Sample records for accelerating electronic tag

  1. Electronic tagging and integrated product intelligence

    NASA Astrophysics Data System (ADS)

    Swerdlow, Martin; Weeks, Brian

    1996-03-01

    The advent of 'intelligent,' electronic data bearing tags is set to revolutionize the way industrial and retail products are identified and tracked throughout their life cycles. The dominant system for unique identification today is the bar code, which is based on printed symbology and regulated by the International Article Numbering Association. Bar codes provide users with significant operational advantages and generate considerable added value to packaging companies, product manufacturers, distributors and retailers, across supply chains in many different sectors, from retailing, to baggage handling and industrial components, e.g., for vehicles or aircraft. Electronic tags offer the potential to: (1) record and store more complex data about the product or any modifications which occur during its life cycle; (2) access (and up-date) stored data in real time in a way which does not involve contact with the product or article; (3) overcome the limitations imposed by systems which rely on line-of-sight access to stored data. Companies are now beginning to consider how electronic data tags can be used, not only to improve the efficiency of their supply chain processes, but also to revolutionize the way they do business. This paper reviews the applications and business opportunities for electronic tags and outlines CEST's strategy for achieving an 'open' standard which will ensure that tags from different vendors can co-exist on an international basis.

  2. Integrated Management and Visualization of Electronic Tag Data with Tagbase

    PubMed Central

    Lam, Chi Hin; Tsontos, Vardis M.

    2011-01-01

    Electronic tags have been used widely for more than a decade in studies of diverse marine species. However, despite significant investment in tagging programs and hardware, data management aspects have received insufficient attention, leaving researchers without a comprehensive toolset to manage their data easily. The growing volume of these data holdings, the large diversity of tag types and data formats, and the general lack of data management resources are not only complicating integration and synthesis of electronic tagging data in support of resource management applications but potentially threatening the integrity and longer-term access to these valuable datasets. To address this critical gap, Tagbase has been developed as a well-rounded, yet accessible data management solution for electronic tagging applications. It is based on a unified relational model that accommodates a suite of manufacturer tag data formats in addition to deployment metadata and reprocessed geopositions. Tagbase includes an integrated set of tools for importing tag datasets into the system effortlessly, and provides reporting utilities to interactively view standard outputs in graphical and tabular form. Data from the system can also be easily exported or dynamically coupled to GIS and other analysis packages. Tagbase is scalable and has been ported to a range of database management systems to support the needs of the tagging community, from individual investigators to large scale tagging programs. Tagbase represents a mature initiative with users at several institutions involved in marine electronic tagging research. PMID:21750734

  3. Antibiotic use during the intracoelomic implantation of electronic tags into fish

    USGS Publications Warehouse

    Mulcahy, D.M.

    2011-01-01

    The use of antibiotics, in particular, the use of a single dose of antibiotics during electronic tag implantation is of unproven value, and carries with it the potential for the development of antibiotic resistance in bacteria and the alteration of the immune response of the fish. Antibiotic use during electronic tag implantation must conform to relevant drug laws and regulations in the country where work is being done, including the requirements for withdrawal times before human consumption is a possibility. Currently, the choice of antibiotics (most often tetracycline or oxytetracycline) and the use of a single dose of the drug are decisions made without knowledge of the basic need for antibiotic usage and of the bacteria involved in infections that occur following electronic tag implantation. Correct perioperative use of an antibiotic is to apply the drug to the animal before surgery begins, to assure serum and tissue levels of the drug are adequate before the incision is made. However, the most common perioperative application of antibiotics during implantation of an electronic tag is to delay the administration of the drug, injecting it into the coelom after the electronic tag is inserted, just prior to closure of the incision. There is little empirical evidence that the present application of antibiotics in fish being implanted with electronic tags is of value. Improvements should first be made to surgical techniques, especially the use of aseptic techniques and sterilized instruments and electronic tags, before resorting to antibiotics. ?? 2010 Springer Science+Business Media B.V.(outside the USA).

  4. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  5. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  6. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  7. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  8. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  9. Tracking animals in freshwater with electronic tags: past, present and future

    USGS Publications Warehouse

    Cooke, Steven J.; Midwood, Jonathan D.; Thiem, Jason D.; Klimley, Peter; Lucas, Martyn C.; Thorstad, Eva B.; Eiler, John; Holbrook, Chris; Ebner, Brendan C.

    2013-01-01

    Considerable technical developments over the past half century have enabled widespread application of electronic tags to the study of animals in the wild, including in freshwater environments. We review the constraints associated with freshwater telemetry and biologging and the technical developments relevant to their use. Technical constraints for tracking animals are often influenced by the characteristics of the animals being studied and the environment they inhabit. Collectively, they influence which and how technologies can be used and their relative effectiveness. Although radio telemetry has historically been the most commonly used technology in freshwater, passive integrated transponder (PIT) technology, acoustic telemetry and biologgers are becoming more popular. Most telemetry studies have focused on fish, although an increasing number have focused on other taxa, such as turtles, crustaceans and molluscs. Key technical developments for freshwater systems include: miniaturization of tags for tracking small-size life stages and species, fixed stations and coded tags for tracking large samples of animals over long distances and large temporal scales, inexpensive PIT systems that enable mass tagging to yield population- and community-level relevant sample sizes, incorporation of sensors into electronic tags, validation of tag attachment procedures with a focus on maintaining animal welfare, incorporation of different techniques (for example, genetics, stable isotopes) and peripheral technologies (for example, geographic information systems, hydroacoustics), development of novel analytical techniques, and extensive international collaboration. Innovations are still needed in tag miniaturization, data analysis and visualization, and in tracking animals over larger spatial scales (for example, pelagic areas of lakes) and in challenging environments (for example, large dynamic floodplain systems, under ice). There seems to be a particular need for adapting

  10. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to

  11. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  12. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  13. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  14. Electron acceleration by turbulent plasmoid reconnection

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  15. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  16. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  17. Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography

    PubMed Central

    Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki

    2013-01-01

    Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680

  18. Electron dynamics in a plasma focus. [electron acceleration

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.; Winters, P. A.

    1977-01-01

    Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.

  19. Electron acceleration via magnetic island coalescence

    NASA Astrophysics Data System (ADS)

    Shinohara, I.; Yumura, T.; Tanaka, K. G.; Fujimoto, M.

    2009-06-01

    Electron acceleration via fast magnetic island coalescence that happens as quick magnetic reconnection triggering (QMRT) proceeds has been studied. We have carried out a three-dimensional full kinetic simulation of the Harris current sheet with a large enough simulation run for two magnetic islands coalescence. Due to the strong inductive electric field associated with the non-linear evolution of the lower-hybrid-drift instability and the magnetic island coalescence process observed in the non-linear stage of the collisionless tearing mode, electrons are significantly accelerated at around the neutral sheet and the subsequent X-line. The accelerated meandering electrons generated by the non-linear evolution of the lower-hybrid-drift instability are resulted in QMRT, and QMRT leads to fast magnetic island coalescence. As a whole, the reconnection triggering and its transition to large-scale structure work as an effective electron accelerator.

  20. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  1. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  2. Electron heating and acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, Joel

    2017-10-01

    Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena such as solar flares and magnetospheric storms. However, the observed fraction of energy imparted to a nonthermal component can vary widely in different regimes. We use kinetic particle-in-cell (PIC) simulations to demonstrate the important role of the non-reversing (guide) field in controlling the efficiency of electron acceleration in collisionless reconnection. In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. The reconnection outflows that drive Fermi acceleration also expel accelerating particles from energization regions. In 2D reconnection, electrons are trapped in island cores and acceleration ceases, whereas in 3D the stochastic magnetic field enables energetic electrons to leak out of islands and freely sample regions of energy release. A finite guide field is required to break initial 2D symmetry and facilitate escape from island structures. We show that reconnection with a guide field comparable to the reconnecting field generates the greatest number of energetic electrons, a regime where both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. These results have important implications for electron acceleration in solar flares and reconnection-driven dissipation in turbulence.

  3. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  4. Tag Clouds in the Blogosphere: Electronic Literacy and Social Networking

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2006-01-01

    Electronic literacy today is a moving target. How and why people read and write online are evolving at the fast pace of Internet time. One of the most striking developments in the past few years has been how new social networking phenomena on the Web like community tagging, shared bookmarking, and blogs have created convergences between consumers…

  5. Critical analysis of industrial electron accelerators

    NASA Astrophysics Data System (ADS)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  6. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  7. Accelerator Science: Proton vs. Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  8. Advancing the surgical implantation of electronic tags in fish: a gap analysis and research agenda based on a review of trends in intracoelomic tagging effects studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Steven J.; Woodley, Christa M.; Eppard, M. B.

    2011-03-08

    Early approaches to surgical implantation of electronic tags in fish were often through trial and error, however, in recent years there has been an interest in using scientific research to identify techniques and procedures that improve the outcome of surgical procedures and determine the effects of tagging on individuals. Here we summarize the trends in 108 peer-reviewed electronic tagging effect studies focused on intracoleomic implantation to determine opportunities for future research. To date, almost all of the studies have been conducted in freshwater, typically in laboratory environments, and have focused on biotelemetry devices. The majority of studies have focused onmore » salmonids, cyprinids, ictalurids and centrarchids, with a regional bias towards North America, Europe and Australia. Most studies have focused on determining whether there is a negative effect of tagging relative to control fish, with proportionally fewer that have contrasted different aspects of the surgical procedure (e.g., methods of sterilization, incision location, wound closure material) that could advance the discipline. Many of these studies included routine endpoints such as mortality, growth, healing and tag retention, with fewer addressing sublethal measures such as swimming ability, predator avoidance, physiological costs, or fitness. Continued research is needed to further elevate the practice of electronic tag implantation in fish in order to ensure that the data generated are relevant to untagged conspecifics (i.e., no long-term behavioural or physiological consequences) and the surgical procedure does not impair the health and welfare status of the tagged fish. To that end, we advocate for i) rigorous controlled manipulations based on statistical designs that have adequate power, account for inter-individual variation, and include controls and shams, ii) studies that transcend the laboratory and the field with more studies in marine waters, iii) incorporation of

  9. Laser wakefield accelerated electron beam monitoring and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, J. K.; Mori, M.; Kotaki, H.

    2016-03-25

    We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10   m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.

  10. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  11. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  12. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  13. Associated Particle Tagging (APT) in Magnetic Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation.more » In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design

  14. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser

  15. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  16. Low-dose dual-energy electronic cleansing for fecal-tagging CT Colonography

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Zhang, Da; Lee, June-Goo; Yoshida, Hiroyuki

    2013-03-01

    Dual-energy electronic cleansing (DE-EC) provides a promising means for cleansing the tagged fecal materials in fecaltagging CT colonography (CTC). However, the increased radiation dose due to the double exposures in dual-energy CTC (DE-CTC) scanning is a major limitation for the use of DE-EC in clinical practice. The purpose of this study was to develop and evaluate a low-dose DE-EC scheme in fecal-tagging DE-CTC. In this study, a custom-made anthropomorphic colon phantom, which was filled with simulated tagged materials by non-ionic iodinated contrast agent (Omnipaque iohexol, GE Healthcare), was scanned by a dual-source CT scanner (SOMATON Definition Flash, Siemens Healthcare) at two photon energies: 80 kVp and 140 kVp with nine different tube current settings ranging from 12 to 74 mAs for 140 kVp, and then reconstructed by soft-tissue reconstruction kernel (B30f). The DE-CTC images were subjected to a low-dose DE-EC scheme. First, our image-space DE-CTC denoising filter was applied for reduction of image noise. Then, the noise-reduced images were processed by a virtual lumen tagging method for reduction of partial volume effect and tagging inhomogeneity. The results were compared with the registered CTC images of native phantom without fillings. Preliminary results showed that our low-dose DE-EC scheme achieved the cleansing ratios, defined by the proportion of the cleansed voxels in the tagging mask, between 93.18% (12 mAs) and 96.62% (74 mAs). Also, the soft-tissue preservation ratios, defined by the proportion of the persevered voxels in the soft-tissue mask, were maintained in the range between 94.67% and 96.41%.

  17. Electron Surfing Acceleration in High Mach Number Shocks

    NASA Astrophysics Data System (ADS)

    Hoshino, M.; Amano, T.; Matsumoto, Y.

    2016-12-01

    Many energetic events associated with shock waves have been argued in this context of the diffusive shock acceleration (DSA), and the origin of high-energy particles observed in astrophysical shocks are believed to be attributed to DSA. However, electron nonthermal acceleration still remains an unresolved issue of considerable interest. While cosmic rays of supernova remnant shocks with power-law spectra are believed to be produced by DSA, energetic electrons with a power-law energy spectrum are rarely ever observed at interplanetary shocks and at planetary bow shocks (e.g., Lario et al. 2003), and the diffusive-type acceleration seems to be necessarily malfunctioning in the heliosphere. The malfunctioning reason is thought to be a lack of pre-acceleration mechanism of supra-thermal electrons.In this presentation, we propose that the supra-thermal electrons can be generated by the mechanism of shock surfing acceleration (SSA) in a high Mach number magnetosonic shock. In the surfing mechanism, a series of large-amplitude electrostatic waves are excited by Buneman instability in the foot region under the interaction between the reflected ions and the incoming electrons, and it is argued that the electrons trapped in the electrostatic waves can be accelerated up to a relativistic energy (Hoshino and Shimada, 2002). Since the electron SSA has been studied based on one- or two-dimensional PIC simulations so far, SSA in three-dimensional system is questionable and remains an open question. We discuss based on our theoretical model and three-dimensional PIC simulation with a high-performance computing that the efficiency of SSA in three-dimensional system remains amazingly strong and plays an important role on the electron pre-acceleration/injection problem.

  18. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  19. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  20. Electron linear accelerator system for natural rubber vulcanization

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  1. Recirculating Electron Accelerators with Noncircular Electron Orbits as Radiation Sources for Applications (a Review)

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Ochkina, Elena I.

    2018-05-01

    State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.

  2. Electron cyclotron wave acceleration outside a flaring loop

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.

  3. Effects of Shock and Turbulence Properties on Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Qin, G.; Kong, F.-J.; Zhang, L.-H.

    2018-06-01

    Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.

  4. Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosyn, Wim B.; Guzey, Vadim A.; Sargsian, Misak M.

    2016-03-01

    An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging''). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) andmore » report about on-going developments.« less

  5. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  6. A novel electron accelerator for MRI-Linac radiotherapy.

    PubMed

    Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca

    2016-03-01

    MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of

  7. A novel electron accelerator for MRI-Linac radiotherapy

    PubMed Central

    Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca

    2016-01-01

    Purpose: MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Methods: Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. Results: For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Conclusions: Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of

  8. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  9. Laser-driven dielectric electron accelerator for radiobiology researches

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula

    2013-05-01

    In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.

  10. Bulk Acceleration of Electrons in Solar Flares?

    NASA Astrophysics Data System (ADS)

    Holman, Gordon D.

    2014-06-01

    In two recent papers it has been argued that RHESSI observations of two coronal “above-the-loop-top” hard X-ray sources, together with EUV observations, show that ALL the electrons in the source volumes must have been accelerated. I will briefly review these papers and show that the interpretation most consistent with the combined flare observations is multi-thermal, with hot, thermal plasma in the “above-the-loop-top” sources and only a fraction, albeit a substantial fraction, of the electrons accelerated. Thus, there is no credible scientific evidence for bulk acceleration of electrons in flares. Differential emission measure (DEM) models deduced from SDO/AIA and RHESSI data, including the inversion of the AIA data to determine DEM, will be discussed as part of this analysis.

  11. Acceleration of electron bunches by intense laser pulse in vacuum

    NASA Astrophysics Data System (ADS)

    Hua, J. F.; Ho, Y. K.; Lin, Y. Z.; Cao, N.

    2003-08-01

    This paper addresses the output characteristics of real electron bunches accelerated with ultra-intense laser pulse in vacuum by the capture & acceleration scenario (CAS) scheme (see, e.g., Phys. Rev. E66 (2002) 066501). Normally, the size of an electron bunch is much larger than that of a tightly focused and compressed laser pulse. We examine in detail the features of the intersection region, the distribution of electrons which can experience an intense laser field and be accelerated to high energy. Furthermore, the output properties of the accelerated CAS electrons, such as the energy spectra, the angular distributions, the energy-angle correlations, the acceleration gradient, the energy which can be reached with this scheme, the emittances of the outgoing electron bunches, and the dependence of the output properties on the incident electron beam qualities such as the emittance, focusing status, etc. were studied and explained. We found that with intense laser systems and electron beam technology currently available nowadays, the number of CAS electrons can reach 10 4-10 5, when the total number of incident electrons in the practical bunch reaches ˜10 8. These results demonstrate that CAS is promising to become a novel mechanism of vacuum laser accelerators.

  12. Tagging of Test Tubes with Electronic p-Chips for Use in Biorepositories.

    PubMed

    Mandecki, Wlodek; Kopacka, Wesley M; Qian, Ziye; Ertwine, Von; Gedzberg, Katie; Gruda, Maryann; Reinhardt, David; Rodriguez, Efrain

    2017-08-01

    A system has been developed to electronically tag and track test tubes used in biorepositories. The system is based on a light-activated microtransponder, also known as a "p-Chip." One of the pressing problems with storing and retrieving biological samples at low temperatures is the difficulty of reliably reading the identification (ID) number that links each storage tube with the database containing sample details. Commonly used barcodes are not always reliable at low temperatures because of poor adhesion of the label to the test tube and problems with reading under conditions of frost and ice accumulation. Traditional radio frequency identification (RFID) tags are not cost effective and are too large for this application. The system described herein consists of the p-Chip, p-Chip-tagged test tubes, two ID readers (for single tubes or for racks of tubes), and software. We also describe a robot that is configured for retrofitting legacy test tubes in biorepositories with p-Chips while maintaining the temperature of the sample below -50°C at all times. The main benefits of the p-Chip over other RFID devices are its small size (600 × 600 × 100 μm) that allows even very small tubes or vials to be tagged, low cost due to the chip's unitary construction, durability, and the ability to read the ID through frost and ice.

