susceptibility. We exposed pregnant female FVB/NJ mice (12.5 days postcoitus) to 1 microg/kg TCDD or vehicle; at parturition, the dams were randomly assigned to a low-fat diet (LFD) or a high-fat diet (HFD). Female offspring were maintained on the same diets after weaning and were exposed to 7,12-dimethylbenz[a]anthracene on postnatal days (PNDs) 35, 49, and 63 to initiate mammary tumors. A second cohort of females was treated identically until PND35 or PND49, when mammary gland morphology was examined, or PND50, when mammary gland mRNA was analyzed. We found that maternal TCDD exposure doubled mammary tumor incidence only in mice fed the HFD. Among HFD-fed mice, maternal TCDD exposure caused rapid mammary development with increased Cyp1b1 (cytochrome P450 1B1) expression and decreased Comt (catechol-O-methyltransferase) expression in mammary tissue. Maternal TCDD exposure also increased mammary tumor Cyp1b1 expression. Our data suggest that the HFD increases sensitivity to maternal TCDD exposure, resulting in increased breast cancer incidence, by changing metabolism capability. These results provide a mechanism to explain epidemiological data linking early-life TCDD exposure and diets high in fat to increased risk for breast cancer in humans.

  18. Infant formula feeding alters the proliferative status of neonatal mammary glands independent of estrogen signaling

    USDA-ARS?s Scientific Manuscript database

    Soy infant formula contains many phytochemicals, including phytoestrogens, which are structurally similar to estradiol (E2). The mammary gland is particularly sensitive to estrogens, and there are concerns that use of soy-based infant formulas may potentially have adverse effects on mammary tissue ...

  19. Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene.

    PubMed

    Clafshenkel, William P; King, Tracy L; Kotlarczyk, Mary P; Cline, J Mark; Foster, Warren G; Davis, Vicki L; Witt-Enderby, Paula A

    2012-01-01

    Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2(+) breast cancer.

  20. Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene

    PubMed Central

    Clafshenkel, William P.; King, Tracy L.; Kotlarczyk, Mary P.; Cline, J. Mark; Foster, Warren G.; Davis, Vicki L.; Witt-Enderby, Paula A.

    2012-01-01

    Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2+ breast cancer. PMID:22619689

  1. Dietary genistein stimulates mammary development in gilts

    USDA-ARS?s Scientific Manuscript database

    The possible role of the phytoestrogen, genistein, on prepubertal development of mammary glands, hormonal status and bone resorption was investigated in gilts. Forty-five gilts were fed a control diet containing soya (CTLS, n = 15), a control diet without soya (CTL0, n = 15) or the CTLS diet supplem...

  2. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer.

    PubMed

    Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John

    2007-06-01

    We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.

  3. Mammary candidiasis: A medical condition without scientific evidence?

    PubMed Central

    Jiménez, Esther; Arroyo, Rebeca; Cárdenas, Nivia; Marín, María; Serrano, Pilar; Fernández, Leonides

    2017-01-01

    Many physicians, midwives and lactation consultants still believe that yeasts (particularly Candida spp.) play an important role as an agent of nipple and breast pain despite the absolute absence of scientific proofs to establish such association. In this context, the objective of this study was to investigate the microorganisms involved in sore nipples and/or painful “shooting” breastfeeding by using a variety of microscopy techniques, as well as culture-dependent and–independent identification methods. Initially, 60 women (30 diagnosed as suffering “mammary candidiasis” and 30 with no painful breastfeeding) were recruited to elucidate the role of their pumps on the milk microbial profiles. After realizing the bias introduced by using such devices, manual expression was selected as the collection method for the microbiological analysis of milk samples provided by 529 women with symptoms compatible with “mammary candidiasis”. Nipple swabs and nipple biopsy samples were also collected from the participating women. Results showed that the role played by yeasts in breast and nipple pain is, if any, marginal. In contrast, our results strongly support that coagulase-negative staphylococci and streptococci (mainly from the mitis and salivarius groups) are the agents responsible for such cases. As a consequence, and following the recommendations of the US Library of Medicine for the nomenclature of infectious diseases, the term “mammary candidiasis” or “nipple thrush” should be avoided when referring to such condition and replaced by “subacute mastitis”. PMID:28704470

  4. Prevalence of the Prefoldin Subunit 5 Gene Deletion in Canine Mammary Tumors

    PubMed Central

    Bornemann-Kolatzki, Kirsten; Neumann, Stephan; Escobar, Hugo Murua; Nolte, Ingo; Hammer, Susanne Conradine; Hewicker-Trautwein, Marion; Junginger, Johannes; Kaup, Franz-Josef; Brenig, Bertram; Schütz, Ekkehard

    2015-01-01

    Background A somatic deletion at the proximal end of canine chromosome 27 (CFA27) was recently reported in 50% of malignant mammary tumors. This region harbours the tumor suppressor gene prefoldin subunit 5 (PFDN5) and the deletion correlated with a higher Ki-67 score. PFDN5 has been described to repress c-MYC and is, therefore, a candidate tumor-suppressor and cancer-driver gene in canine mammary cancer. Aim of this study was to confirm the recurrent deletion in a larger number of tumors. Methods Droplet digital PCR for PFDN5 was performed in DNA from 102 malignant, 40 benign mammary tumors/dysplasias, 11 non-neoplastic mammary tissues and each corresponding genomic DNA from leukocytes. The copy number of PFDN5 was normalized to a reference amplicon on canine chromosome 32 (CFA32). Z-scores were calculated, based on Gaussian distributed normalized PFDN5 copy numbers of the leukocyte DNA. Z-scores ≤ -3.0 in tissue were considered as being indicative of the PFDN5 deletion and called as such. The Ki-67 proliferation index was assessed in a subset of 79 tissue samples by immunohistochemistry. Results The deletion was confirmed in 24% of all malignant tumors, detected in only 7.5% of the benign tumors and was not present in any normal mammary tissue sample. The subgroup of solid carcinomas (n = 9) showed the highest frequency of the deletion (67%) and those malignomas without microscopical high fraction of benign tissue (n = 71) had a 32% frequency (p<0.01 vs. benign samples). The Ki-67 score was found to be significantly higher (p<0.05) in the PFDN5-deleted group compared to malignant tumors without the deletion. Conclusions A somatic deletion of the PFDN5 gene is recurrently present in canine mammary cancer, supporting a potential role in carcinogenesis. The association of this deletion with higher Ki-67 indicates an increased proliferation rate and thus a link to tumor aggressiveness can be hypothesized. The confirmation of earlier results warrants further studies

  5. Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration.

    PubMed

    Horibata, Sachi; Rogers, Katherine E; Sadegh, David; Anguish, Lynne J; McElwee, John L; Shah, Pragya; Thompson, Paul R; Coonrod, Scott A

    2017-05-26

    Penetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process. For our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes in cell migration and cell morphology. We also used these PAD2-modulated cells to test whether PAD2 may be required for EGF-induced cell migration. To determine how PAD2 might promote tumor cell migration in vivo, we tested the effects of PAD2 inhibition on the expression of several cell migration mediators in MCF10DCIS.com xenograft tumors. In addition, we tested the effect of PAD2 inhibition on EGF-induced ductal invasion and elongation in primary mouse mammary organoids. Lastly, using a transgenic mouse model, we investigated the effects of PAD2 overexpression on mammary gland development. Our results indicate that PAD2 depletion or inhibition suppresses cell migration and alters the morphology of MCF10DCIS.com cells. In addition, we found that PAD2 depletion suppresses the expression of the cytoskeletal regulatory proteins RhoA, Rac1, and Cdc42 and also promotes a mesenchymal to epithelial-like transition in tumor cells with an associated increase in the cell adhesion marker, E-cadherin. Our mammary gland organoid study found that inhibition of PAD2 activity suppresses EGF-induced ductal invasion. In vivo, we found that PAD2 overexpression causes hyperbranching in the developing mammary gland. Together, these results suggest that PAD2 plays a critical role in breast cancer cell migration. Our findings that EGF

  6. Development of mammary hyperplasia, dysplasia, and invasive ductal carcinoma in transgenic mice expressing the 8p11 amplicon oncogene NSD3

    PubMed Central

    Turner-Ivey, Brittany; Smith, Ericka L.; Rutkovsky, Alex C.; Spruill, Laura S.; Mills, Jamie N.

    2018-01-01

    Purpose NSD3 has been implicated as a candidate driver oncogene from the 8p11-p12 locus, and we have previously published evidence for its amplification and overexpression in human breast cancer. This aim of this study was to further characterize the transforming function of NSD3 in vivo. Methods We generated a transgenic mouse model in which NSD3 gene expression was driven by the MMTV promoter and expressed in mammary epithelium of FVB mice. Mammary glands were fixed and whole mounts were stained with carmine to visualize gland structure. Mammary tumors were formalin-fixed, and paraffin embedded (FFPE) tumors were stained with hematoxylin and eosin. Results Pups born to transgenic females were significantly underdeveloped compared to pups born to WT females due to a lactation defect in transgenic female mice. Whole mount analysis of the mammary glands of transgenic female mice revealed a profound defect in functional differentiation of mammary gland alveoli that resulted in the lactation defect. We followed parous and virgin NSD3 transgenic and control mice to 50 weeks of age and observed that several NSD3 parous females developed mammary tumors. Whole mount analysis of the mammary glands of tumor-bearing mice revealed numerous areas of mammary hyperplasia and ductal dysplasia. Histological analysis showed that mammary tumors were high-grade ductal carcinomas, and lesions present in other mammary glands exhibited features of alveolar hyperplasia, ductal dysplasia, and carcinoma in situ. Conclusions Our results are consistent with our previous studies and demonstrate that NSD3 is a transforming breast cancer oncogene. PMID:28484924

  7. Hierarchy within the mammary STAT5-driven Wap super-enhancer.

    PubMed

    Shin, Ha Youn; Willi, Michaela; HyunYoo, Kyung; Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar

    2016-08-01

    Super-enhancers comprise dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate the role of super-enhancers in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-seq analysis for the master regulator STAT5A, the glucocorticoid receptor, H3K27ac and MED1 identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5-binding sites within its constituent enhancers. Individually, the most distal site displayed the greatest enhancer activity. However, combinatorial mutation analysis showed that the 1,000-fold induction in gene expression during pregnancy relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer. Altogether, these data suggest a temporal and functional enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insights into the regulation of cell-type-specific expression of hormone-sensing genes.

  8. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor beta signaling

    USDA-ARS?s Scientific Manuscript database

    Mammary stromal adipocytes constitute an active site for the synthesis of the adipokine adiponectin (APN) that may influence the mammary epithelial microenvironment. The relationship between 'local', mammary tissue-derived APN and breast cancer risk is poorly understood. Herein, we identify a novel ...

  9. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  10. MicroRNAs in the development and neoplasia of the mammary gland.

    PubMed

    Jena, Manoj Kumar

    2017-01-01

    Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes. Oncogenic miRs like miR-21, miR-221, and miR-210 are overexpressed in triple negative breast cancer cases which can be diagnostic biomarker for this subtype of cancer.  This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us to understand the molecular details of mammary gland biology, as well as miRs that could be therapeutic targets of breast cancer.

  11. Oxidative stress and inflammatory response biomarkers in dogs with mammary carcinoma.

    PubMed

    Machado, Vanessa S; Crivellenti, Leandro Z; Bottari, Nathieli B; Tonin, Alexandre A; Pelinson, Luana P; Borin-Crivellenti, Sofia; Santana, Aureo E; Torbitz, Vanessa D; Moresco, Rafael N; Duarte, Thiago; Duarte, Marta M M F; Schetinger, Maria Rosa C; Morsch, Vera M; Jaques, Jeandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2015-09-01

    Mammary carcinoma is the most common cancer that affects dogs, and in many cases it leads to death. Thus, given the importance of this disease, to clarify its pathogenesis is an important measure. In this sense, the aim of this study was to investigate the levels of cytokines and nitric oxide (NO), oxidative and antioxidant status, as well as the activity of adenosine deaminase (ADA) and butyrylcholinesterase (BChE) in dogs diagnosed with mammary carcinoma. With this purpose, thirty-three (33) serum samples from female dogs with histopathological diagnosis of mammary carcinoma, without evidence of metastasis, were used (group B). The material was classified based on the degree of malignancy, as follows: subgroup B1 (low-grade malignancy; n=26) and subgroup B2 (high grade of malignancy; n=7). Serum samples from healthy females (group A; n=10) were used as negative control. Our results showed that levels of cytokines (TNF-α, INF-γ, IL-1, and IL-6), NOx (nitrite/nitrate), AOPP (protein oxidation), and FRAP (antioxidant power) were significantly (P<0.05) increased in dogs with mammary carcinoma (group B), when compared with group A. On the other hand, ADA activity was significantly decreased (P<0.05) in both subgroups B1 and B2, when compared with group A. BChE activity, however, was reduced (P<0.05) only in subgroup B2 when compared with group A and subgroup B1. Unlike other variables, NO, AOPP, and IFN-γ were influenced by the degree of tumor malignancy, i.e., their levels were even higher in subgroup B2. Therefore, based on these results, we can conclude that all variables investigated are related to the pathogenesis of this disease, since they were altered in dogs with mammary tumor. Additionally, we suggest that ADA activity had an anti-inflammatory effect on these tumor samples, probably in order to modulate the inflammatory response. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Flor-Essence? Herbal Tonic Promotes Mammary Tumor Development in Sprague Dawley Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L; Montgomery, J; Steinberg, S

    Background: Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} Tonic is a complex mixture of herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. Methods: Female Sprague Dawley rats were given water or exposed to 3% or 6% Flor-Essence{reg_sign} beginning at one day of age. Mammary tumors were induced with a single oral 40 mg/kg/bw dose of dimethylbenz(a)anthracene at 50 days of age and sacrificed at 23 weeks. Rats were maintained on AIN-76A diet. Results: Controlmore » rats had palpable mammary tumor incidence of 51.0% at 19 weeks of age compared to 65.0% and 59.4% for the 3% and 6% Flor-Essence{reg_sign} groups respectively. Overall, no significant difference in time until first palpable tumor was detected among any of the groups. At necropsy, mammary tumor incidence was 82.5% for controls compared to 90.0% and 97.3% for rats consuming 3% and 6% Flor-Essence{reg_sign}, respectively. Mean mammary tumor multiplicity ({+-}SES) for the controls was 2.8 ({+-} 0.5) and statistically different from the 3% or 6% Flor- Essence{reg_sign} groups with 5.2 ({+-} 0.7), and 4.8 ({+-} 0.6), respectively (p{<=}0.01). As expected, the majority of isolated tumors were diagnosed as adenocarcinomas. Conclusions: Flor-Essence{reg_sign} can promote mammary tumor development in the Sprague Dawley rat model. This observation is contrary to widely available anecdotal evidence as well as the desire of the consumer that this commercially available herbal tonic will suppress and/or inhibit tumor growth.« less

  13. Activation of int-1 and int-2 loci in GRf mammary tumors.

    PubMed

    Gray, D A; Jackson, D P; Percy, D H; Morris, V L

    1986-10-30

    The Mtv-2 locus is known to be associated with a high mammary tumor incidence (97%) and early development of mammary tumors (3-13 months) in GR mice. However, it was not previously known whether the provirus which resides at the Mtv-2 locus is tumorigenic in and of itself or whether reintegration of proviruses generated from Mtv-2 is required for tumorigenesis. Foster-nursing GR mice on C57/BL mice eliminates the milk-borne source of GR virus, and allows the study of Mtv-2 derived proviruses alone. Using this approach, we have tested predictions which follow from the "positional" versus "reintegrational" models of tumorigenesis. Specifically, we have examined tumors from primary foster-nursed (GRf) mice to determine if MMTV proviruses derived from Mtv-2 were scattered randomly throughout the genome or were clustered in the vicinity of the int-1 and int-2 loci, which are thought to be associated with mammary tumorigenesis. It was found that the majority of spontaneous GRf mammary tumors that were tested have MMTV proviral integrations in either or both of the int-1 and int-2 loci and have transcription of either or both of the int loci. Tumors induced by Mtv-2, therefore, appear to have arisen via a mechanism similar to the activation of the int loci by exogenous (milk-borne) MMTV proviruses.

  14. Multidisciplinary Biomarkers of Early Mammary Carcinogenesis

    DTIC Science & Technology

    2009-04-01

    ABSTRACT The purpose of the proposed research is to develop novel optical technologies to identify high-risk premalignant changes in the breast ...Our proposed research will first test specific optical parameters in breast cancer cell lines and models of early mammary carcinogenesis, and then...develop methods to test the optical parameters in random periareolar fine needle aspirate (RPFNA) samples from women at high-risk for developing breast

  15. Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond.

    PubMed

    Loor, Juan J; Moyes, Kasey M; Bionaz, Massimo

    2011-12-01

    Application of microarrays to the study of intramammary infections in recent years has provided a wealth of fundamental information on the transcriptomics adaptation of tissue/cells to the disease. Due to its heavy toll on productivity and health of the animal, in vivo and in vitro transcriptomics works involving different mastitis-causing pathogens have been conducted on the mammary gland, primarily on livestock species such as cow and sheep, with few studies in non-ruminants. However, the response to an infectious challenge originating in the mammary gland elicits systemic responses in the animal and encompasses tissues such as liver and immune cells in the circulation, with also potential effects on other tissues such as adipose. The susceptibility of the animal to develop mastitis likely is affected by factors beyond the mammary gland, e.g. negative energy balance as it occurs around parturition. Objectives of this review are to discuss the use of systems biology concepts for the holistic study of animal responses to intramammary infection; providing an update of recent work using transcriptomics to study mammary and peripheral tissue (i.e. liver) as well as neutrophils and macrophage responses to mastitis-causing pathogens; discuss the effect of negative energy balance on mastitis predisposition; and analyze the bovine and murine mammary innate-immune responses during lactation and involution using a novel functional analysis approach to uncover potential predisposing factors to mastitis throughout an animal's productive life.

  16. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells.

    PubMed

    Durante, M; Grossi, G F; Gialanella, G; Pugliese, M; Nappo, M; Yang, T C

    1995-08-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, Ricardo; Vaz, Cátia V.; Maia, Cláudio J.

    Regucalcin (RGN) is a calcium-binding protein, which has been shown to be underexpressed in cancer cases. This study aimed to determine the association of RGN expression with clinicopathological parameters of human breast cancer. In addition, the role of RGN in malignancy of mammary gland using transgenic rats overexpressing the protein (Tg-RGN) was investigated. Wild-type (Wt) and Tg-RGN rats were treated with 7,12-dimethylbenz[α]anthracene (DMBA). Carcinogen-induced tumors were histologically classified and the Ki67 proliferation index was estimated. Immunohistochemistry analysis showed that RGN immunoreactivity was negatively correlated with the histological grade of breast infiltrating ductal carcinoma suggesting that progression of breast cancer ismore » associated with loss of RGN. Tg-RGN rats displayed lower incidence of carcinogen-induced mammary gland tumors, as well as lower incidence of invasive forms. Moreover, higher proliferation was observed in non-invasive tumors of Wt animals comparatively with Tg-RGN. Overexpression of RGN was associated with diminished expression of cell-cycle inhibitors and increased expression of apoptosis inducers. Augmented activity of apoptosis effector caspase-3 was found in the mammary gland of Tg-RGN. RGN overexpression protected from carcinogen-induced mammary gland tumor development and was linked with reduced proliferation and increased apoptosis. These findings indicated the protective role of RGN in the carcinogenesis of mammary gland. - Highlights: • RGN immunoreactivity was negatively correlated with breast cancer differentiation. • Transgenic overexpression of RGN diminished incidence of carcinogen-induced tumors. • Transgenic overexpression of RGN restricted proliferation and fostered apoptosis. • RGN has a protective role in the carcinogenesis of mammary gland.« less

  19. Precursors of hexoneogenesis within the human mammary gland

    USDA-ARS?s Scientific Manuscript database

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breast...

  20. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  1. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-γ

    PubMed Central

    Lee, Hong Jin; Ju, Jihyeung; Paul, Shiby; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Lee, Mao-Jung; Yang, Chung S.; Newmark, Harold L.; Suh, Nanjoo

    2009-01-01

    Purpose Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of α-tocopherol (vitamin E) have been studied for decades, recent intervention studies with α-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of 4 isoforms, α, β, γ, and δ variants, and recent attention is being made to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in γ- and δ-tocopherols against mammary tumorigenesis. Experimental Design Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in γ- and δ-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells. Results Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3 and peroxisome proliferator activated receptor-γ (PPAR-γ), and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that γ- and δ-tocopherols, but not α-tocopherol, activated PPAR-γ and antagonized estrogen action in breast cancer. Conclusion The results suggest that γ- and δ-tocopherols may be effective agents for the prevention of breast cancer. PMID:19509159

  2. Evolution of immune functions of the mammary gland and protection of the infant.

    PubMed

    Goldman, Armond S

    2012-06-01

    Abstract The evolution of immunological agents in milk is intertwined with the general aspects of the evolution of the mammary gland. In that respect, mammalian precursors emerged from basal amniotes some 300 million years ago. In contrast to the predominant dinosaurs, proto-mammals possessed a glandular skin. A secondary palate in the roof of the mouth that directed airflow from the nostrils to the oropharynx and thus allowed mammals to ingest and breathe simultaneously first appeared in cynodonts 230 million years ago. This set the stage for mammalian newborns to nurse from the future mammary gland. Interplays between environmental and genetic changes shaped mammalian evolution including the mammary gland from dermal glands some 160 millions of years ago. It is likely that secretions from early mammary glands provided nutrients and immunological agents for the infant. Natural selection culminated in milks uniquely suited to nourish and protect infants of each species. In human milk, antimicrobial, anti-inflammatory, and immunoregulatory agents and living leukocytes are qualitatively or quantitatively different from those in other mammalian milks. Those in human milk compensate for developmental delays in the immunological system of the recipient infant. Consequently, the immune system in human milk provided by evolution is much of the basis for encouraging breastfeeding for human infants.

  3. Canonical Wnt Signaling as a Specific Mark of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2011-02-01

    aggressive mammary tumors. 15. SUBJECT TERMS Breast cancer stem cells, Wnt signaling, canonical Wnt signaling, B-catenin, normal stem cells, adult stem...Wnt pathway is associated with abnormal mouse mammary development, tumorigenesis, and human breast cancer. In addition, increasing evidence suggests...activation occurs in human breast cancer and is required for proliferation of various other stem cell compartments, addressing how Wnt signaling promotes

  4. Primary mammary mucinous cystadenocarcinoma: cytological and histological findings.

    PubMed

    Sentani, Kazuhiro; Tashiro, Takashi; Uraoka, Naohiro; Aosaki, Yoriyuki; Yano, Satomi; Takaeko, Fumio; Yasui, Wataru

    2012-07-01

    Mucinous cystadenocarcinoma (MCA), commonly encountered in the ovary or pancreas, is rare in the breast and was only recently described as a distinct variant of invasive ductal carcinoma of the breast. Only 11 cases of primary mammary MCA have been reported. In this article, we report a case of primary mammary MCA with focus on cytological and histological findings. A 65-year-old female noticed right palpable breast mass. Sonography showed an irregularly shaped 2.8 × 2.4 cm lesion in the upper outer quadrant of the right breast. Fine-needle aspiration cytology was performed on the right breast nodule, and cytopathologic examination suggested an adenocarcinoma composed of tall columnar cells with mucin. A partial mastectomy of the right breast and the axillary lymph nodes dissection was performed. The gross examination revealed a well-demarcated and mucus-filled tumor. Histologically, it had complex papillae, some of which were supported by delicate fibrovascular stroma lined by simple to slightly stratified columnar neoplastic epithelial cells with intracellular mucin, coexisting with MCA in situ and ordinary intraductal carcinoma component (ICC). Immunohistochemically, ICC was HER2-negative and estrogen receptor/progesterone receptor-positive, while MCA was triple negative. MCA might be derived from a metaplasia of ordinary ICC, but its pathogenesis and biologic behavior remains unclear. Despite the invasive nature of mammary MCA, these carcinomas appear to be associated with a good prognosis. The patient has remained well and disease-free for 6 months after the operation. Copyright © 2011 Wiley Periodicals, Inc.

  5. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis.

    PubMed

    Schmitt-Ney, M; Happ, B; Hofer, P; Hynes, N E; Groner, B

    1992-12-01

    The mammary gland-specific nuclear factor (MGF) is a crucial contributor to the regulation of transcription from the beta-casein gene promoter. The beta-casein gene encodes a major milk protein, which is expressed in mammary epithelial cells during lactation and can be induced by lactogenic hormones in the clonal mammary epithelial cell line HC11. We have investigated the specific DNA-binding activity of MGF in mammary epithelial cells in vivo and in vitro. Comparison of MGF in HC11 cells and mammary gland cells from lactating mice revealed molecules with identical DNA-binding properties. Bandshift and UV cross-linking experiments indicated that MGF in HC11 cells has a higher mol wt than MGF found in mice. Little MGF activity was detected in nuclear extracts from HC11 cells cultured in the absence of lactogenic hormones. Lactogenic hormone treatment of HC11 cells led to a strong induction of MGF activity. The induction of MGF activity as well as utilization of the beta-casein promoter were suppressed when epidermal growth factor was present in the tissue culture medium simultaneously with the lactogenic hormones. In lactating animals, MGF activity is regulated by suckling, milk stasis, and systemic hormone signals. The mammary glands from maximally lactating animals, 16 days postpartum, contain drastically reduced MGF activity after removal of the pups for only 8 h. The down-regulation of MGF by pup withdrawal was slower in early lactation, 6 days postpartum. We also investigated the relative contributions of local signals, generated by milk stasis, and systemic hormone signals to the regulation of MGF activity. The access to one row of mammary glands of lactating mothers was denied to the pups for 24 h. High levels of MGF were found in the accessible mammary glands, and intermediate levels of MGF were found in the inaccessible glands of the same mouse. Very low MGF levels were detected when the pups were removed from the dams for 24 h. We conclude that systemic as

  6. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.

    PubMed

    Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier

    2016-02-01

    In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparison of the transcriptpmes of long-tern label retaining-cells and C cells microdissected from mammary epithelium: an initial study to character potential stem/progenitor cells

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) account for the cell lineage of mammary epithelia and provide for mammary growth, development and tissue homeostasis. The presence of MaSC was clearly demonstrated by the generation of an entire mammary gland from a single cell implanted into epithelium-ablated mammary fat...

  8. Presence of hyperplastic pectoral mammary glands in a white-footed mouse (Peromyscus leucopus) from a Superfund Site in Oklahoma, USA.

    PubMed

    Hays, Kimberly A; Breshears, Melanie A

    2011-01-01

    Laboratory experiments have documented the effects of hormones and endocrine-disrupting compounds on mammary development in mammals. However, few observations of mammary hyperplasia have been presented for wild rodents. We describe hyperplastic mammary glands in a wild-caught white-footed mouse (Peromyscus leucopus) from an area contaminated with heavy metals.

  9. Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected with Escherichia coli mastitis.

    PubMed

    Zhao, Xiao-wei; Yang, Yong-xin; Huang, Dong-wei; Cheng, Guang-long; Zhao, Hui-ling

    2015-01-01

    Cows infected with Escherichia (E.) coli usually experience severe clinical symptoms, including damage to mammary tissues, reduced milk yield, and altered milk composition. In order to investigate the host response to E. coli infection and discover novel markers for mastitis treatment, mammary tissue samples were collected from healthy cows and bovines with naturally occurring severe E. coli mastitis. Changes of mammary tissue proteins were examined using two-dimensional gel electrophoresis and label-free proteomic approaches. A total of 95 differentially expressed proteins were identified. Of these, 56 proteins were categorized according to molecular function, cellular component, and biological processes. The most frequent biological processes influenced by the proteins were response to stress, transport, and establishment of localization. Furthermore, a network analysis of the proteins with altered expression in mammary tissues demonstrated that these factors are predominantly involved with binding and structural molecule activities. Vimentin and a-enolase were central "functional hubs" in the network. Based on results from the present study, disease-induced alterations of protein expression in mammary glands and potential markers for the effective treatment of E. coli mastitis were identified. These data have also helped elucidate defense mechanisms that protect the mammary glands and promote the pathogenesis of E. coli mastitis.

  10. Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected with Escherichia coli mastitis

    PubMed Central

    Zhao, Xiao-wei; Huang, Dong-wei; Cheng, Guang-long; Zhao, Hui-ling

    2015-01-01

    Cows infected with Escherichia (E.) coli usually experience severe clinical symptoms, including damage to mammary tissues, reduced milk yield, and altered milk composition. In order to investigate the host response to E. coli infection and discover novel markers for mastitis treatment, mammary tissue samples were collected from healthy cows and bovines with naturally occurring severe E. coli mastitis. Changes of mammary tissue proteins were examined using two-dimensional gel electrophoresis and label-free proteomic approaches. A total of 95 differentially expressed proteins were identified. Of these, 56 proteins were categorized according to molecular function, cellular component, and biological processes. The most frequent biological processes influenced by the proteins were response to stress, transport, and establishment of localization. Furthermore, a network analysis of the proteins with altered expression in mammary tissues demonstrated that these factors are predominantly involved with binding and structural molecule activities. Vimentin and α-enolase were central "functional hubs" in the network. Based on results from the present study, disease-induced alterations of protein expression in mammary glands and potential markers for the effective treatment of E. coli mastitis were identified. These data have also helped elucidate defense mechanisms that protect the mammary glands and promote the pathogenesis of E. coli mastitis. PMID:25549220

  11. In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors.

    PubMed

    Tymoszuk, Piotr; Evens, Hanneke; Marzola, Vanessa; Wachowicz, Katarzyna; Wasmer, Marie-Helene; Datta, Sebak; Müller-Holzner, Elisabeth; Fiegl, Heidi; Böck, Günther; van Rooijen, Nico; Theurl, Igor; Doppler, Wolfgang

    2014-08-01

    Infiltration of a neoplasm with tumor-associated macrophages (TAMs) is considered an important negative prognostic factor and is functionally associated with tumor vascularization, accelerated growth, and dissemination. However, the ontogeny and differentiation pathways of TAMs are only incompletely characterized. Here, we report that intense local proliferation of fully differentiated macrophages rather than low-pace recruitment of blood-borne precursors drives TAM accumulation in a mouse model of spontaneous mammary carcinogenesis, the MMTVneu strain. TAM differentiation and expansion is regulated by CSF1, whose expression is directly controlled by STAT1 at the gene promoter level. These findings appear to be also relevant for human breast cancer, in which an interrelationship between STAT1, CSF1, and macrophage marker expression was identified. We propose that, akin to various MU subtypes in nonmalignant tissues, local proliferation and CSF1 play a vital role in the homeostasis of TAMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S., E-mail: khillan@pitt.edu

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibitmore » mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.« less

  13. Pharmacodynamics and Medicinal Chemistry of an External Chinese Herbal Formula for Mammary Precancerous Lesions

    PubMed Central

    Zhang, Guijuan; Ma, Yi; Fan, Hongxia

    2017-01-01

    Ruyan Neixiao Cream (RYNXC) is a traditional Chinese herbal formula for treating mammary precancerous disease. This study was carried out to investigate in vivo anticancer effect of RYNXC and multiple constituents. 32 virginal Sprague-Dawley rats were randomly divided into blank control group (BC), mammary precancer models group (MODEL), tamoxifen group (TAM), and Ruyan Neixiao Cream group (RYNXC). TAM was intervened by tamoxifen; RYNXC was intervened by Ruyan Neixiao Cream. The chromatographic separation was performed by high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS). RYNXC showed significant improvement in erythrocyte aggregation index (EAI), hematocrit (HCT), fibrinogen (FIB), spleen coefficient, and uterus coefficient compared with MODEL. In RYNXC and TAM groups, atypical hyperplasia was observed in pathological mammary tissues; meanwhile in MODEL group, ductal carcinoma was observed in situ. Moreover, fifteen compounds were characterized according to HPLC-MS data, including organic acids, tannin, alkaloid, volatile oil, anthraquinones, and flavonoids. The study suggests that RYNXC was an effective Chinese herbal formula for mammary precancerous lesions and provides a scientific basis for the quality standard and the pharmacology of RYNXC. It will be beneficial to the future clinical application of RYNXC. PMID:28811827

  14. Effects of xanthosine in isoform switch and splice variants of expressed genes in mammary epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Although intramammary xanthosine (XS) treatment was reported to increase the mammary stem cell population and milk yield in bovine and caprine, underlying molecular mechanisms remain unclear. The goal of this study was to evaluate effects of XS treatment on the mammary transcriptome in early-lactati...

  15. Apical electrolyte concentration modulates barrier function and tight junction protein localization in bovine mammary epithelium.

    PubMed

    Quesnell, Rebecca R; Erickson, Jamie; Schultz, Bruce D

    2007-01-01

    In vitro mammary epithelial cell models typically fail to form a consistently tight barrier that can effectively separate blood from milk. Our hypothesis was that mammary epithelial barrier function would be affected by changes in luminal ion concentration and inflammatory cytokines. Bovine mammary epithelial (BME-UV cell line) cells were grown to confluence on permeable supports with a standard basolateral medium and either high-electrolyte (H-elec) or low-electrolyte (L-elec) apical medium for 14 days. Apical media were changed to/from H-elec medium at predetermined times prior to assay. Transepithelial electrical resistance (R(te)) was highest in monolayers continuously exposed to apical L-elec. A time-dependent decline in R(te) began within 24 h of H-elec medium exposure. Change from H-elec medium to L-elec medium time-dependently increased R(te). Permeation by FITC-conjugated dextran was elevated across monolayers exposed to H-elec, suggesting compromise of a paracellular pathway. Significant alteration in occludin distribution was evident, concomitant with the changes in R(te), although total occludin was unchanged. Neither substitution of Na(+) with N-methyl-d-glucosamine (NMDG(+)) nor pharmacological inhibition of transcellular Na(+) transport pathways abrogated the effects of apical H-elec medium on R(te). Tumor necrosis factor alpha, but not interleukin-1beta nor interleukin-6, in the apical compartment caused a significant decrease in R(te) within 8 h. These results indicate that mammary epithelium is a dynamic barrier whose cell-cell contacts are acutely modulated by cytokines and luminal electrolyte environment. Results not only demonstrate that BME-UV cells are a model system representative of mammary epithelium but also provide critical information that can be applied to other mammary model systems to improve their physiological relevance.

  16. Epigenetic Modifications Unlock the Milk Protein Gene Loci during Mouse Mammary Gland Development and Differentiation

    PubMed Central

    Rijnkels, Monique; Freeman-Zadrowski, Courtneay; Hernandez, Joseph; Potluri, Vani; Wang, Liguo; Li, Wei; Lemay, Danielle G.

    2013-01-01

    Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the

  17. Chemoprevention and therapy of mouse mammary carcinomas with doxorubicin encapsulated in sterically stabilized liposomes.

    PubMed

    Vaage, J; Donovan, D; Loftus, T; Abra, R; Working, P; Huang, A

    1994-05-01

    The objective of this study was to determine the ability of doxorubicin, encapsulated in sterically stabilized liposomes (Doxil [Liposome Technology, Inc., Menlo Park, CA]), to inhibit the spontaneous development of mammary carcinomas in mice. Monthly prophylactic intravenous injections of 6 mg/kg doses of Doxil were started when retired breeding C3H/He mice were 26 weeks old. Mice that developed a mammary carcinoma were then given weekly intravenous injections of 6 mg/kg doses to determine whether the tumors were susceptible or resistant to Doxil therapy. The monthly injections reduced the incidence of first mammary carcinomas in up to 88-week-old retired breeding C3H/He mice from 65 of 66 (98%) in untreated mice to 22 of 47 (47%) in treated mice. The first 15 mice that developed a mammary tumor while on the prophylactic protocol were then placed on a weekly therapeutic protocol. The therapeutic use of Doxil cured 3 of 15 mice and inhibited the growth of 12 tumors. Drug resistance as a result of treatments was not observed. The mean survival of tumor-bearing mice was extended from 24 days in untreated mice to 87 days in treated mice. Toxic side effects were limited to transient weight loss during the weekly Doxil treatments and to epidermal necrosis and dermal fibrosis due to drug extravasation at the sites of intravenous injections. The authors concluded that doxorubicin in sterically stabilized liposomes deserves to be explored further in comparative studies with free doxorubicin for the prophylaxis and therapy of mammary cancer.

  18. Reproductive experience alters prolactin receptor expression in mammary and hepatic tissues in female rats.

    PubMed

    Bridges, Robert S; Scanlan, Victoria F; Lee, Jong-O; Byrnes, Elizabeth M

    2011-08-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.

  19. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles.

    PubMed

    Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung

    2017-02-01

    Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS

  20. Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation

    DTIC Science & Technology

    2006-03-01

    1-0322 TITLE: Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation PRINCIPAL...Summary 3. DATES COVERED (From - To) 1 MAR 2005 - 28 FEB 2006 4. TITLE AND SUBTITLE Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary...reverse the phenotype of differentiation-defective breast cancer cells bearing reduced BRCA1 functions. This result implies BRCA1 is involved in

  1. Immunomodulation of Host Chitinase 3-Like 1 During a Mammary Pathogenic Escherichia coli Infection

    PubMed Central

    Breyne, Koen; Steenbrugge, Jonas; Demeyere, Kristel; Lee, Chun Geun; Elias, Jack A.; Petzl, Wolfram; Smith, David G. E.; Germon, Pierre; Meyer, Evelyne

    2018-01-01

    Chitin is a N-acetyl-d-glucosamine biopolymer that can be recognized by chitin-binding proteins. Although mammals lack chitin synthase, they induce proteins responsible for detecting chitin in response to bacterial infections. Our aim was to investigate whether chitinase 3-like 1 (CHI3L1) has a potential role in the innate immunity of the Escherichia coli (E. coli) infected mammary gland. CHI3L1 protein was found to be secreted in whey of naturally coliform-affected quarters compared to whey samples isolated from healthy udders. In addition, gene expression of CHI3L1 was confirmed in udder tissue of cows experimentally infected with a mammary pathogenic E. coli (MPEC) strain. Despite the known anatomical differences, the bovine udders’ innate immune response was mimicked by applying an experimental mouse model using MPEC or non-MPEC isolates. The effect of CHI3L1 expression in the murine mammary gland in response to coliform bacteria was investigated through the use of CHI3L1−/− mice as well as through treatment with either a pan-caspase inhibitor or chitin particles in wild-type mice. The local induction of CHI3L1 postinfection with different E. coli strains was demonstrated to be independent of both bacterial growth and mammary interleukin (IL)-8 levels. Indeed, CHI3L1 emerged as a regulator impacting on the transcytosis of Ly6G-positive cells from the interstitial space into the alveolar lumen of the mammary tissue. Furthermore, CHI3L1 was found to be upstream regulated by caspase activity and had a major downstream effect on the local pro-inflammatory cytokine profile, including IL-1beta, IL-6, and RANTES/CCL5. In conclusion, CHI3L1 was demonstrated to play a key role in the cytokine and caspase signaling during E. coli triggered inflammation of the mammary gland. PMID:29892291

  2. Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis.

    PubMed

    Trigo, Gabriela; Dinis, Márcia; França, Angela; Bonifácio Andrade, Elva; Gil da Costa, Rui M; Ferreira, Paula; Tavares, Delfina

    2009-07-01

    Streptococcus agalactiae is a contagious, mastitis-causing pathogen that is highly adapted to survive in the bovine mammary gland. This study used a BALB/c mouse model of Streptococcus agalactiae mastitis to evaluate leukocyte populations in regional lymph nodes and cytokine expression in the mammary gland involved in the immune response against Streptococcus agalactiae. It was found that the bacteria replicated efficiently in the mammary gland, peaking after 24 h and increasing by 100-fold. Dissemination of bacteria to systemic organs was observed 6 h after infection. At the same time, a massive infiltration of polymorphonuclear cells and an increase in the inflammatory cytokines interleukin (IL)-1beta, IL-6 and tumour necrosis factor-alpha were detected in mammary glands, indicating an early inflammatory response. A decrease in the levels of inflammatory cytokines in mammary glands was observed 72 h after infection, accompanied by an increase in the levels of IL-12 and IL-10, which were related to a gradual decrease in bacterial load. An increase in the number of macrophages and B220(+) lymphocytes and similar increases in both CD4(+) and CD8(+) T cells in regional lymph nodes were observed, being most pronounced 5 days after infection. Moreover, increased levels of anti-Streptococcus agalactiae antibodies in the mammary gland were observed 10 days after infection. Overall, these data suggest that the host exhibits both innate and acquired immune responses in response to Streptococcus agalactiae mastitis.

  3. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors.

    PubMed Central

    Bacus, S. S.; Chin, D.; Yarden, Y.; Zelnick, C. R.; Stern, D. F.

    1996-01-01

    The neu/erbB-2/HER-2 proto-oncogene is amplified and/or overexpressed in up to 30% of mammary carcinomas and has been variably correlated with poor prognosis. The signaling activity of the encoded receptor tyrosine kinase is regulated by interactions with other type 1 receptors and their ligands. We have used a novel approach, phosphorylation-sensitive anti-Neu antibodies, to quantify signaling by Neu and epidermal growth factor receptor in a panel of frozen sections of mammary carcinoma specimens. We also determined the relationship of Neu, phosphorylated Neu (and epidermal growth factor receptor), and phosphotyrosine to the expression of Neu-related receptors (epidermal growth factor receptor, HER-3, and HER-4) and to prognostic factors (estrogen and progesterone receptor). We found that tyrosine phosphorylation of Neu (and hence signaling activity) is highly variable among mammary carcinomas. Neu and HER-4 were associated with divergent correlates, suggesting that they have profoundly different biological activities. These results have implications for etiology of mammary carcinoma for clinical evaluation of mammary carcinoma patients, and for development of Neu-targeted therapeutic strategies. Images Figure 1 Figure 2 PMID:8579117

  4. Oncogene-Induced Changes in Mammary Cell Fate and EMT in Breast Tumorigenesis

    DTIC Science & Technology

    2015-04-01

    have worked on the project? Name: Lauren Walheim Project Role: Chemistry pre-medicine undergraduate student Researcher Identifier (e.g. ORCID ID...Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an...Examine if IGF1R alters mammary cell fate in vivo and the effect this has on mammary tumorigenesis (months 13-30) ...…………………………………………….......11 2a

  5. Biological Function of Plasma Kallikrein in Mammary Gland Stromal Development and Tumor Metastasis

    DTIC Science & Technology

    2008-03-01

    mammary gland as well as to identify targets of PKal activity during involution. Furthermore, mast cells are required for normal mammary duct branching...litters were generated, and no live homozygous mutant animals were identified . Wild-type and heterozygous mice appeared in nearly all litters, and of...to identify homozygous mutants in utero. F2 litters from heterozygous crosses were analyzed at embryonic day (E) 12, 10.5, 9.5, 8, and 7.5. At E12

  6. Expression of the glutamine metabolism-related proteins glutaminase 1 and glutamate dehydrogenase in canine mammary tumours.

    PubMed

    Ryu, J-E; Park, H-K; Choi, H-J; Lee, H-B; Lee, H-J; Lee, H; Yu, E-S; Son, W-C

    2018-06-01

    Glutamine metabolism is an important metabolic pathway for cancer cell survival, and there is a critical connection between tumour growth and glutamine metabolism. Because of their similarities, canine mammary carcinomas are useful for studying human breast cancer. Accordingly, we investigated the correlations between the expression of glutamine metabolism-related proteins and the pathological features of canine mammary tumours. We performed immunohistochemical and western blot analysis of 39 mammary tumour tissues. In immunohistochemical analysis, the expression of glutaminase 1 (GLS1) in the epithelial region increased according to the histological grade (P < .005). In the stromal region, complex-type tumours displayed significantly higher GLS1 intensity than simple-type tumours. However, glutamate dehydrogenase expression did not show the same tendencies as GLS1. The western blot results were consistent with the immunohistochemical findings. These results suggest that the expression of GLS1 is correlates with clinicopathological factors in canine mammary tumours and shows a similar pattern to human breast cancer. © 2017 John Wiley & Sons Ltd.

  7. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a rolemore » in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.« less

  8. TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis.

    PubMed

    Cyr, A R; Kulak, M V; Park, J M; Bogachek, M V; Spanheimer, P M; Woodfield, G W; White-Baer, L S; O'Malley, Y Q; Sugg, S L; Olivier, A K; Zhang, W; Domann, F E; Weigel, R J

    2015-01-22

    Molecular subtypes of breast cancer are characterized by distinct patterns of gene expression that are predictive of outcome and response to therapy. The luminal breast cancer subtypes are defined by the expression of estrogen receptor-alpha (ERα)-associated genes, many of which are directly responsive to the transcription factor activator protein 2C (TFAP2C). TFAP2C participates in a gene regulatory network controlling cell growth and differentiation during ectodermal development and regulating ESR1/ERα and other luminal cell-associated genes in breast cancer. TFAP2C has been established as a prognostic factor in human breast cancer, however, its role in the establishment and maintenance of the luminal cell phenotype during carcinogenesis and mammary gland development have remained elusive. Herein, we demonstrate a critical role for TFAP2C in maintaining the luminal phenotype in human breast cancer and in influencing the luminal cell phenotype during normal mammary development. Knockdown of TFAP2C in luminal breast carcinoma cells induced epithelial-mesenchymal transition with morphological and phenotypic changes characterized by a loss of luminal-associated gene expression and a concomitant gain of basal-associated gene expression. Conditional knockout of the mouse homolog of TFAP2C, Tcfap2c, in mouse mammary epithelium driven by MMTV-Cre promoted aberrant growth of the mammary tree leading to a reduction in the CD24(hi)/CD49f(mid) luminal cell population and concomitant gain of the CD24(mid)/CD49f(hi) basal cell population at maturity. Our results establish TFAP2C as a key transcriptional regulator for maintaining the luminal phenotype in human breast carcinoma. Furthermore, Tcfap2c influences development of the luminal cell type during mammary development. The data suggest that TFAP2C has an important role in regulated luminal-specific genes and may be a viable therapeutic target in breast cancer.

  9. Mammary and extramammary Paget's disease*

    PubMed Central

    Lopes, Lauro Lourival; Lopes, Ione Maria Ribeiro Soares; Lopes, Lauro Rodolpho Soares; Enokihara, Milvia M. S. S.; Michalany, Alexandre Osores; Matsunaga, Nobuo

    2015-01-01

    Paget's disease, described by Sir James Paget in 1874, is classified as mammary and extramammary. The mammary type is rare and often associated with intraductal cancer (93-100% of cases). It is more prevalent in postmenopausal women and it appears as an eczematoid, erythematous, moist or crusted lesion, with or without fine scaling, infiltration and inversion of the nipple. It must be distinguished from erosive adenomatosis of the nipple, cutaneous extension of breast carcinoma, psoriasis, atopic dermatitis, contact dermatitis, chronic eczema, lactiferous ducts ectasia, Bowen's disease, basal cell carcinoma, melanoma and intraductal papilloma. Diagnosis is histological and prognosis and treatment depend on the type of underlying breast cancer. Extramammary Paget's disease is considered an adenocarcinoma originating from the skin or skin appendages in areas with apocrine glands. The primary location is the vulvar area, followed by the perianal region, scrotum, penis and axillae. It starts as an erythematous plaque of indolent growth, with well-defined edges, fine scaling, excoriations, exulcerations and lichenification. In most cases it is not associated with cancer, although there are publications linking it to tumors of the vulva, vagina, cervix and corpus uteri, bladder, ovary, gallbladder, liver, breast, colon and rectum. Differential diagnoses are candidiasis, psoriasis and chronic lichen simplex. Histopathology confirms the diagnosis. Before treatment begins, associated malignancies should be investigated. Surgical excision and micrographic surgery are the best treatment options, although recurrences are frequent. PMID:25830993

  10. Effects of Pleurotomy on Respiratory Sequelae after Internal Mammary Artery Harvesting

    PubMed Central

    Iyem, Hikmet; Islamoglu, Fatih; Yagdi, Tahir; Sargin, Murat; Berber, Ozbek; Hamulu, Ahmet; Buket, Suat; Durmaz, Isa

    2006-01-01

    The preservation of pleural integrity during mammary artery harvesting may decrease atelectasis and pleural effusion during the postoperative period. We designed this retrospective study to evaluate the effects on postoperative pulmonary function of pleural integrity versus opened pleura, in patients who receive a left internal mammary artery graft. The study group consisted of 1,141 patients who underwent elective coronary artery bypass grafting. The patients were retrospectively evaluated and divided into 2 groups: those who underwent internal mammary artery harvesting with opened pleura (n=873) or with pleural integrity (n=268). To monitor pleural effusion and atelectasis, chest radiography was performed routinely 1 day before operation and on the 2nd, 5th, and 7th postoperative days. The preoperative, after extubation, and 1st postoperative day values of partial oxygen pressure (PaO2), partial carbon dioxide pressure (PaCO2), and oxygen (O2) saturation were recorded for comparison, as was the hematocrit. The mean age of the patients was 57.4 ± 8.81 years. There were no significant differences between the groups in mean values of PaO2, PaCO2, O2 saturation, and hematocrit after extubation or on the 1st postoperative day. Atelectasis on the 5th and 7th postoperative days, pleural effusion on the 2nd, 5th, and 7th days, and postoperative bleeding were significantly less in the group with preserved pleural integrity. We showed that preservation of pleural integrity during internal mammary artery harvesting decreases postoperative bleeding, pleural effusion, and atelectasis. We conclude that preservation of pleural integrity, when possible, can decrease these postoperative complications of coronary artery bypass grafting. PMID:16878610

  11. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture.

    PubMed

    Zeng, Yi Arial; Nusse, Roel

    2010-06-04

    Adult stem cells have the ability to self-renew and to generate specialized cells. Self-renewal is dependent on extrinsic niche factors but few of those signals have been identified. In addition, stem cells tend to differentiate in the absence of the proper signals and are therefore difficult to maintain in cell culture. The mammary gland provides an excellent system to study self-renewal signals, because the organ develops postnatally, arises from stem cells, and is readily generated from transplanted cells. We show here that adult mammary glands contain a Wnt-responsive cell population that is enriched for stem cells. In addition, stem cells mutant for the negative-feedback regulator Axin2 and therefore sensitized to Wnt signals have a competitive advantage in mammary gland reconstitution assays. In cell culture experiments, exposure to purified Wnt protein clonally expands mammary stem cells for many generations and maintains their ability to generate functional glands in transplantation assays. We conclude that Wnt proteins serve as rate-limiting self-renewal signals acting directly on mammary stem cells. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissuesmore » in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.« less

  14. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  15. Alcohol consumption promotes mammary tumor growth and insulin sensitivity

    PubMed Central

    Hong, Jina; Holcomb, Valerie B.; Tekle, Samrawit A.; Fan, Betty; Núñez, Nomelí P.

    2010-01-01

    Epidemiological data show that in women, alcohol has a beneficial effect by increasing insulin sensitivity but also a deleterious effect by increasing breast cancer risk. These effects have not been shown concurrently in an animal model of breast cancer. Our objective is to identify a mouse model of breast cancer whereby alcohol increases insulin sensitivity and promotes mammary tumorigenesis. Our results from the glucose tolerance test and the homeostasis model assessment show that alcohol consumption improved insulin sensitivity. However, alcohol-consuming mice developed larger mammary tumors and developed them earlier than water-consuming mice. In vitro results showed that alcohol exposure increased the invasiveness of breast cancer cells in a dose-dependent manner. Thus, this animal model, an in vitro model of breast cancer, may be used to elucidate the mechanism(s) by which alcohol affects breast cancer. PMID:20202743

  16. A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions.

    PubMed

    Burrai, Giovanni Pietro; Tanca, Alessandro; Cubeddu, Tiziana; Abbondio, Marcello; Polinas, Marta; Addis, Maria Filippa; Antuofermo, Elisabetta

    2017-01-31

    Canine mammary tumors represent the most common neoplasm in female dogs, and the discovery of cancer biomarkers and their translation to clinical relevant assays is a key requirement in the war on cancer. Since the description of the 'Warburg effect', the reprogramming of metabolic pathways is considered a hallmark of pathological changes in cancer cells. In this study, we investigate the expression of two cancer-related metabolic enzymes, transketolase (TKT) and transketolase-like 1 (TKTL1), involved in the pentose phosphate pathway (PPP), an alternative metabolic pathway for glucose breakdown that could promote cancer by providing the precursors and energy required for rapidly growing cells. TKT and TKTL1 protein expression was investigated by immunohistochemistry in canine normal (N = 6) and hyperplastic glands (N = 3), as well as in benign (N = 11) and malignant mammary tumors (N = 17). TKT expression was higher in hyperplastic lesions and in both benign and malignant tumors compared to the normal mammary gland, while TKTL1 levels were remarkably higher in hyperplastic lesions, simple adenomas and simple carcinomas than in the normal mammary glands (P < 0.05). This study reveals that the expression of a key PPP enzyme varies along the evolution of canine mammary neoplastic lesions, and supports a role of metabolic changes in the development of canine mammary tumors.

  17. The Ets transcription factor Elf5 specifies mammary alveolar cell fate

    PubMed Central

    Oakes, Samantha R.; Naylor, Matthew J.; Asselin-Labat, Marie-Liesse; Blazek, Katrina D.; Gardiner-Garden, Margaret; Hilton, Heidi N.; Kazlauskas, Michael; Pritchard, Melanie A.; Chodosh, Lewis A.; Pfeffer, Peter L.; Lindeman, Geoffrey J.; Visvader, Jane E.; Ormandy, Christopher J.

    2008-01-01

    Hormonal cues regulate mammary development, but the consequent transcriptional changes and cell fate decisions are largely undefined. We show that knockout of the prolactin-regulated Ets transcription factor Elf5 prevented formation of the secretory epithelium during pregnancy. Conversely, overexpression of Elf5 in an inducible transgenic model caused alveolar differentiation and milk secretion in virgin mice, disrupting ductal morphogenesis. CD61+ luminal progenitor cells accumulated in Elf5-deficient mammary glands and were diminished in glands with Elf5 overexpression. Thus Elf5 specifies the differentiation of CD61+ progenitors to establish the secretory alveolar lineage during pregnancy, providing a link between prolactin, transcriptional events, and alveolar development. PMID:18316476

  18. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals.

    PubMed

    Nautiyal, Jaya; Steel, Jennifer H; Mane, Meritxell Rosell; Oduwole, Olayiwola; Poliandri, Ariel; Alexi, Xanthippi; Wood, Nicholas; Poutanen, Matti; Zwart, Wilbert; Stingl, John; Parker, Malcolm G

    2013-03-01

    Nuclear receptor interacting protein (Nrip1), also known as RIP140, is a co-regulator for nuclear receptors that plays an essential role in ovulation by regulating the expression of the epidermal growth factor-like family of growth factors. Although several studies indicate a role for RIP140 in breast cancer, its role in the development of the mammary gland is unclear. By using RIP140-null and RIP140 transgenic mice, we demonstrate that RIP140 is an essential factor for normal mammary gland development and that it functions by mediating oestrogen signalling. RIP140-null mice exhibit minimal ductal elongation with no side-branching, whereas RIP140-overexpressing mice show increased cell proliferation and ductal branching with age. Tissue recombination experiments demonstrate that RIP140 expression is required in both the mammary epithelial and stromal compartments for ductal elongation during puberty and that loss of RIP140 leads to a catastrophic loss of the mammary epithelium, whereas RIP140 overexpression augments the mammary basal cell population and shifts the progenitor/differentiated cell balance within the luminal cell compartment towards the progenitors. For the first time, we present a genome-wide global view of oestrogen receptor-α (ERα) binding events in the developing mammary gland, which unravels 881 ERα binding sites. Unbiased evaluation of several ERα binding sites for RIP140 co-occupancy reveals selectivity and demonstrates that RIP140 acts as a co-regulator with ERα to regulate directly the expression of amphiregulin (Areg), the progesterone receptor (Pgr) and signal transducer and activator of transcription 5a (Stat5a), factors that influence key mitogenic pathways that regulate normal mammary gland development.

  19. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of transcription 3 signaling.

    PubMed

    Thorn, Stephanie R; Giesy, Sarah L; Myers, Martin G; Boisclair, Yves R

    2010-08-01

    Mice lacking leptin (ob/ob) or its full-length receptor (db/db) are obese and reproductively incompetent. Fertility, pregnancy, and lactation are restored, respectively, in ob/ob mice treated with leptin through mating, d 6.5 post coitum, and pregnancy. Therefore, leptin signaling is needed for lactation, but the timing of its action and the affected mammary process remain unknown. To address this issue, we used s/s mice lacking only leptin-dependent signal transducer and activator of transcription (STAT)3 signaling. These mice share many features with db/db mice, including obesity, but differ by retaining sufficient activity of the hypothalamic-pituitary-ovarian axis to support reproduction. The s/s mammary epithelium was normal at 3 wk of age but failed to expand through the mammary fat pad (MFP) during the subsequent pubertal period. Ductal growth failure was not corrected by estrogen therapy and did not relate to inadequate IGF-I production by the MFP or to the need for epithelial or stromal leptin-STAT3 signaling. Ductal growth failure coincided with adipocyte hypertrophy and increased MFP production of leptin, TNFalpha, and IL6. These cytokines, however, were unable to inhibit the proliferation of a collection of mouse mammary epithelial cell lines. In conclusion, the very first step of postnatal mammary development fails in s/s mice despite sufficient estrogen IGF-I and an hypothalamic-pituitary-ovarian axis capable of supporting reproduction. This failure is not caused by mammary loss of leptin-dependent STAT3 signaling or by the development of inflammation. These data imply the existence of an unknown mechanism whereby leptin-dependent STAT3 signaling and obesity alter mammary ductal development.