  13. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.

    PubMed

    Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  14. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  15. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P. E.; Mo, M. Z.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-12-01

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.

  16. Electron Heating and Acceleration in a Reconnecting Magnetotail

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.

    2017-12-01

    Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.

  17. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  18. Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.

    PubMed

    Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A

    2011-04-01

    The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics

  19. The Bonn Electron Stretcher Accelerator ELSA: Past and future

    NASA Astrophysics Data System (ADS)

    Hillert, W.

    2006-05-01

    In 1953, it was decided to build a 500MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5GeV using superconducting resonators will be investigated.

  20. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  1. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for highermore » energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were

  2. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson-Laborde, P. E., E-mail: paul-edouard.masson-laborde@cea.fr; Teychenné, D.; Mo, M. Z.

    2014-12-15

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its ownmore » wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.« less

  3. Angular distribution of electrons from powerful accelerators

    NASA Astrophysics Data System (ADS)

    Stepovik, A. P.; Lartsev, V. D.; Blinov, V. S.

    2007-07-01

    A technique for measuring the angular distribution of electrons escaping from the center of the window of the IGUR-3 and ÉMIR-M powerful accelerators (designed at the All-Russia Institute of Technical Physics, Russian Federal Nuclear Center) into ambient air is presented, and measurement data are reported. The number of electrons is measured with cable detectors (the solid angle of the collimator of the detector is ≈0.01 sr). The measurements are made in three azimuthal directions in 120° intervals in the polar angle range 0 22°. The angular distributions of the electrons coming out of the accelerators are represented in the form of B splines.

  4. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.

    2016-03-15

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less

  5. Improving temperature monitoring in the vaccine cold chain at the periphery: an intervention study using a 30-day electronic refrigerator temperature logger (Fridge-tag).

    PubMed

    Kartoğlu, Umit; Nelaj, Erida; Maire, Denis

    2010-05-28

    This intervention study was conducted in Albania to establish the superiority of the Fridge-tag (30-day electronic refrigerator temperature logger) against thermometers. Intervention sites used Fridge-tag and a modified temperature control record sheet, while control sites continued with their routine operation with thermometers. All refrigerators in both groups were equipped with downloadable electronic data loggers to record temperatures for reference. Focus group sessions were conducted with involved staff to discuss temperature monitoring, Fridge-tag use and its user-friendliness. Significant discrepancies were observed between thermometer readings and the electronic data loggers in control sites, while all alarms from Fridge-tag were confirmed in the intervention group. Thermometers are not sufficient to monitor temperatures in refrigerators since they miss the great majority of low and high alarms. Fridge-tag has proven to be an effective tool in providing health workers with the information they need to take the necessary actions when there are refrigerator temperature variations. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Dynamics of electron injection in a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.

    2017-08-01

    The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.

  7. Electron acceleration by wave turbulence in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  8. Spatially inhomogeneous acceleration of electrons in solar flares

    NASA Astrophysics Data System (ADS)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  9. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  10. Enhancement of Electron Acceleration in Laser Wakefields by Random Fields

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.

    1999-11-01

    There is increasing evidence that intense laser pulses can accelerate electrons to high energies. The energy appears to increase with the distance over which the electrons are accelerated. This is difficult to explain by electron trapping in a single wakefield wave.^1 We demonstrate that enhanced electron acceleration can arise in inhomogeneous laser wakefields through the effects of spontaneously excited random fields. This acceleration mechanism is analogous to fast electron production by random fields near rf antennae in fusion devices and helicon plasma sources.^2 Electron acceleration in a transverse laser wave due to random field effects was recently found.^3 In the present study we solve numerically the governing equations of an ensemble of test electrons in a longitudinal electric wakefield perturbed by random fields. [1pt] Supported by the Czech grant IGA A1043701 and the U.S. DOE under grant No. DE-FG02-97ER54398. [1pt] 1. A. Pukhov and J. Meyer-ter-Vehn, in Superstrong Fields in Plasmas, AIP Conf. Proc. 426, p. 93 (1997). 2. V. Petržílka, J. A. Tataronis, et al., in Proc. Varenna - Lausanne Fusion Theory Workshop, p. 95 (1998). 3. J. Meyer-ter-Vehn and Z. M. Sheng, Phys. Plasmas 6, 641 (1999).

  11. Effects of Spatial Gradients on Electron Runaway Acceleration

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  12. Nonthermally dominated electron acceleration during magnetic reconnection in a low- β plasma

    DOE PAGES

    Li, Xiaocan; Guo, Fan; Li, Hui; ...

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  13. GeV Electrons due to a Transition from Laser Wakefield Acceleration to Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Masson-Laborde, P.-E.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J.-C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-10-01

    The Laser Wakefield Acceleration (LWFA) experiments performed with the 200 TW laser system located at the Canadian Advanced Laser Light Source facility at INRS, Varennes (Québec) observed at relatively high plasma densities (1 × 1019cm-3) electron bunches of GeV energy gain, more than double of the predicted energy using Lu's scaling law. This energy boost phenomena can be attributed to a transition from LWFA regime to a plasma wakefield acceleration (PWFA) regime. In the first stage, the acceleration mechanism is dominated by the bubble created by the laser in the regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, where the laser pulse is depleted and it can no longer sustain the bubble anymore, the dense bunch of high energy electrons propagating inside the bubble will drive its own wakefield in the PWFA regime that can trap and accelerate a secondary population of electrons up to the GeV level. 3D particle-in-cell simulations support this analysis, and confirm the scenario.

  14. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  15. Acceleration and Precipitation of Electrons during Substorm Dipolarization Events

    NASA Astrophysics Data System (ADS)

    Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond

    Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron

  16. Electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan

    1989-01-01

    For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.

  17. Electron acceleration behind a wavy dipolarization front

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Nakamura, Rumi; Zhang, Tielong

    2018-02-01

    In this paper, with the in-situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes we report a wavy dipolarization front (DF) event, where the DF has different magnetic structures and electron distributions at different y positions in the Geocentric Solar Magnetospheric (GSM) coordinates. At y ˜2.1RE (RE is the radius of Earth), the DF has a relatively simple structure, which is similar to that of a conventional DF. At y ˜3.0RE, the DF is revealed to have a multiple DF structure, where the plasma exhibits a vortex flow. Such a wavy DF could be the results of the interchange instability. The different structure of such a wavy DF at different sites has a great effect on electron acceleration. Fermi acceleration can occur at the site of the DF with a simple or multiple DF structure, while betatron acceleration as a local process has the contribution to energetic electrons only at the site of the DF with a simple structure.

  18. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  19. Electron and Ion Acceleration Associated with Magnetotail Reconnection

    NASA Astrophysics Data System (ADS)

    Liang, Haoming

    This dissertation is dedicated to understanding electron and ion acceleration associated with magnetotail reconnection during substorms by using numerical simulations. Electron dynamics were investigated by using the UCLA global magnetohydrodynamic (MHD) model and large scale kinetic (LSK) simulations. The neutral line configurations and magnetotail flows modify the amounts of the adiabatic and non-adiabatic acceleration that electrons undergo. This causes marked differences in the temperature anisotropy for different substorms. In particular, one substorm event analyzed shows T⊥ > T∥ (T⊥ / T ∥ ≈ 2.3)at -10RE while another shows T ∥ > T⊥ (T ⊥ / T∥ ≈ 0.8), where T⊥ and T∥ (second order moments of the distribution functions) are defined with respect to the magnetic field. These differences determine the subsequent acceleration of the energetic electrons in the inner magnetosphere. Whether the acceleration is mostly parallel or perpendicular is determined by the location of dayside reconnection. A 2.5D implicit Particle-in-Cell simulation was used to study the effects produced by oxygen ions on magnetotail reconnection, and the associated acceleration of protons and oxygen ions. The inertia of oxygen ions reduces the reconnection rate and slows down the earthward propagation of dipolarization fronts (DFs). An ambipolar electric field in the oxygen diffusion region contributes to the smaller reconnection rate. This change in the reconnection rate affects the ion acceleration. In particular 67% of protons and 58% of oxygen ions were accelerated in the exhaust (between the X-point and the DF) in a simulation corresponding to a magnetic storm in which there was a 50% concentration of oxygen ions. In addition, 42% of lobe oxygen-ions are accelerated locally by the Hall electric field, far away from the X-point without entering the exhaust. Protons at the same locations experience Ex B drift. This finding extends previous knowledge that oxygen and

  20. Two-stage Electron Acceleration by 3D Collisionless Guide-field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Buechner, J.; Munoz, P.

    2017-12-01

    We discuss a two-stage process of electron acceleration near X-lines of 3D collisionless guide-field magnetic reconnection. Non-relativistic electrons are first pre-accelerated by magnetic-field-aligned (parallel) electric fields. At the nonlinear stage of 3D guide-field magnetic reconnection electric and magnetic fields become filamentary structured due to streaming instabilities. This causes an additional curvature-driven electron acceleration in the guide-field direction. The resulting spectrum of the accelerated electrons follows a power law.

  1. High energy electron acceleration with PW-class laser system

    NASA Astrophysics Data System (ADS)

    Nakanii, N.; Kondo, K.; Mori, Y.; Miura, E.; Yabuuchi, T.; Tsuji, K.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.; Makino, K.; Yamane, T.; Miyamoto, S.; Horikawa, K.; Kimura, K.; Takeda, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.

    2008-06-01

    We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ˜1019 cm-3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment.

  2. Frequency chirping for resonance-enhanced electron energy during laser acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, D.N.; Suk, H.

    2006-04-15

    The model given by Singh-Tripathi [Phys. Plasmas 11, 743 (2004)] for laser electron acceleration in a magnetic wiggler is revisited by including the effect of laser frequency chirping. Laser frequency chirp helps to maintain the resonance condition longer, which increases the electron energy gain. A significant enhancement in electron energy gain during laser acceleration is observed.

  3. Electron Cloud Effects in Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furman, M.A.

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  4. Collective acceleration of ions in picosecond pinched electron beams

    NASA Astrophysics Data System (ADS)

    Baryshnikov, V. I.; Paperny, V. L.; Shipayev, I. V.

    2017-10-01

    Сharacteristics of intense electron-ion beams emitted by a high-voltage (280 kV) electron accelerator with a pulse duration of 200 ps and current 5 kA are studied. The capture phenomena and the subsequent collective acceleration of multi charged ions of the cathode material by the electric field of the electron beam are observed. It is shown that the electron-ion beam diameter does not exceed 30 µm therein in the case of lighter ions, and the decay of the pinched beam occurs at a shorter distance from the cathode. It is established that the ions of the cathode material Tin+ captured by the electron beam are accelerated up to an energy of  ⩽10 MeV, and the ion fluence reaches 1017 ion cm-2 in the pulse. These ions are effectively embedded into the lattice sites of the irradiated substrate (sapphire crystal), forming the luminescent areas of the micron scale.

  5. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  6. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  7. Trains of electron micro-bunches in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan

    2018-07-01

    Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.

  8. Mixture-Fraction Measurements with Femtosecond-Laser Electronic-Excitation Tagging

    NASA Technical Reports Server (NTRS)

    Halls, Benjamin R.; Jiang, Naibo; Gord, James R.; Danehy, Paul M.; Roy, Sukesh

    2017-01-01

    Tracer-free mixture-fraction measurements were demonstrated in a jet using femtosecond-laser electronic-excitation tagging. Measurements were conducted across a turbulent jet at several downstream locations both in a pure-nitrogen jet exiting into an air-nitrogen mixture and in a jet containing an air-nitrogen mixture exiting into pure nitrogen. The signal was calibrated with known concentrations of oxygen in nitrogen. The spatial resolution of the measurement was approx.180 microns. The measurement uncertainty ranged from 5% to 15%, depending on the mixture fraction and location within the beam, under constant temperature and pressure conditions. The measurements agree with a mixture fraction of unity within the potential core of the jet and transition to the self-similar region.

  9. Prolonged electron accelerations at a high-Mach-number, quasi-perpendicular shock

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Amano, T.; Kato, T.; Hoshino, M.

    2016-12-01

    Elucidating acceleration mechanisms of charged particles have been of great interests in laboratory, space, and astrophysical plasmas. Among other mechanisms, a collision-less shock is thought as an efficient particle accelerator. The idea has been strengthened by radio, X-ray, and gamma-ray observations of astrophysical objects such as supernova remnant shocks, where it has been indicated that protons and electrons are efficiently accelerated to TeV energies at such very strong shock waves. Efficient electron accelerations at high-Mach-number shocks was also suggested recently by in-situ measurements at the Saturn's bow shock. Motivated by these circumstances, laboratory experiments using high-power laser facilities emerge to provide a new platform to tackle these problems.Numerical simulations have revealed that electrons can be efficiently heated and accelerated via so-called the shock surfing acceleration mechanism in which electron-scale Buneman instability played key roles. Recently, Matsumoto et al. [2015] proposed a stochastic acceleration mechanism by turbulent reconnection in the shock transition region through excitation of the ion Weibel instability. In order to deal with the two different acceleration mechanisms in a self-consistent system, we examined 3D PIC simulations of a quasi-perpendicular, high-Mach-number shock. We successfully followed a long term evolution in which two different acceleration mechanisms coexist in the 3D shock structure. The Buneman instability is strongly excited ahead of the shock front in the same manner as have been found in 2D simulations. The surfing acceleration is found to be very effective in the present 3D system. In the transition region, the ion-beam Weibel instability generated strong magnetic field turbulence in 3D space. Energetic electrons, which initially experienced the surfing acceleration, undergo pitch-angle diffusion by interacting with the turbulent fields and thus stay in the upstream regions. The ion

  10. Quasi-monoenergetic electron acceleration in relativistic laser-plasmas

    NASA Astrophysics Data System (ADS)

    Pukhov, Alexander; Gordienko, Sergei; Seredov, Vasili; Kostyukov, Igor

    2009-03-01

    Using Particle-in-Cell simulations as well as analytical theory we study electron acceleration in underdense plasmas both in the Bubble regime and in the weakly relativistic periodic wake fields. In the Bubble regime, electron trapping is taken as a function of the propagated distance. The number of trapped electrons depends on the effective phase velocity of the X-point at the rear of the Bubble. For the weakly relativistic periodic wakes, we show that the phase synchronism between the wake and the relativistic electrons can be maintained over very long distances when the plasma density is tapered properly. Moreover, one can use layered plasmas to control and improve the accelerated beam quality. To cite this article: A. Pukhov et al., C. R. Physique 10 (2009).

  11. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  12. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  13. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  14. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    PubMed Central

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  15. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  16. ELECTRON ACCELERATION IN CONTRACTING MAGNETIC ISLANDS DURING SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I.

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integrationmore » of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.« less

  17. Stochastic acceleration of electrons from multiple uncorrelated plasma waves

    NASA Astrophysics Data System (ADS)

    Gee, David; Michel, Pierre; Wurtele, Jonathan

    2017-10-01

    One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  18. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  19. Electron acceleration in downward auroral field-aligned currents

    NASA Astrophysics Data System (ADS)

    Cran-McGreehin, Alexandra P.; Wright, Andrew N.

    2005-10-01

    The auroral downward field-aligned current is mainly carried by electrons accelerated up from the ionosphere into the magnetosphere along magnetic field lines. Current densities are typically of the order of a few μ Am-2, and the associated electrons are accelerated to energies of several hundred eV up to a few keV. This downward current has been modeled by Temerin and Carlson (1998) using an electron fluid. This paper extends that model by describing the electron populations via distribution functions and modeling all of the F region. We assume a given ion density profile, and invoke quasi-neutrality to solve for the potential along the field line. Several important locations and quantities emerge from this model: the ionospheric trapping point, below which the ionospheric population is trapped by an ambipolar electric field; the location of maximum E∥, of the order of a few mVm-1, which lies earthward of the B/n peak; the acceleration region, located around the B/n peak, which normally extends between altitudes of 500 and 3000 km; and the total potential increase along the field line, of the order of a few hundred V up to several kV. The B/n peak is found to be the central factor determining the altitude and magnitude of the accelerating potential required. Indeed, the total potential drop is found to depend solely on the equilibrium properties in the immediate vicinity of the B/n peak.

  20. Acceleration of auroral electrons in parallel electric fields

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Walker, D. N.; Arnoldy, R. L.

    1976-01-01

    Rocket observations of auroral electrons are compared with the predictions of a number of theoretical acceleration mechanisms that involve an electric field parallel to the earth's magnetic field. The theoretical models are discussed in terms of required plasma sources, the location of the acceleration region, and properties of necessary wave-particle scattering mechanisms. We have been unable to find any steady state scatter-free electric field configuration that predicts electron flux distributions in agreement with the observations. The addition of a fluctuating electric field or wave-particle scattering several thousand kilometers above the rocket can modify the theoretical flux distributions so that they agree with measurements. The presence of very narrow energy peaks in the flux contours implies a characteristic temperature of several tens of electron volts or less for the source of field-aligned auroral electrons and a temperature of several hundred electron volts or less for the relatively isotropic 'monoenergetic' auroral electrons. The temperature of the field-aligned electrons is more representative of the magnetosheath or possibly the ionosphere as a source region than of the plasma sheet.

  1. Dual-energy index value of luminal air in fecal-tagging computed tomography colonography: findings and impact on electronic cleansing.