  20. MAMMARY GLAND ADENOCARCINOMA IN A MALE BORNEAN ORANGUTAN (PONGO PYGMAEUS).

    PubMed

    Carpenter, Nancy A; Crook, Erika K

    2017-03-01

    An adult male Bornean orangutan ( Pongo pygmaeus ) was diagnosed with invasive, poorly differentiated grade 9/9 mammary gland adenocarcinoma from a subcutaneous mass that was surgically removed during a routine preventative health examination. The tumor was tested for estrogen and progesterone receptors, human epidermal growth factor receptor 2 (HER2), and HER2 fluorescence in situ hybridization (HER2 FISH). Whole blood was tested for breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes. The orangutan was treated orally with two common human breast cancer drugs; tamoxifen and anastrozole. The orangutan lived for 4.5 yr postdetection, dying from an unrelated cause. This is the first reported case of mammary gland adenocarcinoma in a male great ape.

  1. Effects of Dietary Xanthophylls, Canthaxanthin and Astaxanthin on N-Methyl-N-nitrosourea-induced Rat Mammary Carcinogenesis.

    PubMed

    Yuri, Takashi; Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Yuki, Michiko; Tsubura, Airo

    Natural xanthophylls, canthaxanthin and astaxanthin are known to exhibit anticancer activity. However, the dietary effects of canthaxanthin and astaxanthin on N-methyl-N-nitrosourea (MNU)-induced mammary cancer remain controversial, and their mechanisms of action have not been clearly identified. Three-week-old female Sprague-Dawley rats were fed a xanthophyll-free (basal diet) diet or experimental diets containing canthaxanthin or astaxanthin (0.04% and 0.4%) for 5 weeks (until 8 weeks of age), after which all rats were provided the basal diet (n=15 each). Rats were administered MNU at 6 weeks of age, and the incidence of mammary tumors at 20 weeks of age was compared. The expression of adiponectin in mammary adipose tissues taken at 7 weeks of age was also compared. Compared to the basal diet group, the 0.4% (but not the 0.04%) astaxanthin diet significantly reduced the incidence of palpable mammary carcinoma (92% vs. 42%; p<0.05), while the low and high canthaxanthin diets produced no significant inhibition. Adiponectin immunoblotting showed significantly higher expression in the 0.4% astaxanthin diet group, while the other groups were similar to the basal diet group. High concentrations of astaxanthin suppress MNU-induced mammary carcinoma. Changes in adiponectin may be involved in the mechanism of action. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Advanced Imaging Approaches to Characterize Stromal and Metabolic Changes in In Vivo Mammary Tumor Models

    DTIC Science & Technology

    2015-02-01

    Optical imaging , metabolism, tumor microenvironment, NADH, FAD, intravital imaging , collagen, metastasis 3.Overall Project Summary Our preliminary...Keely, KW Eliceiri. Novel Intravital Imaging Approaches to Characterize Collagen Alignment in Defined Mammary Tumor Models. Microscopy and...fixturing for intravital FLIM imaging through a rodent mammary imaging window. Stage is raised to accommodate tall 20xW objective. 14     Figure

  3. Canine mammary minute oncocytomas with neuroendocrine differentiation associated with multifocal acinar cell oncocytic metaplasia.

    PubMed

    Nagahara, Rei; Kimura, Masayuki; Itahashi, Megu; Sugahara, Go; Kawashima, Masashi; Murayama, Hirotada; Yoshida, Toshinori; Shibutani, Makoto

    2016-11-01

    Two solitary and minute tumors of 1 and 1.5 mm diameter were identified by microscopy in the left fourth mammary gland of a 13-year-old female Labrador Retriever dog, in addition to multiple mammary gland tumors. The former tumors were well circumscribed and were composed of small-to-large polyhedral neoplastic oncocytes with finely granular eosinophilic cytoplasm, and were arranged in solid nests separated by fine fibrovascular septa. Scattered lumina of variable sizes containing eosinophilic secretory material were evident. Cellular atypia was minimal, and no mitotic figures were visible. One tumor had several oncocytic cellular foci revealing cellular transition, with perivascular pseudorosettes consisting of columnar epithelial cells surrounding the fine vasculature. Scattered foci of mammary acinar cell hyperplasia showing oncocytic metaplasia were also observed. Immunohistochemically, the cytoplasm of neoplastic cells of the 2 microtumors showed diffuse immunoreactivity to anti-cytokeratin antibody AE1/AE3, and finely granular immunoreactivity for 60-kDa heat shock protein, mitochondrial membrane ATP synthase complex V beta subunit, and chromogranin A. One tumor also had oncocytic cellular foci forming perivascular pseudorosettes showing cellular membrane immunoreactivity for neural cell adhesion molecule. The tumors were negative for smooth muscle actin, neuron-specific enolase, vimentin, desmin, S100, and synaptophysin. Ultrastructural observation confirmed the abundant mitochondria in the cytoplasm of both neoplastic and hyperplastic cells, the former cells also having neuroendocrine granule-like electron-dense bodies. From these results, our case was diagnosed with mammary oncocytomas accompanied by neuroendocrine differentiation. Scattered foci of mammary oncocytosis might be related to the multicentric occurrence of these oncocytomas. © 2016 The Author(s).

  4. Endovascular repair of an internal mammary artery aneurysm in a patient with SMAD-3 mutation.

    PubMed

    Burke, Chris; Shalhub, Sherene; Starnes, Benjamin W

    2015-08-01

    Aneurysms of the internal mammary artery are rare. We describe a case of a 49-year-old woman with a SMAD3 mutation who presented with left internal mammary artery aneurysm that was thought to have ruptured, causing a large spontaneous left mediastinal hematoma. The aneurysm was treated successfully months after initial presentation with coil embolization. SMAD3 mutations are linked to familial thoracic aortic aneurysms and dissections, peripheral aneurysms, and early-onset osteoarthritis, with an estimated incidence of 2% in families with familial thoracic aortic aneurysms and dissections. To our knowledge, this is the first case in the literature to link a SMAD3 mutation with internal mammary artery aneurysm. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. 5-Fluorouracil may enrich cancer stem cells in canine mammary tumor cells in vitro.

    PubMed

    Zhou, Bin; Jin, Yipeng; Zhang, Di; Lin, Degui

    2018-05-01

    Mammary gland carcinomas are the most common neoplasms in women and unsterilized female dogs. Owing to the existence of cancer stem cells (CSCs), chemotherapy is not able to cure these types of diseases completely. A number of studies have demonstrated that CSCs are resistant to chemotherapeutic drugs, but whether canine mammary tumor cells that have acquired resistance to 5-fluorouracil (5-FU) exhibited properties of CSCs remains unknown. The aim of the present study was to investigate whether 5-fluorouracil-resistant canine mammary tumor cells exhibited properties of CSCs. CSCs were analyzed using western blot assays, ultra-low attachment sphere cultures, flow cytometry and migration (wound healing and Transwell) assays. The results indicated that, compared with parental cells, proteins associated with the Wnt/β-catenin signaling pathway and aldehyde dehydrogenase 1 were overexpressed, the number and size of spheres in the 5-FU-resistant cells were increased, the ratio of CD44 + /CD24 -/low cells was increased and the migratory ability was improved in vitro compared with the 5-FU-susceptible cells. In conclusion, stimulation with chemotherapeutic drugs including 5-FU is a good method for increasing the proportion of canine mammary tumor stem cells in vitro , which may provide further understanding of chemotherapeutic methods and CSCs.

  6. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells.

    PubMed

    Wen, G; Pachner, L I; Gessner, D K; Eder, K; Ringseis, R

    2016-11-01

    The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the

  7. Epigenetic dysregulation of key developmental genes in radiation-induced rat mammary carcinomas.

    PubMed

    Daino, Kazuhiro; Nishimura, Mayumi; Imaoka, Tatsuhiko; Takabatake, Masaru; Morioka, Takamitsu; Nishimura, Yukiko; Shimada, Yoshiya; Kakinuma, Shizuko

    2018-02-13

    With the increase in the number of long-term cancer survivors worldwide, there is a growing concern about the risk of secondary cancers induced by radiotherapy. Epigenetic modifications of genes associated with carcinogenesis are attractive targets for the prevention of cancer owing to their reversible nature. To identify genes with possible changes in functionally relevant DNA methylation patterns in mammary carcinomas induced by radiation exposure, we performed microarray-based global DNA methylation and expression profiling in γ-ray-induced rat mammary carcinomas and normal mammary glands. The gene expression profiling identified dysregulation of developmentally related genes, including the downstream targets of polycomb repressive complex 2 (PRC2) and overexpression of enhancer of zeste homolog 2, a component of PRC2, in the carcinomas. By integrating expression and DNA methylation profiles, we identified ten hypermethylated and three hypomethylated genes that possibly act as tumor-suppressor genes and oncogenes dysregulated by aberrant DNA methylation; half of these genes encode developmental transcription factors. Bisulfite sequencing and quantitative PCR confirmed the dysregulation of the polycomb-regulated developmentally related transcription-factor genes Dmrt2, Hoxa7, Foxb1, Sox17, Lhx8, Gata3 and Runx1. Silencing of Hoxa7 was further verified by immunohistochemistry. These results suggest that, in radiation-induced mammary gland carcinomas, PRC2-mediated aberrant DNA methylation leads to dysregulation of developmentally related transcription-factor genes. Our findings provide clues to molecular mechanisms linking epigenetic regulation and radiation-induced breast carcinogenesis and underscore the potential of such epigenetic mechanisms as targets for cancer prevention. © 2018 UICC.

  8. Active Plasma Kallikrein Localizes to Mast Cells and Regulates Epithelial Cell Apoptosis, Adipocyte Differentiation, and Stromal Remodeling during Mammary Gland Involution*

    PubMed Central

    Lilla, Jennifer N.; Joshi, Ravi V.; Craik, Charles S.; Werb, Zena

    2009-01-01

    The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development. PMID:19297327

  9. Lauric Acid Stimulates Mammary Gland Development of Pubertal Mice through Activation of GPR84 and PI3K/Akt Signaling Pathway.

    PubMed

    Meng, Yingying; Zhang, Jing; Zhang, Fenglin; Ai, Wei; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Liang, Xingwei; Jiang, Qingyan; Wang, Songbo

    2017-01-11

    It has been demonstrated that dietary fat affects pubertal mammary gland development. However, the role of lauric acid (LA) in this process remains unclear. Thus, this study aimed to investigate the effects of LA on mammary gland development in pubertal mice and to explore the underlying mechanism. In vitro, 100 μM LA significantly promoted proliferation of mouse mammary epithelial cell line HC11 by regulating expression of proliferative markers (cyclin D1/3, p21, PCNA). Meanwhile, LA activated the G protein-coupled receptor 84 (GPR84) and PI3K/Akt signaling pathway. In agreement, dietary 1% LA enhanced mammary duct development, increased the expression of GPR84 and cyclin D1, and activated PI3K/Akt in mammary gland of pubertal mice. Furthermore, knockdown of GPR84 or inhibition of PI3K/Akt totally abolished the promotion of HC11 proliferation induced by LA. These results showed that LA stimulated mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway.

  10. Role of Mammary Prolactin in Carcinogenesis

    DTIC Science & Technology

    1998-10-01

    severity jectives were to 1) demonstrate local expression of both of breast cancer, and treatments that suppress pituitary PRL PRL and PRL receptor, and 2...factors in the haemopoietic system. Immunol Today 14: mammary tumors and effect of antiestrogen treatment on the de- 212-214 velopment and growth of...PRL is stimulated by interleukin-2 (IL-2), is quence analysis of decidual PRL cDNA (103) has established maximal within 6 h of treatment , and is

  11. Mechanisms Underlying the Very High Susceptibility of the Immature Mammary Gland to Carcinogenic Initiation.

    DTIC Science & Technology

    1998-07-01

    adducts (DMBA) and alkylating small adducts (NMU)? In vivo cytotoxicity of 3 versus 8 week old F344 mammary gland following exposure to either NMU or...bacteria, but no plaques. Pinpoint mutants and ex- vivo mutations are another problem; when replated, these will produce a combination of clear and...radiation-induced carcinogenesis than is the mature rat mammary gland in an intact 8 week old F344 rat. Dosimetry : Anesthetized rats were irradiated

  12. MAMMARY GLAND DEVELOPMENT: EARLY LIFE EFFECTS FROM THE ENVIRONMENT

    EPA Science Inventory

    Mammary Gland Development: Early Life Effects from the Environment

    S.E. Fenton. Reproductive Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA, Research Triangle Park, NC 27711.

    As signs of precocious puberty in girls reach ...

  13. A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland.

    PubMed

    Koledova, Zuzana; Lu, Pengfei

    2017-01-01

    The mammary gland consists of numerous tissue compartments, including mammary epithelium, an array of stromal cells, and the extracellular matrix (ECM). Bidirectional interactions between the epithelium and its surrounding stroma are essential for proper mammary gland development and homeostasis, whereas their deregulation leads to developmental abnormalities and cancer. To study the relationships between the epithelium and the stroma, development of models that could recapitulate essential aspects of these interacting systems in vitro has become necessary. Here we describe a three-dimensional (3D) co-culture assay and show that the addition of fibroblasts to mammary organoid cultures promotes the epithelium to undergo branching morphogenesis, thus allowing the role of the stromal microenvironment to be examined in this essential developmental process.

  14. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer

    PubMed Central

    Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.

    2017-01-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as

  15. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis.

    PubMed

    Ferrari, Angelo; Petterino, Claudio; Ratto, Alessandra; Campanella, Chiara; Wurth, Roberto; Thellung, Stefano; Vito, Guendalina; Barbieri, Federica; Florio, Tullio

    2012-03-14

    Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4 immunoreactivity. CXCR4 score

  16. Fetal alcohol exposure and mammary tumorigenesis in offspring: role of the estrogen and insulin-like growth factor systems.

    PubMed

    Cohick, Wendie S; Crismale-Gann, Catina; Stires, Hillary; Katz, Tiffany A

    2015-01-01

    Fetal alcohol spectrum disorders affect a significant number of live births each year, indicating that alcohol consumption during pregnancy is an important public health issue. Environmental exposures and lifestyle choices during pregnancy may affect the offspring's risk of disease in adulthood, leading to the idea that a woman's risk of breast cancer may be pre-programmed prior to birth. Exposure of pregnant rats to alcohol increases tumorigenesis in the adult offspring in response to mammary carcinogens. The estrogen and insulin-like growth factor (IGF-I) axes occupy central roles in normal mammary gland development and breast cancer. 17-β estradiol (E2) and IGF-I synergize to regulate formation of terminal end buds and ductal elongation during pubertal development. The intracellular signaling pathways mediated by the estrogen and IGF-I receptors cross-talk at multiple levels through both genomic and non-genomic mechanisms. Several components of the E2 and IGF-I systems are altered in early development in rat offspring exposed to alcohol in utero, therefore, these changes may play a role in the enhanced susceptibility to mammary carcinogens observed in adulthood. Alcohol exposure in utero induces a number of epigenetic alterations in non-mammary tissues in the offspring and other adverse in utero exposures induce epigenetic modifications in the mammary gland. Future studies will determine if fetal alcohol exposure can induce epigenetic modifications in genes that regulate E2/IGF action at key phases of mammary development, ultimately leading to changes in susceptibility to carcinogens.

  17. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice.

    PubMed Central

    Kwan, H; Pecenka, V; Tsukamoto, A; Parslow, T G; Guzman, R; Lin, T P; Muller, W J; Lee, F S; Leder, P; Varmus, H E

    1992-01-01

    The Wnt-1 and int-2 proto-oncogenes are transcriptionally activated by mouse mammary tumor virus insertion mutations in virus-induced tumors and encode secretory glycoproteins. To determine whether these two genes can cooperate during carcinogenesis, we have crossed two previously characterized lines of transgenic mice to obtain bitransgenic animals carrying both Wnt-1 and int-2 transgenes under the control of the mouse mammary tumor virus long terminal repeat. Mammary carcinomas appear earlier and with higher frequency in the bitransgenic animals, especially the males, than in either parental line. Nearly all bitransgenic males develop mammary neoplasms within 8 months of birth, whereas only 15% of Wnt-1 transgenic males and none of the int-2 transgenic males have tumors. In virgin bitransgenic females, tumors occur approximately 2 months earlier than in their Wnt-1 transgenic siblings; int-2 transgenic females rarely exhibit tumors. Preneoplastic glands from the bitransgenic animals of either sex demonstrate pronounced epithelial hyperplasia similar to that seen in Wnt-1 transgenic virgin females and males, and both transgenes are expressed in the hyperplastic glands and mammary tumors. RNA from the int-2 transgene is more abundant in mammary glands from bitransgenic animals than from int-2 transgenic animals; the increase is associated with high levels of RNA specific for keratin genes 14 and 18, suggesting that Wnt-1-induced epithelial hyperplasia is responsible for the observed increase in expression of the int-2 transgene. Images PMID:1530875

  18. Neuroendocrine carcinoma of the mammary gland in a dog.

    PubMed

    Nakahira, R; Michishita, M; Yoshimura, H; Hatakeyama, H; Takahashi, K

    2015-01-01

    A 10-year-old female border collie was presented with a mass (2 cm diameter) in the fifth mammary gland. The mass was located in the subcutis and the cut surface was grey-white in colour. Microscopically, the mass was composed of tumour cells arranged in nests of various sizes separated by delicate fibrovascular stroma. The tumour cells had small, round hypochromatic nuclei and abundant cytoplasm. Metastases were observed in the inguinal lymph node. Immunohistochemically, most tumour cells expressed cytokeratin (CK) 20, chromogranin A, neuron-specific enolase, synaptophysin and oestrogen receptor-β, but not low molecular weight CK (CAM5.2), p63 and insulin. Ultrastructurally, the tumour cells contained a large number of electron-dense granules corresponding to neuroendocrine granules. Based on these findings, this case was diagnosed as a neuroendocrine carcinoma of the mammary gland. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Modeling and analysis of transport in the mammary glands

    NASA Astrophysics Data System (ADS)

    Quezada, Ana; Vafai, Kambiz

    2014-08-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.

  20. Regulation of exosome release from mammary epithelial and breast cancer cells - a new regulatory pathway.

    PubMed

    Riches, Andrew; Campbell, Elaine; Borger, Eva; Powis, Simon

    2014-03-01

    Exosomes are small 50-100nm sized extracellular vesicles released from normal and tumour cells and are a source of a new intercellular communication pathway. Tumour exosomes promote tumour growth and progression. What regulates the release and homoeostatic levels of exosomes, in cancer, in body fluids remains undefined. We utilised a human mammary epithelial cell line (HMEC B42) and a breast cancer cell line derived from it (B42 clone 16) to investigate exosome production and regulation. Exosome numbers were quantified using a Nanosight LM10 and measured in culture supernatants in the absence and presence of exosomes in the medium. Concentrated suspensions of exosomes from the normal mammary epithelial cells, the breast cancer cells and bladder cancer cells were used. The interaction of exosomes with tumour cells was also investigated using fluorescently labelled exosomes. Exosome release from normal human mammary epithelial cells and breast cancer cells is regulated by the presence of exosomes, derived from their own cells, in the extracellular environment of the cells. Exosomes from normal mammary epithelial cells also inhibit exosome secretion by breast cancer cells, which occurs in a tissue specific manner. Labelled exosomes from mammary epithelial cells are internalised into the tumour cells implicating a dynamic equilibrium and suggesting a mechanism for feedback control. These data suggest a previously unknown novel feedback regulatory mechanism for controlling exosome release, which may highlight a new therapeutic approach to controlling the deleterious effects of tumour exosomes. This regulatory mechanism is likely to be generic to other tumours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Bisphenol A Increases Mammary Cancer Risk in Two Distinct Mouse Models of Breast Cancer1

    PubMed Central

    Weber Lozada, Kristen; Keri, Ruth A.

    2011-01-01

    Bisphenol A (BPA) is an industrial plasticizer that leaches from food containers during normal usage, leading to human exposure. Early and chronic exposure to endocrine-disrupting environmental contaminants such as BPA elevates the potential for long-term health consequences. We examined the impact of BPA exposure on fetal programming of mammary tumor susceptibility as well as its growth promoting effects on transformed breast cancer cells in vivo. Fetal mice were exposed to 0, 25, or 250 μg/kg BPA by oral gavage of pregnant dams. Offspring were subsequently treated with the known mammary carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA). While no significant differences in postnatal mammary development were observed, both low- and high-dose BPA cohorts had a statistically significant increase in susceptibility to DMBA-induced tumors compared to vehicle-treated controls. To determine if BPA also promotes established tumor growth, MCF-7 human breast cancer cells were subcutaneously injected into flanks of ovariectomized NCR nu/nu female mice treated with BPA, 17beta-estradiol, or placebo alone or combined with tamoxifen. Both estradiol- and BPA-treated cohorts formed tumors by 7 wk post-transplantation, while no tumors were detected in the placebo cohort. Tamoxifen reversed the effects of estradiol and BPA. We conclude that BPA may increase mammary tumorigenesis through at least two mechanisms: molecular alteration of fetal glands without associated morphological changes and direct promotion of estrogen-dependent tumor cell growth. Both results indicate that exposure to BPA during various biological states increases the risk of developing mammary cancer in mice. PMID:21636739

  2. Reproductive Experience Alters Prolactin Receptor Expression in Mammary and Hepatic Tissues in Female Rats1

    PubMed Central

    Bridges, Robert S.; Scanlan, Victoria F.; Lee, Jong-O; Byrnes, Elizabeth M.

    2011-01-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer. PMID:21508351

  3. Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice.

    PubMed

    Rossi, Emily L; de Angel, Rebecca E; Bowers, Laura W; Khatib, Subreen A; Smith, Laura A; Van Buren, Eric; Bhardwaj, Priya; Giri, Dilip; Estecio, Marcos R; Troester, Melissa A; Hair, Brionna Y; Kirk, Erin L; Gong, Ting; Shen, Jianjun; Dannenberg, Andrew J; Hursting, Stephen D

    2016-05-01

    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis.

    PubMed

    Schaffer, E M; Liu, J Z; Green, J; Dangler, C A; Milner, J A

    1996-04-19

    Our previous studies demonstrated that dietary garlic powder supplementation inhibits N-nitrosamine induced DNA alkylation in liver and mammary tissue. The present studies compared the impact of dietary supplementation with garlic powder or two garlic constituents, water-soluble S-allyl cysteine (SAC) and oil-soluble diallyl disulfide (DADS), on the incidence of mammary tumorigenesis induced by N-methyl-N-nitrosourea (MNU). Female Sprague-Dawley rats were fed semi-purified casein based diets with or without supplements of garlic powder(20g/kg), SAC (57 micromol/kg) or DADS (57 micromol/kg) for 2 weeks prior to treatment with MNU (15 mg/kg body wt). Garlic powder, SAC and DADS supplementation significantly delayed the onset of mammary tumors compared to rats receiving the unsupplemented diet. Tumor incidence 23 weeks after MNU treatment was reduced by 76, 41 and 53% in rats fed garlic, SAC and DADS, respectively, compared to controls (P<0.05). Total tumor number was reduced 81, 35 and 65% by these supplements, respectively (P<0.05). In a separate study the quantity of mammary DNA alkylation occurring 3 h after MNU treatment was reduced in rats fed garlic, SAC or DADS (P<0.05). Specifically, O(6)-methylguanine adducts were reduced by 27, 18 and 23% in rats fed supplemental garlic, SAC and DADS, respectively, compared to controls. N(7)-Methylguanine adducts decreased by 48, 22 and 21% respectively, compared to rats fed the control diet. These studies demonstrate that garlic and associated allyl sulfur components, SAC and DADS, are effective inhibitors of MNU-induced mammary carcinogenesis.

  5. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle

    USDA-ARS?s Scientific Manuscript database

    The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypo...

  6. Advanced Imaging Approaches to Characterize Stromal and Metabolic Changes in in Vivo Mammary Tumor Models

    DTIC Science & Technology

    2014-03-01

    then locks into the microscope stage for extreme stability. Extremely stable intravital images can then be collected with nearly no breathing...Szulczewski, PJ Keely, KW Eliceiri. Novel Intravital Imaging Approaches to Characterize Collagen Alignment in Defined Mammary Tumor Models. Microscopy and...repeated 3 times on different days. 13   Figure 5: New fixturing for intravital FLIM imaging through a rodent mammary imaging window. Stage is raised

  7. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    PubMed Central

    2012-01-01

    Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca) in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene), were treated with zinc ions (Zn) or zinc ions + resveratrol (Zn + resveratrol) or zinc ions + genistein (Zn + genistein) via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry) technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein), DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of the iron and magnesium

  8. Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function

    PubMed Central

    Suárez-Trujillo, Aridany; Casey, Theresa M.

    2016-01-01

    Since lactation is one of the most metabolically demanding states in adult female mammals, beautifully complex regulatory mechanisms are in place to time lactation to begin after birth and cease when the neonate is weaned. Lactation is regulated by numerous different homeorhetic factors, all of them tightly coordinated with the demands of milk production. Emerging evidence support that among these factors are the serotonergic and circadian clock systems. Here we review the serotoninergic and circadian clock systems and their roles in the regulation of mammary gland development and lactation physiology. We conclude by presenting our hypothesis that these two systems interact to accommodate the metabolic demands of lactation and thus adaptive changes in these systems occur to maintain mammary and systemic homeostasis through the reproductive cycles of female mammals. PMID:27471474

  9. Mammary gland neoplasia in long-term rodent studies.

    PubMed Central

    Russo, I H; Russo, J

    1996-01-01

    Breast cancer, the most frequent spontaneous malignancy diagnosed in women in the western world, is continuously increasing in incidence in industrialized nations. Although breast cancer develops in women as the result of a combination of external and endogenous factors such as exposure to ionizing radiation, diet, socioeconomic status, and endocrinologic, familial, or genetic factors, no specific etiologic agent(s) or the mechanisms responsible of the disease has been identified as yet. Thus, experimental models that exhibit the same complex interactions are needed for testing various mechanisms and for assessing the carcinogenic potential of given chemicals. Rodent mammary carcinomas represent such a model to a great extent because, in these species, mammary cancer is a multistep complex process that can be induced by either chemicals, radiation, viruses, or genetic factors. Long-term studies in rodent models have been particularly useful for dissecting the initiation, promotion, and progression steps of carcinogenesis. The susceptibility of the rodent mammary gland to develop neoplasms has made this organ a unique target for testing the carcinogenic potential of specific genotoxic chemicals and environmental agents. Mammary tumors induced by indirect- or direct-acting carcinogens such as 7, 12-dimethlbenz(a)anthracene or N-methyl-N-nitrosourea are, in general, hormone dependent adenocarcinomas whose incidence, number of tumors per animal, tumor latency, and tumor type are influenced by the age, reproductive history, and endocarinologic milieu of the host at the time of carcinogen exposure. Rodent models are informative in the absence of human data. They have provided valuable information on the dose and route of administration to be used and optimal host conditions for eliciting maximal tumorigenic response. Studies of the influence of normal gland development on the pathogenesis of chemically induced mammary carcinomas have clarified the role of differentiation

  10. Lactation-induced WAP-SV40 Tag transgene expression in C57BL/6J mice leads to mammary carcinoma.

    PubMed

    Hüsler, M R; Kotopoulis, K A; Sundberg, J P; Tennent, B J; Kunig, S V; Knowles, B B

    1998-07-01

    Two transgenic lineages were generated by directing the expression of SV40 T antigen to the mammary gland of inbred C57BL/6J mice using the whey acidic protein (WAP) promoter. In one lineage, WAPTag 1, multiparous female mice developed mammary adenocarcinoma with an average latency period of 13 months. The histopathological phenotype was heterogeneous, tumours occurred in a stochastic fashion, normal tissue was located next to neoplastic tissue, the mammary tumours usually developed and were remarkably similar to that observed in human cases. In addition, male and virgin females developed a poorly differentiated SV40 T antigen-positive soft tissue sarcoma, also at 13 months of age. In the other lineage, WAPTag 3, some parous females developed mammary tumours, but most mice succumbed to osteosarcomas arising from the os petrosum at 5.5 to 6 months of age and on necropsy, renal adenocarcinomas were also found. Appearance of these unexpected tumour types demonstrates the non-specific expression of SV40 Tag under the control of the WAP promoter. The expression of SV40 Tag in mammary glands at different stages of development was also examined, and only actively lactating glands were positive. This suggests that the abundant cyclic synthesis of SV40 Tag associated with pregnancy is required for mammary tumorigenesis in these lineages.

  11. [NUCLEAR STRUCTURE IN THE SECRETORY CELLS OF MAMMARY GLANDS IN LACTATING AND NON-LACTATING RATS].

    PubMed

    Tyutina, K V; Skopichev, V G; Bogolyubov, D S; Bogolyubova, I O

    2016-01-01

    The features of structural and functional organization of the main nuclear compartments and distribution of their key molecular components (chromatin-remodeling protein ATRX, RNA polymerase I and II, and the splicing factor SC35) has been studied in the nuclei of mammary gland cells at different functional states. No significant differences between the nuclei of the cells in the lactating and non-lactating mammary glands have been revealed at the ultrastructural level. At the same time, photometric analysis has revealed higher intensity of nucleoplasmic immunofluorescent staining of mammary glands in the lactating animals when antibodies against the proteins ATRX and SC35 were used. Apparently, this observation reflects the changes of the structural and functional status of chromatin as well as the redistribution of splicing factors between the sites of their deposition and transcription.

  12. A Novel Mammary Fat Pad Transplantation Technique to Visualize the Vessel Generation of Vascular Endothelial Stem Cells.

    PubMed

    Yu, Qing Cissy; Song, Wenqian; Lai, Dengwen; Zeng, Yi Arial

    2017-08-03

    Endothelial cells (ECs) are the fundamental building blocks of the vascular architecture and mediate vascular growth and remodeling to ensure proper vessel development and homeostasis. However, studies on endothelial lineage hierarchy remain elusive due to the lack of tools to gain access as well as to directly evaluate their behavior in vivo. To address this shortcoming, a new tissue model to study angiogenesis using the mammary fat pad has been developed. The mammary gland develops mostly in the postnatal stages, including puberty and pregnancy, during which robust epithelium proliferation is accompanied by extensive vascular remodeling. Mammary fat pads provide space, matrix, and rich angiogenic stimuli from the growing mammary epithelium. Furthermore, mammary fat pads are located outside the peritoneal cavity, making them an easily accessible grafting site for assessing the angiogenic potential of exogenous cells. This work also describes an efficient tracing approach using fluorescent reporter mice to specifically label the targeted population of vascular endothelial stem cells (VESCs) in vivo. This lineage tracing method, coupled with subsequent tissue whole-mount microscopy, enable the direct visualization of targeted cells and their descendants, through which the proliferation capability can be quantified and the differentiation commitment can be fate-mapped. Using these methods, a population of bipotent protein C receptor (Procr) expressing VESCs has recently been identified in multiple vascular systems. Procr + VESCs, giving rise to both new ECs and pericytes, actively contribute to angiogenesis during development, homeostasis, and injury repair. Overall, this manuscript describes a new mammary fat pad transplantation and in vivo lineage tracing techniques that can be used to evaluate the stem cell properties of VESCs.

  13. In utero and lactational exposure to vinclozolin and genistein induces genomic changes in the rat mammary gland.

    PubMed

    El Sheikh Saad, H; Toullec, A; Vacher, S; Pocard, M; Bieche, I; Perrot-Applanat, M

    2013-02-01

    Exposure to low doses of environmental estrogens such as bisphenol A and genistein (G) alters mammary gland development. The effects of environmental anti-androgens, such as the fungicide vinclozolin (V), on mammary gland morphogenesis are unknown. We previously reported that perinatal exposure to G, V, and the GV combination causes histological changes in the mammary gland during the peripubertal period, suggesting alterations to the peripubertal hormone response. We now investigate whether perinatal exposure to these compounds alters the gene expression profiles of the developing glands to identify the dysregulated signaling pathways and the underlying mechanisms. G, V, or GV (1 mg/kg body weight per day) was added to diet of Wistar rats, from conception to weaning; female offspring mammary glands were collected at postnatal days (PNDs) 35 and 50. Genes displaying differential expression and belonging to different functional categories were validated by quantitative PCR and immunocytochemistry. At PND35, G had little effect; the slight changes noted were in genes related to morphogenesis. The changes following exposure to V concerned the functional categories associated with development (Cldn1, Krt17, and Sprr1a), carbohydrate metabolism, and steroidogenesis. The GV mixture upregulated genes (Krt17, Pvalb, and Tnni2) involved in muscle development, indicating effects on myoepithelial cells during mammary gland morphogenesis. Importantly, at PND50, cycling females exposed to GV showed an increase in the expression of genes (Csn2, Wap, and Elf5) related to differentiation, consistent with the previously reported abnormal lobuloalveolar development previously described. Thus, perinatal exposure to GV alters the mammary gland hormone response differently at PND35 (puberty) and in animals with established cycles.

  14. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice.

    PubMed

    Lakritz, Jessica R; Poutahidis, Theofilos; Levkovich, Tatiana; Varian, Bernard J; Ibrahim, Yassin M; Chatzigiagkos, Antonis; Mirabal, Sheyla; Alm, Eric J; Erdman, Susan E

    2014-08-01

    Recent studies suggest health benefits including protection from cancer after eating fermented foods such as probiotic yogurt, though the mechanisms are not well understood. Here we tested mechanistic hypotheses using two different animal models: the first model studied development of mammary cancer when eating a Westernized diet, and the second studied animals with a genetic predilection to breast cancer. For the first model, outbred Swiss mice were fed a Westernized chow putting them at increased risk for development of mammary tumors. In this Westernized diet model, mammary carcinogenesis was inhibited by routine exposure to Lactobacillus reuteri ATCC-PTA-6475 in drinking water. The second model was FVB strain erbB2 (HER2) mutant mice, genetically susceptible to mammary tumors mimicking breast cancers in humans, being fed a regular (non-Westernized) chow diet. We found that oral supplement with these purified lactic acid bacteria alone was sufficient to inhibit features of mammary neoplasia in both models. The protective mechanism was determined to be microbially-triggered CD4+CD25+ lymphocytes. When isolated and transplanted into other subjects, these L. reuteri-stimulated lymphocytes were sufficient to convey transplantable anti-cancer protection in the cell recipient animals. These data demonstrate that host immune responses to environmental microbes significantly impact and inhibit cancer progression in distal tissues such as mammary glands, even in genetically susceptible mice. This leads us to conclude that consuming fermentative microbes such as L. reuteri may offer a tractable public health approach to help counteract the accumulated dietary and genetic carcinogenic events integral in the Westernized diet and lifestyle. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  15. Humanization of the mouse mammary gland by replacement of the luminal layer with genetically engineered preneoplastic human cells.

    PubMed

    Verbeke, Stephanie; Richard, Elodie; Monceau, Elodie; Schmidt, Xenia; Rousseau, Benoit; Velasco, Valerie; Bernard, David; Bonnefoi, Herve; MacGrogan, Gaetan; Iggo, Richard D

    2014-12-20

    The cell of origin for estrogen receptor α-positive (ERα+) breast cancer is probably a luminal stem cell in the terminal duct lobular units. To model these cells, we have used the murine myoepithelial layer in the mouse mammary ducts as a scaffold upon which to build a human luminal layer. To prevent squamous metaplasia, a common artifact in genetically-engineered breast cancer models, we sought to limit activation of the epidermal growth factor receptor (EGFR) during in vitro cell culture before grafting the cells. Human reduction mammoplasty cells were grown in vitro in WIT medium. Epidermal growth factor in the medium was replaced with amphiregulin and neuregulin to decrease activation of EGFR and increase activation of EGFR homologs 3 and 4 (ERBB3 and ERBB4). Lentiviral vectors were used to express oncogenic transgenes and fluorescent proteins. Human mammary epithelial cells were mixed with irradiated mouse fibroblasts and Matrigel, then injected through the nipple into the mammary ducts of immunodeficient mice. Engrafted cells were visualized by stereomicroscopy for fluorescent proteins and characterized by histology and immunohistochemistry. Growth of normal mammary epithelial cells in conditions favoring ERBB3/4 signaling prevented squamous metaplasia in vitro. Normal human cells were quickly lost after intraductal injection, but cells infected with lentiviruses expressing CCND1, MYC, TERT, BMI1 and a short-hairpin RNA targeting TP53 were able to engraft and progressively replace the luminal layer in the mouse mammary ducts, resulting in the formation of an extensive network of humanized ducts. Despite expressing multiple oncogenes, the human cells formed a morphologically normal luminal layer. Expression of a single additional oncogene, PIK3CA-H1047R, converted the cells into invasive cancer cells. The resulting tumors were ERα+, Ki67+ luminal B adenocarcinomas that were resistant to treatment with fulvestrant. Injection of preneoplastic human mammary

  16. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem; Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases.more » No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.« less

  17. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent

    PubMed Central

    Cardiff, Robert D.; Trott, Josephine F.; Hovey, Russell C.; Hubbard, Neil E.; Engelberg, Jesse A.; Tepper, Clifford G.; Willis, Brandon J.; Khan, Imran H.; Ravindran, Resmi K.; Chan, Szeman R.; Schreiber, Robert D.; Borowsky, Alexander D.

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment. PMID:26075897

  18. GosB Inhibits Triacylglycerol Synthesis and Promotes Cell Survival in Mouse Mammary Epithelial Cells.

    PubMed

    Xu, Gaoxiao; Duan, Saixing; Hou, Jianye; Wei, Zhongxin; Zhao, Guangwei

    2017-01-01

    It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN) , stearoyl-CoA desaturase (SCD) , fatty acid binding protein 4 (FABP4) , diacylglycerol acyltransferase 1 (DGAT1) , perilipin 2 (PLIN2) , perilipin 3 (PLIN3) , and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPAR γ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPAR γ in mouse mammary glands.

  19. Cooperative Interactions During Human Mammary Epithelial Cell Immortalization

    DTIC Science & Technology

    2005-07-01

    papilloma virus 16 E6 or E7. Proc. Nat. Acad. Sci. USA, 92: 3687-3691, 1995. 6. Huschtscha, L. I., Neumann, A. A., Noble, J. R., and Reddel, R. R. Effects...Oncology, In press. 5. Wazer, D. E., Liu, X.-L., Chu, Q., Gao, Q., and Band, V. Immortalization of distinct human mammary epithelial cell types by human

  20. Inhibition of benzo(a)pyrene-induced mammary carcinogenesis by retinyl acetate. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1981-03-01

    The administration of a 250-ppM retinyl acetate dietary supplement for various periods relative to intragastric administration of 50 mg benzo(a)pyrene (BP) significantly inhibited the induction of mammary cancers in virgin female inbred LEW/Mai rats. With day of BP administration taken as time 0, groups receiving the retinoid from weeks -2 to +1, +1 to +90, +20 to +90, and -2 to +90 showed a significant reduction in tumor response as compared to controls. The inhibition of carcinogenesis achieved by a +1 to +20 administration schedule was temporary. A 2-week exposure to supplemental retinyl acetate significantly reduced the mammary gland parenchymalmore » cell labeling index in ductal, alveolar, and terminal end bud structures. Beginning the retinyl acetate supplement 1 week after the administration of BP significantly reduced the number of terminal ductal hyperplasias. The inhibition of carcinogenesis achieved by a short period of retinyl acetate administration before and during the period of carcinogen availability as well as the inhibition achieved by long-term postcarcinogen retinoid exposure may involve an antiproliferative effect on the rat mammary gland.« less

  1. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    PubMed

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer.

  2. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    PubMed

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  3. Mammary gland tumors in irradiated and untreated guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoch-Ligeti, C.; Liebelt, A.G.; Congdon, C.C.

    1986-01-01

    This is a report of mammary gland tumors from 62 guinea pigs. The tumors arose in the terminal ductal-lobular units as either lobular acinar carcinoma or cystadenocarcinoma or as papillary carcinomas within large ducts near the mammilla. About half the number of the males had terminal ductal-lobular carcinomas and all but 2 of the papillary duct carcinomas also arose in males. Large tumors frequently exhibited squamous, chondromatous, osseous, fatty and myoepitheliomatous types of tissues. In 2 irradiated males and 1 female the tumors metastasized. Whole-body irradiation did not produce significant changes in the number or sex distribution or in themore » morphology of mammary gland tumors in inbred or outbred guinea pigs. All females had cystic ovaries without increase in granulosa cells, 24 (66.6%) had uterine tumors and 13 (34.2%) had adrenal gland tumors; all males had atrophic testes, 5 (16.5%) had testicular and 6 (22.2%) had adrenal gland tumors.« less

  4. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis

    PubMed Central

    2012-01-01

    Background Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. Results A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4

  5. Effects of xanthosine on gene expression of mammary epithelial cells using RNA sequencing of goat milk fat globules

    USDA-ARS?s Scientific Manuscript database

    Although intramammary xanthosine (XS) treatment was reported to increase the mammary stem cell population and milk yield in bovine and caprine, underlying molecular mechanisms remain unclear. The goal of this study was to evaluate effects of XS treatment on the mammary transcriptome in early lactati...

  6. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

    PubMed Central

    VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J.

    2004-01-01

    The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium. PMID:14966569

  7. Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices.

    PubMed

    Aqil, Farrukh; Jeyabalan, Jeyaprakash; Munagala, Radha; Ravoori, Srivani; Vadhanam, Manicka V; Schultz, David J; Gupta, Ramesh C

    2017-02-16

    Scientific evidence suggests that many herbs and spices have medicinal properties that alleviate symptoms or prevent disease. In this study, we examined the chemopreventive effects of the Apiaceae spices, anise, caraway, and celery seeds against 17β-estrogen (E2)-mediated mammary tumorigenesis in an ACI (August-Copenhagen Irish) rat model. Female ACI rats were given either control diet (AIN 93M) or diet supplemented with 7.5% ( w / w ) of anise, caraway, or celery seed powder. Two weeks later, one half of the animals in each group received subcutaneous silastic implants of E2. Diet intake and body weight were recorded weekly, and animals were euthanized after 3 and 12 weeks. E2-treatment showed significantly (2.1- and 3.4-fold) enhanced growth of pituitary gland at 3 and 12 weeks, respectively. All test spices significantly offset the pituitary growth by 12 weeks, except celery which was effective as early as three weeks. Immunohistochemical analysis for proliferative cell nuclear antigen (PCNA) in mammary tissues showed significant reduction in E2-mediated mammary cell proliferation. Test spices reduced the circulating levels of both E2 and prolactin at three weeks. This protection was more pronounced at 12 weeks, with celery eliciting the highest effect. RT-PCR and western blot analysis were performed to determine the potential molecular targets of the spices. Anise and caraway diets significantly offset estrogen-mediated overexpression of both cyclin D1 and estrogen receptor α (ERα). The effect of anise was modest. Likewise, expression of CYP1B1 and CYP1A1 was inhibited by all test spices. Based on short-term molecular markers, caraway was selected over other spices based on its enhanced effect on estrogen-associated pathway. Therefore, a tumor-end point study in ACI rats was conducted with dietary caraway. Tumor palpation from 12 weeks onwards revealed tumor latency of 29 days in caraway-treated animals compared with first tumor appearance at 92 days in

  8. Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices

    PubMed Central

    Aqil, Farrukh; Jeyabalan, Jeyaprakash; Munagala, Radha; Ravoori, Srivani; Vadhanam, Manicka V.; Schultz, David J.; Gupta, Ramesh C.

    2017-01-01

    Scientific evidence suggests that many herbs and spices have medicinal properties that alleviate symptoms or prevent disease. In this study, we examined the chemopreventive effects of the Apiaceae spices, anise, caraway, and celery seeds against 17β-estrogen (E2)-mediated mammary tumorigenesis in an ACI (August-Copenhagen Irish) rat model. Female ACI rats were given either control diet (AIN 93M) or diet supplemented with 7.5% (w/w) of anise, caraway, or celery seed powder. Two weeks later, one half of the animals in each group received subcutaneous silastic implants of E2. Diet intake and body weight were recorded weekly, and animals were euthanized after 3 and 12 weeks. E2-treatment showed significantly (2.1- and 3.4-fold) enhanced growth of pituitary gland at 3 and 12 weeks, respectively. All test spices significantly offset the pituitary growth by 12 weeks, except celery which was effective as early as three weeks. Immunohistochemical analysis for proliferative cell nuclear antigen (PCNA) in mammary tissues showed significant reduction in E2-mediated mammary cell proliferation. Test spices reduced the circulating levels of both E2 and prolactin at three weeks. This protection was more pronounced at 12 weeks, with celery eliciting the highest effect. RT-PCR and western blot analysis were performed to determine the potential molecular targets of the spices. Anise and caraway diets significantly offset estrogen-mediated overexpression of both cyclin D1 and estrogen receptor α (ERα). The effect of anise was modest. Likewise, expression of CYP1B1 and CYP1A1 was inhibited by all test spices. Based on short-term molecular markers, caraway was selected over other spices based on its enhanced effect on estrogen-associated pathway. Therefore, a tumor-end point study in ACI rats was conducted with dietary caraway. Tumor palpation from 12 weeks onwards revealed tumor latency of 29 days in caraway-treated animals compared with first tumor appearance at 92 days in control

  9. Proteomics and pathway analysis of N-glycosylated mammary gland proteins in response to Escherichia coli mastitis in cattle.

    PubMed

    Yang, Yongxin; Shen, Weijun; Zhao, Xiaowei; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong

    2014-06-01

    The aim of this study was to investigate the N-linked glycosylated protein profile of mammary tissue from healthy cows and cows with mastitis due to Escherichia coli, in order to understand the molecular mechanisms of the host response to mastitis. N-glycopeptides were enriched with a lectin mixture and identified through high-accuracy mass spectrometry. A total of 551 N-glycosylation sites, corresponding to 294 proteins, were identified in the mammary tissues of healthy cows; these glycoproteins were categorised into three functional groups and clustered into 11 specific pathways. A total of 511 N-glycosylation sites, corresponding to 283 glycosylated proteins, were detected in the mammary tissues of cows with E. coli mastitis. There were differences in N-glycosylation sites in 98 proteins in the mammary tissues of healthy cows and cows with mastitis due to E. coli. Most proteins with altered glycosylation were those involved in responses to stress, cell adhesion and the immune response, and were assigned to five specific pathways based on their gene ontology annotation. The results from this study show that the glycosylated protein profile in the mammary tissues of healthy and mastitic cows are different, and altered glycoproteins are associated with several pathways, including the lysosome and O-glycan biosynthesis pathways. Copyright © 2014. Published by Elsevier Ltd.

  10. Ocular melanoma and mammary mucinous carcinoma in an African lion.

    PubMed

    Cagnini, Didier Q; Salgado, Breno S; Linardi, Juliana L; Grandi, Fabrizio; Rocha, Rafael M; Rocha, Noeme S; Teixeira, Carlos R; Del Piero, Fabio; Sequeira, Julio L

    2012-09-25

    Reports of neoplasms in Panthera species are increasing, but they are still an uncommon cause of disease and death in captive wild felids. The presence of two or more primary tumor in large felids is rarely reported, and there are no documented cases of ocular melanoma and mammary mucinous carcinoma in African lions. An ocular melanoma and a mammary mucinous carcinoma are described in an African lion (Panthera leo). The first tumour was histologically characterized by the presence of epithelioid and fusiform melanocytes, while the latter was composed of mucus-producing cells with an epithelial phenotype that contained periodic acid-Schiff (PAS) and Alcian blue staining mucins. Metastases of both tumor were identified in various organs and indirect immunohistochemistry was used to characterize them. Peribiliary cysts were observed in the liver. This is the first description of these tumor in African lions.

  11. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  12. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    PubMed

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  13. Luminal Epithelial Cells within the Mammary Gland Can Produce Basal Cells upon Oncogenic Stress

    PubMed Central

    Hein, Sarah M.; Haricharan, Svasti; Johnston, Alyssa N.; Toneff, Michael J.; Reddy, Jay P.; Dong, Jie; Bu, Wen; Li, Yi

    2015-01-01

    In the normal mammary gland, the basal epithelium is known to be bi-potent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bi-potent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here, we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in vivo lineage tracing work demonstrates that luminal cells are capable of producing basal cells upon activation of either Polyoma Middle T antigen (PyMT) or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer. PMID:26096929

  14. Periareolar techniques for mammary reduction and elevation.

    PubMed

    de Benito, J; Sanza, I F

    1993-01-01

    Between June 1990 and June 1992 we carried out 56 breast operations: 18 reductions, 32 mastopexies, and 6 implant changes. The surgical techniques used in all cases basically consisted of three phases: the periareolar incision, the creation of the superior pedicle with two medial and lateral flaps, and the "anchoring," crossed by both flaps in order to hold up the mammary gland. The diameter of the "doughnut" of skin that we had to deepidermize varied between 5 and 15 cm, thus raising the nipple-areola complex by as much as 10 cm. The volume of tissue removed from the hypertrophic breast ranged from 70 to 520 g. In 24 of the 32 mastopexies, the use of a silicone implant was necessary in order to provide greater volume, texture, and better mammary contour. In these cases the size of the prostheses varied between 120 and 300 cc. All patients completed the postop followup in the normal way. Only three patients suffered a slight dehiscence of the periareolar suture, which was solved within a few days of the operation by means of a Friedreich. The periareolar cutaneous pleats and the hardness of the breast gradually disappeared, as predicted, within a period of 3-4 months; afterward the breast looked perfectly natural.

  15. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, D.; Oborn, C.J.; Li, M.L.

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less

  16. Relative quantification of beta-casein expression in primary goat mammary epithelial cell lines.

    PubMed

    Ogorevc, J; Dovč, P

    2015-04-15

    Primary mammary epithelial cell cultures were established from mammary tissue of lactating and non-lactating goats to assess the expression of beta-casein (CSN2) in vitro. Primary cell cultures were established by enzymatic digestion of mammary tissue and characterized using antibodies against cytokeratin 14, cytokeratin 18, and vimentin. The established primary cell lines in the second passage were grown in basal medium on plastic and in hormone-supplemented (lactogenic) medium on plastic and on an extracellular matrix-covered surface, respectively. CSN2 gene expression was evaluated using quantitative reverse transcription PCR. The presence of CSN2 transcripts was detected in all samples, including cells originating from non-lactating goat, grown in basal medium. The presence of CSN2 protein was confirmed using immunofluorescence. Response to the hormonal treatment and cell morphology differed between the cell lines and treatments. In 2 cell lines supplemented with lactogenic hormones in the medium, CSN2 expression was increased, while CSN2 levels in one of the cell lines remained constant, regardless of the treatment. Addition of extracellular matrix showed positive effects on CSN2 transcription activity in 1 of the cell lines, while in the other 2 showed no statistically significant effects. CSN2 expression appeared to depend on subtle differences in physiological state of the starting tissue material, growth conditions, cell types present in the culture, and methods used for cell culture establishment. Further studies are necessary to identify factors that determine hormone-responsiveness and transcriptional activity of milk protein genes in goat primary mammary cell cultures.

  17. Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo.

    PubMed

    Ren, Wenbo; Li, Yang; Xia, Xiaojing; Guo, Wenfei; Zhai, Taiyu; Jin, Yuting; Che, Yanyi; Gao, Haidi; Duan, Xiumei; Ma, Hongxi; Huang, Tinghao; Huang, Jing; Lei, Liancheng

    2018-07-15

    Breast cancer is the most common female malignant tumors in the world. It seriously affects women's physical and mental health and the leading cause of cancer death among women. Our previous study demonstrated that diet-derived IFN-γ promoted the malignant transformation of primary bovine mammary epithelial cells by accelerating arginine depletion. The current study aimed to explore whether arginine addition could inhibit the degree of malignant transformation and its molecular mechanism. The results indicate that arginine addition could alleviate the malignant transformation of mammary epithelial cells induced by IFN-γ, including reducing cell proliferation, cell migration and colony formation, through the NF-κB-GCN2/eIF2α pathway. The in vivo experiments also consistently confirmed that arginine supplementation could significantly inhibit tumor growth in tumor-bearing mice. Furthermore, the investigation of the clinical data also revealed that the plasma or tissue from human breast cancer patients owned lower arginine level and higher IFN-γ level than that from patients with benign breast disease, showing IFN-γ may be a potential control target. Our findings demonstrate that arginine supplement could antagonize the malignant transformation of mammary epithelial cells induced by IFN-γ (nutritionally induced) both in vitro and in vivo, and IFN-γ was higher in breast cancer women. This might provide a novel strategy for the prevention and treatment of breast cancer regarding to nutrition. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A cyclized peptide derived from alpha fetoprotein inhibits the proliferation of ER-positive canine mammary cancer cells.

    PubMed

    Torres, Cristian Gabriel; Pino, Ana María; Sierralta, Walter Daniel

    2009-06-01

    The effects of estradiol (E2) and of an AFP-derived cyclized peptide (cP) on the proliferation of primary cultures of cancer cells isolated from spontaneous canine mammary tumors were studied. The cellular response to E2 and cP was related to the expression of estradiol receptor (isoforms alpha and beta). In ER-positive cells, 2 nM estradiol increased cell proliferation and the phosphorylation of ERK1/2; 2 microg/ml cP inhibited all these effects. Estradiol also increased HER2 immunoreactivity in ER-positive cells, an effect that was reverted to its basal values by cP. Estradiol stimulated in these cells the release of MMP2 and MMP9 and the shedding of HB-EGF, effects that the cP did not affect. ER-negative cells were refractory to estradiol or cP. All canine mammary tumor cells in culture responded to treatments analogously to human mammary cancer cells. Our results support the proposal of cP as a new, potentially effective therapeutic agent for the management of mammary cancer.

  19. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions

    PubMed Central

    2010-01-01

    Background Breast cancer is the most frequently diagnosed cancer in women. Intraepithelial lesions (IELs), such as usual ductal hyperplasia (UH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) are risk factors that predict a woman's chance of developing invasive breast cancer. Therefore, a comparative study that establishes an animal model of pre-invasive lesions is needed for the development of preventative measures and effective treatment for both mammary IELs and tumors. The purpose of this study was to characterize the histologic and molecular features of feline mammary IELs and compare them with those in women. Methods Formalin-fixed, paraffin-embedded specimens (n = 205) from 203 female cats with clinical mammary disease were retrieved from the archives of the Purdue University Animal Disease Diagnostic Laboratory and Veterinary Teaching Hospital (West Lafayette, IN), and the Department of Pathology and Veterinary Clinic, School of Veterinary Medicine (Sassari, Italy). Histologic sections, stained with hematoxylin and eosin (HE), were evaluated for the presence of IELs in tissue adjacent to excised mammary tumors. Lesions were compared to those of humans. Immunohistochemistry for estrogen receptor (ER-alpha), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2/neu) and Ki-67 was performed in IELs and adjacent tumor tissues. Results Intraepithelial lesions were found in 57 of 203 (28%) feline mammary specimens and were categorized as UH (27%), ADH (29%), and DCIS (44%). Most IELs with atypia (ADH and DCIS) were associated with mammary cancer (91%), whereas UH was associated with benign lesions in 53% of cases. Feline IELs were remarkably similar to human IELs. No ER or PR immunoreactivity was detected in intermediate-grade or high-grade DCIS or their associated malignant tumors. HER-2 protein overexpression was found in 27% of IELs. Conclusion The remarkable similarity of feline mammary IELs to those of humans

  20. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    PubMed

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as

  1. Survival of mouse mammary gland transplants of normal, hyperplastic, and tumor tissues exposed to X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkin, L.J.; Mitchell, D.J.; Cardiff, R.D.

    1982-04-01

    Mouse mammary tissues, including ducts, prelactating lobules, hyperplastic outgrowth lines, and tumors, were exposed to varying doses of X-rays and then transplanted to fat pads of nonirradiated BALB/c mice for study. Estimates of the dose of radiation that would allow survival of 50% of the transplants (SD50) were made with the use of probit analysis. Nearly all duct and lobule transplants survived doses of X-rays from 0 to 800 rad. The survival rate declined rapidly following doses above 800 rad, and the calculated SD50 was 1,020 and 1,260 rad for mammary ducts and lobules, respectively. The three hyperplastic outgrowth linesmore » tested gave very different results. Hyperplastic line Z5C1 transplants had better than 90% survival at doses up to 1,200 rad and an SD50 between 1,200 and 1,600 rad. Hyperplastic line Z5D transplants had an SD50 of between 800 and 1,200 rad. Hyperplastic line D1 transplants had a better than 90% survival following doses of 0-600 rad and an SD50 between 600 and 800 rad. The survival of tumor transplants was 100% following doses of X-rays up to 1,200 rad; the SD50 was in excess of 1,600 rad. The mouse mammary transplantation system can be used to study the direct effect of X-rays on normal, premalignant, and malignant mammary tissues and provides a basis for the study of the radiobiology of mammary tissues.« less

  2. Hormonally active doses of isoflavone aglycones promote mammary and endometrial carcinogenesis and alter the molecular tumor environment in Donryu rats.

    PubMed

    Kakehashi, Anna; Tago, Yoshiyuki; Yoshida, Midori; Sokuza, Yui; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2012-03-01

    Our research is focused on modifying effects of an isoflavone aglycones (IAs)-rich extract at a hormonally active dose of 150 mg/kg body weight/day on mammary and endometrial carcinogenesis in female Donryu rats. IA administered for 2 weeks in a phytoestrogen-low diet exerted estrogenic activity and induced cell proliferation in the uterus of ovariectomized rats. Furthermore, administration for 4 weeks resulted in elevation of cell proliferation in the mammary glands of 7,12-dimethylbenz[a]anthracene (DMBA)-treated animals. Forty weeks of postpubertal administration of IA to 5-week-old rats after initiation of mammary and endometrial carcinogenesis with DMBA and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) caused significant increase of incidence and multiplicity of mammary adenocarcinoma, multiplicities of endometrial atypical hyperplasia, adenomatous polyps, and an increased trend of uterine adenocarcinomas. Liquid chromatography with tandem mass spectrometry and immunohistochemical analyses revealed significant elevation of tumorigenesis-related proteins such as S100 calcium-binding protein A8, kininogen 1, and annexins 1 and 2 in mammary adenocarcinomas and cadherin EGF LAG seven-pass G-type receptor 2, DEAD box polypeptide 1, and cysteine- and glycine-rich protein 1 in uterine proliferative lesions of IA-treated animals. Those changes are likely to be related to modulation of estrogen receptor (ER), AP1, nuclear factor-kappa B, and actin signaling pathways. Our results indicate that the postpubertal exposure of Donryu rats to IA at an estrogenic dose results in promotion of mammary and uterine carcinogenesis induced by DMBA and ENNG, which might be related to the activation of ER-dependent signaling and alteration of the molecular tumor environment in the mammary gland and endometrium.