    PubMed

    Cai, Wenli; Zhang, Da; Lee, June-Goo; Shirai, Yu; Kim, Se Hyung; Yoshida, Hiroyuki

    2013-01-01

    The purpose of our study was to measure the dual-energy index (DEI) value of colonic luminal air in both phantom and clinical fecal-tagging dual-energy computed tomography (CT) colonography (DE-CTC) images and to demonstrate its impact on dual-energy electronic cleansing. For the phantom study, a custom-ordered colon phantom was scanned by a dual-energy CT scanner (SOMATON Definition Flash; Siemens Healthcare, Forchheim, Germany) at two photon energies: 80 and 140 kVp. Before imaging, the phantom was filled with a 300-mL mixture of simulated fecal materials tagged by a nonionic iodinated contrast agent at three contrast concentrations: 20, 40, and 60 mg/mL. Ten regions-of-interest (ROIs) were randomly placed in each of the colonic luminal air, abdominal fat, bony structure, and tagged material in each scan. For the clinical study, 22 DE-CTC (80 and 140 kVp) patient cases were collected, who underwent a low-fiber, low-residue diet bowel preparation and orally administered iodine-based fecal tagging. Twenty ROIs were randomly placed in each of the colonic luminal air, abdominal fat, abdominal soft tissue, and tagged fecal material in each scan. For each ROI, the mean CT values in both 80- and 140-kVp images were measured, and then its DEI was calculated. In the phantom study, the mean DEI values of luminal air were 0.270, 0.298, 0.386, and 0.402 for the four groups of tagging conditions: no tagged material and tagged with three groups of contrast concentrations at 20, 40, and 60 mg/mL. In the clinical study, the mean DEI values were 0.341, -0.012, -0.002, and 0.188 for colonic luminal air, abdominal fat, abdominal soft tissue, and tagged fecal material, respectively. In our study, we observed that the DEI values of colonic luminal air in DE-CTC images (>0.10) were substantially higher than the theoretical value of 0.0063. In addition, the observed DEI values of colonic luminal air were significantly higher than those of soft tissue. These findings have an important

  2. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

    PubMed Central

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.

    2013-01-01

    Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359

  3. Electron Beams Escaping the Sun: Hard X-ray Diagnostics of Jet-related Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Musset, S.; Saint-Hilaire, P.; Fleishman, G. D.; Krucker, S.; Christe, S.; Shih, A. Y.

    2017-12-01

    Coronal jets, which arise via an interaction between closed and open magnetic field, offer a convenient configuration for accelerated electrons to escape the low corona. Jets occur in all regions of the Sun, but those flare-related jets that occur in active regions are associated with bremsstrahlung hard X-rays (HXRs) from accelerated electrons. However, HXR measurement of the escaping beams themselves is elusive as it requires extremely high sensitivity. Jets are strongly correlated with Type III radio bursts in the corona and in interplanetary space. In this poster we present RHESSI observations of HXRs from flare-related jets, including multiwavelength analysis (with extreme ultraviolet and radio emission) and modeling of the emitting electron populations. We also present predicted observations of Type III-emitting electron beams by the FOXSI Small Explorer, which is currently undergoing a NASA Phase A concept study. FOXSI will measure HXRs from jets and flares in the low corona, providing quantitative diagnostics of accelerated electron beams at their origin. These same electron beams will be measured at higher altitudes by instruments aboard NASA's Parker Solar Probe and ESA's Solar Orbiter. With a planned launch in the rising phase of Solar Cycle 25, FOXSI will be ideally timed and optimized for collaborative study of electron beams escaping the Sun.

  4. Measuring abnormal movements in free-swimming fish with accelerometers: implications for quantifying tag and parasite load.

    PubMed

    Broell, Franziska; Burnell, Celene; Taggart, Christopher T

    2016-03-01

    Animal-borne data loggers allow movement, associated behaviours and energy expenditure in fish to be quantified without direct observations. As with any tagging, tags that are attached externally may adversely affect fish behaviour, swimming efficiency and survival. We report on free-swimming wild Atlantic cod (Gadus morhua) held in a large mesocosm that exhibited distinctly aberrant rotational swimming (scouring) when externally tagged with accelerometer data loggers. To quantify the phenomenon, the cod were tagged with two sizes of loggers (18 and 6 g; <2% body mass) that measured tri-axial acceleration at 50 Hz. An automated algorithm, based on body angular rotation, was designed to extract the scouring movements from the acceleration signal (98% accuracy). The algorithm also identified the frequency pattern and associated energy expenditure of scouring in relation to tag load (% body weight). The average per cent time spent scouring (5%) was independent of tag load. The vector of the dynamic body acceleration (VeDBA), used as a proxy for energy expenditure, increased with tag load (r(2)=0.51), and suggests that fish with large tags spent more energy when scouring than fish with small tags. The information allowed us to determine potential detrimental effects of an external tag on fish behaviour and how these effects may be mitigated by tag size. The algorithm can potentially identify similar rotational movements associated with spawning, courtship, feeding and parasite-load shedding in the wild. The results infer a more careful interpretation of data derived from external tags and the careful consideration of tag type, drag, buoyancy and placement, as well as animal buoyancy and species. © 2016. Published by The Company of Biologists Ltd.

  5. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  6. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  7. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  8. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron

  9. Tagged fast neutron beams En > 6 MeV

    NASA Astrophysics Data System (ADS)

    Favela, F.; Huerta, A.; Santa Rita, P.; Ramos, A. T.; de Lucio, O.; Andrade, E.; Acosta, L.; Ortiz, M. E.; Araujo, V.; Murillo, G.; Policroniades, R.; Varela, A.; Chávez, E.

    2015-07-01

    Controlled flux of neutrons are produced through the 14N(d,n)15O nuclear reaction. Deuteron beams (2-4 MeV) are delivered by the CN-Van de Graaff accelerator and directed with full intensity to our Nitrogen target at SUGAR (SUpersonic GAs jet taRget). Each neutron is electronically tagged by the detection of the associated15O. Its energy and direction are known and "beams" of fast monochromatic tagged neutrons (En> 6 MeV) are available for basic research and applied work. MONDE is a large area (158 × 63 cm2) plastic scintillating slab (5 cm thick), viewed by 16 PMTs from the sides. Fast neutrons (MeV) entering the detector will produce a recoiling proton that induces a light spark at the spot. Signals from the 16 detectors are processed to deduce the position of the spark. Time logic signals from both the 15O detector and MONDE are combined to deduce a time of flight (TOF) signal. Finally, the position information together with the TOF yields the full momentum vector of each detected neutron.

  10. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  11. Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide.

    PubMed

    Sederberg, S; Elezzabi, A Y

    2014-10-17

    Ponderomotive electron acceleration is demonstrated in a semiconductor-loaded nanoplasmonic waveguide. Photogenerated free carriers are accelerated by the tightly confined nanoplasmonic fields and reach energies exceeding the threshold for impact ionization. Broadband (375 nm ≤ λ ≤ 650  nm) white light emission is observed from the nanoplasmonic waveguides. Exponential growth of visible light emission confirms the exponential growth of the electron population, demonstrating the presence of an optical-field-driven electron avalanche. Electron sweeping dynamics are visualized using pump-probe measurements, and a sweeping time of 1.98 ± 0.40 ps is measured. These findings offer a means to harness the potential of the emerging field of ultrafast nonlinear nanoplasmonics.

  12. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Henaut, J.; Beeby, S. P.

    2014-11-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.

  13. Local re-acceleration and a modified thick target model of solar flare electrons

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  14. Scintillator for low accelerating voltage scanning electron microscopy imaging

    NASA Astrophysics Data System (ADS)

    Bowser, Christopher; Tzolov, Marian; Barbi, Nicholas

    Scintillators are essential in detecting electrons in SEM. The conventional scintillators such as YAP and YAG have poor response at low accelerating voltages due to a top conductive layer of ITO or Al. We have developed a thin film ZnWO4 scintillator with high photoluminescence quantum efficiency of 60% with enough electrical conductivity to prevent charging. We are showing that the ZnWO4 films are effective in detecting electrons at low accelerating voltages. This makes it a good option for a top layer on crystalline scintillators and we have integrated ZnWO4 with YAP to explore the high response of YAP at high electron energies and the effective response of ZnWO4 at low electron energies. We will compare the spectral intensities over a range of accelerating voltages between 1 and 30kV between the conventional and coupled thin film scintillator. The results are interpreted using a simulation of the depth profile of the electron penetration in the scintillator using CASINO. We have verified the absence of charging by measuring the sum of the secondary and backscattered electron coefficients. We have built detectors with the combined scintillators and we will compare SEM images recorded simultaneously by conventional and ZnWO4-based scintillators.

  15. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  16. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; ...

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  17. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, Mark; Weiss, Christian

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  18. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE PAGES

    Strikman, Mark; Weiss, Christian

    2018-03-27

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  19. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    NASA Astrophysics Data System (ADS)

    Strikman, M.; Weiss, C.

    2018-03-01

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 tagged DIS with an EIC. We discuss possible extensions of the FSI model to other kinematic regions (large/small x ). In tagged DIS at x ≪0.1 FSIs resulting from diffractive scattering on the nucleons become important and require separate treatment.

  20. A comparison of rat SPECT images obtained using (99m)Tc derived from 99Mo produced by an electron accelerator with that from a reactor.

    PubMed

    Galea, R; Wells, R G; Ross, C K; Lockwood, J; Moore, K; Harvey, J T; Isensee, G H

    2013-05-07

    Recent shortages of molybdenum-99 ((99)Mo) have led to an examination of alternate production methods that could contribute to a more robust supply. An electron accelerator and the photoneutron reaction were used to produce (99)Mo from which technetium-99m ((99m)Tc) is extracted. SPECT images of rat anatomy obtained using the accelerator-produced (99m)Tc with those obtained using (99m)Tc from a commercial generator were compared. Disks of (100)Mo were irradiated with x-rays produced by a 35 MeV electron beam to generate about 1110 MBq (30 mCi) of (99)Mo per disk. After target dissolution, a NorthStar ARSII unit was used to separate the (99m)Tc, which was subsequently used to tag pharmaceuticals suitable for cardiac and bone imaging. SPECT images were acquired for three rats and compared to images for the same three rats obtained using (99m)Tc from a standard reactor (99)Mo generator. The efficiency of (99)Mo-(99m)Tc separation was typically greater than 90%. This study demonstrated the delivery of (99m)Tc from the end of beam to the end user of approximately 30 h. Images obtained using the heart and bone scanning agents using reactor and linac-produced (99m)Tc were comparable. High-power electron accelerators are an attractive option for producing (99)Mo on a national scale.

  1. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  2. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Gan, W.; Liu, S.

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics.more » Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.« less

  3. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.

  4. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, amore » series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.« less

  5. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  6. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  7. Characteristics of GeV Electron Bunches Accelerated by Intense Lasers in Vacuum

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Ho, Y. K.; Kong, Q.; Yuan, X. Q.; Cao, N.; Feng, L.

    This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev. E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.

  8. Energetic Electron Acceleration, Injection, and Transport in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.

    2018-05-01

    Electrons are accelerated in Mercury’s magnetotail by dipolarization events, flux ropes, and magnetic reconnection directly. Following energization, these electrons are injected close to Mercury where they drift eastward in Shabansky-like orbits.

  9. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  10. Discrete and broadband electron acceleration in Jupiter's powerful aurora.

    PubMed

    Mauk, B H; Haggerty, D K; Paranicas, C; Clark, G; Kollmann, P; Rymer, A M; Bolton, S J; Levin, S M; Adriani, A; Allegrini, F; Bagenal, F; Bonfond, B; Connerney, J E P; Gladstone, G R; Kurth, W S; McComas, D J; Valek, P

    2017-09-06

    The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.

  11. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.

    PubMed

    Hu, S X; Starace, Anthony F

    2006-06-01

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.

  12. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.; Starace, Anthony F.

    2006-06-15

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components--are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highlymore » charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.« less

  13. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  14. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  15. BOOK REVIEW: Electron acceleration in the aurora and beyond

    NASA Astrophysics Data System (ADS)

    McClements, K. G.

    1999-08-01

    Duncan Bryant is a retired space plasma physicist who spent most of his career at the Rutherford-Appleton Laboratory in Oxfordshire, England. For many years he has been challenging a widely accepted theory, that auroral electrons are accelerated by double layers, on the grounds that it contains a fundamental error (allegedly, an implicit assumption that charged particles can gain energy from conservative fields). It is, of course, right that models of particle acceleration in natural plasmas should be scrutinized carefully in terms of their consistency with basic physical principles, and I believe that Dr Bryant has performed a valuable service by highlighting this issue. He maintains that auroral electron acceleration by double layers is fundamentally untenable, and that acceleration takes place instead via resonant interactions with lower hybrid waves. In successive chapters, he asserts that essentially the same process can account for electron acceleration observed at the Earth's bow shock, in the neighbourhood of an `artificial comet' produced as part of the Active Magnetospheric Particle Explorers (AMPTE) space mission in 1984/85, in the solar wind, at the Earth's magnetopause, and in the Earth's magneto- sphere. The evidence for this is not always convincing: waves with frequencies of the order of the lower hybrid resonance are often observed in these plasma environments, but in general it is difficult to identify clearly which wave mode is being observed (whistlers, for example, have frequencies in approximately the same range as lower hybrid waves). Moreover, it is not at all clear that the waves which are observed, even if they were of the appropriate type, would have sufficient intensity to accelerate electrons to the extent observed. The author makes a persuasive case, however, that acceleration in the aurora, and in other plasma environments accessible to in situ measurements, involves some form of wave turbulence. In Chapter 2 it is pointed out that

  16. HF-enhanced 4278-Å airglow: evidence of accelerated ionosphere electrons?

    NASA Astrophysics Data System (ADS)

    Fallen, C. T.; Watkins, B. J.

    2013-12-01

    We report calculations from a one-dimensional physics-based self-consistent ionosphere model (SCIM) demonstrating that HF-heating of F-region electrons can produce 4278-Å airglow enhancements comparable in magnitude to those reported during ionosphere HF modification experiments at the High-frequency Active Auroral Research Program (HAARP) observatory in Alaska. These artificial 'blue-line' emissions, also observed at the EISCAT ionosphere heating facility in Norway, have been attributed to arise solely from additional production of N2+ ions through impact ionization of N2 molecules by HF-accelerated electrons. Each N2+ ion produced by impact ionization or photoionization has a probability of being created in the N2+(1N) excited state, resulting in a blue-line emission from the allowed transition to its ground state. The ionization potential of N2 exceeds 18 eV, so enhanced impact ionization of N2 implies that significant electron acceleration processes occur in the HF-modified ionosphere. Further, because of the fast N2+ emission time, measurements of 4278-Å intensity during ionosphere HF modification experiments at HAARP have also been used to estimate artificial ionization rates. To the best of our knowledge, all observations of HF-enhanced blue-line emissions have been made during twilight conditions when resonant scattering of sunlight by N2+ ions is a significant source of 4278-Å airglow. Our model calculations show that F-region electron heating by powerful O-mode HF waves transmitted from HAARP is sufficient to increase N2+ ion densities above the shadow height through temperature-enhanced ambipolar diffusion and temperature-suppressed ion recombination. Resonant scattering from the modified sunlit region can cause a 10-20 R increase in 4278-Å airglow intensity, comparable in magnitude to artificial emissions measured during ionosphere HF-modification experiments. This thermally-induced artificial 4278-Å aurora occurs independently of any artificial

  17. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PETmore » using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still

  18. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fubiani, Gwenael G.J.

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 10 18 - 10 19 cm -3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams wasmore » recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.« less

  19. Finite element analyses of a linear-accelerator electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less

  20. Finite element analyses of a linear-accelerator electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  1. Finite element analyses of a linear-accelerator electron gun.

    PubMed

    Iqbal, M; Wasy, A; Islam, G U; Zhou, Z

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  2. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  3. The electron-optical system of the LIU-2 induction accelerator

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. I.; Batazova, M. A.

    2014-09-01

    The electron-optical system (EOS) of an induction accelerator for generation of an electron beam with an energy of 2 MeV, a current of 2 kA, an impulse duration of 2 × 10-7 s, and a geometric output emittance not exceeding the thermal value of it is described. The EOS consists of two parts. The first part is a diode gun with a perveance of 2 × 10-6 A/B3/2 and a cathode-anode voltage of 1 MeV. The second part is an accelerating tube with uniform distribution of the same accelerating voltage. A beam is transported at a distance of about 4 m from the cathode and focused on a spot with a diameter of about 1 mm. The compliance tests results of the linear-induction accelerator precisely conform to the calculated design parameters.

  4. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huanyu; Lu, Quanming; Huang, Can

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both themore » parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.« less

  5. Electron acceleration by magnetic islands in a dynamically evolved coronal current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shaohua, E-mail: shzhang@mail.iggcas.ac.cn; Wang, Bin; Meng, Lifei

    2016-03-25

    This work simulated the electron acceleration by magnetic islands in a drastically evolved solar coronal current sheet via the combined 2.5-dimensional (2.5D) resistive Magnetohydrodynamics (MHD) and guiding-center approximation test-particle methods. With high magnetic Reynolds number of 105, the long–thin current sheet is evolved into a chain of magnetic islands, growing in size and coalescing with each other, due to tearing instability. The acceleration of electrons is studied in one typical phase when several large magnetic islands are formed. The results show that the electrons with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20% of themore » electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The most energetic electrons have a tendency to be around the outer regions of the magnetic islands or to be located in the small secondary magnetic islands. We find that the acceleration and spatial distributions of the energetic electrons is caused by the trapping effect of the magnetic islands and the distributions of the parallel electric field E{sub p}.« less

  6. ILU industrial electron accelerators for medical-product sterilization and food treatment

    NASA Astrophysics Data System (ADS)

    Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu.; Voronin, L. A.; Panfilov, A. D.; Radchenko, V. M.; Tkachenko, V. O.; Shtarklev, E. A.

    2016-12-01

    Pulse linear electron accelerators of the ILU type have been developed and produced by the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, for more than 30 years. Their distinctive features are simplicity of design, convenience in operation, and reliability during long work under conditions of industrial production. ILU accelerators have a range of energy of 0.7-10 MeV at a power of accelerated beam of up to 100 kW and they are optimally suitable for use as universal sterilizing complexes. The scientific novelty of these accelerators consists of their capability to work both in the electron-treatment mode of production and in the bremsstrahlung generation mode, which has high penetrating power.

  7. Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, C.

    1996-04-01

    First experimental results are reported on the operation of a multimegawatt 2.856 GHz cyclotron autoresonance accelerator (CARA). A 90{endash}100 kV, 2{endash}3 MW linear electron beam has had up to6.6 MW added to it in CARA, with an rf-to-beam power efficiency of up to 96{percent}. This efficiency level is larger than that reported for any fast-wave interaction between radiation and electrons, and also larger than that in normal conducting rf linear accelerators. The results obtained are in good agreement with theoretical predictions. {copyright} {ital 1996 The American Physical Society.}

  8. Laser-driven electron beam acceleration and future application to compact light sources

    NASA Astrophysics Data System (ADS)

    Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Jeong, Y. U.; Lee, J.

    2009-07-01

    Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to ˜100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.

  9. Vacuum electron acceleration by coherent dipole radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a planemore » wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}« less

  10. Novel aspects of direct laser acceleration of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey

    2015-11-01

    Production of energetic electrons is a keystone aspect of ultraintense laser-plasma interactions that underpins a variety of topics and applications, including fast ignition inertial confinement fusion and compact particle and radiation sources. There is a wide range of electron acceleration regimes that depend on the duration of the laser pulse and the plasma density. This talk focuses on the regime in which the plasma is significantly underdense and the laser pulse duration is longer than the electron response time, so that, in contrast to the wakefield acceleration regime, the pulse creates a quasi-static channel in the electron density. Such a regime is of particular interest, since it can naturally arise in experiments with solid density targets where the pre-pulse of an ultraintense laser produces an extended sub-critical pre-plasma. This talk examines the impact of several key factors on electron acceleration by the laser pulse and the resulting electron energy gain. A detailed consideration is given to the role played by: (1) the static longitudinal electric field, (2) the static transverse electric field, (3) the electron injection into the laser pulse, (4) the electromagnetic dispersion, and (5) the static longitudinal magnetic field. It is shown that all of these factors lead, under conditions outlined in the talk, to a considerable electron energy gain that greatly exceeds the ponderomotive limit. The static fields do not directly transfer substantial energy to electrons. Instead, they alter the longitudinal dephasing between the electrons and the laser pulse, which then allows the electrons to gain extra energy from the pulse. The talk will also outline a time-resolution criterion that must be satisfied in order to correctly reproduce these effects in particle-in-cell simulations. Supported by AFOSR Contract No. FA9550-14-1-0045, National Nuclear Security Administration Contract No. DE-FC52-08NA28512, and US Department of Energy Contract No. DE-FG02

  11. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions

    PubMed Central

    Trites, Andrew W.; Rosen, David A. S.; Potvin, Jean

    2016-01-01

    Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion—an important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus), and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overall Dynamic Body Acceleration (ODBA) metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA) using a method incorporating gyroscope data with accelerometer data. We derived a new metric—Averaged Propulsive Body Acceleration (APBA), which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA) is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal—and they should

  12. Energetic electron acceleration and injection during dipolarization events in Mercury's magnetotail

    NASA Astrophysics Data System (ADS)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    MESSENGER frequently observed bursts of energetic electrons (>10 keV to 300 keV) within Mercury's miniature terrestrial-like magnetosphere. These bursts are observed most often in the post-midnight sector near the magnetic equator, suggestive of the acceleration and injection of electrons from the magnetotail and their eastward drift about the planet. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetospheric dynamics in Mercury's magnetotail. We find that these electron injections were observed most frequently in association with magnetic field dipolarization. Between March 2013 and April 2015, we identified 2976 magnetotail electron events of which 538 were coincident with the leading edge of a dipolarization event. These dipolarization fronts were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We find electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarization events, reaching energies 160 keV and contributing to nightside precipitation. Dipolarization events, and subsequently, the electron acceleration associated with them, display a strong dawn-dusk asymmetry, suggestive of a post-midnight maximum in magnetotail reconnection.

  13. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.

    PubMed

    Subach, Oksana M; Malashkevich, Vladimir N; Zencheck, Wendy D; Morozova, Kateryna S; Piatkevich, Kiryl D; Almo, Steven C; Verkhusha, Vladislav V

    2010-04-23

    We determined the 2.2 A crystal structures of the red fluorescent protein TagRFP and its derivative, the blue fluorescent protein mTagBFP. The crystallographic analysis is consistent with a model in which TagRFP has the trans coplanar anionic chromophore with the conjugated pi-electron system, similar to that of DsRed-like chromophores. Refined conformation of mTagBFP suggests the presence of an N-acylimine functionality in its chromophore and single C(alpha)-C(beta) bond in the Tyr64 side chain. Mass spectrum of mTagBFP chromophore-bearing peptide indicates a loss of 20 Da upon maturation, whereas tandem mass spectrometry reveals that the C(alpha)-N bond in Leu63 is oxidized. These data indicate that mTagBFP has a new type of the chromophore, N-[(5-hydroxy-1H-imidazole-2-yl)methylidene]acetamide. We propose a chemical mechanism in which the DsRed-like chromophore is formed via the mTagBFP-like blue intermediate. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124

    1999-06-10

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less

  15. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, S. P.; Brown, G.; Chase, T. F.

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less

  16. Probing SEP Acceleration Processes With Near-relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Haggerty, Dennis K.; Roelof, Edmond C.

    2009-11-01

    Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay) 2) Pulses (rapid rise, slower decay) and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.

  17. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-26

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energymore » Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the COD{sub Cr}, BOD{sub 5} indicators.« less

  18. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-01

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the CODCr, BOD5 indicators.

  19. Electron Acceleration and Efficiency in Nonthermal Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Meszaros, P.

    1996-04-01

    In energetic nonthermal sources such as gamma-ray bursts, active galactic nuclei, or galactic jets, etc., one expects both relativistic and transrelativistic shocks accompanied by violent motions of moderately relativistic plasma. We present general considerations indicating that these sites are electron and positron accelerators leading to a modified power-law spectrum. The electron (or e+/-) energy index is very hard, ~ gamma -1 or flatter, up to a comoving frame break energy gamma *, and becomes steeper above that. In the example of gamma-ray bursts, the Lorentz factor reaches gamma * ~ 103 for e+/- accelerated by the internal shock ensemble on subhydrodynamical timescales. For pairs accelerated on hydrodynamical timescales in the external shocks, similar hard spectra are obtained, and the break Lorentz factor can be as high as gamma * <~ 105. Radiation from the nonthermal electrons produces photon spectra with shapes and characteristic energies in qualitative agreement with observed generic gamma-ray burst and blazar spectra. The scenario described here provides a plausible way to solve one of the crucial problems of nonthermal high-energy sources, namely, the efficient transfer of energy from the proton flow to an appropriate nonthermal lepton component.

  20. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J. T.; Anderson, S. G.; Anderson, G.

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  1. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE PAGES

    Moody, J. T.; Anderson, S. G.; Anderson, G.; ...

    2016-02-29

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  2. Observation of 690 MV m -1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, K. P.; Wu, Z.; Cowan, B. M.

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  3. Stochastic acceleration of electrons. I - Effects of collisions in solar flares

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1992-01-01

    Stochastic acceleration of thermal electrons to nonrelativistic energies is studied under solar flare conditions. We show that, in turbulent regions, electron-whistler wave interactions can result in the acceleration of electrons in times comparable to or shorter than the Coulomb collision time. The kinetic equation describing the evolution of the electron energy distribution including stochastic acceleration by whistlers and energy loss via Coulomb interactions is solved for an initial thermal electron energy spectrum. In general, the shape of the resulting electron distributions are characterized by the energy E(c) where systematic energy gain by turbulence equals energy loss due to Coulomb collisions. For energies less than E(c), the spectra are steep (quasi-thermal) whereas above E(c), the spectra are power laws. We find that hard X-ray spectra computed using the electron distributions obtained from our numerical simulations are able to explain the complex spectral shapes and variations observed in impulsive hard X-ray bursts. In particular, we show that the gradual steepening observed by Lin et al. (1981) could be due to a systematic increase in the density of the plasma (due to evaporation) and the increasing importance of collisions instead of the appearance of a superhot thermal component.

  4. Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.

    PubMed

    Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E

    2015-10-06

    Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.

  5. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    NASA Astrophysics Data System (ADS)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  6. On the longitudinal distribution of electric field in the acceleration zones of plasma accelerators and thrusters with closed electron drift

    NASA Astrophysics Data System (ADS)

    Kim, V. P.

    2017-04-01

    The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons "kept" to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.

  7. Comparison of a simulated velocity profile of a turbulent boundary layer with measurements obtained by Femtosecond Laser Electronic Excitation Tagging (FLEET)

    NASA Astrophysics Data System (ADS)

    New-Tolley, Matthew; Zhang, Yibin; Shneider, Mikhail; Miles, Richard

    2017-11-01

    Accurate velocimetry measurements of turbulent flows are essential for improving our understanding of turbulent phenomena and validating numerical approaches. Femtosecond Laser Electronic Excitation Tagging (FLEET) is an unseeded molecular tagging method for velocimetry measurements in flows which contain nitrogen. A femtosecond laser pulse is used to ionize and dissociate nitrogen molecules within its focal zone. The decaying plasma fluoresces in the visible and infrared spectrum over a period of microseconds which allows the displacement of the tagged region to be photographed to determine velocity. This study compares the experimental and numerical advection of the tagged region in a turbulent boundary layer generated by a supersonic flow over a flat plate. The tagged region in the simulation is approximated as an infinitely thin cylinder while the flow field is generated using the steady state boundary layer equations with an algebraic turbulence model. This approximation is justified by previous computational analyses, using an unsteady three-dimensional Navier-Stokes solver, which indicate that the radial perturbations of the tagged region are negligible compared to its translation. This research was conducted with government support from the Air Force Office of Scientific Research under Dr. Ivett Leyva and the Army Research Office under Dr. Matthew Munson.

  8. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.

    1999-06-01

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less

  9. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  10. Direct acceleration in intense laser fields used for bunch amplification of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Schnürer, M.

    2017-05-01

    A method, how electrons can be directly accelerated in intense laser fields, is investigated experimentally and discussed with numerical and analytical simulation. When ultrathin foil targets are exposed with peak laser intensities of 1x1020 W/cm2 , slow electrons ( keV kinetic energy), that are emitted from the ultrathin foil target along laser propagation direction, are post-accelerated in the transmitted laser field. They received significant higher kinetic energies (MeV), when this interaction was limited in duration and an enhanced number of fast electrons were detected. The decoupling of the light field from the electron interaction we realized with a second separator foil, blocking the transmitted laser light at a particular distance and allowing the fast electrons to pass. Variation of the propagation distance in the laser field results in different energy gains for the electrons. This finding is explained with electron acceleration in the electromagnetic field of a light pulse and confirms a concept being discussed for some time. In the experiments the effect manifests in an electron number amplification of about 3 times around a peak at 1 MeV electron energy. Measurements confirmed that the overall number in the whole bunch is enhanced to about 109 electrons covering kinetic energies between 0.5 to 5 MeV. The method holds promise for ultrashort electron bunch generation at MeV energies for direct application, e.g. ultra-fast electron diffraction, or for injection into post accelerator stages for different purposes.

  11. Choosing a therapy electron accelerator target.

    PubMed

    Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K

    1979-01-01

    Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.

  12. Electron Acceleration in the Magnetotail during Substorms in Semi-Global PIC Simulations

    NASA Astrophysics Data System (ADS)

    Richard, R. L.; Schriver, D.; Ashour-Abdalla, M.; El-Alaoui, M.; Lapenta, G.; Walker, R. J.

    2015-12-01

    To understand the acceleration of electrons during a substorm reconnection event we have applied a semi-global particle in cell (PIC) simulation box embedded within a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere for an event on February 15, 2008. The MHD results were used to populate the PIC simulation and to set the boundary conditions. In the magnetotail we found that a series of dipolarizations formed due to unsteady reconnection. We also found that the most energetic electrons were in the separatrices far from the x-point. We attributed the acceleration to a streaming instability in the separatrices. To further understand electron acceleration we have applied the large scale kinetic (LSK) technique in which tens- to hundreds- of thousands of electrons are followed within the electric and magnetic fields from the PIC simulations., Electrons are already included in the PIC simulation, but the LSK simulations will allow selected individual particles to be followed and analyzed. Initially we performed electron LSK calculations in a two dimensional version of the PIC simulation in which electrons were allowed to move in the ignorable cross tail direction. These LSK calculations showed that electrons gained energy primarily for two reasons: (1) acceleration by the average dawn to dusk electric field and (2) acceleration by intense but localized electric field structures. The overall electron transport was more dawnward than duskward due to the average electric field. At the same time electrons typically moved away from the reconnection region in both the earthward and tailward directions. Superimposed on this large-scale transport was motion in both the dusk and dawn directions across the tail because of the electric field structures, which were particularly intense in the separatrices. LSK calculations are now being carried out by using the full three-dimensional magnetic and electric fields from the PIC simulation and these results will be

  13. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE PAGES

    Kuschel, S.; Hollatz, D.; Heinemann, T.; ...

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  14. Validity of the paraxial approximation for electron acceleration with radially polarized laser beams.

    PubMed

    Marceau, Vincent; Varin, Charles; Piché, Michel

    2013-03-15

    In the study of laser-driven electron acceleration, it has become customary to work within the framework of paraxial wave optics. Using an exact solution to the Helmholtz equation as well as its paraxial counterpart, we perform numerical simulations of electron acceleration with a high-power TM(01) beam. For beam waist sizes at which the paraxial approximation was previously recognized valid, we highlight significant differences in the angular divergence and energy distribution of the electron bunches produced by the exact and the paraxial solutions. Our results demonstrate that extra care has to be taken when working under the paraxial approximation in the context of electron acceleration with radially polarized laser beams.

  15. Beam by design: Laser manipulation of electrons in modern accelerators

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

    2014-07-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

  16. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  17. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  18. Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.

    PubMed

    Pollock, B B; Tsung, F S; Albert, F; Shaw, J L; Clayton, C E; Davidson, A; Lemos, N; Marsh, K A; Pak, A; Ralph, J E; Mori, W B; Joshi, C

    2015-07-31

    Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10  pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.

  19. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  20. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scisciò, M.; Antici, P., E-mail: patrizio.antici@polytechnique.edu; INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequencymore » (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.« less

  1. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  2. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles

    DOE PAGES

    Lee, Patrick; Maynard, G.; Audet, T. L.; ...

    2016-11-16

    The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ~11% can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while themore » electron energy can be finely tuned in the last acceleration section.« less

  3. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, J. T.; Drake, J. F.; Swisdak, M.

    2017-09-01

    Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.

  4. Laser-driven acceleration of electrons in a partially ionized plasma channel.

    PubMed

    Rowlands-Rees, T P; Kamperidis, C; Kneip, S; Gonsalves, A J; Mangles, S P D; Gallacher, J G; Brunetti, E; Ibbotson, T; Murphy, C D; Foster, P S; Streeter, M J V; Budde, F; Norreys, P A; Jaroszynski, D A; Krushelnick, K; Najmudin, Z; Hooker, S M

    2008-03-14

    The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.

  5. The Effects of Computerized Auditory Feedback on Electronic Article Surveillance Tag Placement in an Auto-Parts Distribution Center

    ERIC Educational Resources Information Center

    Goomas, David T.

    2008-01-01

    In this report from the field, computerized auditory feedback was used to inform order selectors and order selector auditors in a distribution center to add an electronic article surveillance (EAS) adhesive tag. This was done by programming handheld computers to emit a loud beep for high-priced items upon scanning the item's bar-coded Universal…

  6. Acceleration of electrons and ions by strong lower-hybrid turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Bingham, R.; Su, J. J.; Shapiro, V. D.; Shevchenko, V.; Ma, S.; Dawson, J. M.; Mcclements, K. G.

    1994-01-01

    One of the outstanding problems in solar flare theory is how to explain the 10-20 keV and greater hard x-ray emissions by a thick target bremsstrahlung model. The model requires the acceleration mechanism to accelerate approximately 10(exp 35) electrons sec(exp -l) with comparable energies, without producing a large return current which persists for long time scales after the beam ceases to exist due to Lenz's law, thereby, producing a self-magnetic field of order a few mega-Gauss. In this paper, we investigate particle acceleration resulting from the relaxation of unstable ion ring distributions, producing strong wave activity at the lower hybrid frequency. It is shown that strong lower hybrid wave turbulence collapses in configuration space producing density cavities containing intense electrostatic lower hybrid wave activity. The collapse of these intense nonlinear wave packets saturate by particle acceleration producing energetic electron and ion tails. There are several mechanisms whereby unstable ion distributions could be formed in the solar atmosphere, including reflection at perpendicular shocks, tearing modes, and loss cone depletion. Numerical simulations of ion ring relaxation processes, obtained using a 2 1/2-D fully electromagnetic, relativistic particle in cell code are discussed. We apply the results to the problem of explaining energetic particle production in solar flares. The results show the simultaneous acceleration of both electrons and ions to very high energies: electrons are accelerated to energies in the range 10-500 keV, while ions are accelerated to energies of the order of MeVs, giving rise to x-ray emission and gamma-ray emission respectively. Our simulations also show wave generation at the electron cyclotron frequency. We suggest that these waves are the solar millisecond radio spikes. The strong turbulence collapse process leads to a highly filamented plasma producing many localized regions for particle acceleration and resulting in

  7. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE PAGES

    Li, W.; Ma, Q.; Thorne, R. M.; ...