  3. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses

    PubMed Central

    Huang, Stephen S. H.; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J.; Kelvin, Alyson A.

    2015-01-01

    Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus

  4. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses.

    PubMed

    Paquette, Stéphane G; Banner, David; Huang, Stephen S H; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J; Kelvin, Alyson A

    2015-10-01

    Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus

  5. Cathelicidin production and release by mammary epithelial cells during infectious mastitis.

    PubMed

    Cubeddu, Tiziana; Cacciotto, Carla; Pisanu, Salvatore; Tedde, Vittorio; Alberti, Alberto; Pittau, Marco; Dore, Simone; Cannas, Agnese; Uzzau, Sergio; Rocca, Stefano; Addis, Maria Filippa

    2017-07-01

    Cathelicidins are well-characterized antimicrobial peptides (AMPs) that are present in significant amounts in mastitic milk. Neutrophils are believed to be the main producers of these AMPs, while the role of mammary epithelial cells (MECs) in their production and release is still unclear. In this work, cathelicidin production patterns were investigated in mammary tissues of ewes infected by Staphylococcus aureus, Streptococcus uberis, or Mycoplasma agalactiae, with a combined approach including immunohistochemistry, immune-colocalization, and fluorescent in situ hybridization. Our results confirm that MECs produce and release cathelicidins in response to different mastitis pathogens. As opposed to neutrophils, however, MECs do not seem to store the preformed protein precursor in their cytoplasm, but appear to synthesize and release it only upon exposure to the microorganisms. Cathelicidin production by MECs appears to occur before leukocyte influx in the milk, suggesting a role for these cells in the initial response of the mammary epithelium to microbial infection. Once in the milk, infiltrating neutrophils release massive amounts of cathelicidin by degranulation and production of neutrophil extracellular traps, acting as the main contributor for cathelicidin abundance in mastitic milk. Taken together, our results support the active contribution of MECs to cathelicidin production and release, and reinforce the value of cathelicidins as sensitive and pathogen-independent mastitis markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma

    PubMed Central

    Pejnovic, Nada N.; Mitrovic, Slobodanka L. J.; Arsenijevic, Nebojsa N.; Simovic Markovic, Bojana J.; Lukic, Miodrag L.

    2016-01-01

    Interleukin-33 (IL-33)/IL-33 receptor (IL-33R, ST2) signaling pathway promotes mammary cancer growth and metastasis by inhibiting anti-tumor immunity. However, the role of IL-33/IL-33R axis in neoangiogenesis and tumor necrosis is not elucidated. Therefore, the aim of this study was to investigate the role of IL-33/IL-33R axis in mammary tumor necrosis. Deletion of IL-33R (ST2) gene in BALB/c mice enhanced tumor necrosis and attenuated tumor growth in 4T1 breast cancer model, which was associated with markedly decreased expression of vascular endothelial growth factor (VEGF) and IL-33 in mammary tumor cells. We next analyzed IL-33, IL-33R and VEGF expression and microvascular density (MVD) in breast tumors from 40 female patients with absent or present tumor necrosis. We found significantly higher expression of IL-33, IL-33R and VEGF in breast cancer tissues with absent tumor necrosis. Both, IL-33 and IL-33R expression correlated with VEGF expression in tumor cells. Further, VEGF expression positively correlated with MVD in perinecrotic zone. Taking together, our data indicate that IL-33/IL-33R pathway is critically involved in mammary tumor growth by facilitating expression of pro-angiogenic VEGF in tumor cells and attenuating tumor necrosis. These data add an unidentified mechanism by which IL-33/IL-33R axis facilitates tumor growth. PMID:26919112

  7. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma.

    PubMed

    Milosavljevic, Milos Z; Jovanovic, Ivan P; Pejnovic, Nada N; Mitrovic, Slobodanka L J; Arsenijevic, Nebojsa N; Simovic Markovic, Bojana J; Lukic, Miodrag L

    2016-04-05

    Interleukin-33 (IL-33)/IL-33 receptor (IL-33R, ST2) signaling pathway promotes mammary cancer growth and metastasis by inhibiting anti-tumor immunity. However, the role of IL-33/IL-33R axis in neoangiogenesis and tumor necrosis is not elucidated. Therefore, the aim of this study was to investigate the role of IL-33/IL-33R axis in mammary tumor necrosis. Deletion of IL-33R (ST2) gene in BALB/c mice enhanced tumor necrosis and attenuated tumor growth in 4T1 breast cancer model, which was associated with markedly decreased expression of vascular endothelial growth factor (VEGF) and IL-33 in mammary tumor cells. We next analyzed IL-33, IL-33R and VEGF expression and microvascular density (MVD) in breast tumors from 40 female patients with absent or present tumor necrosis. We found significantly higher expression of IL-33, IL-33R and VEGF in breast cancer tissues with absent tumor necrosis. Both, IL-33 and IL-33R expression correlated with VEGF expression in tumor cells. Further, VEGF expression positively correlated with MVD in perinecrotic zone. Taking together, our data indicate that IL-33/IL-33R pathway is critically involved in mammary tumor growth by facilitating expression of pro-angiogenic VEGF in tumor cells and attenuating tumor necrosis. These data add an unidentified mechanism by which IL-33/IL-33R axis facilitates tumor growth.

  8. Identification of an immune modulation locus utilising a bovine mammary gland infection challenge model.

    PubMed

    Littlejohn, Mathew D; Turner, Sally-Anne; Walker, Caroline G; Berry, Sarah D; Tiplady, Kathryn; Sherlock, Ric G; Sutherland, Greg; Swift, Simon; Garrick, Dorian; Lacy-Hulbert, S Jane; McDougall, Scott; Spelman, Richard J; Snell, Russell G; Hillerton, J Eric

    2018-05-01

    Inflammation of the mammary gland following bacterial infection, commonly known as mastitis, affects all mammalian species. Although the aetiology and epidemiology of mastitis in the dairy cow are well described, the genetic factors mediating resistance to mammary gland infection are not well known, due in part to the difficulty in obtaining robust phenotypic information from sufficiently large numbers of individuals. To address this problem, an experimental mammary gland infection experiment was undertaken, using a Friesian-Jersey cross breed F2 herd. A total of 604 animals received an intramammary infusion of Streptococcus uberis in one gland, and the clinical response over 13 milkings was used for linkage mapping and genome-wide association analysis. A quantitative trait locus (QTL) was detected on bovine chromosome 11 for clinical mastitis status using micro-satellite and Affymetrix 10 K SNP markers, and then exome and genome sequence data used from the six F1 sires of the experimental animals to examine this region in more detail. A total of 485 sequence variants were typed in the QTL interval, and association mapping using these and an additional 37 986 genome-wide markers from the Illumina SNP50 bovine SNP panel revealed association with markers encompassing the interleukin-1 gene cluster locus. This study highlights a region on bovine chromosome 11, consistent with earlier studies, as conferring resistance to experimentally induced mammary gland infection, and newly prioritises the IL1 gene cluster for further analysis in genetic resistance to mastitis.

  9. PKCθ promotes c-Rel–driven mammary tumorigenesis in mice and humans by repressing estrogen receptor α synthesis

    PubMed Central

    Belguise, Karine; Sonenshein, Gail E.

    2007-01-01

    The vast majority of primary human breast cancer tissues display aberrant nuclear NF-κB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor α (ERα) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCθ-Akt pathway that leads to downregulation of ERα synthesis and derepression of c-Rel. ERα levels were lower in c-Rel–induced mammary tumors compared with normal mammary gland tissue. PKCθ induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2α–driven mouse mammary tumor–derived cell lines. RNA expression levels of PKCθ and c-Rel target genes were inversely correlated with ERα levels in human breast cancer specimens. PKCθ activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERα and p27Kip1. Thus we have shown that activation of PKCθ inhibits the FOXO3a/ERα/p27Kip1 axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer. PMID:18037997

  10. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  11. Antiproliferative Effects of Oxytocin and Desmopressin on Canine Mammary Cancer Cells

    PubMed Central

    Benavente, Micaela Andrea; Bianchi, Carolina Paula; Imperiale, Fernanda; Aba, Marcelo Alfredo

    2016-01-01

    Neoplasms of the mammary gland represent the most frequent tumor type in the female dog, and according to the histologic criteria, approximately 50% of them are malignant. In the most aggressive cases of mammary cancer, surgery is not enough to warrant a favorable outcome, and adjuvant therapies are needed to improve the patient’s overall survival. The aim of the present study was to evaluate the effects of two peptides on proliferation of a canine mammary cancer cell line derived from a simple carcinoma. The cell line CMT-U27 was grown in 96-well plates, at two cell densities (4 × 103 and 8 × 103 cells/well). Cultures were treated with oxytocin (OT) or desmopressin at five concentrations (10, 50, 100, 500, and 1000 nM). After 72 h of incubation, cell proliferation was determined by the MTT assay. Results showed that with 4 × 103 cells/well, OT at 50, 500, and 1000 nM was growth inhibitory for the cells, being statistically significant at 1000 nM. On the contrary, no antiproliferative effect was observed with 10 or 100 nM. At 8 × 103 cells/well, OT showed a significant antiproliferative effect only with the highest concentration (1000 nM). Desmopressin at 4 × 103 cells/well decreased cell viability at concentrations of 50, 100, 500, and 1000 nM (statistically significant with the highest concentration), while no effect was observed with 10 nM. With 8 × 103 cells/well, this peptide reduced cell growth at 100, 500, and 1000 nM. In conclusion, we suggest that these peptides may be potential and promising compounds for the treatment of dogs with simple carcinomas of the mammary gland. In vivo studies are required to confirm this hypothesis. PMID:28083539

  12. Antiproliferative Effects of Oxytocin and Desmopressin on Canine Mammary Cancer Cells.

    PubMed

    Benavente, Micaela Andrea; Bianchi, Carolina Paula; Imperiale, Fernanda; Aba, Marcelo Alfredo

    2016-01-01

    Neoplasms of the mammary gland represent the most frequent tumor type in the female dog, and according to the histologic criteria, approximately 50% of them are malignant. In the most aggressive cases of mammary cancer, surgery is not enough to warrant a favorable outcome, and adjuvant therapies are needed to improve the patient's overall survival. The aim of the present study was to evaluate the effects of two peptides on proliferation of a canine mammary cancer cell line derived from a simple carcinoma. The cell line CMT-U27 was grown in 96-well plates, at two cell densities (4 × 10 3 and 8 × 10 3 cells/well). Cultures were treated with oxytocin (OT) or desmopressin at five concentrations (10, 50, 100, 500, and 1000 nM). After 72 h of incubation, cell proliferation was determined by the MTT assay. Results showed that with 4 × 10 3 cells/well, OT at 50, 500, and 1000 nM was growth inhibitory for the cells, being statistically significant at 1000 nM. On the contrary, no antiproliferative effect was observed with 10 or 100 nM. At 8 × 10 3 cells/well, OT showed a significant antiproliferative effect only with the highest concentration (1000 nM). Desmopressin at 4 × 10 3 cells/well decreased cell viability at concentrations of 50, 100, 500, and 1000 nM (statistically significant with the highest concentration), while no effect was observed with 10 nM. With 8 × 10 3 cells/well, this peptide reduced cell growth at 100, 500, and 1000 nM. In conclusion, we suggest that these peptides may be potential and promising compounds for the treatment of dogs with simple carcinomas of the mammary gland. In vivo studies are required to confirm this hypothesis.

  13. B-mode and Doppler sonography of the mammary glands in dairy goats for mastitis diagnosis.

    PubMed

    Santos, Vjc; Simplício, K; Sanchez, D; Coutinho, L; Teixeira, P; Barros, F; Almeida, V; Rodrigues, L; Bartlewski, P; Oliveira, M; Feliciano, M; Vicente, W

    2015-04-01

    This study aimed to evaluate the sonographic characteristics of the udder and teats and to determine the Doppler indexes of mammary artery in healthy and undergoing subclinical and clinical mastitis goats. Thirty animals among Saanen and Alpine Brown goats were arranged in three groups, healthy goats (HG), goats with subclinical mastitis (SMG) and goats with clinical mastitis (CMG). Using the B-mode, the sonographic characteristics (echotexture and echogenicity) and biometry (diameter and area of the udder cistern, diameter and area of the teat cistern and thickness of the teat wall) were evaluated. Using Doppler ultrasonography, the vascular indexes of the mammary artery were obtained. It was observed hyperechogenicity with solid component in the gland cistern when comparing animals with clinical mastitis and healthy mammary tissue. Regarding the echotexture of the breast tissue, there was heterogeneity in the mammary parenchyma on the three groups, for the milk, it was observed homogeneity for animals on HG and SMG and heterogeneity for animals on CMG. Grey-scale quantitative assessment revealed increase in echogenicity (mean value) for all the structures when comparing the three groups. Biometry did not reveal statistical difference between groups, for none of the evaluated structures. Doppler examination of the mammary artery showed the decrease of end diastolic velocity and raise of pulsatility index between groups. The association of B-mode and Doppler ultrasonography is useful for the evaluation of the udder of dairy goats with mastitis. It is a sensitive and specific method for the study of this disease. Doppler mode was unable to establish reliable criteria for diagnosis of subclinical mastitis. Moreover, the quantification of echogenicity is a useful technique for the evaluation of the milk in animals with mastitis; therefore, it is suggested that it can be used as complementary technique for the diagnosis of mastitis in goats. © 2015 Blackwell Verlag

  14. The epigenetic landscape of mammary gland development and functional differentiation

    USDA-ARS?s Scientific Manuscript database

    Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conf...

  15. Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer.

    PubMed

    Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J

    2018-04-01

    Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.

  16. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    PubMed

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  17. Megalin-Mediated Endocytosis of Vitamin D Binding Protein Correlates with 25-Hydroxycholecalciferol Actions in Human Mammary Cells1

    PubMed Central

    Rowling, Matthew J.; Kemmis, Carly M.; Taffany, David A.; Welsh, JoEllen

    2007-01-01

    The major circulating form of vitamin D is 25-hydroxycholecalciferol [25(OH)D3], which is delivered to target tissues in complex with the serum vitamin D binding protein (DBP). We recently observed that mammary cells can metabolize 25(OH)D3 to 1,25-dihydroxycholecalciferol [1,25(OH)2D3], the vitamin D receptor (VDR) ligand, and the objective of our study was to elucidate the mechanisms by which the 25(OH)D3-DBP complex is internalized by mammary cells prior to metabolism. Using fluorescent microscopy and temperature-shift techniques, we found that T-47D breast cancer cells rapidly internalize DBP via endocytosis, which is blunted by receptor-associated protein, a specific inhibitor of megalin-mediated endocytosis. Endocytosis of DBP was associated with activation of VDR by 25(OH)D3 but not 1,25(OH)2D3 (as measured by induction of the VDR target gene, CYP24). We also found that megalin and its endocytic partner, cubilin, are coexpressed in normal murine mammary tissue, in nontransformed human mammary epithelial cell lines, and in some established human breast cancer cell lines. To our knowledge, our studies are the first to demonstrate that mammary-derived cells express megalin and cubilin, which contribute to the endocytic uptake of 25(OH)D3-DBP and activation of the VDR pathway. PMID:17056796

  18. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampson, D.A.; Jansen, G.R.

    1985-04-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of (3-/sup 3/H)phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary glandmore » protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis.« less

  19. Mammary candidiasis: molecular-based detection of Candida species in human milk samples.

    PubMed

    Mutschlechner, W; Karall, D; Hartmann, C; Streiter, B; Baumgartner-Sigl, S; Orth-Höller, D; Lass-Flörl, C

    2016-08-01

    In this prospective and monocentric study, we investigated the performance of a commercialized real-time polymerase chain reaction (RT-PCR) test system for the specific detection of DNA from Candida albicans, C. dubliniensis, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, and C. tropicalis in human milk samples of patients suspicious of mammary candidiasis. For this purpose, 43 breast-feeding women with characteristic symptoms of mammary candidiasis and 40 asymptomatic controls were enrolled. By culture, Candida spp. were detected in 8.8 % (4/46) and 9.3 % (4/43) of patient and control samples, respectively. Candida albicans (2/46), C. parapsilosis (1/46), and C. guilliermondii (1/46) were present in patient samples, and C. lusitaniae (3/43) and C. guilliermondii (1/43) were present in the controls. After RT-PCR was applied, Candida spp. were found to be present in 67.4 % (31/46) and 79.1 % (34/43) of patient and control samples investigated, respectively. PCR detection of C. albicans and C. parapsilosis revealed only a low sensitivity and specificity of 67.4 % and 41.9 %, respectively. Our data do not support the use of Candida RT-PCR for sensitive and specific diagnosis of mammary candidiasis.

  20. Effect of protein quality on /sup 14/C glucose utilization in isolated rat mammary acini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masor, M.L.; Grundleger, M.L.; Jansen, G.R.

    1986-03-01

    Poor protein quality has a deleterious effect on lactation in rats. Dams consuming a 13% wheat gluten (WG) diet are unable to maintain litters. Glucose utilization in isolated mammary acini taken from dams at either day 20 of gestation (G20) or day 4 of lactation (L4) was examined in dams consuming 13% WG vs 13% casein-methionine (CM) diets from day of breeding. Dams consuming WG had significantly smaller inguinal-abdominal mammary glands than CM dams at both G20 and L4, and mammary glands of CM but not WG dams were larger at L4 than G20. Both average pup weight and pupmore » daily gain were smaller in WG litters. Basal levels of /sup 14/C glucose oxidation (GO) and /sup 14/C glucose incorporation into lipid (GL) and lactose were examined. A large significant increase in GO and GL occurred in CM dams from G20 to L4 but not in WG dams. Both GO and GL were higher in CM dams on L4 but not at G20. The ratio of GO:GO+GL changed at parturition in CM but not WG dams. The normal changes in glucose utilization by mammary epithelial cells which occur at parturition were impaired by the WG diet.« less

  1. Enhancement of NAD+-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells

    PubMed Central

    Fang, Mingzhu; Guo, Wei-Ren; Park, Youngil; Kang, Hwan-Goo; Zarbl, Helmut

    2015-01-01

    We previously reported that dietary methylselenocysteine (MSC) inhibits N-methyl-N-nitrosourea (NMU)-induced mammary tumorigenesis by resetting circadian gene expression disrupted by the carcinogen at the early stage of tumorigenesis. To investigate the underlying mechanism, we developed a circadian reporter system comprised of human mammary epithelial cells with a luciferase reporter driven by the promoter of human PERIOD 2 (PER2), a core circadian gene. In this in vitro model, NMU disrupted cellular circadian rhythm in a pattern similar to that observed with SIRT1-specific inhibitors; in contrast, MSC restored the circadian rhythms disrupted by NMU and protected against SIRT1 inhibitors. Moreover, NMU inhibited intracellular NAD+/NADH ratio and reduced NAD+-dependent SIRT1 activity in a dose-dependent manner, while MSC restored NAD+/NADH and SIRT1 activity in the NMU-treated cells, indicating that the NAD+-SIRT1 pathway was targeted by NMU and MSC. In rat mammary tissue, a carcinogenic dose of NMU also disrupted NAD+/NADH oscillations and decreased SIRT1 activity; dietary MSC restored NAD+/NADH oscillations and increased SIRT1 activity in the mammary glands of NMU-treated rats. MSC-induced SIRT1 activity was correlated with decreased acetylation of BMAL1 and increased acetylation of histone 3 lysine 9 at the Per2 promoter E-Box in mammary tissue. Changes in SIRT1 activity were temporally correlated with loss or restoration of rhythmic Per2 mRNA expression in NMU-treated or MSC-rescued rat mammary glands, respectively. Together with our previous findings, these results suggest that enhancement of NAD+-dependent SIRT1 activity contributes to the chemopreventive efficacy of MSC by restoring epigenetic regulation of circadian gene expression at early stages of mammary tumorigenesis. PMID:26544624

  2. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

    PubMed

    Bouchard, Damien S; Seridan, Bianca; Saraoui, Taous; Rault, Lucie; Germon, Pierre; Gonzalez-Moreno, Candelaria; Nader-Macias, Fatima M E; Baud, Damien; François, Patrice; Chuat, Victoria; Chain, Florian; Langella, Philippe; Nicoli, Jacques; Le Loir, Yves; Even, Sergine

    2015-01-01

    Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB) from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation); inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC); and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.

  3. Genotoxic Exposure during Juvenile Growth of Mammary Gland Depletes Stem Cell Activity and Inhibits Wnt Signaling

    PubMed Central

    Klos, Kristine S.; Kim, Soyoung; Alexander, Caroline M.

    2012-01-01

    Various types of somatic stem cell have been tested for their response to genotoxic exposure, since these cells are likely to be important to regeneration, aging and cancer. In this study, we evaluated the response of mammary stem cells to genotoxic exposure during ductal growth in juveniles. Exposure to the polycyclic aromatic hydrocarbon (DMBA; 7,12 dimethylbenz[a]anthracene) had no gross effect on outgrowth and morphogenesis of the ductal tree, or upon lobuloalveolar growth during pregnancy. However, by fat pad assay, we found that mammary stem cell activity was reduced by 80% in glands from adults that were exposed to genotoxins as juveniles. The associated basal cell lineage was depleted. Both basal and luminal cells showed a robust response to genotoxic exposure (including γH2AX phosphorylation, pS15p53 and pT68Chk2), with durable hyperproliferation, but little cytotoxicity. Since the phenotype of these glands (low basal cell fraction, low stem cell activity) phenocopies mammary glands with loss of function for Wnt signaling, we measured Wnt signaling in genotoxin-exposed glands, and found a durable reduction in the activation of the canonical signaling Wnt receptors, Lrp5/6. Furthermore, when mammary epithelial cells were treated with Wnt3a, DMBA exposure reduced the basal cell population and Lrp activation was ablated. We conclude that during active ductal growth, Wnt-dependent mammary stem cells are sensitized to cell death by genotoxin exposure. Our conclusion may be important for other tissues, since all solid tumor stem cell activities have been shown to be Wnt-dependent to date. PMID:23185480

  4. Purification of PRL receptors from toad kidney: Comparisons with rabbit mammary PRL receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunand, M.; Kraehenbuhl, J.P.; Rossier, B.C.

    1988-03-01

    The binding characteristics of the prolactin (PRL) receptors present in toad (Bufo marinus) kidneys were investigated and compared to those of PRL receptors present in rabbit mammary glands. The molecular characteristics of the Triton X-100 solubilized renal and mammary PRL receptors were assessed by gel filtration and by migration analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after affinity labeling of the binding sites with {sup 125}I-human growth hormone. Similar results were obtained for both receptors. Partial purification of the toad PRL receptor could be achieved by affinity chromatography. The molecular weight of this purified receptor could be determined bymore » analysis of SDS-PAGE. With the use of a polyclonal antiserum raised against a purified preparation of rabbit mammary PRL receptor, one or several antigenic epitope(s) could be identified on the core of the toad renal PRL receptor. In conclusion, although the structure and the biological role(s) of PRL have substantially changed during evolution, the receptor for this hormone has retained many of its structural features as could be assessed between an amphibian and a mammalian species on functionally different target tissues.« less

  5. Paracrine Met signaling triggers epithelial–mesenchymal transition in mammary luminal progenitors, affecting their fate

    PubMed Central

    Di-Cicco, Amandine; Petit, Valérie; Chiche, Aurélie; Bresson, Laura; Romagnoli, Mathilde; Orian-Rousseau, Véronique; Vivanco, Maria dM; Medina, Daniel; Faraldo, Marisa M; Glukhova, Marina A; Deugnier, Marie-Ange

    2015-01-01

    HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial–mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin down-regulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.06104.001 PMID:26165517

  6. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling.

    PubMed

    Ahn, Youngwook; Sims, Carrie; Logue, Jennifer M; Weatherbee, Scott D; Krumlauf, Robb

    2013-02-01

    The future site of skin appendage development is marked by a placode during embryogenesis. Although Wnt/β-catenin signaling is known to be essential for skin appendage development, it is unclear which cellular processes are controlled by the signaling and how the precise level of the signaling activity is achieved during placode formation. We have investigated roles for Lrp4 and its potential ligand Wise (Sostdc1) in mammary and other skin appendage placodes. Lrp4 mutant mice displayed a delay in placode initiation and changes in distribution and number of mammary precursor cells leading to abnormal morphology, number and position of mammary placodes. These Lrp4 mammary defects, as well as limb defects, were associated with elevated Wnt/β-catenin signaling and were rescued by reducing the dose of the Wnt co-receptor genes Lrp5 and Lrp6, or by inactivating the gene encoding β-catenin. Wise-null mice phenocopied a subset of the Lrp4 mammary defects and Wise overexpression reduced the number of mammary precursor cells. Genetic epistasis analyses suggest that Wise requires Lrp4 to exert its function and that, together, they have a role in limiting mammary fate, but Lrp4 has an early Wise-independent role in facilitating placode formation. Lrp4 and Wise mutants also share defects in vibrissa and hair follicle development, suggesting that the roles played by Lrp4 and Wise are common to skin appendages. Our study presents genetic evidence for interplay between Lrp4 and Wise in inhibiting Wnt/β-catenin signaling and provides an insight into how modulation of Wnt/β-catenin signaling controls cellular processes important for skin placode formation.

  7. R-spondin3 is associated with basal-progenitor behavior in normal and tumor mammary cells.

    PubMed

    Tocci, Johanna Melisa; Felcher, Carla María; García Solá, Martín E; Goddio, María Victoria; Zimberlin, María Noel; Rubinstein, Natalia; Srebrow, Anabella; Coso, Omar Adrián; Abba, Martín C; Meiss, Roberto P; Kordon, Edith C

    2018-05-10

    R-spondin3 (RSPO3) is a member of a family of secreted proteins that enhance Wnt signaling pathways in diverse processes including cancer. However, the role of RSPO3 in mammary gland and breast cancer development remains unclear. In this study, we show that RSPO3 is expressed in the basal stem cell-enriched compartment of normal mouse mammary glands but is absent from committed mature luminal cells in which exogenous RSPO3 impairs lactogenic differentiation. RSPO3 knockdown in basal-like mouse mammary tumor cells reduced canonical Wnt signaling, epithelial-to-mesenchymal transition-like features, migration capacity, and tumor formation in vivo. Conversely, RSPO3 overexpression, which was associated with some LGR and RUNX factors, highly correlated with the basal-like subtype among breast cancer patients. Thus we identified RSPO3 as a novel key modulator of breast cancer development and a potential target for treatment of basal-like breast cancers. Copyright ©2018, American Association for Cancer Research.

  8. ENVIRONMENTAL TOXICANTS AND DISRUPTED MAMMARY GLAND DEVELOPMENT: THE WINDOW OF SUSCEPTIBILITY

    EPA Science Inventory

    Environmental Toxicants and Altered Mammary Gland Development: The window of susceptibility. Suzanne E. Fenton, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    There are several enviro...

  9. ENVIRONMENTAL TOXICANTS AND ALTERED MAMMARY GLAND DEVELOPMENT: THE WINDOW OF SUSCEPTIBILITY

    EPA Science Inventory

    Environmental Toxicants and Altered Mammary Gland Development: The window of susceptibility. Suzanne E. Fenton, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    There are several environm...

  10. An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine.

    PubMed

    Bird, R Curtis; Deinnocentes, Patricia; Church Bird, Allison E; van Ginkel, Frederik W; Lindquist, Joni; Smith, Bruce F

    2011-01-01

    Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.

  11. Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers, in vitro.

    PubMed

    Mießler, Katharina S; Markov, Alexander G; Amasheh, Salah

    2018-01-01

    During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Quantification of regenerative potential in primary human mammary epithelial cells.

    PubMed

    Linnemann, Jelena R; Miura, Haruko; Meixner, Lisa K; Irmler, Martin; Kloos, Uwe J; Hirschi, Benjamin; Bartsch, Harald S; Sass, Steffen; Beckers, Johannes; Theis, Fabian J; Gabka, Christian; Sotlar, Karl; Scheel, Christina H

    2015-09-15

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  13. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  14. Insulin-like growth factor binding proteins initiate cell death and extracellular matrix remodeling in the mammary gland.