    2016-06-10

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  8. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Ma, Q.; Thorne, R. M.

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  9. Wavefront-sensor-based electron density measurements for laser-plasma accelerators.

    PubMed

    Plateau, G R; Matlis, N H; Geddes, C G R; Gonsalves, A J; Shiraishi, S; Lin, C; van Mourik, R A; Leemans, W P

    2010-03-01

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.

  10. Drive electrostatic plasma oscillations in a closed electron drift accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, A.I.; Nevrovskii, V.A.; Smirnov, V.A.

    1973-09-01

    The present work describes and experimental investigation of the perturbations created in the plasma of a closed electron drift accelerator (CEDA) by a time-varying potential applied to an electrode in the plasma. In particular, the driven electrostatic oscillations are in phase over the entire volume of the channel and the attenuation of the signal amplitude is sensitive to the direction of the electron flux in the accelerator. Certain aspects of the propagation of the harmonic signals and pulses in the plasma are established. A substantial drop in signal amplitude occurs between the electrode and the plasma. (auth)

  11. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  12. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Carlson, Kermit; Nobrega, Lucy

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII)more » gun and collector under ultra-high vacuum (UHV) conditions.« less

  13. An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.

    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at amore » quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.« less

  14. Click-electron microscopy for imaging metabolically tagged non-protein biomolecules

    PubMed Central

    Ngo, John T.; Adams, Stephen R.; Deerinck, Thomas J.; Boassa, Daniela; Rodriguez-Rivera, Frances; Palida, Sakina F.; Bertozzi, Carolyn R.; Ellisman, Mark H.; Tsien, Roger Y.

    2016-01-01

    Electron microscopy (EM) has long been the main technique to image cell structures with nanometer resolution, but has lagged behind light microscopy in the crucial ability to make specific molecules stand out. Here we introduce “Click-EM,” a labeling technique for correlative light microscopy and EM imaging of non-protein biomolecules. In this approach, metabolic labeling substrates containing bioorthogonal functional groups are provided to cells for incorporation into biopolymers by endogenous biosynthetic machinery. The unique chemical functionality of these analogs is exploited for selective attachment of singlet oxygen-generating fluorescent dyes via bioorthogonal “click chemistry” ligations. Illumination of dye-labeled structures generates singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product that is readily imaged by EM. We describe the application of Click-EM in imaging metabolically tagged DNA, RNA, and lipids in cultured cells and neurons, and highlight its use in tracking peptidoglycan synthesis in the Gram-positive bacterium Listeria monocytogenes. PMID:27110681

  15. Aligning the magnetic field of a linear induction accelerator with a low-energy electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.C.; Deadrick, F.J.; Kallman, J.S.

    1989-03-10

    The Experimental Test Accelerator II (ETA-II) linear induction accelerator at Lawrence Livermore National Laboratory uses a solenoid magnet in each acceleration cell to focus and transport an electron beam over the length of the accelerator. To control growth of the corkscrew mode the magnetic field must be precisely aligned over the full length of the accelerate. Concentric with each solenoid magnet is sine/cosmic-wound correction coil to steer the beam and correct field errors. A low-energy electron probe traces the central flux line through the accelerator referenced to a mechanical axis that is defined by a copropagating laser beam. Correction coilsmore » are activated to force the central flux line to cross the mechanical axis at the end of each acceleration cell. The ratios of correction coil currents determined by the low-energy electron probe are then kept fixed to correct for field errors during normal operation with an accelerated beam. We describe the construction of the low-energy electron probe and report the results of experiments we conducted to measure magnetic alignment with and without the correction coils activated. 5 refs., 3 figs.« less

  16. Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2017-05-01

    Secondary magnetic islands may be generated in the vicinity of an X line during magnetic reconnection. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate the role of a secondary magnetic island in electron acceleration during magnetic reconnection with a guide field. The electron motions are found to be adiabatic, and we analyze the contributions of the parallel electric field and Fermi and betatron mechanisms to electron acceleration in the secondary island during the evolution of magnetic reconnection. When the secondary island is formed, electrons are accelerated by the parallel electric field due to the existence of the reconnection electric field in the electron current sheet. Electrons can be accelerated by both the parallel electric field and Fermi mechanism when the secondary island begins to merge with the primary magnetic island, which is formed simultaneously with the appearance of X lines. With the increase in the guide field, the contributions of the Fermi mechanism to electron acceleration become less and less important. When the guide field is sufficiently large, the contribution of the Fermi mechanism is almost negligible.

  17. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    PubMed

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  18. Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility

    NASA Astrophysics Data System (ADS)

    Oussena, Baya; Annand, John

    2013-10-01

    Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.

  19. Electron acceleration in pulsed-power driven magnetic-reconnection experiments

    NASA Astrophysics Data System (ADS)

    Halliday, Jonathan; Hare, Jack; Lebedev, Sergey; Suttle, Lee; Bland, Simon; Clayson, Thomas; Tubman, Eleanor; Pikuz, Sergei; Shelkovenko, Tanya

    2017-10-01

    We present recent results from pulsed-power driven magnetic reconnection experiments, fielded on the MAGPIE generator (1.2 MA, 250 ns). The setup used in these experiments produces plasma inflows which are intrinsically magnetised; persist for many hydrodynamic time-scales; and are supersonic. Previous work has focussed on characterising the dynamics of bulk plasma flows, using a suite of diagnostics including laser interferometry, (imaging) Faraday rotation, and Thompson scattering. Measurements show the formation of a well defined, long lasting reconnection layer and demonstrate a power balance between the power into and out of the reconnection region. The work presented here focuses on diagnosing non-thermal electron acceleration by the reconnecting electric field. To achieve this, metal foils were placed in the path of accelerated electrons. Atomic transitions in the foil were collisionally exited by the electron beam, producing a characteristic X-Ray spectrum. This X-Ray emission was diagnosed using spherically bent crystal X-Ray spectrometry, filtered X-Ray pinhole imaging, and X-Ray sensitive PIN diodes.

  20. An introduction to the practical and ethical perspectives on the need to advance and standardize the intracoelomic surgical implantation of electronic tags in fish

    USGS Publications Warehouse

    Brown, R.S.; Eppard, M.B.; Murchie, K.J.; Nielsen, J.L.; Cooke, S.J.

    2011-01-01

    The intracoelomic surgical implantation of electronic tags (including radio and acoustic telemetry transmitters, passive integrated transponders and archival biologgers) is frequently used for conducting studies on fish. Electronic tagging studies provide information on the spatial ecology, behavior and survival of fish in marine and freshwater systems. However, any surgical procedure, particularly one where a laparotomy is performed and the coelomic cavity is opened, has the potential to alter the survival, behavior or condition of the animal which can impair welfare and introduce bias. Given that management, regulatory and conservation decisions are based on the assumption that fish implanted with electronic tags have similar fates and behavior relative to untagged conspecifics, it is critical to ensure that best surgical practices are being used. Also, the current lack of standardized surgical procedures and reporting of specific methodological details precludes cross-study and cross-year analyses which would further progress the field of fisheries science. This compilation of papers seeks to identify the best practices for the entire intracoelomic tagging procedure including pre- and post-operative care, anesthesia, wound closure, and use of antibiotics. Although there is a particular focus on salmonid smolts given the large body of literature available on that group, other life-stages and species of fish are discussed where there is sufficient knowledge. Additional papers explore the role of the veterinarian in fish surgeries, the need for minimal standards in the training of fish surgeons, providing a call for more complete and transparent procedures, and identifying trends in procedures and research needs. Collectively, this body of knowledge should help to improve data quality (including comparability and repeatability), enhance management and conservation strategies, and maintain the welfare status of tagged fish. ?? 2010 Springer Science+Business Media B.V.

  1. The Strongest 40 keV Electron Acceleration By ICME-driven Shocks At 1 AU

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, L.; Li, G.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C. Y.; Bale, S. D.

    2017-12-01

    Here we present a comprehensive case study of the in situ electron acceleration at the two ICME-driven shocks observed by WIND/3DP on February 11, 2000 and July 22, 2004. For the 11 February 2000 shock (the 22 July 2004 shock), the shocked electrons in the downstream show significant flux enhancements over the ambient solar wind electrons at energies up to 40 keV (66 keV) with a 6.0 times (1.9 times) ehancment at 40 keV, the strongest among all the quasi-perpendicular (quasi-parallel) ICME-driven shocks observed by the WIND spacecraft at 1 AU from 1995 through 2014. We find that in both shocks, the shocked electron fluxes at 0.5-40 keV fit well to a double power-law spectrum, J ˜ E-β, bending up at ˜2 keV. In the downstream, these shocked electrons show stronger fluxes in the anti-sunward direction, but their enhancement over the ambient fluxes peaks near 90° pitch angle (PA). For the 11 February 2000 shock, the electron spectral index, β, appears to not vary with the electron PA, while for the 22 July 2004 shock, β roughly decreases from the anti-sunward PA direction to the sunward PA direction. All of these spectral indexes are strongly larger than the theoretical prediction of diffusive shock acceleration. At energies above (below) 2 keV, however, the shocked electron β is similar to the solar wind superhalo (halo) electrons observed at quiet times. These results suggest that the electron acceleration at the ICME-driven shocks at 1 AU may favor the shock drift acceleration, and the superthermal electrons accelerated by the interplanetary shocks may contribute to the formation of the halo and superhalo electron populations in the solar wind.

  2. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    NASA Astrophysics Data System (ADS)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  3. Electron acceleration and high harmonic generation by relativistic surface plasmons

    NASA Astrophysics Data System (ADS)

    Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team

    2016-10-01

    Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.

  4. The case for electron re-acceleration at galaxy cluster shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  5. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    PubMed

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-05

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  6. Passive UHF RFID Tag with Multiple Sensing Capabilities

    PubMed Central

    Fernández-Salmerón, José; Rivadeneyra, Almudena; Martínez-Martí, Fernando; Capitán-Vallvey, Luis Fermín; Palma, Alberto J.; Carvajal, Miguel A.

    2015-01-01

    This work presents the design, fabrication, and characterization of a printed radio frequency identification tag in the ultra-high frequency band with multiple sensing capabilities. This passive tag is directly screen printed on a cardboard box with the aim of monitoring the packaging conditions during the different stages of the supply chain. This tag includes a commercial force sensor and a printed opening detector. Hence, the force applied to the package can be measured as well as the opening of the box can be detected. The architecture presented is a passive single-chip RFID tag. An electronic switch has been implemented to be able to measure both sensor magnitudes in the same access without including a microcontroller or battery. Moreover, the chip used here integrates a temperature sensor and, therefore, this tag provides three different parameters in every reading. PMID:26506353

  7. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  8. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  9. Electron acceleration and radiation signatures in loop coronal transients

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Gergely, T. E.; Papadopoulos, K.

    1982-01-01

    It is proposed that in loop coronal transients an erupting loop moves away from the solar surface, with a velocity exceeding the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. Lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field that exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. The manner in which the accelerated electrons are trapped in the moving loop are discussed, and their radiation signature is estimated. It is suggested that plasma radiation can explain the power observed in stationary and moving type IV bursts.

  10. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  11. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Amongmore » the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.« less

  12. Electron acceleration by surface plasma waves in double metal surface structure

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  13. Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses

    NASA Astrophysics Data System (ADS)

    Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard

    2017-10-01

    We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy <20 mJ, peak power <1 TW), which enables near- and above-critical density interactions with moderate-density gas jets. We present thresholds for electron acceleration based on critical parameters for relativistic self-focusing and target width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.

  14. Utility of biological sensor tags in animal conservation.

    PubMed

    Wilson, A D M; Wikelski, M; Wilson, R P; Cooke, S J

    2015-08-01

    Electronic tags (both biotelemetry and biologging platforms) have informed conservation and resource management policy and practice by providing vital information on the spatial ecology of animals and their environments. However, the extent of the contribution of biological sensors (within electronic tags) that measure an animal's state (e.g., heart rate, body temperature, and details of locomotion and energetics) is less clear. A literature review revealed that, despite a growing number of commercially available state sensor tags and enormous application potential for such devices in animal biology, there are relatively few examples of their application to conservation. Existing applications fell under 4 main themes: quantifying disturbance (e.g., ecotourism, vehicular and aircraft traffic), examining the effects of environmental change (e.g., climate change), understanding the consequences of habitat use and selection, and estimating energy expenditure. We also identified several other ways in which sensor tags could benefit conservation, such as determining the potential efficacy of management interventions. With increasing sensor diversity of commercially available platforms, less invasive attachment techniques, smaller device sizes, and more researchers embracing such technology, we suggest that biological sensor tags be considered a part of the necessary toolbox for conservation. This approach can measure (in real time) the state of free-ranging animals and thus provide managers with objective, timely, relevant, and accurate data to inform policy and decision making. © 2015 Society for Conservation Biology.

  15. Developing field emission electron sources based on ultrananocrystalline diamond for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi

    Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The naturalmore » way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.« less

  16. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  17. Acceleration of Relativistic Electrons: A Comparison of Two Models

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Kivelson, M. G.

    2001-12-01

    Observations of relativistic electron fluxes show order of magnitude increases during some geomagnetic storms. Many electron acceleration models have been proposed to explain the flux enhancements but attempts to validate these models have yielded ambiguous results. Here we examine two models of electron acceleration, radial diffusion via enhanced ULF wave activity [Elkington et al.,1999] and acceleration by resonant interaction with whistler waves[Summers,1998; Roth et al.,1999]. Two methods are used to compare observations with features predicted by the models. First, the evolution of phase space density as a function of L during flux enhancement events is evaluated. The phase space density (PSD) is calculated at constant first, second and third adiabatic invariants using data obtained by the CEPPAD-HIST instrument and the MFE instrument onboard the Polar spacecraft. Liouville's theorem states that PSD calculated at constant adiabatic invariants does not change with time unless some mechanism violates one of the invariants. The radial diffusion model predicts that only the flux invariant will be violated during the acceleration process while acceleration by whistler waves violates the first invariant. Therefore, the two models predict a different evolution of the PSD as a function of time and L. Previous examinations of the evolution of PSD have yielded ambiguous results because PSD calculations are highly dependent on the global accuracy of magnetic field models. We examine the PSD versus L profiles for a series of geomagnetic storms and in addition determine how errors in the Tsyganenko 96 field model affect the results by comparing the measured magnetic field to the model magnetic field used in the calculations. Second, the evolution of the relativistic electron pitch angle distributions is evaluated. Previous studies of pitch angle distributions were limited because few spacecraft have the necessary instrumentation and global coverage. The CEPPAD

  18. Electron Acceleration by Stochastic Electric Fields in Thunderstorms: Terrestrial Gamma-Ray Flashes

    NASA Astrophysics Data System (ADS)

    Alnussirat, S.; Miller, J. A.; Christian, H. J., Jr.; Fishman, G. J.

    2016-12-01

    Terrestrial gamma-ray flashes (TGFs) are energetic pulses of photons, which are intense and short, originating in the atmosphere during thunderstorm activity. Despite the number of observations, the production mechanism(s) of TGFs and other energetic particles is not well understood. However, two mechanisms have been suggested as a source of TGFs: (1) the relativistic runaway electron avalanche mechanism (RREA), and (2) the lightning leader mechanism. The RREA can account for the TGF observations, but requires restrictive or unrealistic assumptions. The lightning leader channel is also expected to produce runaway electrons, but through inhomogeneous, small scale, strong electric fields. In this work we use the Boltzmann equation to model the electron acceleration by the lightning leader mechanism, and we derive the gamma-ray spectrum from the electron distribution function. The electric fields at the tip of the leaders are assumed to be stochastic in space and time. Since the physics involved in the lightening leader is not known, we test different cases of the stochastic acceleration agent. From this modeling we hope to investigate the possibility and efficiency of stochastic acceleration in thunderstorm.

  19. Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.

    2017-03-01

    A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.

  20. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less

  1. ELECTRON ACCELERATION AT A CORONAL SHOCK PROPAGATING THROUGH A LARGE-SCALE STREAMER-LIKE MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei

    2016-04-10

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.« less

  2. Electron acceleration at a coronal shock propagating through a large-scale streamer-like magnetic field

    DOE PAGES

    Kong, Xiangliang; Chen, Yao; Guo, Fan; ...

    2016-04-05

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front during its propagation. We also found that in general the electron acceleration at the shock flank is not so efficient as that at the top of closed field since at the top a collapsing magnetic trap can be formed. In addition, we find that the energy spectra of electrons is power-law like, first hardening then softening with the spectral index varying in a range of -3 to -6. In conclusion, physical interpretations of the results and implications on the study of solar radio bursts are discussed.« less

  3. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less

  4. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, B; Keall, P; Gierman, S

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modellingmore » (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and

  5. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava

    Open questions concerning structures and dynamics of diffusion regions and electron acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of electron distribution functions measured by the four spacecraft, distinct electron regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended electron current sheet (ecs), a series of magnetic islands, and bursts of energetic electrons within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of electron-scale electric fields normalmore » to the ecs and pointing toward the ecs center plane. Both the observed electron and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal electrons whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the electron scale at certain phases of reconnection, electrons and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary electron acceleration occurs within the islands.« less

  6. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Swisdak, M.; Dahlin, J. T.; Drake, J. F.

    2017-12-01

    Magnetic reconnection is an important driver of energetic particles in many space and astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the effects that the dynamics in three-dimensions has on reconnection and the efficiency of particle acceleration. In two-dimensional systems, Alfvenic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. The greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration.

  7. SOME PROBLEMS IN THE CONSTRUCTION OF AN ELECTRON LINEAR ACCELERATOR (in Dutch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaeghe, J.; Vanhuyse, V.; Van Leuven, P.

    1959-01-01

    Special problems encountered in the construction of the electron linear accelerator of the Natuurkundig Laboratorium der Rijksuniversiteit of Ghent are discussed. The subjects considered are magnetic focusing, magnetic screening of the electron gun cathode, abnormal attenuation-multipactor effects, and electron energy control. (J.S.R.)

  8. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less

  9. Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Zhao, Z. Q.

    2015-01-15

    Refluxed electrons direct laser acceleration is proposed so as to generate a high-charge energetic electron beam. When a laser pulse is incident on a relativistic critical density target, the rising edge of the pulse heats the target and the sheath fields on the both sides of the target reflux some electrons inside the expanding target. These electrons can be trapped and accelerated due to the self-transparency and the negative longitudinal electrostatic field in the expanding target. Some of the electrons can be accelerated to energies exceeding the ponderomotive limit 1/2a{sub 0}{sup 2}mc{sup 2}. Effective temperature significantly above the ponderomotive scalingmore » is observed. Furthermore, due to the limited expanding length, the laser propagating instabilities are suppressed in the interaction. Thus, high collimated beams with tens of μC charge can be generated.« less

  10. Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Haggerty, D. K.; Paranicas, C.; Clark, G.; Kollmann, P.; Rymer, A. M.; Peachey, J. M.; Bolton, S. J.; Levin, S. M.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bonfond, B.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, G. R.; Kurth, W. S.; McComas, D. J.; Ranquist, D.; Valek, P.

    2018-02-01

    Two new Juno-observed particle features of Jupiter's main aurora demonstrate substantial diversity of processes generating Jupiter's mysterious auroral emissions. It was previously speculated that sometimes-observed potential-driven aurora (up to 400 kV) can turn into broadband stochastic acceleration (dominating at Jupiter) by means of instability. Here direct evidence for such a process is revealed with a "mono-energetic" electron inverted-V rising in energy to 200 keV, transforming into a region of broadband acceleration with downward energy fluxes tripling to 3,000 mW/m2, and then transforming back into a mono-energetic structure ramping down from 200 keV. But a second feature of interest observed nearby is unlikely to have operated in the same way. Here a downward accelerated proton inverted-V, with inferred potentials to 300-400 kV, occurred simultaneously with downward accelerated broadband electrons with downward energy fluxes as high as any observed ( 3,000 mW/m2). This latter feature has no known precedent with Earth auroral observations.

  11. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-01-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  12. Exploring the Alfven-Wave Acceleration of Auroral Electrons in the Laboratory

    NASA Astrophysics Data System (ADS)

    Schroeder, James William Ryan

    Inertial Alfven waves occur in plasmas where the Alfven speed is greater than the electron thermal speed and the scale of wave field structure across the background magnetic field is comparable to the electron skin depth. Such waves have an electric field aligned with the background magnetic field that can accelerate electrons. It is likely that electrons are accelerated by inertial Alfven waves in the auroral magnetosphere and contribute to the generation of auroras. While rocket and satellite measurements show a high level of coincidence between inertial Alfven waves and auroral activity, definitive measurements of electrons being accelerated by inertial Alfven waves are lacking. Continued uncertainty stems from the difficulty of making a conclusive interpretation of measurements from spacecraft flying through a complex and transient process. A laboratory experiment can avoid some of the ambiguity contained in spacecraft measurements. Experiments have been performed in the Large Plasma Device (LAPD) at UCLA. Inertial Alfven waves were produced while simultaneously measuring the suprathermal tails of the electron distribution function. Measurements of the distribution function use resonant absorption of whistler mode waves. During a burst of inertial Alfven waves, the measured portion of the distribution function oscillates at the Alfven wave frequency. The phase space response of the electrons is well-described by a linear solution to the Boltzmann equation. Experiments have been repeated using electrostatic and inductive Alfven wave antennas. The oscillation of the distribution function is described by a purely Alfvenic model when the Alfven wave is produced by the inductive antenna. However, when the electrostatic antenna is used, measured oscillations of the distribution function are described by a model combining Alfvenic and non-Alfvenic effects. Indications of a nonlinear interaction between electrons and inertial Alfven waves are present in recent data.

  13. Undulator radiation from laser-plasma-accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Shaw, B.; van Tilborg, J.; Gonsalves, A.; Nakamura, K.; Sokollik, T.; Shiraishi, S.; Mittal, R.; Esarey, E.; Schroeder, C.; Toth, C.; Leemans, W. P.

    2012-12-01

    Recent experiments coupled electron beams from the LOASIS TREX laser plasma accelerator (LPA) [1, 2, 3] to the Tapered Hybrid Undulator (THUNDER). Using the 1.5m, 66 period undulator, followed by an XUV spectrometer, spontaneous radiation was observed at photon energies extending to 100 eV. Previous experiments have reported visible [4] and soft-x-ray [5] radiation. The purpose of our experiments is to do highly precise, single shot diagnostics of the energy spread and emittance for each electron beam. We present recent results including measurements of electron beam transport through the undulator with and without the use of permanent magnetic quadrapoles, and measurements of XUV spectra up to 100 eV from LPA produced e-beams.

  14. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  15. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  16. Electronic tags and genetics explore variation in migrating steelhead kelts (oncorhynchus mykiss), Ninilchik river, Alaska

    USGS Publications Warehouse

    Nielsen, J.L.; Turner, S.M.; Zimmerman, C.E.

    2011-01-01

    Acoustic and archival tags examined freshwater and marine migrations of postspawn steelhead kelts (Oncorhynchus mykiss) in the Ninilchik River, Alaska, USA. Postspawn steelhead were captured at a weir in 2002-2005. Scale analysis indicated multiple migratory life histories and spawning behaviors. Acoustic tags were implanted in 99 kelts (2002-2003), and an array of acoustic receivers calculated the average speed of outmigration, timing of saltwater entry, and duration of residency in the vicinity of the river mouth. Ocean migration data were recovered from two archival tags implanted in kelts in 2004 (one male and one female). Archival tags documented seasonal differences in maximum depth and behavior with both fish spending 97% of time at sea <6 m depth (day and night). All study fish were double tagged with passive integrated transponder (PIT) tags implanted in the body cavity. Less than 4% of PIT tags were retained in postspawn steelhead. Molecular genetics demonstrated no significant differences in genetic population structure across years or among spawning life history types, suggesting a genetically panmictic population with highly diverse life history characteristics in the Ninilchik River.

  17. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    NASA Astrophysics Data System (ADS)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  18. Acceleration and Storage of Energetic Electrons in Magnetic Loops in the Course of Electric Current Oscillations

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    2017-10-01

    A mechanism of electron acceleration and storage of energetic particles in solar and stellar coronal magnetic loops, based on oscillations of the electric current, is considered. The magnetic loop is presented as an electric circuit with the electric current generated by convective motions in the photosphere. Eigenoscillations of the electric current in a loop induce an electric field directed along the loop axis. It is shown that the sudden reductions that occur in the course of type IV continuum and pulsating type III observed in various frequency bands (25 - 180 MHz, 110 - 600 MHz, 0.7 - 3.0 GHz) in solar flares provide evidence for acceleration and storage of the energetic electrons in coronal magnetic loops. We estimate the energization rate and the energy of accelerated electrons and present examples of the storage of energetic electrons in loops in the course of flares on the Sun or on ultracool stars. We also discuss the efficiency of the suggested mechanism as compared with the electron acceleration during the five-minute photospheric oscillations and with the acceleration driven by the magnetic Rayleigh-Taylor instability.

  19. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    PubMed

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  20. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGES

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; ...

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result inmore » flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  1. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells

    PubMed Central

    Martell, Jeffrey D; Deerinck, Thomas J; Lam, Stephanie S; Ellisman, Mark H; Ting, Alice Y

    2018-01-01

    Electron microscopy (EM) is the premiere technique for high-resolution imaging of cellular ultrastructure. Unambiguous identification of specific proteins or cellular compartments in electron micrographs, however, remains challenging because of difficulties in delivering electron-dense contrast agents to specific subcellular targets within intact cells. We recently reported enhanced ascorbate peroxidase 2 (APEX2) as a broadly applicable genetic tag that generates EM contrast on a specific protein or subcellular compartment of interest. This protocol provides guidelines for designing and validating APEX2 fusion constructs, along with detailed instructions for cell culture, transfection, fixation, heavy-metal staining, embedding in resin, and EM imaging. Although this protocol focuses on EM in cultured mammalian cells, APEX2 is applicable to many cell types and contexts, including intact tissues and organisms, and is useful for numerous applications beyond EM, including live-cell proteomic mapping. This protocol, which describes procedures for sample preparation from cell monolayers and cell pellets, can be completed in 10 d, including time for APEX2 fusion construct validation, cell growth, and solidification of embedding resins. Notably, the only additional steps required relative to a standard EM sample preparation are cell transfection and a 2- to 45-min staining period with 3,3′-diaminobenzidine (DAB) and hydrogen peroxide (H2O2). PMID:28796234

  2. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of themore » scattered radiation.« less

  3. Formation of electrostatic structures by wakefield acceleration in ultrarelativistic plasma flows: Electron acceleration to cosmic ray energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.

    2006-06-15

    The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolutionmore » of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.« less

  4. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    PubMed Central

    He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.

    2016-01-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. PMID:27824086

  5. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    DOE PAGES

    He, Z. -H.; Beaurepaire, B.; Nees, J. A.; ...

    2016-11-08

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here in this paper, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scalemore » by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.« less

  6. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  7. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; ...

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  8. Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere.

    PubMed

    Marklund, G T; Ivchenko, N; Karlsson, T; Fazakerley, A; Dunlop, M; Lindqvist, P A; Buchert, S; Owen, C; Taylor, M; Vaivalds, A; Carter, P; André, M; Balogh, A

    2001-12-13

    The bright night-time aurorae that are visible to the unaided eye are caused by electrons accelerated towards Earth by an upward-pointing electric field. On adjacent geomagnetic field lines the reverse process occurs: a downward-pointing electric field accelerates electrons away from Earth. Such magnetic-field-aligned electric fields in the collisionless plasma above the auroral ionosphere have been predicted, but how they could be maintained is still a matter for debate. The spatial and temporal behaviour of the electric fields-a knowledge of which is crucial to an understanding of their nature-cannot be resolved uniquely by single satellite measurements. Here we report on the first observations by a formation of identically instrumented satellites crossing a beam of upward-accelerated electrons. The structure of the electric potential accelerating the beam grew in magnitude and width for about 200 s, accompanied by a widening of the downward-current sheet, with the total current remaining constant. The 200-s timescale suggests that the evacuation of the electrons from the ionosphere contributes to the formation of the downward-pointing magnetic-field-aligned electric fields. This evolution implies a growing load in the downward leg of the current circuit, which may affect the visible discrete aurorae.

  9. Acceleration of Ions and Electrons by Coronal Shocks

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-12-01

    Diffusive shock acceleration (DSA) of particles at collisionless shock waves driven by coronal mass ejections (CMEs) is the best developed theory for the genesis of gradual solar energetic particle (SEP) events. According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. DSA operating in solar corona is a complex process whose outcome depends on multiple parameters such as shock speed and strength, magnetic geometry, and composition of seed particles. Currently, STEREO and other near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than previously thought. These findings have many important consequences on SEP modeling. For example, it is important to extend the present models into two or three spatial coordinates to properly account for the effects of coronal and interplanetary magnetic geometry and the evolution of the CME-driven shock wave on the acceleration and transport of SEPs. We present a new model for the shock acceleration of ions and electrons in the solar corona and discuss implications for particle properties (energy spectra, longitudinal distribution, composition) in the resulting gradual SEP events. We also discuss the possible emission of type II radio waves by the accelerated coronal electrons. In the new model, the ion pitch angle scattering rate is calculated from modeled Alfvén wave power spectra using quasilinear theory. The energy gained by ions in scatterings are self-consistently removed from waves so that total energy (ions+waves) is conserved. New model has been implemented on massively parallel simulation platform Corsair.

  10. All-Optical Quasi-Phase Matching for Laser Electron Acceleration

    DTIC Science & Technology

    2016-06-01

    T E C H N IC A L R E P O R T DTRA-TR-16-65 All-Optical Quasi -Phase Matching for Laser Electron Acceleration Distribution Statement A...outcomes of the project “All-Optical Quasi - Phase Matching for Laser Electron Acceleration”, a project awarded to the Pennsylvania State University by the...can be used to simultaneously extend the accel- eration distance beyond several Rayleigh ranges and to achieve quasi -phase matching between the laser

  11. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  12. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  13. Millisecond newly born pulsars as efficient accelerators of electrons

    NASA Astrophysics Data System (ADS)

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-09-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.

  14. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  15. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D.

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem usingmore » a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.« less

  16. Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek

    By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.

  17. Artificial stimulation of auroral electron acceleration by intense field aligned currents

    NASA Technical Reports Server (NTRS)

    Holmgren, G.; Bostrom, R.; Kelley, M. C.; Kintner, P. M.; Lundin, R.; Bering, E. A.; Sheldon, W. R.; Fahleson, U. V.

    1979-01-01

    A cesium-doped high explosion was detonated at 165 km altitude in the auroral ionosphere during quiet conditions. An Alfven wave pulse with a 200-mV/m electric field was observed, with the peak occurring 135 ms after the explosion at a distance of about 1 km. The count rate of fixed energy 2-keV electron detectors abruptly increased at 140 ms, peaked at 415 ms, and indicated a downward field-aligned beam of accelerated electrons. An anomalously high-field aligned beam of backscattered electrons was also detected. The acceleration is interpreted as due to production of an electrostatic shock or double layer between 300 and 800 km altitude. The structure was probably formed by an instability of the intense field-aligned currents in the Alfven wave launched by the charge-separation electric field due to the explosion.

  18. Energetic electron acceleration observed by MMS in the vicinity of an X-line crossing

    DOE PAGES

    Jaynes, A. N.; Turner, D. L.; Wilder, F. D.; ...

    2016-07-25

    During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to >100 keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line,more » whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments.« less

  19. Energetic Electron Acceleration Observed by MMS in the Vicinity of an X-Line Crossing

    NASA Technical Reports Server (NTRS)

    Jaynes, A. N.; Turner, D. L.; Wilder, F. D.; Osmane, A.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Cohen, I. J.; Mauk, B. H.; Reeves, G. D.; hide

    2016-01-01

    During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to greater than 100 keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line, whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments.

  20. Using field-particle correlations to study auroral electron acceleration in the LAPD

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2017-10-01

    Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.

  1. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard

    2006-02-01

    We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.

  2. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse

    NASA Astrophysics Data System (ADS)

    Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  3. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications.

    PubMed

    Young, Carissa L; Britton, Zachary T; Robinson, Anne S

    2012-05-01

    Protein fusion tags are indispensible tools used to improve recombinant protein expression yields, enable protein purification, and accelerate the characterization of protein structure and function. Solubility-enhancing tags, genetically engineered epitopes, and recombinant endoproteases have resulted in a versatile array of combinatorial elements that facilitate protein detection and purification in microbial hosts. In this comprehensive review, we evaluate the most frequently used solubility-enhancing and affinity tags. Furthermore, we provide summaries of well-characterized purification strategies that have been used to increase product yields and have widespread application in many areas of biotechnology including drug discovery, therapeutics, and pharmacology. This review serves as an excellent literature reference for those working on protein fusion tags. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quasi-monoenergetic multi-GeV electron acceleration by optimizing the spatial and spectral phases of PW laser pulses

    NASA Astrophysics Data System (ADS)

    Shin, Junghun; Kim, Hyung Taek; Pathak, V. B.; Hojbota, Calin; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Yoon, Jin Woo; Jeon, Cheonha; Nakajima, Kazuhisa; Sylla, F.; Lifschitz, A.; Guillaume, E.; Thaury, C.; Malka, V.; Nam, Chang Hee

    2018-06-01

    Generation of high-quality electron beams from laser wakefield acceleration requires optimization of initial experimental parameters. We present here the dependence of accelerated electron beams on the temporal profile of a driving PW laser, the density, and length of an interacting medium. We have optimized the initial parameters to obtain 2.8 GeV quasi-monoenergetic electrons which can be applied further to the development of compact electron accelerators and radiations sources.

  5. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE PAGES

    Lee, P.; Audet, T. L.; Lehe, R.; ...

    2015-12-31

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  6. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, P.; Audet, T. L.; Lehe, R.

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  7. Laser-driven electron acceleration in a plasma channel with an additional electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Li-Hong; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn; Liu, Jie, E-mail: liu-jie@iapcm.ac.cn

    2016-05-15

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the lasermore » pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.« less

  8. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  9. Radio tag retention and tag-related mortality among adult sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann

    2003-01-01

    Tag retention and tag-related mortality are concerns for any tagging study but are rarely estimated. We assessed retention and mortality rates for esophageal radio tag implants in adult sockeye salmon Oncorhynchus nerka. Migrating sockeye salmon captured at the outlet of Lake Clark, Alaska, were implanted with one of four different radio tags (14.5 × 43 mm (diameter × length), 14.5 × 49 mm, 16 × 46 mm, and 19 × 51 mm). Fish were observed for 15 to 35 d after tagging to determine retention and mortality rates. The overall tag retention rate was high (0.98; 95% confidence interval (CI), 0.92-1.00; minimum, 33 d), with one loss of a 19-mm × 51- mm tag. Mortality of tagged sockeye salmon (0.02; 95% CI, 0-0.08) was similar to that of untagged controls (0.03 (0-0.15)). Sockeye salmon with body lengths (mid-eye to tail fork) of 585-649 mm retained tags as large as 19 × 51 mm and those with body lengths of 499-628 mm retained tags as small as 14.5 × 43 mm for a minimum of 33 d with no increase in mortality. The tags used in this study represent a suite of radio tags that vary in size, operational life, and cost but that are effective in tracking adult anadromous salmon with little tag loss or increase in fish mortality.