    PubMed

    Flint, D J; Boutinaud, M; Tonner, E; Wilde, C J; Hurley, W; Accorsi, P A; Kolb, A F; Whitelaw, C B A; Beattie, J; Allan, G J

    2005-08-01

    We have demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) production by mammary epithelial cells increases dramatically during forced involution of the mammary gland in rats, mice and pigs. We proposed that growth hormone (GH) increases the survival factor IGF-I, whilst prolactin (PRL) enhances the effects of GH by decreasing the concentration of IGFBP-5, which would otherwise inhibit the actions of IGFs. To demonstrate a causal relationship between IGFBP-5 and cell death, we created transgenic mice expressing IGFBP-5, specifically, in the mammary gland. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. The concentrations of the pro-apoptotic molecule caspase-3 was increased in transgenic animals whilst the concentrations of two pro-survival molecules Bcl-2 and Bcl-x were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I, we examined IGF receptor- and Akt-phoshorylation and showed that both were inhibited. These studies also indicated that the effects of IGFBP-5 could be mediated in part by IGF-independent effects involving potential interactions with components of the extracellular matrix involved in tissue remodeling, such as components of the plasminogen system, and the matrix metallo-proteinases (MMPs). Mammary development was normalised in transgenic mice by R3-IGF-I, an analogue of IGF-I which binds weakly to IGFBPs, although milk production was only partially restored. In contrast, treatment with prolactin was able to inhibit early involutionary processes in normal mice but was unable to prevent this in mice over-expressing IGFBP-5, although it was able to inhibit activation of MMPs. Thus, IGFBP-5 can simultaneously inhibit IGF action and activate the plasminogen system thereby coordinating cell death and tissue

  15. A new technique for repeated biopsies of the mammary gland in dairy cows allotted to Latin-square design studies

    PubMed Central

    de Lima, Luciano S.; Martineau, Eric; De Marchi, Francilaine E.; Palin, Marie-France; dos Santos, Geraldo T.; Petit, Hélène V.

    2016-01-01

    The objective of this study was to develop a technique for carrying out repeated biopsies of the mammary gland of lactating dairy cows that provides enough material to monitor enzyme activities and gene expression in mammary secretory tissue. A total of 16 Holstein cows were subjected to 4 mammary biopsies each at 3-week intervals for a total of 64 biopsies. A 0.75-cm incision was made through the skin and subcutaneous tissue of the mammary gland and a trocar and cannula were inserted using a circular motion. The trocar was withdrawn and a syringe was plugged into the base of the cannula to create a vacuum for sampling mammary tissue. To reduce bleeding, hand pressure was put on the surgery site after biopsy and skin closure and ice was applied for at least 2 h after the biopsy using a cow bra. The entire procedure took an average of 25 min. Two attempts were usually enough to obtain 800 mg of tissue. Visual examination of milk samples 10 d after the biopsy indicated no trace of blood, except in samples from 2 cows. All wounds healed without infection and subcutaneous hematomas resorbed within 7 d. There was no incidence of mastitis throughout the lactation. This technique provides a new tool for biopsy of the mammary gland repeated at short intervals with the main effect being a decrease in milk production. Although secondary complications leading to illness or death are always a risk with any procedure, this biopsy technique was carried out without complications to the health of animals and with no incidence of mastitis during the lactation. PMID:27408336

  16. A new technique for repeated biopsies of the mammary gland in dairy cows allotted to Latin-square design studies.

    PubMed

    de Lima, Luciano S; Martineau, Eric; De Marchi, Francilaine E; Palin, Marie-France; Dos Santos, Geraldo T; Petit, Hélène V

    2016-07-01

    The objective of this study was to develop a technique for carrying out repeated biopsies of the mammary gland of lactating dairy cows that provides enough material to monitor enzyme activities and gene expression in mammary secretory tissue. A total of 16 Holstein cows were subjected to 4 mammary biopsies each at 3-week intervals for a total of 64 biopsies. A 0.75-cm incision was made through the skin and subcutaneous tissue of the mammary gland and a trocar and cannula were inserted using a circular motion. The trocar was withdrawn and a syringe was plugged into the base of the cannula to create a vacuum for sampling mammary tissue. To reduce bleeding, hand pressure was put on the surgery site after biopsy and skin closure and ice was applied for at least 2 h after the biopsy using a cow bra. The entire procedure took an average of 25 min. Two attempts were usually enough to obtain 800 mg of tissue. Visual examination of milk samples 10 d after the biopsy indicated no trace of blood, except in samples from 2 cows. All wounds healed without infection and subcutaneous hematomas resorbed within 7 d. There was no incidence of mastitis throughout the lactation. This technique provides a new tool for biopsy of the mammary gland repeated at short intervals with the main effect being a decrease in milk production. Although secondary complications leading to illness or death are always a risk with any procedure, this biopsy technique was carried out without complications to the health of animals and with no incidence of mastitis during the lactation.

  17. Effect of bovine somatotropin and rumen-undegradable protein on mammary growth of prepubertal dairy heifers and subsequent milk production.

    PubMed

    Capuco, A V; Dahl, G E; Wood, D L; Moallem, U; Erdman, R E

    2004-11-01

    Rapid body growth during the prepubertal period may be associated with reductions in mammary parenchymal growth and subsequent milk yield. The objective of this study was to test effects of dietary rumen-undegradable protein (RUP) and administration of recombinant bovine somatotropin (bST) during the prepubertal period on mammary growth and milk yield of dairy heifers. Seventy-two Holstein heifers were used in the experiment. At 90 d of age, 8 heifers were slaughtered before initiation of treatment. Remaining heifers were assigned randomly to 1 of 4 treatments. Treatments consisted of a control diet (5.9% RUP, 14.9% CP, DM basis) or RUP-supplemented diet (control diet plus 2% added RUP) with or without 0.1 mg of bST/kg of BW per day applied in a 2 x 2 factorial design. A total of 6 heifers per treatment (3 each at 5 and 10 mo of age) were slaughtered for mammary tissue analysis. Remaining heifers were bred to evaluate impact of treatment on subsequent milk yield and composition. Mammary parenchymal growth was not affected by RUP or bST treatment. Total parenchymal mass increased from 16 to 364 g, and parenchymal DNA from 58 to 1022 mg from 3 to 10 mo of age, respectively. Furthermore, number of mammary epithelial cells likely was not affected by diet or bST because the epithelial cell proliferation index, assessed by Ki-67 labeling, was not affected by treatment, nor was total parenchymal DNA and lipid content. Neither deleterious effects of increased rates of gain nor positive effects of bST were evident in prepubertal mammary growth. Subsequent milk production and composition was not different among treatments.

  18. GAS6 is an estrogen-inducible gene in mammary epithelial cells

    PubMed Central

    Mo, Rigen; Zhu, Yiwei Tony; Zhang, Zhongyi; Rao, Sambasiva M.; Zhu, Yi-Jun

    2007-01-01

    To identify estrogen responsive genes in mammary glands, microarray assays were performed. Twenty genes were found to be up-regulated while 16 genes were repressed in the 9h estrogen treated glands. The induction of GAS6, one of the genes up-regulated by estrogen, was confirmed by RNase protection assay. Furthermore, GAS6 was also demonstrated to be induced by estrogen in ER positive breast cancer cells. Analysis of GAS6 promoter revealed that GAS6 promoter was regulated by estrogen. An estrogen response element (ERE) was identified in the GAS6 promoter. Electrophoretic mobility shift assay revealed that ERα interacted with the ERE in the GAS6 promoter. Chromatin immunoprecipitation demonstrated that ERα was recruited to the GAS6 promoter upon estrogen stimulation. These results suggested that GAS6 is an estrogen target gene in mammary epithelial cells. PMID:17174935

  19. Mammary tumors and serum hormones in the bitch treated with medroxyprogesterone acetate or progesterone for four years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, D.W.; Kirton, K.T.; Murchison, T.E.

    After four years of a long term contraceptive steroid safety study, the incidence and the histologic type of mammary dysplasia produced is similar in beagles treated with medroxyprogesterone acetate (medroxyprogesterone) or progesterone. Serum insulin, thyroid stimulating hormone (TSH), triiodothyronine, growth hormone, prolactin, 17..beta..-estradiol, progesterone, and cortisol were determined by radioimmunoassay on samples collected after 45 months of treatment. Serum growth hormone and insulin concentrations were elevated in a dose related manner in both treatment groups. Triiodothyronine, cortisol, and estradiol-17..beta.. (medroxyprogesterone only) were lowered. TSH and prolactin concentrations were not changed. Pituitary--gonadal hormone interaction in the pathogenesis of mammary neoplasia ofmore » the dog is discussed. Prolonged treatment of the beagle with massive doses of progesterone or medroxyprogesterone results in a dose related incidence of mammary modules.« less

  20. Canonical Wnt Signaling as a Specific Marker for Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2012-02-01

    These cells were identified by  flow   cytometry  to detect cells that were positive for CD24 and CD49f.   2. We have established that activation of Wnt...09-1-0072 TITLE: Canonical Wnt Signaling as a Specific marker for Normal and Tumorigenic Mammary Stem Cells PRINCIPAL...activation of canonical Wnt signaling may be a very specific marker for mammary stem cells and be a target for transformation that results in the

  1. Tamoxifen impairs prepubertal mammary development and alters expression of estrogen receptor α (ESR1) and progesterone receptors (PGR).

    PubMed

    Tucker, H L M; Parsons, C L M; Ellis, S; Rhoads, M L; Akers, R M

    2016-01-01

    Research has shown that prepubertal heifers experience allometric mammary growth that is influenced by the ovaries. Our purpose was to determine the role of estrogen in prepubertal mammary gland development. Sixteen Holstein calves were randomly assigned to 1 of 2 treatment groups: tamoxifen-injected (TAM) or control (CON). Calves were administered the antiestrogen tamoxifen (0.3 mg kg(1) d(1)) or placebo from 28 to 120 d of age. At 120 d, calves were euthanized and udders removed. Weight and DNA content of trimmed parenchymal tissue were halved (P ≤ 0.0001) in TAM compared with CON calves. Parenchymal samples from 3 zones of the left rear mammary gland (lower, middle, and outer regions) were processed for immunohistochemical staining for estrogen receptor α (ESR1) and progesterone receptor (PGR), Ki67-positive cells, and 5-bromo-2'-deoxyuridine label retaining cells (LRCs). Overall, neither the percentage nor location within the epithelial tissue layer of either ESR1- or PGR-positive cells was impacted by TAM treatment. However, image analysis indicated a 6.2-fold lower (P = 0.0001) level of ESR1 protein expression in TAM calves. Similarly, messenger RNA expression of ESR1 was also reduced (P = 0.0001) in TAM heifers. In contrast, expression of PGR protein was greater by 43% (P = 0.03) in TAM calves, but messenger RNA expression did not differ between treatments. Overall, TAM calves had a higher (P ≤ 0.03) percentage and density (cells per tissue area) of Ki67-positive cells. Irrespective of treatment, there were also more Ki67-labeled cells in the outer zones of the mammary gland (P ≤ 0.001). We were able to effectively use multispectral imaging to identify positive cells and quantify the expression of ESR1 and PGR protein. We also identified and counted the proportion of label retaining cells (LCR) (putative epithelial stem cells). We noted an overall 2.9-fold greater number of LRCs in TAM heifers and more LRCs in the outer sampling zones. This suggests

  2. Feeding a higher plane of nutrition and providing exogenous estrogen increases mammary gland development in Holstein heifer calves.

    PubMed

    Geiger, A J; Parsons, C L M; Akers, R M

    2016-09-01

    Feeding heifers a higher plane of nutrition postweaning but before puberty can negatively affect mammary gland development and future milk yield. However, enhanced nutrition preweaning may promote development and future production. Our objectives were to determine the effects of enhanced feeding preweaning and exogenous estrogen immediately postweaning on mammary gland development and the composition of the mammary parenchyma (PAR) and mammary fat pad (MFP). Thirty-six Holstein heifer calves (<1 wk old) were reared on 1 of 2 dietary treatments for 8 wk: (1) a restricted milk replacer fed at 0.45 kg/d (R; 20% crude protein, 20% fat), or (2) an enhanced milk replacer fed at 1.13 kg/d (EH; 28% crude protein, 25% fat). Upon weaning, calves from each diet (n=6) were given either a placebo or estrogen implant for 2 wk, creating 4 treatments: R, R + estrogen (R-E2), EH, and EH + estrogen (EH-E2). Calves were housed individually with ad libitum access to water. Starter feeding began at wk 5 and was balanced between treatments. Udders were evaluated by palpation and physical measurements weekly. Subsets of calves were killed at weaning (n=6 per diet) and at the conclusion of the trial (n=6 per treatment). Udders were removed, dissected, and weighed. At wk 8, EH calves had longer front and rear teats. Providing estrogen to EH calves increased the length of rear teats during wk 9 and 10. Enhanced-fed calves had 5.2-fold more trimmed mammary gland mass than R calves. Providing estrogen to EH calves further increased mammary gland weight. Masses of PAR and MFP were markedly greater for EH calves than for R calves (e.g., 7.3-fold greater PAR tissue). Estrogen increased the mass of both PAR and MFP in EH calves. Feeding a higher plane of nutrition increased total protein, DNA, and fat in the MFP and total protein and DNA in the PAR. Dual-energy x-ray absorptiometry estimates of mammary fat mass were highly correlated with biochemical analyses of fat content. From histological

  3. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.

    PubMed Central

    Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G

    1993-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177

  4. Quantification of mammary organoid toxicant response and mammary tissue motility using OCT fluctuation spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Blackmon, Richard L.; Carabas-Hernendez, Patricia; Fuller, Ashley; Troester, Melissa A.; Oldenburg, Amy L.

    2016-03-01

    Mammary epithelial cell (MEC) organoids in 3D culture recapitulate features of breast ducts in vivo. OCT has the ability to monitor the evolution of MEC organoids non-invasively and longitudinally. The anti-cancer drug Doxorubicin (Dox) is able to inhibit proliferation of cancer cells and has been widely used for chemotherapy of breast cancers; while environmental toxins implicated in breast cancer such as estrogen regulates mammary tumor growth and stimulates the proliferation and metastatic potential of breast cancers. Here we propose a quantitative method for measuring motility of breast cells in 3D cultures based upon OCT speckle fluctuation spectroscopy. The metrics of the inverse power-law exponent (α) and fractional modulation amplitude (M) were extracted from speckle fluctuation spectra. These were used to quantify the responses of MEC organoids to Dox, and estrogen. We investigated MEC organoids comprised of two different MEC lines: MCF10DCIS.com exposed to Dox, and MCF7 exposed to estrogen. We found an increase (p<0.001) in α of MEC along time (t=0, 1 hour, 24 hours, 48 hours and 6 days) at each dose of Dox (0, 1 μM and 10 μM), indicating lower fluctuation intensity at higher frequencies. We also observed a decrease (p<0.001) in M for increasing time. However, both α and M of MCF7 treated with estrogen (0, 1 nM and 10 nM) exhibited the opposite trend along time. This novel technology provides rapid and non-invasive measurements of the effects of toxicants on MEC motility for understanding breast cancer development and assessing anti-cancer drugs.

  5. Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation.

    PubMed

    Tramontana, S; Bionaz, M; Sharma, A; Graugnard, D E; Cutler, E A; Ajmone-Marsan, P; Hurley, W L; Loor, J J

    2008-08-01

    High-throughput microarray analysis is an efficient means of obtaining a genome-wide view of transcript profiles across physiological states. However, quantitative PCR (qPCR) remains the chosen method for high-precision mRNA abundance analysis. Essential for reliability of qPCR data is normalization using appropriate internal control genes (ICG), which is now, more than ever before, a fundamental step for accurate gene expression profiling. We mined mammary tissue microarray data on >13,000 genes at -34, -14, 0, 7, 14, 21, and 28 d relative to parturition in 27 crossbred primiparous gilts to identify suitable ICG. Initial analysis revealed TBK1, PCSK2, PTBP1, API5, VAPB, QTRT1, TRIM41, TMEM24, PPP2R5B, and AP1S1 as the most stable genes (sample/reference = 1 +/- 0.2). We also included 9 genes previously identified as ICG in bovine mammary tissue. Gene network analysis of the 19 genes identified AP1S1, API5, MTG1, VAPB, TRIM41, MRPL39, and RPS15A as having no known co-regulation. In addition, UXT and ACTB were added to this list, and mRNA abundance of these 9 genes was measured by qPCR. Expression of all 9 of these genes was decreased markedly during lactation. In a previous study with bovine mammary tissue, mRNA of stably expressed genes decreased during lactation due to a dilution effect brought about by large increases in expression of highly abundant genes. To verify this effect, highly abundant mammary genes such as CSN1S2, SCD, FABP3, and LTF were evaluated by qPCR. The tested ICG had a negative correlation with these genes, demonstrating a dilution effect in the porcine mammary tissue. Gene stability analysis identified API5, VABP, and MRPL39 as the most stable ICG in porcine mammary tissue and indicated that the use of those 3 genes was most appropriate for calculating a normalization factor. Overall, results underscore the importance of proper validation of internal controls for qPCR and highlight the limitations of using absence of time effects as the

  6. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    PubMed

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P < 0.02), decreased incidence from 85% to 35% (P < 0.001), and reduced multiplicity from 3.0 to 1.1 tumors/animal (P < 0.001). Tumor burden decreased from 2.6 g/animal to 0.26 g/animal (P < 0.01). CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  7. Reduced energy intake and moderate exercise reduce mammary tumor incidence in virgin female BALB/c mice treated with 7,12-dimethylbenz(a)anthracene

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Teer, Patricia; Keith, Robert E.; White, Marguerite T.; Strahan, Susan

    1991-01-01

    The concurrent effects of diet (standard AIN-76A, restricted AIN-76A and high-fat diet) and moderate rotating-drum treadmill exercise on the incidence of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in virgin female BALB/cMed mice free of murine mammary tumor virus are evaluated. Analyses show that, although energy intake was related to mammary tumor incidence, neither body weight nor dietary fat predicted tumor incidence.

  8. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation.

    PubMed

    Khadge, Saraswoti; Thiele, Geoffrey M; Sharp, John Graham; McGuire, Timothy R; Klassen, Lynell W; Black, Paul N; DiRusso, Concetta C; Talmadge, James E

    2018-06-01

    Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.

  9. Sequence Variants and Haplotype Analysis of Cat ERBB2 Gene: A Survey on Spontaneous Cat Mammary Neoplastic and Non-Neoplastic Lesions

    PubMed Central

    Santos, Sara; Bastos, Estela; Baptista, Cláudia S.; Sá, Daniela; Caloustian, Christophe; Guedes-Pinto, Henrique; Gärtner, Fátima; Gut, Ivo G.; Chaves, Raquel

    2012-01-01

    The human ERBB2 proto-oncogene is widely considered a key gene involved in human breast cancer onset and progression. Among spontaneous tumors, mammary tumors are the most frequent cause of cancer death in cats and second most frequent in humans. In fact, naturally occurring tumors in domestic animals, more particularly cat mammary tumors, have been proposed as a good model for human breast cancer, but critical genetic and molecular information is still scarce. The aims of this study include the analysis of the cat ERBB2 gene partial sequences (between exon 17 and 20) in order to characterize a normal and a mammary lesion heterogeneous populations. Cat genomic DNA was extracted from normal frozen samples (n = 16) and from frozen and formalin-fixed paraffin-embedded mammary lesion samples (n = 41). We amplified and sequenced two cat ERBB2 DNA fragments comprising exons 17 to 20. It was possible to identify five sequence variants and six haplotypes in the total population. Two sequence variants and two haplotypes show to be specific for cat mammary tumor samples. Bioinformatics analysis predicts that four of the sequence variants can produce alternative transcripts or activate cryptic splicing sites. Also, a possible association was identified between clinicopathological traits and the variant haplotypes. As far as we know, this is the first attempt to examine ERBB2 genetic variations in cat mammary genome and its possible association with the onset and progression of cat mammary tumors. The demonstration of a possible association between primary tumor size (one of the two most important prognostic factors) and the number of masses with the cat ERBB2 variant haplotypes reveal the importance of the analysis of this gene in veterinary medicine. PMID:22489125

  10. Screening of miRNA profiles and construction of regulation networks in early and late lactation of dairy goat mammary glands.

    PubMed

    Ji, Zhibin; Liu, Zhaohua; Chao, Tianle; Hou, Lei; Fan, Rui; He, Rongyan; Wang, Guizhi; Wang, Jianmin

    2017-09-20

    In recent years, studies related to the expression profiles of miRNAs in the dairy goat mammary gland were performed, but regulatory mechanisms in the physiological environment and the dynamic homeostasis of mammary gland development and lactation are not clear. In the present study, sequencing data analysis of early and late lactation uncovered a total of 1,487 unique miRNAs, including 45 novel miRNA candidates and 1,442 known and conserved miRNAs, of which 758 miRNAs were co-expressed and 378 differentially expressed with P < 0.05. Moreover, 76 non-redundant target genes were annotated in 347 GO consortiums, with 3,143 candidate target genes grouped into 33 pathways. Additionally, 18 predicted target genes of 214 miRNAs were directly annotated in mammary gland development and used to construct regulatory networks based on GO annotation and the KEGG pathway. The expression levels of seven known miRNAs and three novel miRNAs were examined using quantitative real-time PCR. The results showed that miRNAs might play important roles in early and late lactation during dairy goat mammary gland development, which will be helpful to obtain a better understanding of the genetic control of mammary gland lactation and development.

  11. Influence of caffeine and/or coffee consumption on the initiation and promotion phases of 7,12-dimethylbenz(a)anthracene-induced rat mammary gland tumorigenesis.

    PubMed

    Welsch, C W; DeHoog, J V; O'Connor, D H

    1988-04-15

    The effect of caffeine and/or coffee consumption (via the drinking water) during the initiation phase and promotion phase of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland tumorigenesis in female Sprague-Dawley rats fed a commercial laboratory animal chow was examined. In the initiation studies, DMBA was administered once at 53-55 days of age; caffeine (100-860 mg/liter of drinking water) and/or coffee (moderate or high dose, sole source of drinking water) treatments were for 32 consecutive days, commencing 29 days prior to DMBA treatment and terminating 3 days after DMBA treatment. In the promotion studies, DMBA was administered once at 54-55 days of age; caffeine and/or coffee treatments were daily from 57-58 days of age to termination of experiments (12-21 weeks after carcinogen treatment). In the initiation studies, either moderate (100-400 mg) or high (860 mg) dose levels of caffeine or moderate to high dose levels of caffeinated coffee significantly (P less than 0.05) reduced mammary carcinoma multiplicity (number of tumors/rat). Consumption of high or moderate dose levels of decaffeinated coffee did not significantly alter mammary carcinoma multiplicity. The addition of caffeine to the moderate dose level of decaffeinated coffee resulted in a significant (P less than 0.05) reduction in mammary carcinoma multiplicity. In the promotion studies, prolonged consumption of moderated dose levels of caffeine or moderate or high dose levels of caffeinated coffee or decaffeinated coffee did not significantly effect mammary carcinoma multiplicity. In the early stages of promotion, however, a significant (p less than 0.05) stimulatory effect of caffeine on mammary carcinoma multiplicity was observed; an effect that was temperate and transitory. In both the initiation and promotion studies caffeine and/or coffee consumption did not significantly affect the incidence of mammary carcinomas (percentage of rats bearing mammary carcinomas) or the mean latency

  12. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes.

    PubMed

    Veltmaat, Jacqueline M; Relaix, Frédéric; Le, Lendy T; Kratochwil, Klaus; Sala, Frédéric G; van Veelen, Wendy; Rice, Ritva; Spencer-Dene, Bradley; Mailleux, Arnaud A; Rice, David P; Thiery, Jean Paul; Bellusci, Saverio

    2006-06-01

    Little is known about the regulation of cell fate decisions that lead to the formation of five pairs of mammary placodes in the surface ectoderm of the mouse embryo. We have previously shown that fibroblast growth factor 10 (FGF10) is required for the formation of mammary placodes 1, 2, 3 and 5. Here, we have found that Fgf10 is expressed only in the somites underlying placodes 2 and 3, in gradients across and within these somites. To test whether somitic FGF10 is required for the formation of these two placodes, we analyzed a number of mutants with different perturbations of somitic Fgf10 gradients for the presence of WNT signals and ectodermal multilayering, markers for mammary line and placode formation. The mammary line is displaced dorsally, and formation of placode 3 is impaired in Pax3ILZ/ILZ mutants, which do not form ventral somitic buds. Mammary line formation is impaired and placode 3 is absent in Gli3Xt-J/Xt-J and hypomorphic Fgf10 mutants, in which the somitic Fgf10 gradient is shortened dorsally and less overall Fgf10 is expressed, respectively. Recombinant FGF10 rescued mammogenesis in Fgf10(-/-) and Gli3Xt-J/Xt-J flanks. We correlate increasing levels of somitic FGF10 with progressive maturation of the surface ectoderm, and show that full expression of somitic Fgf10, co-regulated by GLI3, is required for the anteroposterior pattern in which the flank ectoderm acquires a mammary epithelial identity. We propose that the intra-somitic Fgf10 gradient, together with ventral elongation of the somites, determines the correct dorsoventral position of mammary epithelium along the flank.

  13. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis

    PubMed Central

    Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE

    2013-01-01

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging

  14. Prognostic Value of Occult Isolated Tumour Cells within Regional Lymph Nodes of Dogs with Malignant Mammary Tumours.

    PubMed

    Coleto, A F; Wilson, T M; Soares, N P; Gundim, L F; Castro, I P; Guimarães, E C; Bandarra, M B; Medeiros-Ronchi, A A

    2018-01-01

    Canine mammary tumours (CMTs) are the most common type of neoplasm in bitches. As in women, the presence of metastasis in regional lymph nodes is an important prognostic factor in bitches with mammary carcinomas, but the clinical significance of occult isolated tumour cells (ITCs) within lymph nodes is still undefined in this species. The effectiveness of immunohistochemistry (IHC) in identifying occult ITCs and micrometastasis (MIC) was compared with that of the conventional haematoxylin and eosin staining technique. The relationship between tumour size, histological type, histological grade and the presence of metastasis was evaluated. The overall survival (OS) of female dogs with occult mammary carcinomas and ITCs within lymph nodes was analysed. Fragments of mammary carcinoma and regional lymph nodes of 59 female dogs were also evaluated. Histological sections of mammary carcinoma and lymph node samples were studied for tumour diagnosis and lymph node samples were tested by IHC using a pan-cytokeratin antibody. It was found that 35.2% of occult ITCs and 2.8% of hidden MIC were detected when IHC was used. There was a good correlation between the size of the tumour and metastasis to the lymph nodes (P = 0.77). ITCs were observed more frequently in the medullary region (60.7%) and metastases in the cortical region (44.4%). There was no significant difference in the OS between female dogs with occult ITCs and lymph nodes without ITCs. IHC can detect occult tumour cells in lymph nodes that are negative by histopathological examination. Female dogs with nodal ITCs do not have lower survival. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation.

    PubMed

    LaPlante, Charlotte D; Catanese, Mary C; Bansal, Ruby; Vandenberg, Laura N

    2017-10-01

    High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pups were less likely to initiate nursing. Pup growth and development were also stunted. These data indicate that low doses of BPS can alter lactational behaviors and the maternal mammary gland. Together, they support the hypothesis that pregnancy and lactation are sensitive to low-dose xenoestrogen exposures. Copyright © 2017 Endocrine Society.

  16. Inhibitory effect of the peptide epitalon on the development of spontaneous mammary tumors in HER-2/neu transgenic mice.

    PubMed

    Anisimov, Vladimir N; Khavinson, Vladimir K H; Provinciali, Mauro; Alimova, Irina N; Baturin, Dmitri A; Popovich, Irina G; Zabezhinski, Mark A; Imyanitov, Eugeni N; Mancini, Romina; Franceschi, Claudio

    2002-09-01

    Female FVB/N HER-2/neu transgenic mice from the age of 2 months were subcutaneously injected with saline, the peptide Epitalon(R) (Ala-Glu-Asp-Gly) or with the peptide Vilon(R) (Lys-Glu) in a single dose of 1 microg/mouse for 5 consecutive days every month. Epitalon treatment reduced the cumulative number and the maximum size of tumors (p < 0.05). Furthermore, the number of mice bearing 1 mammary tumor was increased, whereas the number of mice bearing 2 or more mammary tumors was reduced in Epitalon-treated in comparison to saline-treated animals (p < 0.05). The size but not the number of lung metastases was reduced in Epitalon-treated compared to saline-treated mice (p < 0.05). The treatment with Vilon produced significant negative effects when compared to the control group, with an increased incidence of mammary cancer development (p < 0.05), a shorter mean latent period of tumors (p < 0.05) and an increased cumulative number of tumors (p < 0.05). A 3.7-fold reduction in the expression of HER-2/neu mRNA was found in mammary tumors from HER-2/neu transgenic mice treated with Epitalon compared to control animals. The expression of mRNA for HER-2/neu was also partially reduced in Vilon-treated mice, but it remained significantly higher in Vilon- than in Epitalon-treated animals (1.9-fold increase). The data demonstrate the inhibitory effect of Epitalon in the development of spontaneous mammary tumors in HER-2/neu mice, suggesting that a downregulation of HER-2/neu gene expression in mammary adenocarcinoma may be responsible, at least in part, for the antitumor effect of the peptide. Copyright 2002 Wiley-Liss, Inc.

  17. MRI ductography of contrast agent distribution and leakage in normal mouse mammary ducts and ducts with in situ cancer.

    PubMed

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Conzen, Suzanne D; Karczmar, Gregory S

    2017-07-01

    High resolution 3D MRI was used to study contrast agent distribution and leakage in normal mouse mammary glands and glands containing in situ cancer after intra-ductal injection. Five female FVB/N mice (~19weeks old) with no detectable mammary cancer and eight C3(1) SV40 Tag virgin female mice (~15weeks old) with extensive in situ cancer were studied. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple and approximately 15μL of a Gadodiamide was injected slowly over 1min into the nipple and throughout the duct on one side of the inguinal gland. Following injection, the mouse was placed in a 9.4T MRI scanner, and a series of high resolution 3D T1-weighted images was acquired with a temporal resolution of 9.1min to follow contrast agent leakage from the ducts. The first image was acquired at about 12min after injection. Ductal enhancement regions detected in images acquired between 12 and 21min after contrast agent injection was five times smaller in SV40 mouse mammary ducts (p<0.001) than in non-cancerous FVB/N mouse mammary ducts, perhaps due to rapid washout of contrast agent from the SV40 ducts. The contrast agent washout rate measured between 12min and 90min after injection was ~20% faster (p<0.004) in SV40 mammary ducts than in FVB/N mammary ducts. These results may be due to higher permeability of the SV40 ducts, likely due to the presence of in situ cancers. Therefore, increased permeability of ducts may indicate early stage breast cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Establishment of primary mixed cell cultures from spontaneous canine mammary tumors: Characterization of classic and new cancer-associated molecules

    PubMed Central

    Gentile, Luciana B.; Nagamine, Marcia K.; Biondi, Luiz R.; Sanches, Daniel S.; Toyota, Fábio; Giovani, Tatiane M.; de Jesus, Isis P.; da Fonseca, Ivone I. M.; Queiroz-Hazarbassanov, Nicolle; Diaz, Bruno L.; Salles Gomes, Cristina de O. Massoco

    2017-01-01

    There are many factors which make canine cancer like cancer in humans. The occurrence of spontaneous mammary tumors in pet dogs, tumor genetics, molecular targets and exposure to the same environmental risk factors are among these factors. Therefore, the study of canine cancer can provide useful information to the oncology field. This study aimed to establish and characterize a panel of primary mixed cell cultures obtained from spontaneous canine mammary tumors. Eight established cell cultures obtained from one normal mammary gland, one complex adenoma, one mixed adenoma, two complex carcinomas and two mixed carcinomas were analyzed. The gene expression levels of classic molecular cancer players such as fibroblast growth factor receptor (FGFR) 2, breast cancer (BRCA) 1, BRCA2 and estrogen receptor (ESR) 1 were evaluated. For the first time, three orphan nuclear receptors, estrogen-related receptors (ERRs) α, β and γ were studied in canine mammary cancer. The highest expression level of ERRα was observed in complex carcinoma-derived cell culture, while the highest levels of ERRβ and γ were observed in cells derived from a mixed carcinoma. Meanwhile, complex carcinomas presented the highest levels of expression of ESR1, BRCA1 and FGFR2 among all samples. BRCA2 was found exclusively in complex adenoma. The transcription factor GATA3 had its highest levels in mixed carcinoma samples and its lowest levels in complex adenoma. Proliferation assays were also performed to evaluate the mixed cell cultures response to ER ligands, genistein and DES, both in normoxia and hypoxic conditions. Our results demonstrate that morphological and functional studies of primary mixed cell cultures derived from spontaneous canine mammary tumors are possible and provide valuable tool for the study of various stages of mammary cancer development. PMID:28945747

  19. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk

    PubMed Central

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-01-01

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland. PMID:26463440

  20. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    PubMed Central

    Chanson, Lea; Brownfield, Douglas; Garbe, James C.; Kuhn, Irene; Stampfer, Martha R.; Bissell, Mina J.; LaBarge, Mark A.

    2011-01-01

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877

  1. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanson, L.; Brownfield, D.; Garbe, J. C.

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal humanmore » mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.« less

  2. Obesity and perinatal TCDD exposure increases mammary tumors in FVB mice

    EPA Science Inventory

    Risk of breast cancer has been consistently shown to correlate to total lifetime exposure to estrogens. Because both TCDD exposure and the state of obesity interact with the estrogen pathway, we wanted to investigate how TCDD and obesity interact with mammary cancer susceptibili...

  3. Mammary cell-activating factor regulates the hormone-independent transcription of the early lactation protein (ELP) gene in a marsupial.

    PubMed

    Pharo, Elizabeth A; Renfree, Marilyn B; Cane, Kylie N

    2016-11-15

    The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse β-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells.

    PubMed Central

    Band, V; Dalal, S; Delmolino, L; Androphy, E J

    1993-01-01

    Normal mammary epithelial cells are efficiently immortalized by the E6 gene of human papillomavirus (HPV)-16, a virus commonly associated with cervical cancers. Surprisingly, introduction of the E6 gene from HPV-6, which is rarely found in cervical cancer, or bovine papillomavirus (BPV)-1, into normal mammary cells resulted in the generation of immortal cell lines. The establishment of HPV-6 and BPV-1 E6-immortalized cells was less efficient and required a longer period in comparison to HPV-16 E6. These HPV-6- and BPV-1 E6-immortalized cells demonstrated dramatically reduced levels of p53 protein by immunoprecipitation. While the half-life of p53 protein in normal mammary epithelial cells was approximately 3 h, it was reduced to approximately 15 min in all the E6-immortalized cells. These results demonstrate that the E6 genes of both high-risk and low-risk papilloma viruses immortalize human mammary epithelial cells and induce a marked degradation of p53 protein in vivo. Images PMID:8387914

  5. GuideLiner™ as guide catheter extension for the unreachable mammary bypass graft.

    PubMed

    Vishnevsky, Alec; Savage, Michael P; Fischman, David L

    2018-03-09

    Percutaneous coronary intervention (PCI) of mammary artery bypass grafts through a trans-radial (TR) approach can present unique challenges, including coaxial vessel engagement of the guiding catheter, adequate visualization of the target lesion, sufficient backup support for equipment delivery, and the ability to reach very distal lesions. The GuideLiner catheter, a rapid exchange monorail mother-in-daughter system, facilitates successful interventions in such challenging anatomy. We present a case of a patient undergoing PCI of a right internal mammary artery (RIMA) graft via TR access in whom the graft could not be engaged with any guiding catheter. Using a balloon tracking technique over a guidewire, a GuideLiner was placed as an extension of the guiding catheter and facilitated TR-PCI by overcoming technical challenges associated with difficult anatomy. © 2018 Wiley Periodicals, Inc.

  6. STAT6 Deletion Enhances Immunity to Mammary Carcinoma

    DTIC Science & Technology

    2005-06-01

    probably oxygen intermediates, such as hydrogen peroxide and nitric oxide, not involved in the IFN--y effect on the 4TI mammary carcinoma, which are...mechanistic explanation for the improved tumor immunity is not clear. The purpose of this project is to determine the potency of the Stat6 effect for enhancing...Staining with DCFDA, which measures hydrogen peroxide , hydroxyl radical, by BALB/c, but not CD 1-V, MSC is arginase-dependent. peroxynitrile, and

  7. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients.

    PubMed

    Thuesen, A D; Lyngsø, K S; Rasmussen, L; Stubbe, J; Skøtt, O; Poulsen, F R; Pedersen, C B; Rasmussen, L M; Hansen, P B L

    2017-03-01

    Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain and mammary blood vessels. Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. The P/Q-type antagonist ω-agatoxin IVA (10 -8  mol L -1 ) and the T-type calcium blocker mibefradil (10 -7  mol L -1 ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased contraction in cerebral arterioles from hypertensive patients. L-type blocker nifedipine abolished the contraction in mammary arteries. PCR analysis showed expression of P/Q-type (Ca v 2.1), T-type (Ca v 3.1 and Ca v 3.2) and L-type (Ca v 1.2) calcium channels in mammary and cerebral arteries. Immunohistochemical labelling of mammary and cerebral arteries revealed the presence of Ca v 2.1 in endothelial and smooth muscle cells. Ca v 3.1 was also detected in mammary arteries. P/Q- and T-type Ca v are present in human internal mammary arteries and in cerebral penetrating arterioles. P/Q- and T-type calcium channels are involved in the contraction of mammary arteries from hypertensive patients but not from normotensive patients. Furthermore, in cerebral arterioles P/Q-type channels importance was restricted to hypertensive patients might lead to that T- and P/Q-type channels could be a new target in hypertensive patients. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Mammary tumor associated Hspb1 mutation and screening of eight cat populations of the world.

    PubMed

    Saif, R; Awan, A R; Lyons, L; Gandolfi, B; Tayyab, M; Ellahi Babar, M; Wasim, M

    2016-01-01

    Current research highlights the Hspb1 based screening of eight cat populations of the world to investigate the association of newly found locus within cat mammary tumors. Total 180 cats were screened on the basis of Hspb1 4 bp deletion locus (1514-1517del4) which was observed in six mammary tumor cases in Siamese cat breed. Case-control association study revealed the non-significance with P=0.201 and an overall mutant allele frequency of 0.30 ranging from 0.20-0.40 was observed in other cat populations. Similarly, HWE was also obeyed in combined population samples with P=0.860 and found non-significant with range of 0.429-0.708 in other non-Pakistani cat populations as well. These results might be helpful to understand the association of this novel locus in a better way with large sample size of cases and may also serve as a potential marker for mammary tumor diagnosis, particularly in cats and generally in all other animal populations in comparative genetics and genomics context.

  9. Obesity, expression of adipocytokines, and macrophage infiltration in canine mammary tumors.

    PubMed

    Lim, H Y; Im, K S; Kim, N H; Kim, H W; Shin, J I; Sur, J H

    2015-03-01

    Obesity influences the development, progression and prognosis of human breast cancer and canine mammary cancer (MC) but the precise underlying mechanism is not well-documented in the fields of either human or veterinary oncology. In the present study, the expression of major adipocytokines, including leptin, adiponectin, and leptin receptor (ObR) in benign (n = 28) and malignant (n = 70) canine mammary tumors was investigated by immunohistochemistry and on the basis of the subject's body condition score (BCS). To evaluate the relationship between obesity and chronic inflammation of the mammary gland, macrophages infiltrating within and around tumoral areas were counted. The mean age of MC development was lower in overweight or obese dogs (9.0 ± 1.8 years) than in lean dogs or optimal bodyweight (10.2 ± 2.9 years), and the evidence of lymphatic invasion of carcinoma cells was found more frequently in overweight or obese group than in lean or optimal groups. Decreased adiponectin expression and increased macrophage numbers in overweight or obese subjects were significantly correlated with factors related to a poor prognosis, such as high histological grade and lymphatic invasion. Leptin expression was correlated with progesterone receptor status, and ObR expression was correlated with estrogen receptor status of MCs, regardless of BCS. Macrophage infiltration within and around the tumor may play an important role in tumor progression and metastasis in obese female dogs and may represent a prognostic factor for canine MCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mammary fibroadenoma in a lamb

    PubMed Central

    Guvenc, Tolga; Yarim, Murat; Kabak, Yonca B.; Sozgen, Yuksel

    2007-01-01

    A fibroadenoma was diagnosed in the left udder of a 3-month-old female Chios lamb. No recurrence was observed after surgery. Grossly, the tumor had a whitish-gray lobular appearance, and the lobules were interlaced with thin septa. Microscopically, the tumor was composed of proliferating fibroepithelial tissue, including differentiated ducts lined by whorls and interlacing bundles of abundant loose fibrovascular stroma. Immunohistochemistry revealed the ductal epithelium to be positive for pancytokeratin (AE1/AE3) and loose fibrovascular stroma was positive for vimentin and basal cells covering the ductal epithelium of alpha-smooth-muscle actin. Immunostaining for the estrogen and progesterone receptors was negative. A diagnosis of mammary fibroadenoma was made based on the histological and immunohistochemical findings. PMID:17993758

  11. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-β1 and aryl hydrocarbon receptor signaling.

    PubMed

    Miret, Noelia; Rico-Leo, Eva; Pontillo, Carolina; Zotta, Elsa; Fernández-Salguero, Pedro; Randi, Andrea

    2017-11-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor β1 (TGF-β1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF-β1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05μM HCB induced cell migration and TGF-β1 signaling, whereas 5μM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5μM) enhanced α-smooth muscle actin expression and decreased TGF-β receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5μM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF-β1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds. Copyright © 2017. Published by Elsevier Inc.

  12. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.

    PubMed

    Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M

    1991-10-01

    Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.

  13. Has the mammary gland a protective mechanism against overexposure to triiodothyronine during the peripartum period? The prolactin pulse down-regulates mammary type I deiodinase responsiveness to norepinephrine.

    PubMed

    Anguiano, B; Rojas-Huidobro, R; Delgado, G; Aceves, C

    2004-11-01

    Peripartum is a crucial period for mammary gland final differentiation and the onset of lactation. Although the 'trigger' for lactogenesis depends on several hormones, a key factor is the peripartum prolactin (PRL) pulse whose deletion results in a failure to initiate milk production. Other hormones having a critical role during this period but exerting a contrary effect are the thyronines. A transitory hypothyroidism occurs at peripartum in serum and several other extrathyroidal tissues, whereas the induction of hyperthyroidism during late pregnancy is associated with the absence of lactation after delivery. We analyzed the mammary gland during pregnancy and lactation for: (a) the type and amount of thyroid receptors (TRs), (b) the local triiodothyronine (T3) generation catalyzed by type I deiodinase (Dio1), (c) the Dio1 response to norepinephrine (NE) and (d) the effect on Dio1 and TRs of blocking the PRL pulse at peripartum. Our data showed that during pregnancy the mammary gland contains Dio1 in low amounts associated with the highest expression of TRalpha1; whereas during lactation the gland shows high levels of both Dio1 and TRalpha1. However, at peripartum, both TRs and Dio1 decrease, and Dio1 becomes refractory to NE. This refractoriness disappears when the PRL pulse is blocked by the dopamine agonist bromocriptine. This blockade is also accompanied by a significant decrease in cyclin D1 expression. Our data suggested that the peripartum PRL pulse is part of a protective mechanism against precocious differentiation and/or premature involution of the alveolar epithelium due to T3 overexposure.

  14. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    PubMed

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  15. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice.

    PubMed

    Derksen, Patrick W B; Braumuller, Tanya M; van der Burg, Eline; Hornsveld, Marten; Mesman, Elly; Wesseling, Jelle; Krimpenfort, Paul; Jonkers, Jos

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  16. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene.

    PubMed Central

    Maroulakou, I G; Anver, M; Garrett, L; Green, J E

    1994-01-01

    A transgenic mouse model for prostate and mammary cancer has been developed in mice containing a recombinant gene expressing the simian virus 40 early-region transforming sequences under the regulatory control of the rat prostatic steroid binding protein [C3(1)] gene. Male transgenic mice develop prostatic hyperplasia in early life that progresses to adenoma or adenocarcinoma in most animals surviving to longer than 7 months of age. Prostate cancer metastases to lung have been observed. Female animals from the same founder lines generally develop mammary hyperplasia by 3 months of age with subsequent development of mammary adenocarcinoma by 6 months of age in 100% of the animals. The development of tumors correlates with the expression of the transgene as determined by Northern blot and immunohistochemical analyses. The results of these experiments demonstrate that the C3(1) regulatory region used in these experiments is useful for targeting expression to the prostate and mammary gland. To our knowledge, this experimental system is the first reported transgenic mouse model for prostate cancer. These transgenic animals offer the opportunity to study hormone response elements in vivo and the multistage progression from normal tissue to carcinoma in the prostate and mammary glands. Images PMID:7972041

  17. The Immunoexpression of Glucocorticoid Receptors in Breast Carcinomas, Lactational Change, and Normal Breast Epithelium and Its Possible Role in Mammary Carcinogenesis

    PubMed Central

    Wazir, Javed Fayyaz; Brahmi, Urmil Prabha; Fakhro, Abdul Rahman

    2017-01-01

    The role of estrogen and progesterone receptors in breast cancer biology is well established. In contrast, other steroid hormones are less well studied. Glucocorticoids (GCs) are known to play a role in mammary development and differentiation; thus, it is of interest to attempt to delineate their immunoexpression across a spectrum of mammary epithelia. Aim. To delineate the distribution pattern of glucocorticoid receptors (GRs) in malignant versus nonmalignant epithelium with particular emphasis on lactational epithelium. Materials and Methods. Immunohistochemistry (IHC) for GRs was performed on archival formalin-fixed paraffin-embedded tissue blocks of 96 cases comprising 52 invasive carcinomas, 21 cases with lactational change, and 23 cases showing normal mammary tissue histology. Results. Results reveal an overexpression of GRs in mammary malignant epithelium as compared to both normal and lactational groups individually and combined. GR overexpression is significantly more pronounced in HER-2-negative cancers. Discussion. This is the first study to compare GR expression in human lactating epithelium versus malignant and normal epithelium. The article discusses the literature related to the pathobiology of GCs in the breast with special emphasis on breast cancer. Conclusion. The lactational epithelium did not show overexpression of GR, while GR was overexpressed in mammary NST (ductal) carcinoma, particularly HER-2-negative cancers. PMID:29348941

  18. Influence of tangeretin on tamoxifen's therapeutic benefit in mammary cancer.

    PubMed

    Bracke, M E; Depypere, H T; Boterberg, T; Van Marck, V L; Vennekens, K M; Vanluchene, E; Nuytinck, M; Serreyn, R; Mareel, M M

    1999-02-17

    Tamoxifen and the citrus flavonoid tangeretin exhibit similar inhibitory effects on the growth and invasive properties of human mammary cancer cells in vitro; furthermore, the two agents have displayed additive effects in vitro. In this study, we examined whether tangeretin would enhance tamoxifen's therapeutic benefit in vivo. Female nude mice (n = 80) were inoculated subcutaneously with human MCF-7/6 mammary adenocarcinoma cells. Groups of 20 mice were treated orally by adding the following substances to their drinking water: tamoxifen (3 x 10(-5) M), tangeretin (1 x 10(-4) M), tamoxifen plus tangeretin (3 x 10(-5) M plus 1 x 10(-4) M), or solvent. Oral treatment of mice with tamoxifen resulted in a statistically significant inhibition of tumor growth compared with solvent treatment (two-sided P = .001). Treatment with tangeretin did not inhibit tumor growth, and addition of this compound to drinking water with tamoxifen completely neutralized tamoxifen's inhibitory effect. The median survival time of tumor-bearing mice treated with tamoxifen plus tangeretin was reduced in comparison with that of mice treated with tamoxifen alone (14 versus 56 weeks; two-sided P = .002). Tangeretin (1 x 10(-6) M or higher) inhibited the cytolytic effect of murine natural killer cells on MCF-7/6 cells in vitro, which may explain why tamoxifen-induced inhibition of tumor growth in mice is abolished when tangeretin is present in drinking water. We describe an in vivo model to study potential interference of dietary compounds, such as flavonoids, with tamoxifen, which could lead to reduced efficacy of adjuvant therapy. In our study, the tumor growth-inhibiting effect of oral tamoxifen was reversed upon addition of tangeretin to the diet. Our data argue against excessive consumption of tangeretin-added products and supplements by patients with mammary cancer during tamoxifen treatment.

  19. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia

    NASA Technical Reports Server (NTRS)

    Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.

    2003-01-01

    Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.

  20. Short interspersed CAN SINE elements as prognostic markers in canine mammary neoplasia.

    PubMed

    Gelaleti, Gabriela B; Granzotto, Adriana; Leonel, Camila; Jardim, Bruna V; Moschetta, Marina G; Carareto, Claudia M A; Zuccari, Debora Ap P C

    2014-01-01

    The genome of mammals is characterized by a large number of non-LTR retrotransposons, and among them, the CAN SINEs are characteristics of the canine species. Small amounts of DNA freely circulate in normal blood serum and high amounts are found in human patients with cancer, characterizing it as a candidate tumor-biomarker. The aim of this study was to estimate, through its absolute expression, the number of copies of CAN SINE sequences present in free circulating DNA of female dogs with mammary cancer, in order to correlate with the clinical and pathological characteristics and the follow-up period. The copy number of CAN SINE sequences was estimated by qPCR in 28 female dogs with mammary neoplasia. The univariate analysis showed an increased number of copies in female dogs with mammary tumor in female dogs >10 years old (p=0.02) and tumor time >18 months (p<0.05). The Kaplan-Meier test demonstrated a negative correlation between an increased number of copies and survival time (p=0.03). High amounts of CAN SINE fragments can be good markers for the detection of tumor DNA in blood and may characterize it as a marker of poor prognosis, being related to female dogs with shorter survival times. This estimate can be used as a prognostic marker in non-invasive breast cancer research and is useful in predicting tumor progression and patient monitoring.

  1. MUCI Facilitation of Growth in Chemically Induced Mammary Gland Tumors in Muc-1 Mutant and MUCI Transgenic Mice.

    DTIC Science & Technology

    1998-08-01

    present grant proposed to initiate tumor development using chemical carcinogenesis. Pazos et al. (1991) demonstrated chemical induction of murine...latency of 154 ±19 days. Tumors were mammary adenocarcinomas of the B type of Dunn’s classification ( Pazos , 1991). My hypothesis for these studies was...in rats. Murine response to NMU is only briefly documented in the literature ( Pazos et al., 1991). Following the protocol for NMU induction of mammary

  2. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media

    PubMed Central

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B.; Jansen, Sanaz A.; Macleod, Kay; Conzen, Suzanne D.; Karczmar, Gregory S.

    2014-01-01

    The purpose of this study was to use high resolution 3D MRI to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12–20 weeks (n = 12), were used in this study. A 34G, 45° tip Hamilton needle with a 25uL Hamilton syringe was inserted into the tip of the nipple. Approximately 20–25uL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p < 0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p < 0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers. PMID:25179139

  3. Strain Differences in Dimethylbenz[a]anthracene-Induced Mammary Tumor Incidence in Long Evans and Sprague Dawley Rat Offspring Following Prenatal Atrazine Exposure

    EPA Science Inventory

    It has been shown that prenatal exposure to the chlorotriazine herbicide atrazine (ATR) during mammary bud outgrowth (late gestation) delays postnatal mammary epithelial progression in Long Evans (LE) rats. Our laboratory has recently found that prenatal exposure to ATR also effe...

  4. Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome

    PubMed Central

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Klopp, Christophe; Tosser-Klopp, Gwenola; Arranz, Juan-José

    2016-01-01

    RNA-Seq enables the generation of extensive transcriptome information providing the capability to characterize transcripts (including alternative isoforms and polymorphism), to quantify expression and to identify differential regulation in a single experiment. Our aim in this study was to take advantage of using RNA-Seq high-throughput technology to provide a comprehensive transcriptome profiling of the sheep lactating mammary gland. Eight ewes of two dairy sheep breeds with differences in milk production traits were used in this experiment (four Churra and four Assaf ewes). Milk samples from these animals were collected on days 10, 50, 120 and 150 after lambing to cover the various physiological stages of the mammary gland across the complete lactation. RNA samples were extracted from milk somatic cells. The RNA-Seq dataset was generated using an Illumina HiSeq 2000 sequencer. The information reported here will be useful to understand the biology of lactation in sheep, providing also an opportunity to characterize their different patterns on milk production aptitude. PMID:27377755

  5. Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome.

    PubMed

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Klopp, Christophe; Tosser-Klopp, Gwenola; Arranz, Juan-José

    2016-07-05

    RNA-Seq enables the generation of extensive transcriptome information providing the capability to characterize transcripts (including alternative isoforms and polymorphism), to quantify expression and to identify differential regulation in a single experiment. Our aim in this study was to take advantage of using RNA-Seq high-throughput technology to provide a comprehensive transcriptome profiling of the sheep lactating mammary gland. Eight ewes of two dairy sheep breeds with differences in milk production traits were used in this experiment (four Churra and four Assaf ewes). Milk samples from these animals were collected on days 10, 50, 120 and 150 after lambing to cover the various physiological stages of the mammary gland across the complete lactation. RNA samples were extracted from milk somatic cells. The RNA-Seq dataset was generated using an Illumina HiSeq 2000 sequencer. The information reported here will be useful to understand the biology of lactation in sheep, providing also an opportunity to characterize their different patterns on milk production aptitude.

  6. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    PubMed Central

    2010-01-01

    Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs

  7. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model.

    PubMed

    Lubet, R A; Steele, V E; Eto, I; Juliana, M M; Kelloff, G J; Grubbs, C J

    1997-07-03

    The chemopreventive efficacy of N-acetyl-L-cysteine (NAC), anethole trithione, miconazole and phenethylisothiocyanate (PEITC), each of which would be expected to alter carcinogen metabolism, was examined in the dimethylbenzanthracene (DMBA) mammary carcinogenesis model. In this protocol, animals were exposed to non-toxic doses of the chemopreventives in the diet beginning 7 days prior to DMBA administration and then continuously throughout the duration of the assay (100 days post carcinogen). Miconazole, an antifungal agent with relatively broad inhibitory activity toward a variety of cytochromes P450, increased mammary tumor latency, decreased tumor incidence at the highest dose and decreased tumor multiplicity up to 60%. Anethole trithione, a substituted dithiolthione and an analog of the relatively broad-spectrum chemopreventive oltipraz, was administered in the diet and significantly inhibited mammary cancer multiplicity but not cancer incidence. NAC, an antimucolytic agent, failed to inhibit DMBA-induced mammary tumorigenesis. Surprisingly, treatment with DMBA plus PEITC, a potent inhibitor of cytochrome P450 2E1, actually increased the multiplicity of tumors relative to that observed with DMBA alone.

  8. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    PubMed

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  9. Monitoring In-Vivo the Mammary Gland Microstructure during Morphogenesis from Lactation to Post-Weaning Using Diffusion Tensor MRI.

    PubMed

    Nissan, Noam; Furman-Haran, Edna; Shapiro-Feinberg, Myra; Grobgeld, Dov; Degani, Hadassa

    2017-09-01

    Lactation and the return to the pre-conception state during post-weaning are regulated by hormonal induced processes that modify the microstructure of the mammary gland, leading to changes in the features of the ductal / glandular tissue, the stroma and the fat tissue. These changes create a challenge in the radiological workup of breast disorder during lactation and early post-weaning. Here we present non-invasive MRI protocols designed to record in vivo high spatial resolution, T 2 -weighted images and diffusion tensor images of the entire mammary gland. Advanced imaging processing tools enabled tracking the changes in the anatomical and microstructural features of the mammary gland from the time of lactation to post-weaning. Specifically, by using diffusion tensor imaging (DTI) it was possible to quantitatively distinguish between the ductal / glandular tissue distention during lactation and the post-weaning involution. The application of the T 2 -weighted imaging and DTI is completely safe, non-invasive and uses intrinsic contrast based on differences in transverse relaxation rates and water diffusion rates in various directions, respectively. This study provides a basis for further in-vivo monitoring of changes during the mammary developmental stages, as well as identifying changes due to malignant transformation in patients with pregnancy associated breast cancer (PABC).

  10. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer.

    PubMed

    Zhou, Xueyan; Zheng, Ziqiang; Xu, Chang; Wang, Juan; Min, Mengjun; Zhao, Yun; Wang, Xi; Gong, Yinhan; Yin, Jiale; Guo, Meng; Guo, Dong; Zheng, Junnian; Zhang, Bei; Yin, Xiaoxing

    2017-08-01

    The progression of breast cancer is closely related to the levels of estrogens within the body. UDP-glucuronosyltransferase (UGT) is an important class of phase II metabolizing enzymes, playing a pivotal role in detoxifying steroid hormone. In the present study, we aim at uncovering the potential dysregulation pattern of UGT and its role in estrogen metabolism and in the pathogenesis of breast cancer. Female Sprague-Dawley rats were treated with 100 mg/kg dimethylbenz(a)anthracene (DMBA) to induce breast cancer. Our results showed that the expression and activity of UGT in mammary tissues were downregulated significantly in DMBA rats. Consistent with this, levels of estradiol, 4-hydroxylated estradiol, and 2-hydroxylated estradiol were increased in both mammary tissues and serum, supporting a notable accumulation of toxic estrogen species in the target tissue of breast cancer. In addition, we also observed the decreased cell migration, cell proliferation, and DNA damage in UGT-transfected MCF-7 cells, suggesting a protective role of UGT against estrogen-induced mammary carcinogenesis. Taken together, these results indicated that accumulation of estrogens induced by UGT deficiency is a critical factor to induce the development of breast cancer. UGT contributes to estrogen elimination, and its glucuronidation capacity influences the estrogen signaling pathway and the pathogenesis of breast cancer. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Evaluation of blood T-lymphocyte subpopulations involved in host cellular immunity in dogs with mammary cancer.