  10. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole, E-mail: eoin.carley@obspm.fr

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration duringmore » the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.« less

  11. Economics of food irradiation: Comparison between electron accelerators and cobalt-60

    NASA Astrophysics Data System (ADS)

    Morrison, R. M.

    The Codex Alimentarius Commission's proposed international standard permits three types of ionizing radiation to be used on foods: gamma rays from radioactive cobalt-60 or cesium-137, high energy electrons, and x-rays. The latter two types of radiation are produced by electron accelerators powered by electricity. Unlike gamma rays and x-rays which can penetrate pallet loads of foods, electrons of the allowed energy levels only penetrate 1 to 3 inches when irradiated from one side. Thus, electrons are limited to treating the surface of foods or foods in thin packages or a shallow stream of grains, powders, or liquids. Average costs per kilogram (kg) of irradiating selected foods are similar for the electron accelerator and cobalt-60 irradiators analyzed in this study, but initial investment costs generally vary by U.S. $1 million. Irradiation treatment costs range from 1 to 15 U.S. cents per kg for the foods and annual volumes examined with larger volumes having lower treatment costs. Cobalt-60 is less expensive than electrons when annual volumes are below 23 million kgs. For radiation source requirements above the equivalent of about 1 million curies of cobalt-60, electrons become more economical. The largest differences in costs occur with the papaya irradiators where using x-rays to penetrate the fruit is more expensive than using cobalt-60.

  12. Extracting tag hierarchies.

    PubMed

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the "flat" organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search. Moreover

  13. Extracting Tag Hierarchies

    PubMed Central

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the “flat” organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search

  14. Vehicle Tracking System using Nanotechnology Satellites and Tags

    NASA Technical Reports Server (NTRS)

    Lorenzini, Dino A.; Tubis, Chris

    1995-01-01

    This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.

  15. Electron acceleration by inertial Alfven waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when themore » transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.« less

  16. Shark Tagging Activities.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1998

    1998-01-01

    In this group activity, children learn about the purpose of tagging and how scientists tag a shark. Using a cut-out of a shark, students identify, measure, record data, read coordinates, and tag a shark. Includes introductory information about the purpose of tagging and the procedure, a data sheet showing original tagging data from Tampa Bay, and…

  17. NOTE: Blood irradiation with accelerator produced electron beams

    NASA Astrophysics Data System (ADS)

    Butson, M. J.; Cheung, T.; Yu, P. K. N.; Stokes, M. J.

    2000-11-01

    Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time.

  18. Quantum tagging for tags containing secret classical data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less

  19. Scintillating fiber-based photon beam profiler for the Jefferson Lab tagged photon beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, C.; Barbosa, F.J.; Freyberger, A.

    2000-10-01

    A scintillating fiber hodoscope has been built for use as a photon beam profiler in the bremsstrahlung tagged photon beam in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The device consists of a linear array of 64 2-2 mm2 scintillating fibers glued to a corresponding set of light guide fibers. Both fiber types use double-clad technology for maximum intensity. The light guide fibers are gently bent into a square array of holes and air-gap coupled to four compact position-sensitive photomultipliers (16 channel Hamamatsu R5900-M16). Custom electronics amplifies and converts the analog outputs to ECL pulses whichmore » are counted by VME-based scalars. The device consisting of the fibers, photomultipliers, and electronics is sealed within a light-tight aluminum box. Two modules make up a beam imaging 2-D system. The system has been tested successfully during an experimental run« less

  20. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    NASA Astrophysics Data System (ADS)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  1. Recent Progress in Understanding the Origin and Acceleration of Suprathermal Ions and Electrons

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Dayeh, Maher

    2017-04-01

    Ions and electrons with energies that lie above (i.e., ˜2 keV) that of the core or bulk solar wind protons and electrons are known as suprathermal particles. Observations over the last decade have shown that such suprathermal particles are an important constituent of the overall seed population that is accelerated in solar and interplanetary events. Despite their increased level of importance, where these populations originate from and how they are accelerated remains highly controversial. This is partly due to the fact that these particles exist in the so-called tail regions of the corresponding solar wind distributions where high temporal and sensitivity measurements are sparse. Moreover, observations comprising long-term averages (between ˜hours to more than a day) have shown conflicting results. For instance, below ˜40 keV/nucleon the ion differential intensities in the solar wind frame appear to exhibit a near-constant power-law spectral slope of ˜1.5, perhaps indicating a universal acceleration mechanism. In contrast, at energies greater than ˜40 keV/nucleon, the ion composition changes with solar activity and the energy spectra are significantly steeper, perhaps indicating that the suprathermal pool of material also comprises lower-energy particle populations accelerated in corotating interaction regions, interplanetary shocks, and solar energetic particle events. This talk discusses recent observations of suprathermal ions and electrons in terms of state-of-the-art theories and models that have been put forward to account for their origins and acceleration.

  2. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  3. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    NASA Astrophysics Data System (ADS)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. Electron Injections: A Study of Electron Acceleration by Multiple Dipolarizing Flux Bundles Using an Analytical Model

    NASA Astrophysics Data System (ADS)

    Gabrielse, C.; Angelopoulos, V.; Artemyev, A.; Runov, A.; Harris, C.

    2016-12-01

    We study energetic electron injections using an analytical model that self-consistently describes electric and magnetic field perturbations of transient, localized dipolarizing flux bundles (DFBs). Previous studies using THEMIS, Van Allen Probes, and the Magnetospheric Multiscale Mission have shown that injections can occur on short (minutes) or long (10s of minutes) timescales. These studies suggest that the short timescale injections correspond to a single DFB, whereas long timescale injections are likely caused by an aggregate of multiple DFBs, each incrementally heating the particle population. We therefore model the effects of multiple DFBs on the electron population using multi-spacecraft observations of the fields and particle fluxes to constrain the model parameters. The analytical model is the first of its kind to model multiple dipolarization fronts in order to better understand the transport and acceleration process throughout the plasma sheet. It can reproduce most injection signatures at multiple locations simultaneously, reaffirming earlier findings that multiple earthward-traveling DFBs can both transport and accelerate electrons to suprathermal energies, and can thus be considered the injections' primary driver.

  5. Acceleration of runaway electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  6. A Stable High-Energy Electron Source from Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Zhao, Baozhen; Liu, Cheng; Yan, Wenchao; Golovin, Grigory; Banerjee, Sudeep; Chen, Shouyuan; Haden, Daniel; Fruhling, Colton; Umstadter, Donald

    2016-10-01

    The stability of the electron source from laser wake-field acceleration (LWFA) is essential for applications, such as novel x-ray sources and fundamental experiments in high field physics. To obtain such a stable source, we used an optimal laser pulse and a novel gas nozzle. The high-power laser pulse on target was focused to a diffraction-limited spot by the use of adaptive wavefront correction and the pulse duration was transform limited by the use of spectral feedback control. An innovative design for the nozzle led to a stable, flat-top profile with diameters of 4 mm and 8 mm with a high Mach-number ( 6). In experiments to generate high-energy electron beams by LWFA, we were able to obtain reproducible results with beam energy of 800 MeV and charge >10 pC. Higher charge but broader energy spectrum resulted when the plasma density was increased. These developments have resulted in a laser-driven wakefield accelerator that is stable and robust. With this device, we show that narrowband high-energy x-rays beams can be generated by the inverse-Compton scattering process. This accelerator has also been used in recent experiments to study nonlinear effects in the interaction of high-energy electron beams with ultraintense laser pulses. This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  7. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonidmore » Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  8. Electron acceleration by a focused laser pulse in a static magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin; Zhao Xianghao

    2007-12-15

    The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.

  9. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  10. The case for electron re-acceleration at galaxy cluster shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  11. The case for electron re-acceleration at galaxy cluster shocks

    DOE PAGES

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...

    2017-01-04

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  12. Acceleration of plasma electrons by intense nonrelativistic ion and electron beams propagating in background plasma due to two-stream instability

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor D.

    2015-11-01

    In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.

  13. Electron acceleration to high energies at quasi-parallel shock waves in the solar corona

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.

  14. Multilevel acceleration of scattering-source iterations with application to electron transport

    DOE PAGES

    Drumm, Clif; Fan, Wesley

    2017-08-18

    Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less

  15. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    NASA Astrophysics Data System (ADS)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  16. Single tag for total carbohydrate analysis.

    PubMed

    Anumula, Kalyan Rao

    2014-07-15

    Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Ontologies and tag-statistics

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  18. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  19. The Strongest Acceleration of >40 keV Electrons by ICME-driven Shocks at 1 au

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Wang, Linghua; Li, Gang; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Tian, Hui; Bale, Stuart D.

    2018-01-01

    We present two case studies of the in-situ electron acceleration during the 2000 February 11 shock and the 2004 July 22 shock, with the strongest electron flux enhancement at 40 keV across the shock, among all the quasi-perpendicular and quasi-parallel ICME-driven shocks observed by the WIND 3DP instrument from 1995 through 2014 at 1 au. We find that for this quasi-perpendicular (quasi-parallel) shock on 2000 February 11 (2004 July 22), the shocked electron differential fluxes at ∼0.4–50 keV in the downstream generally fit well to a double-power-law spectrum, J ∼ E ‑β , with an index of β ∼ 3.15 (4.0) at energies below a break at ∼3 keV (∼1 keV) and β ∼ 2.65 (2.6) at energies above. For both shock events, the downstream electron spectral indices appear to be similar for all pitch angles, which are significantly larger than the index prediction by diffusive shock acceleration. In addition, the downstream electron pitch-angle distributions show the anisotropic beams in the anti-sunward-traveling direction, while the ratio of the downstream over ambient fluxes appears to peak near 90° pitch angles, at all energies of ∼0.4–50 keV. These results suggest that in both shocks, shock drift acceleration likely plays an important role in accelerating electrons in situ at 1 au. Such ICME-driven shocks could contribute to the formation of solar wind halo electrons at energies ≲2 keV, as well as the production of solar wind superhalo electrons at energies ≳2 keV in interplanetary space.

  20. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  1. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, C. F.; Zhao, T. Z.; Behm, K.

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  2. Favorable target positions for intense laser acceleration of electrons in hydrogen-like, highly-charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pi, Liang-Wen; Starace, Anthony F.; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

    2015-09-15

    Classical relativistic Monte Carlo simulations of petawatt laser acceleration of electrons bound initially in hydrogen-like, highly-charged ions show that both the angles and energies of the laser-accelerated electrons depend on the initial ion positions with respect to the laser focus. Electrons bound in ions located after the laser focus generally acquire higher (≈GeV) energies and are ejected at smaller angles with respect to the laser beam. Our simulations assume a tightly-focused linearly-polarized laser pulse with intensity approaching 10{sup 22 }W/cm{sup 2}. Up to fifth order corrections to the paraxial approximation of the laser field in the focal region are taken intomore » account. In addition to the laser intensity, the Rayleigh length in the focal region is shown to play a significant role in maximizing the final energy of the accelerated electrons. Results are presented for both Ne{sup 9+} and Ar{sup 17+} target ions.« less

  3. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Zhao, T. Z.; Behm, K.; Cummings, P. G.; Nees, J.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Thomas, A. G. R.

    2018-04-01

    Bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail, which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.

  4. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE PAGES

    Dong, C. F.; Zhao, T. Z.; Behm, K.; ...

    2018-04-24

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  5. Electron Densities in Solar Flare Loops, Chromospheric Evaporation Upflows, and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.

    1996-01-01

    We compare electron densities measured at three different locations in solar flares: (1) in Soft X-Ray (SXR) loops, determined from SXR emission measures and loop diameters from Yohkoh Soft X-Ray Telescope maps (n(sub e, sup SXR) = (0.2-2.5) x 10(exp 11)/ cu cm); (2) in chromospheric evaporation upflows, inferred from plasma frequency cutoffs of decimetric radio bursts detected with the 0.1-3 GHz spectrometer Phoenix of ETH Zuerich (n(sub e, sup upflow) = (0.3-11) x 10(exp 10)/cu cm; and (3) in acceleration sites, inferred from the plasma frequency at the separatrix between upward-accelerated (type III bursts) and downward-accelerated (reverse-drift bursts) electron beams [n(sub e, sup acc) = (0.6-10) x 10(exp 9)/cu cm]. The comparison of these density measurements, obtained from 44 flare episodes (during 14 different flares), demonstrates the compatibility of flare plasma density diagnostics with SXR and radio methods. The density in the upflowing plasma is found to be somewhat lower than in the filled loops, having ratios in a range n(sub e, sup upflow)/n(sub e, sup SXR) = 0.02-1.3, and a factor of 3.6 higher behind the upflow front. The acceleration sites are found to have a much lower density than the SXR-bright flare loops, i.e., n(sub e, sup acc)/n(sub e, sup SXR) = 0.005- 0.13, and thus must be physically displaced from the SXR-bright flare loops. The scaling law between electron time-of-flight distances l' and loop half-lengths s, l'/s = 1.4 +/- 0.3, recently established by Aschwanden et al. suggests that the centroid of the acceleration region is located above the SXR-bright flare loop, as envisioned in cusp geometries (e.g., in magnetic reconnection models).

  6. Electron Beam Transport in Advanced Plasma Wave Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less

  7. The 20 kilovolt rocket borne electron accelerator. [equipment specifications

    NASA Technical Reports Server (NTRS)

    Harrison, R.

    1973-01-01

    The accelerator system is a preprogrammed multi-voltage system capable of operating at a current level of 1/2 ampere at the 20 kilovolt level. The five major functional areas which comprise this system are: (1) Silver zinc battery packs; (2) the electron gun assembly; (3) gun control and opening circuits; (4) the telemetry conditioning section; and (5) the power conversion section.

  8. Dynamic optical tags

    NASA Astrophysics Data System (ADS)

    Griggs, Steven P.; Mark, Martin B.; Feldman, Barry J.

    2004-07-01

    The goal of the DARPA Dynamic Optical Tags (DOTs) program is to develop a small, robust, persistent, 2-way tagging, tracking and locating device that also supports communications at data rates greater than 100 kbps and can be interrogated at significant range. These tags will allow for two-way data exchange and tagging operations in friendly and denied areas. The DOTs will be passive and non-RF. To accomplish this, the DOTs program will develop small, thin, retro-reflecting modulators. The tags will operate for long periods of time (greater than two months) in real-world environmental conditions (-40° to +70° C) and allow for a wide interrogation angle (+/-60°). The tags will be passive (in the sleep mode) for most of the time and only become active when interrogated by a laser with the correct code. Once correctly interrogated, the tags will begin to modulate and retro-reflect the incoming beam. The program will also develop two tag specific transceiver systems that are eye-safe, employ automated scanning algorithms, and are capable of short search and interrogate times.

  9. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  10. Decomposition of PCBs in transformer oil using an electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung

    2012-07-01

    Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.

  11. Training considerations for the intracoelomic implantation of electronic tags in fish with a summary of common surgical errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Steven J.; Wagner, Glenn N.; Brown, Richard S.

    2011-01-01

    Training is a fundamental part of all scientific and technical disciplines. This is particularly true for all types of surgeons. For surgical procedures, a number of skills are necessary to reduce mistakes. Trainees must learn an extensive yet standardized set of problem-solving and technical skills to handle challenges as they arise. There are currently no guidelines or consistent training methods for those intending to implant electronic tags in fish; this is surprising, considering documented cases of negative consequences of fish surgeries and information from studies having empirically tested fish surgical techniques. Learning how to do fish surgery once is insufficientmore » for ensuring the maintenance or improvement of surgical skill. Assessment of surgical skills is rarely incorporated into training, and is needed. Evaluation provides useful feedback that guides future learning, fosters habits of self-reflection and self-remediation, and promotes access to advanced training. Veterinary professionals should be involved in aspects of training to monitor basic surgical principles. We identified attributes related to knowledge, understanding, and skill that surgeons must demonstrate prior to performing fish surgery including a “hands-on” assessment using live fish. Included is a summary of common problems encountered by fish surgeons. We conclude by presenting core competencies that should be required as well as outlining a 3-day curriculum for training surgeons to conduct intracoelomic implantation of electronic tags. This curriculum could be offered through professional fisheries societies as professional development courses.« less

  12. Fluence Uniformity Measurements in an Electron Accelerator Used for Irradiation of Extended Area Solar Cells and Electronic Circuits for Space Applications

    NASA Technical Reports Server (NTRS)

    Uribe, Roberto M.; Filppi, Ed; Zhang, Shubo

    2007-01-01

    It is common to have liquid crystal displays and electronic circuit boards with area sizes of the order of 20x20 sq cm on board of satellites and space vehicles. Usually irradiating them at different fluence values assesses the radiation damage in these types of devices. As a result, there is a need for a radiation source with large spatial fluence uniformity for the study of the damage by radiation from space in those devices. Kent State University s Program on Electron Beam Technology has access to an electron accelerator used for both research and industrial applications. The electron accelerator produces electrons with energies in the interval from 1 to 5 MeV and a maximum beam power of 150 kW. At such high power levels, the electron beam is continuously scanned back and forth in one dimension in order to provide uniform irradiation and to prevent damage to the sample. This allows for the uniform irradiation of samples with an area of up to 1.32 sq m. This accelerator has been used in the past for the study of radiation damage in solar cells (1). However in order to irradiate extended area solar cells there was a need to measure the uniformity of the irradiation zone in terms of fluence. In this paper the methodology to measure the fluence uniformity on a sample handling system (linear motion system), used for the irradiation of research samples, along the irradiation zone of the above-mentioned facility is described and the results presented. We also illustrate the use of the electron accelerator for the irradiation of large area solar cells (of the order of 156 sq cm) and include in this paper the electrical characterization of these types of solar cells irradiated with 5 MeV electrons to a total fluence of 2.6 x 10(exp 15) e/sq cm.