    PubMed

    Karayannopoulou, Maria; Anagnostou, Tilemachos; Margariti, Apostolia; Kostakis, Charalampos; Kritsepi-Konstantinou, Maria; Psalla, Dimitra; Savvas, Ioannis

    2017-04-01

    Cancer-bearing patients are often immunosuppressed. In dogs with mammary or other cancers, various alterations in blood cell populations involved in host cellular immunity have been reported; among these cell populations some T-lymphocyte subsets play an important role against cancer. The purpose of the present study was to investigate any alterations in circulating T-lymphocyte subpopulations involved in cellular immunity in bitches with mammary cancer, in comparison to age-matched healthy intact bitches. Twenty eight dogs with mammary cancer and 14 control dogs were included in this study. Twelve out of the 28 bitches had mammary cancer of clinical stage II and 16/28 of stage III. Histological examination revealed that 23/28 animals had carcinomas, 3/28 sarcomas and 2/28 carcinosarcomas. White blood cell, neutrophil and lymphocyte absolute numbers were measured by complete blood count. Furthermore, blood T-lymphocyte population (CD3 + ) and the subpopulations CD4 + , CD8 + and CD5 low+ were assessed by flow cytometry. White blood cell and neutrophil but not lymphocyte absolute numbers were higher (P=0.003 and P=0.001, respectively) in cancer patients than controls. Flow cytometric analysis revealed that the relative percentage of T-lymphocytes (CD3 + ) and of CD4 + , CD8 + subpopulations was lower (the CD4 + /CD8 + ratio was higher), whereas the percentage of CD5 low+ T-cells was higher, in dogs with cancer compared to controls; however, a statistically significant difference was found only in the case of CD8 + T-cells (P=0.014), whereas in the case of the CD4 + /CD8 + ratio the difference almost reached statistical significance (P=0.059). Based on these findings, it can be suggested that, although the absolute number of blood lymphocytes is unchanged, the relative percentages of T-lymphocyte subpopulations involved in host cell-mediated immunity are altered, but only cytotoxic CD8 + T-cells are significantly suppressed, in dogs with mammary cancer of clinical

  12. Production and Release of Antimicrobial and Immune Defense Proteins by Mammary Epithelial Cells following Streptococcus uberis Infection of Sheep

    PubMed Central

    Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano

    2013-01-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals. PMID:23774600

  13. Production and release of antimicrobial and immune defense proteins by mammary epithelial cells following Streptococcus uberis infection of sheep.

    PubMed

    Addis, Maria Filippa; Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano; Uzzau, Sergio

    2013-09-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals.

  14. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    PubMed

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  15. Epidemiological Study of Mammary Tumors in Female Dogs Diagnosed during the Period 2002-2012: A Growing Animal Health Problem

    PubMed Central

    Salas, Yaritza; Márquez, Adelys; Diaz, Daniel; Romero, Laura

    2015-01-01

    Epidemiological studies enable us to analyze disease behavior, define risk factors and establish fundamental prognostic criteria, with the purpose of studying different types of diseases. The aim of this study was to determine the epidemiological characteristics of canine mammary tumors diagnosed during the period 2002-2012. The study was based on a retrospective study consisting of 1,917 biopsies of intact dogs that presented mammary gland lesions. Biopsies were sent to the Department of Pathology FMVZ-UNAM diagnostic service. The annual incidence of mammary tumors was 16.8%: 47.7% (benign) and 47.5% (malignant). The highest number of cases was epithelial, followed by mixed tumors. The most commonly diagnosed tumors were tubular adenoma, papillary adenoma, tubular carcinoma, papillary carcinoma, solid carcinoma, complex carcinoma and carcinosarcoma. Pure breeds accounted for 80% of submissions, and the Poodle, Cocker Spaniel and German Shepherd were consistently affected. Adult female dogs (9 to 12 years old) were most frequently involved, followed by 5- to 8-year-old females. Some association between breeds with histological types of malignant tumors was observed, but no association was found between breeds and BN. Mammary tumors in intact dogs had a high incidence. Benign and malignant tumors had similar frequencies, with an increase in malignant tumors in the past four years of the study. Epithelial tumors were more common, and the most affected were old adult females, purebreds and small-sized dogs. Mammary tumors in dogs are an important animal health problem that needs to be solved by improving veterinary oncology services in Mexico. PMID:25992997

  16. Occurrence of Leishmania infantum and associated histological alterations in the genital tract and mammary glands of naturally infected dogs.

    PubMed

    Boechat, Viviane Cardoso; Mendes Junior, Artur Augusto Velho; Madeira, Maria de Fátima; Ferreira, Luiz Claudio; Figueiredo, Fabiano Borges; Rodrigues, Francisco das Chagas de Carvalho; Oliveira, Valéria da Costa; de Oliveira, Raquel de Vasconcellos Carvalhaes; Menezes, Rodrigo Caldas

    2016-06-01

    The objectives of this study were to evaluate the occurrence of Leishmania infantum in the male and female genital tract and female mammary glands of dogs and the parasite burden and to identify histological alterations associated with this protozoan. Twenty male and 20 female Leishmania-seropositive dogs with isolation of L. infantum were examined. Tissue samples of the prepuce, glans, epididymis, testes, prostate, vulva, vagina, uterus, uterine tubes, and mammary glands were analyzed by immunohistochemistry and histopathology. For parasitological culture and in situ hybridization, samples were collected from the testis, epididymis, and uterus. Additionally, seminal fluid was aspirated from the epididymis for parasitological culture. In the genital tract, 34 (85 %) dogs, including 18 males and 16 females, were positive for Leishmania. Of these, 27 (79 %) animals were symptomatic. Leishmania was detected in the mammary glands of 13 (65 %) females. L. infantum was isolated for the first time from the seminal fluid and uterus of naturally infected dogs. The parasite burden and intensity of the inflammatory reaction were greater in the prepuce and glans of males and in the vulva and mammary glands of females. In addition to inflammation, testicular degeneration, atrophy, absence of spermatogenesis, and necrosis were observed. Detection of amastigote forms in the mammary gland lumen indicates possible elimination of this parasite in milk. The frequent parasitism observed in the genital tract of infected males and females and the viability of L. infantum in seminal fluid and uterus suggest the possibility of bidirectional venereal and vertical transmission.

  17. Epidemiological Study of Mammary Tumors in Female Dogs Diagnosed during the Period 2002-2012: A Growing Animal Health Problem.

    PubMed

    Salas, Yaritza; Márquez, Adelys; Diaz, Daniel; Romero, Laura

    2015-01-01

    Epidemiological studies enable us to analyze disease behavior, define risk factors and establish fundamental prognostic criteria, with the purpose of studying different types of diseases. The aim of this study was to determine the epidemiological characteristics of canine mammary tumors diagnosed during the period 2002-2012. The study was based on a retrospective study consisting of 1,917 biopsies of intact dogs that presented mammary gland lesions. Biopsies were sent to the Department of Pathology FMVZ-UNAM diagnostic service. The annual incidence of mammary tumors was 16.8%: 47.7% (benign) and 47.5% (malignant). The highest number of cases was epithelial, followed by mixed tumors. The most commonly diagnosed tumors were tubular adenoma, papillary adenoma, tubular carcinoma, papillary carcinoma, solid carcinoma, complex carcinoma and carcinosarcoma. Pure breeds accounted for 80% of submissions, and the Poodle, Cocker Spaniel and German Shepherd were consistently affected. Adult female dogs (9 to 12 years old) were most frequently involved, followed by 5- to 8-year-old females. Some association between breeds with histological types of malignant tumors was observed, but no association was found between breeds and BN. Mammary tumors in intact dogs had a high incidence. Benign and malignant tumors had similar frequencies, with an increase in malignant tumors in the past four years of the study. Epithelial tumors were more common, and the most affected were old adult females, purebreds and small-sized dogs. Mammary tumors in dogs are an important animal health problem that needs to be solved by improving veterinary oncology services in Mexico.

  18. Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway

    PubMed Central

    Pang, L.Y.; Blacking, T.M.; Else, R.W.; Sherman, A.; Sang, H.M.; Whitelaw, B.A.; Hupp, T.R.; Argyle, D.J.

    2013-01-01

    Cancer stem cells were identified in a feline mammary carcinoma cell line by demonstrating expression of CD133 and utilising the tumour sphere assay. A population of cells was identified that had an invasive, mesenchymal phenotype, expressed markers of pluripotency and enhanced tumour formation in the NOD-SCID mouse and chick embryo models. This population of feline mammary carcinoma stem cells was resistant to chemotherapy and radiation, possibly due to aberrant activation of the ATM/p53 DNA damage pathway. Epithelial–mesenchymal transition was a feature of the invasive phenotype. These data demonstrate that cancer stem cells are a feature of mammary cancer in cats. PMID:23219486

  19. Global gene expression and morphological alterations in the mammary gland after gestational exposure to bisphenol A, genistein and indole-3-carbinol in female Sprague-Dawley offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassi, Tony F.

    This study aimed to evaluate the modifying effects of dietary genistein (GEN) and indole-3-carbinol (I3C) on early mammary gland development in female Sprague-Dawley offspring born to mothers exposed to BPA during gestation. Pregnant rats were treated with BPA25 or 250 μg/kg bw/day from gestational days 10 to 21 with or without dietary intake of GEN (250 mg/kg chow) or I3C (2000 mg/kg chow). At post-natal day (PND) 21, female offspring from different litters were euthanized for mammary gland development and gene expression analyses. Our results indicated that prenatal exposure to BPA25 and 250 did not modify the ductal elongation ofmore » the mammary gland tree or the estrogen receptor alpha (ER-α) expression in terminal end buds (TEBs). However, BPA25-exposed offspring had a higher number of terminal structures (TEBs + TDs) and an increased mammary branching and cell proliferation index in TEBs. Besides that, BPA25 and 250 modulated the expression of several genes in the immature mammary gland that were not changed in a dose dependent manner and involved different clusters of up- and down-regulated genes. Furthermore, BPA25 and BPA250 + I3C-treated groups also had a higher number of enriched functional gene categories. In addition, maternal dietary GEN and I3C in association with BPA exposure produced specific gene expression alterations in the mammary gland and overcome the adverse effect of BPA25, decreasing the branching of the mammary gland. In conclusion, prenatal BPA exposure induced both morphological and gene expression modifications on the mammary gland that dietary intake of GEN and I3C reverted on BPA25-exposed animals. - Highlights: • Gestational BPA and its association with GEN and I3C modify gene expression on the early mammary gland development. • GEN and I3C induced a different gene expression signature than lower BPA dose. • Dietary GEN and I3C countered the adverse effect of lower BPA dose on the cell proliferation and mammary gland

  20. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland.

    PubMed

    Johnson, Michael D; Kenney, Nicholas; Stoica, Adriana; Hilakivi-Clarke, Leena; Singh, Baljit; Chepko, Gloria; Clarke, Robert; Sholler, Peter F; Lirio, Apolonio A; Foss, Colby; Reiter, Ronald; Trock, Bruce; Paik, Soonmyoung; Martin, Mary Beth

    2003-08-01

    It has been suggested that environmental contaminants that mimic the effects of estrogen contribute to disruption of the reproductive systems of animals in the wild, and to the high incidence of hormone-related cancers and diseases in Western populations. Previous studies have shown that functionally, cadmium acts like steroidal estrogens in breast cancer cells as a result of its ability to form a high-affinity complex with the hormone binding domain of the estrogen receptor. The results of the present study show that cadmium also has potent estrogen-like activity in vivo. Exposure to cadmium increased uterine wet weight, promoted growth and development of the mammary glands and induced hormone-regulated genes in ovariectomized animals. In the uterus, the increase in wet weight was accompanied by proliferation of the endometrium and induction of progesterone receptor (PgR) and complement component C3. In the mammary gland, cadmium promoted an increase in the formation of side branches and alveolar buds and the induction of casein, whey acidic protein, PgR and C3. In utero exposure to the metal also mimicked the effects of estrogens. Female offspring experienced an earlier onset of puberty and an increase in the epithelial area and the number of terminal end buds in the mammary gland.

  1. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke

    2008-03-21

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca{sup 2+} concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation.more » Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.« less

  2. Effect of Withania somnifera Root Extract on Spontaneous Estrogen Receptor-Negative Mammary Cancer in MMTV/Neu Mice

    PubMed Central

    KHAZAL, KAMEL F.; HILL, DONALD L.; GRUBBS, CLINTON J.

    2015-01-01

    The cancer-preventive activity of an extract of Withania somnifera (WS) roots was examined in female transgenic (MMTV/Neu) mice that received a diet containing the extract (750 mg/kg of diet) for 10 months. Mice in the treated group (N=35) had an average of 1.66 mammary carcinomas, and mice in the control group (N=33) had 2.48, a reduction of 33%. The average weights of the carcinomas were 2.36 g for mice in the treated group and 2.63 g for the controls, a difference of 10%. Labeling indices for Ki67 and proliferating cell nuclear antigen marker in mammary carcinomas of the treated group were 35% and 30% lower, respectively, than those of the corresponding control group. Expression of the chemokine was reduced by 50%. These results indicate that the root extract reduced the number of mammary carcinomas that developed and reduced the rate of cell division in the carcinomas. PMID:25368231

  3. Collision of Ductal Carcinoma In Situ of Anogenital Mammary-like Glands and Vulvar Sarcomatoid Squamous Cell Carcinoma.

    PubMed

    Tran, Tien A N; Deavers, Michael T; Carlson, J Andrew; Malpica, Anais

    2015-09-01

    A spectrum of invasive adenocarcinomas presumably arising from the anogenital mammary-like glands of the vulva has been reported. Even rarer are the cases of pure ductal carcinoma in situ that originated from these unique glandular structures. Herein, we report an 81-yr-old woman presented with an invasive well-differentiated squamous cell carcinoma of the vulva. Unexpectedly, the underlying dermis demonstrated a cystically dilated structure that displayed a layer of malignant squamous cells in the periphery, and a second centrally located population of neoplastic cells exhibiting glandular differentiation. In addition, a spindle and pleomorphic malignant cell population consistent with a sarcomatoid carcinoma was identified around the cystic structure. Scattered benign anogenital mammary-like glands were present in the adjacent dermis. The histologic and immunohistochemical findings were consistent with those of vulvar squamous cell carcinoma that has undergone sarcomatoid transformation after spreading in a pagetoid fashion into an underlying focus of ductal carcinoma in situ of anogenital mammary-like gland origin.

  4. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  5. In utero exposure of rats to high-fat diets perturbs gene-expression profiles and cancer susceptibility of prepubertal mammary glands

    PubMed Central

    Ying, Jun; Gear, Robin; Bornschein, Robert L; Medvedovic, Mario; Ho, Shuk-Mei

    2015-01-01

    Human studies suggest that high-fat diets (HFD) increase the risk of breast cancer. The 7,12 dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis rat model is commonly used to evaluate the effects of lifestyle factors such as HFD on mammary-tumor risk. Past studies focused primarily on the effects of continuous maternal exposure on the risk of offspring at the end of puberty (PND50). We assessed the effects of prenatal HFD exposure on cancer susceptibility in prepubertal mammary glands and identified key gene networks associated with such disruption. During pregnancy, dams were fed AIN93G-based diets with isocaloric high olive oil, butterfat, or safflower oil. The control group received AIN-93G. Female offspring were treated with DMBA on PND21. However, a significant increase in tumor volume and a trend of shortened tumor latency were observed in rats with HFD exposure against the controls (p=0.048 and p=0.067 respectively). Large-volume tumors harbored carcinoma in situ. Transcriptome profiling identified 43 differentially expressed genes in the mammary glands of the HFBUTTER group as compared with control. Rapid hormone signaling was the most dysregulated pathway. The diet also induced aberrant expression of Dnmt3a, Mbd1, and Mbd3, consistent with potential epigenetic disruption. Collectively, these findings provide the first evidence supporting susceptibility of prepubertal mammary glands to DMBA-induced tumorigenesis that can be modulated by dietary fat that involves aberrant gene expression and likely epigenetic dysregulation. PMID:26895667

  6. Obesity and perinatal TCDD exposure increases mammary tumor incidence in FVB mice

    EPA Science Inventory

    Breast cancer risk consistently correlates with total lifetime exposure to estrogens. Because both TCDD and adipocytes impact the estrogen pathway, we examined how TCDD and obesity interact to alter mammary cancer susceptibility. At 12.5 days post conception, we exposed FVB fema...

  7. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media.

    PubMed

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B; Jansen, Sanaz A; Macleod, Kay; Conzen, Suzanne D; Karczmar, Gregory S

    2015-01-01

    The purpose of this study was to use high resolution three-dimensional (3D) magnetic resonance imaging (MRI) to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12-20 weeks (n=12), were used in this study. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple. Approximately 20-25μL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p<0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p<0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Conjugated linoleic acid synthesis-related protein proteasome subunit α 5 (PSMA5) is increased by vaccenic acid treatment in goat mammary tissue.

    PubMed

    Jin, Y C; Li, Z H; Hong, Z S; Xu, C X; Han, J A; Choi, S H; Yin, J L; Zhang, Q K; Lee, K B; Kang, S K; Song, M K; Kim, Y J; Kang, H S; Choi, Y J; Lee, H G

    2012-08-01

    This study was conducted to identify proteins associated with the endogenous synthesis of conjugated linoleic acid (CLA) from trans-vaccenic acid (TVA; trans-11 C18:1, a precursor for CLA endogenous synthesis) in mammary tissues. Six lactating goats were divided into 2 groups. One group was given an intravenous bolus injection of TVA (150mg) twice daily over 4 d; the other group received saline injections. Treatment with TVA increased the concentration of cis-9,trans-11 CLA and TVA in goat milk. Additionally, TVA treatment increased the expression of stearoyl-CoA desaturase (SCD) in mammary tissue. Using 2-dimensional gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry, 3 proteins affected by infusions of TVA were identified. Proteasome (prosome, macropain) subunit α type 5 (PSMA5) was upregulated, whereas peroxiredoxin-1 and translationally controlled tumor protein 1 were downregulated in TVA-treated animals compared with the vehicle-injected controls. Only the effect of TVA on PSMA5 could be confirmed by Western blot analysis. To further explore the regulation of PSMA5 in mammary epithelial cells when TVA is converted into CLA, we used a differentiated bovine mammary epithelial cell line treated with TVA for 6h. Changes in cis-9,trans-11 CLA concentrations and mRNA expression patterns of both SCD and PSMA5 were monitored. The concentration of cis-9,trans-11 CLA increased after TVA treatment. The mRNA expression level of PSMA5 was significantly elevated to 6h, but SCD mRNA expression only increased in 2h after TVA treatment. These results indicate that PSMA5 is highly expressed in goat mammary tissue and bovine mammary epithelial cells when TVA is converted into CLA. Our data suggest that PSMA5 protein is associated with CLA biosynthesis in mammary tissue. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Automatic quantification of mammary glands on non-contrast x-ray CT by using a novel segmentation approach

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Kano, Takuya; Cai, Yunliang; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Yokoyama, Ryujiro; Fujita, Hiroshi

    2016-03-01

    This paper describes a brand new automatic segmentation method for quantifying volume and density of mammary gland regions on non-contrast CT images. The proposed method uses two processing steps: (1) breast region localization, and (2) breast region decomposition to accomplish a robust mammary gland segmentation task on CT images. The first step detects two minimum bounding boxes of left and right breast regions, respectively, based on a machine-learning approach that adapts to a large variance of the breast appearances on different age levels. The second step divides the whole breast region in each side into mammary gland, fat tissue, and other regions by using spectral clustering technique that focuses on intra-region similarities of each patient and aims to overcome the image variance caused by different scan-parameters. The whole approach is designed as a simple structure with very minimum number of parameters to gain a superior robustness and computational efficiency for real clinical setting. We applied this approach to a dataset of 300 CT scans, which are sampled with the equal number from 30 to 50 years-old-women. Comparing to human annotations, the proposed approach can measure volume and quantify distributions of the CT numbers of mammary gland regions successfully. The experimental results demonstrated that the proposed approach achieves results consistent with manual annotations. Through our proposed framework, an efficient and effective low cost clinical screening scheme may be easily implemented to predict breast cancer risk, especially on those already acquired scans.

  10. Low-Dose Alkylphenol Exposure Promotes Mammary Epithelium Alterations and Transgenerational Developmental Defects, But Does Not Enhance Tumorigenic Behavior of Breast Cancer Cells

    PubMed Central

    Chamard-Jovenin, Clémence; Thiebaut, Charlène; Chesnel, Amand; Bresso, Emmanuel; Morel, Chloé; Smail-Tabbone, Malika; Devignes, Marie-Dominique; Boukhobza, Taha; Dumond, Hélène

    2017-01-01

    Fetal and neonatal exposure to long-chain alkylphenols has been suspected to promote breast developmental disorders and consequently to increase breast cancer risk. However, disease predisposition from developmental exposures remains unclear. In this work, human MCF-10A mammary epithelial cells were exposed in vitro to a low dose of a realistic (4-nonylphenol + 4-tert-octylphenol) mixture. Transcriptome and cell-phenotype analyses combined to functional and signaling network modeling indicated that long-chain alkylphenols triggered enhanced proliferation, migration ability, and apoptosis resistance and shed light on the underlying molecular mechanisms which involved the human estrogen receptor alpha 36 (ERα36) variant. A male mouse-inherited transgenerational model of exposure to three environmentally relevant doses of the alkylphenol mix was set up in order to determine whether and how it would impact on mammary gland architecture. Mammary glands from F3 progeny obtained after intrabuccal chronic exposure of C57BL/6J P0 pregnant mice followed by F1–F3 male inheritance displayed an altered histology which correlated with the phenotypes observed in vitro in human mammary epithelial cells. Since cellular phenotypes are similar in vivo and in vitro and involve the unique ERα36 human variant, such consequences of alkylphenol exposure could be extrapolated from mouse model to human. However, transient alkylphenol treatments combined to ERα36 overexpression in mammary epithelial cells were not sufficient to trigger tumorigenesis in xenografted Nude mice. Therefore, it remains to be determined if low-dose alkylphenol transgenerational exposure and subsequent abnormal mammary gland development could account for an increased breast cancer susceptibility. PMID:29109696

  11. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation.

    PubMed

    Yuan, Hongyan; Lu, Jin; Xiao, Junfeng; Upadhyay, Geeta; Umans, Rachel; Kallakury, Bhaskar; Yin, Yuhzi; Fant, Michael E; Kopelovich, Levy; Glazer, Robert I

    2013-07-15

    The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In this study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathologic changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to 5 months. Histopathologic changes occurred concurrently with an increase in an inflammatory, invasive, metabolic, and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning 1 week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTOR signaling that were attenuated by treatment with the mTOR inhibitor everolimus. Our findings are the first to show a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease. ©2013 AACR.

  12. In vitro and in vivo antioxidant potentials of an ethanolic extract of Ganoderma lucidum in rat mammary carcinogenesis.

    PubMed

    Deepalakshmi, K; Mirunalini, S; Krishnaveni, M; Arulmozhi, V

    2013-11-01

    Considering the importance of diet in the prevention of cellular damage caused by reactive oxygen species which has been implicated for several diseases, this present study was undertaken to evaluate the in vitro and in vivo antioxidant potential of the ethanolic extract of the fruiting bodies of Ganoderma lucidum on 7, 12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis in Sprague Dawley rats. Ganoderma lucidum extract was tested for in vitro antioxidant and radical scavenging assays, such as (ABTS(+)) radical cation decolorization assay, DPPH radical scavenging, hydroxyl radical, and superoxide radical scavenging assays. The in vivo antioxidant potentials were analyzed by SOD, CAT, and GPx in plasma, mammary, and liver tissues. In all the in vitro antioxidant and radical scavenging assays the extract exhibited good scavenging activity. In vivo enzymatic antioxidant levels, such as SOD, CAT, and GPx were decreased in DMBA-induced animals. Moreover, pretreatment with G. lucidum (500 mg · kg(-1) bw) to DMBA-induced animals significantly (P < 0.05) increased the levels of SOD, CAT, and GPx in plasma, mammary, and liver tissues compared to DMBA induced animals. From these findings, it is suggested that G. lucidum extract could be considered as a potential source of natural antioxidants and can be used as an effective chemopreventive agent against mammary cancer. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells. PMID:24312827

  14. Ultrasound Guided Transversus Thoracic Plane block, Parasternal block and fascial planes hydrodissection for internal mammary post thoracotomy pain syndrome.

    PubMed

    Piraccini, E; Biondi, G; Byrne, H; Calli, M; Bellantonio, D; Musetti, G; Maitan, S

    2018-05-16

    Pectoral Nerves Block (PECS) and Serratus Plane Block (SPB) have been used to treat persistent post-surgical pain after breast and thoracic surgery; however, they cannot block the internal mammary region, so a residual pain may occur in that region. Parasternal block (PSB) and Thoracic Transversus Plane Block (TTP) anaesthetize the anterior branches of T2-6 intercostal nerves thus they can provide analgesia to the internal mammary region. We describe a 60-year-old man suffering from right post-thoracotomy pain syndrome with residual pain located in the internal mammary region after a successful treatment with PECS and SPB. We performed a PSB and TTP and hydrodissection of fascial planes with triamcinolone and Ropivacaine. Pain disappeared and the result was maintained 3 months later. This report suggests that PSB and TTP with local anaesthetic and corticosteroid with hydrodissection of fascial planes might be useful to treat a post thoracotomy pain syndrome located in the internal mammary region. The use of Transversus Thoracic Plane and Parasternal Blocks and fascial planes hydrodissection as a novel therapeutic approach to treat a residual post thoracotomy pain syndrome even when already treated with Pectoral Nerves Block and Serratus Plane Block. © 2018 European Pain Federation - EFIC®.

  15. Maternal high fat diet promotion of mammary tumor risk in adult progeny is associated with early expansion of mammary cancer stem-like cells and increased maternal oxidative environment

    USDA-ARS?s Scientific Manuscript database

    Many adult chronic diseases might be programmed during early life by maternal nutritional history. Here, we evaluated effects of maternal high fat diet on mammary gland development and tumor formation in adult progeny. Female Wnt-1 transgenic mice exposed to high fat (HFD, 45% kcal fat) or control C...

  16. Modulation of Glucose Transporter 1 (GLUT1) Expression Levels Alters Mouse Mammary Tumor Cell Growth In Vitro and In Vivo

    PubMed Central

    Young, Christian D.; Lewis, Andrew S.; Rudolph, Michael C.; Ruehle, Marisa D.; Jackman, Matthew R.; Yun, Ui J.; Ilkun, Olesya; Pereira, Renata; Abel, E. Dale; Anderson, Steven M.

    2011-01-01

    Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential. Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1. These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo. PMID:21826239

  17. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    PubMed

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  18. Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues.

    PubMed

    Kochan, David Z; Ilnytskyy, Yaroslav; Golubov, Andrey; Deibel, Scott H; McDonald, Robert J; Kovalchuk, Olga

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide, and evidence is mounting that circadian-disruption-induced breast cancer is a warranted concern. Although studies on the role of epigenetics have provided valuable insights, and although epigenetics has been increasingly recognized in the etiology of breast cancer, relatively few studies have investigated the epigenetic link between circadian disruption (CD) and breast cancer. Using a proven photoperiod-shifting paradigm, differing degrees of CD, various tissue-extraction time points, and Illumina sequencing, we investigated the effect of CD on miRNA expression in the mammary tissues of a rodent model system. To our knowledge, our results are the first to illustrate CD-induced changes in miRNA expressions in mammary tissues. Furthermore, it is likely that these miRNA expression changes exhibit varying time frames of plasticity linked to both the degree of CD and length of reentrainment, and that the expression changes are influenced by the light and dark phases of the 24-hour circadian cycle. Of the differentially expressed miRNAs identified in the present study, all but one have been linked to breast cancer, and many have predicted circadian-relevant targets that play a role in breast cancer development. Based on the analysis of protein levels in the same tissues, we also propose that the initiation and development of CD-induced breast cancer may be linked to an interconnected web of increased NF-κB activity and increased levels of Tudor-SN, STAT3, and BCL6, with aberrant CD-induced downregulation of miR-127 and miR-146b potentially contributing to this dynamic. This study provides direct evidence that CD induces changes in miRNA levels in mammary tissues with potentially malignant consequences, thus indicating that the role of miRNAs in CD-induced breast cancer should not be dismissed.

  19. A redefinition of the representation of mammary cells and enzyme activities in a lactating dairy cow model.

    PubMed

    Hanigan, M D; Rius, A G; Kolver, E S; Palliser, C C

    2007-08-01

    The Molly model predicts various aspects of digestion and metabolism in the cow, including nutrient partitioning between milk and body stores. It has been observed previously that the model underpredicts milk component yield responses to nutrition and consequently overpredicts body energy store responses. In Molly, mammary enzyme activity is represented as an aggregate of mammary cell numbers and activity per cell with minimal endocrine regulation. Work by others suggests that mammary cells can cycle between active and quiescent states in response to various stimuli. Simple models of milk production have demonstrated the utility of this representation when using the model to simulate variable milking and nutrient restriction. It was hypothesized that replacing the current representation of mammary cells and enzyme activity in Molly with a representation of active and quiescent cells and improving the representation of endocrine control of cell activity would improve predictions of milk component yield. The static representation of cell numbers was replaced with a representation of cell growth during gestation and early lactation periods and first-order cell death. Enzyme capacity for fat and protein synthesis was assumed to be proportional to cell numbers. Enzyme capacity for lactose synthesis was represented with the same equation form as for cell numbers. Data used for parameter estimation were collected as part of an extended lactation trial. Cows with North American or New Zealand genotypes were fed 0, 3, or 6 kg of concentrate dry matter daily during a 600-d lactation. The original model had root mean square prediction errors of 17.7, 22.3, and 19.8% for lactose, protein, and fat yield, respectively, as compared with values of 8.3, 9.4, and 11.7% for the revised model, respectively. The original model predicted body weight with an error of 19.7% vs. 5.7% for the revised model. Based on these observations, it was concluded that representing mammary synthetic

  20. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.