  13. Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies

    NASA Astrophysics Data System (ADS)

    Longfellow, Brenden

    2014-09-01

    Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles

  14. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    DOE PAGES

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...

    2015-10-28

    The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  15. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    PubMed Central

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  16. Statistical Comparisons of Meso- and Small-Scale Field-Aligned Currents with Auroral Electron Acceleration Mechanisms from FAST Observations

    NASA Astrophysics Data System (ADS)

    Dombeck, J. P.; Cattell, C. A.; Prasad, N.; Sakher, A.; Hanson, E.; McFadden, J. P.; Strangeway, R. J.

    2016-12-01

    Field-aligned currents (FACs) provide a fundamental driver and means of Magnetosphere-Ionosphere (M-I) coupling. These currents need to be supported by local physics along the entire field line generally with quasi-static potential structures, but also supporting the time-evolution of the structures and currents, producing Alfvén waves and Alfvénic electron acceleration. In regions of upward current, precipitating auroral electrons are accelerated earthward. These processes can result in ion outflow, changes in ionospheric conductivity, and affect the particle distributions on the field line, affecting the M-I coupling processes supporting the individual FACs and potentially the entire FAC system. The FAST mission was well suited to study both the FACs and the electron auroral acceleration processes. We present the results of the comparisons between meso- and small-scale FACs determined from FAST using the method of Peria, et al., 2000, and our FAST auroral acceleration mechanism study when such identification is possible for the entire ˜13 year FAST mission. We also present the latest results of the electron energy (and number) flux ionospheric input based on acceleration mechanism (and FAC characteristics) from our FAST auroral acceleration mechanism study.

  17. Iodine Tagging Velocimetry in a Mach 10 Wake

    NASA Technical Reports Server (NTRS)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  18. A laboratory evaluation of tagging-related mortality and tag loss in juvenile humpback chub

    USGS Publications Warehouse

    Ward, David L.; Persons, William R.; Young, Kirk; Stone, Dennis M.; Van Haverbeke, Randy; Knight, William R.

    2015-01-01

    We quantified tag retention, survival, and growth in juvenile, captive-reared Humpback Chub Gila cypha marked with three different tag types: (1) Biomark 12.5-mm, 134.2-kHz, full duplex PIT tags injected into the body cavity with a 12-gauge needle; (2) Biomark 8.4-mm, 134.2-kHz, full duplex PIT tags injected with a 16-gauge needle; and (3) Northwest Marine Technology visible implant elastomer (VIE) tags injected under the skin with a 29-gauge needle. Estimates of tag loss, tagging-induced mortality, and growth were evaluated for 60 d with each tag type for four different size-groups of fish: 40–49 mm, 50–59 mm, 60–69 mm, and 70–79 mm TL. Total length was a significant predictor of the probability of PIT tag retention and mortality for both 8-mm and 12-mm PIT tags, and the smallest fish had the highest rates of tag loss (12.5–30.0%) and mortality (7.5–20.0%). Humpback Chub of sizes 40–49 mm TL and tagged with VIE tags had no mortality but did have a 17.5% tag loss. Growth rates of all tagged fish were similar to controls. Our data indicate Humpback Chub can be effectively tagged using either 8-mm or 12-mm PIT tags with little tag loss or mortality at sizes as low as 65 mm TL.

  19. Investigation of Ion Beam Production and Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus.

    DTIC Science & Technology

    1984-03-01

    POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related

  20. Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma

    NASA Astrophysics Data System (ADS)

    Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan

    2018-01-01

    This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164

  1. Non-Maxwellian electron distributions by direct laser acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Toncian, T.; Wang, C.; Arefiev, A.; McCary, E.; Meadows, A.; Blakeney, J.; Chester, C.; Roycroft, R.; Fu, H.; Yan, X. Q.; Schreiber, J.; Pomerantz, I.; Quevedo, H.; Dyer, G.; Gaul, E.; Ditmire, T.; Hegelich, B. M.

    2015-11-01

    The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets will decompress to near and lower than critical electron densities plasmas extending over lengths of few micrometers. The laser-matter interaction of the main pulse with such a highly localized but inhomogeneous the target leads to the generation of a channel and further self focussing of the laser beam. As measured in a experiment conducted with the GHOST laser system at UT Austin, 2D PIC simulations predict Direct Laser Acceleration of non-Maxwellian electron distribution in the laser propagation direction for such targets. The hereby high density electron bunches have potential applications as injector beams for a further wakefield acceleration stage. This work was supported by NNSA cooperative agreement DE-NA0002008, the DARPA's PULSE program (12-63-PULSE-FP014) and the AFOSR (FA9550-14-1-0045).

  2. Initial Observations of Micropulse Elongation of Electron Beams in a SCRF Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom Jr., D.

    2016-10-09

    Commissioning at the SCRF accelerator at the Fermilab Accelerator Science and Technology (FAST) Facility has included the implementation of a versatile bunch-length monitor located after the 4-dipole chicane bunch compressor for electron beam energies of 20-50 MeV and integrated charges in excess of 10 nC. The team has initially used a Hamamatsu C5680 synchroscan streak camera to assess the effects of space charge on the electron beam bunch lengths. An Al-coated Si screen was used to generate optical transition radiation (OTR) resulting from the beam’s interaction with the screen. The chicane bypass beamline allowed the measurements of the bunch lengthmore » without the compression stage at the downstream beamline location using OTR and the streak camera. We have observed electron beam bunch lengths from 5 to 16 ps (sigma) for micropulse charges of 60 pC to 800 pC, respectively. We also report a compressed sub-ps micropulse case.« less

  3. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew Pitney

    The cone-guided fast ignition approach to Inertial Confinement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the first time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of Kalpha x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an effective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser

  4. Faint Coronal Hard X-rays From Accelerated Electrons in Solar Flares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay Erin

    Solar flares are huge explosions on the Sun that release a tremendous amount of energy from the coronal magnetic field, up to 1033 ergs, in a short time (100--1000 seconds), with much of the energy going into accelerated electrons and ions. An efficient acceleration mechanism is needed, but the details of this mechanism remain relatively unknown. A fraction of this explosive energy reaches the Earth in the form of energetic particles, producing geomagnetic storms and posing dangers to spaceborne instruments, astronauts, and Earthbound power grids. There are thus practical reasons, as well as intellectual ones, for wishing to understand this extraordinary form of energy release. Through imaging spectroscopy of the hard X-ray (HXR) emission from solar flares, the behavior of flare-accelerated electrons can be studied. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI ) spacecraft launched in 2002 with the goal of better understanding flare particle acceleration. Using rotation modulation collimators, RHESSI is able to cover a wide energy range (3 keV--17 MeV) with fine angular and energy resolutions. RHESSI's success in the last 10 years in investigating the relationship between energetic electrons and ions, the nature of faint sources in the corona, the energy distribution of flares, and several other topics have significantly advanced the understanding of flares. But along with the wealth of information revealed by RHESSI come some clear observational challenges. Very few, if any, RHESSI observations have come close to imaging the electron acceleration region itself. This is undoubtedly due to a lack of both sensitivity (HXRs from electron beams in the tenuous corona are faint) and dynamic range (HXR sources at chromospheric flare footpoints are much brighter and tend to obscure faint coronal sources). Greater sensitivity is also required to investigate the role that small flares in the quiet Sun could play in heating the corona. The Focusing Optics

  5. Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile Sea Lamprey

    USGS Publications Warehouse

    Simard, Lee G.; Sotola, V. Alex; Marsden, J. Ellen; Miehls, Scott M.

    2017-01-01

    Background: Passive integrated transponder (PIT) tags have been used to document and monitor the movement or behavior of numerous species of fishes. Data on short-term and long-term survival and tag retention are needed before initiating studies using PIT tags on a new species or life stage. We evaluated the survival and tag retention of 153 metamorphosing juvenile Sea Lamprey Petromyzon marinus tagged with 12 mm PIT tags on three occasions using a simple surgical procedure. Results: Tag retention was 100% and 98.6% at 24 h and 28-105 d post-tagging. Of the lamprey that retained their tags, 87.3% had incisions sufficiently healed to prevent further loss. Survival was 100% and 92.7% at 24 h and 41-118 d post-tagging with no significant difference in survival between tagged and untagged control lamprey. Of the 11 lamprey that died, four had symptoms that indicated their death was directly related to tagging. Survival was positively correlated with Sea Lamprey length. Conclusions: Given the overall high level of survival and tag retention in this study, future studies can utilize 12 mm PIT tags to monitor metamorphosing juvenile Sea Lamprey movement and migration patterns.

  6. GPU-accelerated computation of electron transfer.

    PubMed

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  7. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    NASA Astrophysics Data System (ADS)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  8. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  9. Electron acceleration in the Solar corona - 3D PiC code simulations of guide field reconnection

    NASA Astrophysics Data System (ADS)

    Alejandro Munoz Sepulveda, Patricio

    2017-04-01

    The efficient electron acceleration in the solar corona detected by means of hard X-ray emission is still not well understood. Magnetic reconnection through current sheets is one of the proposed production mechanisms of non-thermal electrons in solar flares. Previous works in this direction were based mostly on test particle calculations or 2D fully-kinetic PiC simulations. We have now studied the consequences of self-generated current-aligned instabilities on the electron acceleration mechanisms by 3D magnetic reconnection. For this sake, we carried out 3D Particle-in-Cell (PiC) code numerical simulations of force free reconnecting current sheets, appropriate for the description of the solar coronal plasmas. We find an efficient electron energization, evidenced by the formation of a non-thermal power-law tail with a hard spectral index smaller than -2 in the electron energy distribution function. We discuss and compare the influence of the parallel electric field versus the curvature and gradient drifts in the guiding-center approximation on the overall acceleration, and their dependence on different plasma parameters.

  10. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plettner, T.; Byer, R.L.; Smith, T.I.

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less

  11. A wireless sensor tag platform for container security and integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. Thismore » allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.« less

  12. A wireless sensor tag platform for container security and integrity

    NASA Astrophysics Data System (ADS)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    2011-04-01

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.

  13. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  14. Array processing for RFID tag localization exploiting multi-frequency signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin; Li, Xin; Amin, Moeness G.

    2009-05-01

    RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.

  15. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  16. Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; He, X. T.; Zhu, Shao-ping; Zheng, C. Y.

    2005-08-01

    The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field Esl, azimuthal quasistatic magnetic field Bsθ and the axial one Bsz) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by Esl, furthermore, Bsθ pinches and Bsz collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.

  17. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  18. GSyellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants.

    PubMed

    Besbrugge, Nienke; Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; Kulkarni, Shubhada R; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Bontinck, Michiel; Aesaert, Stijn; Impens, Francis; Gevaert, Kris; Van Damme, Daniel; Van Lijsebettens, Mieke; Inzé, Dirk; Vandepoele, Klaas; Nelissen, Hilde; De Jaeger, Geert

    2018-06-01

    The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GS yellow , which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GS yellow tag in the dicot Arabidopsis ( Arabidopsis thaliana ) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GS yellow tag, along the growth zone of the maize ( Zea mays ) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GS yellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research. © 2018 American Society of Plant Biologists. All rights reserved.

  19. Wakefield acceleration in planetary atmospheres: A possible source of MeV electrons. The collisionless case

    NASA Astrophysics Data System (ADS)

    Arrayás, M.; Cubero, D.; Montanya, J.; Seviour, R.; Trueba, J. L.

    2018-07-01

    Intense electromagnetic pulses interacting with a plasma can create a wake of plasma oscillations. Electrons trapped in such oscillations can be accelerated under certain conditions to very high energies. We study the optimal conditions for the wakefield acceleration to produce MeV electrons in planetary plasmas under collisionless conditions. The conditions for the optimal plasma densities can be found in the Earth atmosphere at higher altitudes than 10-15 km, which are the altitudes where lightning leaders can take place.

  20. PIT Tagging Anurans

    USGS Publications Warehouse

    McCreary, Brome

    2008-01-01

    The following video demonstrates a procedure to insert a passive integrated transponder (PIT) tag under the skin of an anuran (frog or toad) for research and monitoring purposes. Typically, a 12.5 mm tag (0.5 in.) is used to uniquely identify individual anurans as smal as 40 mm (1.6 in.) in length from snout to vent. Smaller tags are also available and allow smaller anurans to be tagged. The procedure does not differ for other sizes of tages or other sizes of anurans. Anyone using this procedure should ensure that the tag is small enough to fit easily behind the sacral hump of the anuran, as shown in this video.

  1. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.

    PubMed

    Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari

    2017-04-01

    Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.

  2. THz based electron bunch length monitoring at the quasi-cw SRF accelerator ELBE

    NASA Astrophysics Data System (ADS)

    Green, Bertram; Kovalev, Sergey; Fisher, Alan; Bauer, Christian; Kuntzsch, Michael; Lehnert, Ulf; Schurig, Rico; Goltz, Torsten; Michel, Peter; Stojanovic, Nikola; Gensch, Michael

    2014-03-01

    In the past few years the quasi-cw SRF electron accelerator ELBE has been upgraded so that it now allows to compress electron bunches to the sub-picosecond regime. The actual optimization and control of the electron bunch form represents one of the largest challenges of the coming years. In particular with respect to the midterm goal to utilize the ultra-short electron bunches for Laser-Thomson scattering experiments or high field THz experiments. Current developments of THz based electron bunch diagnostic are discussed and an outlook into future developments is given.

  3. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; University of Nevada Reno, Reno, NV 89557; Van Tilborg, J.

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  4. ezTag: tagging biomedical concepts via interactive learning.

    PubMed

    Kwon, Dongseop; Kim, Sun; Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2018-05-18

    Recently, advanced text-mining techniques have been shown to speed up manual data curation by providing human annotators with automated pre-annotations generated by rules or machine learning models. Due to the limited training data available, however, current annotation systems primarily focus only on common concept types such as genes or diseases. To support annotating a wide variety of biological concepts with or without pre-existing training data, we developed ezTag, a web-based annotation tool that allows curators to perform annotation and provide training data with humans in the loop. ezTag supports both abstracts in PubMed and full-text articles in PubMed Central. It also provides lexicon-based concept tagging as well as the state-of-the-art pre-trained taggers such as TaggerOne, GNormPlus and tmVar. ezTag is freely available at http://eztag.bioqrator.org.

  5. Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Yeung, M.; Gong, Z.; Wang, H. Y.; Kreuzer, C.; Zhou, M. L.; Streeter, M. J. V.; Foster, P. S.; Cousens, S.; Dromey, B.; Meyer-ter-Vehn, J.; Zepf, M.; Schreiber, J.

    2018-02-01

    We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ˜30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

  6. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  7. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  8. Joule heating and runaway electron acceleration in a solar flare

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  9. Insights into electron and ion acceleration and transport from x-ray and gamma-ray imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Hurford, Gordon J.; Krucker, Samuel

    The previous solar maximum has featured high resolution imaging/spectroscopy observations at hard x-ray and gamma-ray energies by the Reuven Ramaty High Energy Solar/Spectroscopic Imager (RHESSI). Highlights of these observations will be reviewed, along with their impli-cations for our understanding of ion and electron acceleration and transport processes. The results to date have included new insights into the location of the acceleration region and the thick target model, a new appreciation of the significance of x-ray albedo, observation of coronal gamma-ray sources and their implications for electron trapping, and indications of differences in the acceleration and transport between electrons and ions. The role of RHESSI's observational strengths and weaknesses in determining the character of its scientific results will also be discussed and used to identify what aspects of the acceleration and transport processes must await the next generation of instrumentation. The extent to which new instrumentation now under development, such as Solar Orbiter/STIX, GRIPS, and FOXSI, can address these open issues will be outlined.

  10. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target.

    PubMed

    Sharma, Ashutosh

    2018-02-01

    Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.

  11. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  12. Implications of X-Ray Observations for Electron Acceleration and Propagation in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Aschwanden, M. J.; Aurass, H.; Battaglia, M.; Grigis, P. C.; Kontar, E. P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V. V.

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.

  13. Study of photon emission by electron capture during solar nuclei acceleration. 2: Delimitation of conditions for charge transfert establishment

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Gallegos, A.

    1985-01-01

    The conditions for establishment of charge transfer during acceleration of nuclei up to Fe, for typical conditions of solar flare regions T = 5 x 10 to the 3rd power to 2.5 x 10 to the 8th power degrees K were explored. Results show that such conditions are widely assorted, depending on the acceleration mechanism, the kind of projections and their velocity, the target elements, the source temperature and consequently on the degree of ionization of matter and the local charge state of the accelerated ions. Nevertheless, in spite of that assorted behavior, there are some general tendencies that can be summarized as follows. In atomic H electron capture is systematically established from thermal energies up to high energies, whatever the element and for both acceleration process. For a given element and fixed temperature (T), the probability and energy domain of electron capture and loss with Fermi are higher than with Betatron acceleration. For a given acceleration process the heavier the ion the higher the probability and the wider the energy range for electron capture and loss. For given acceleration mechanism and fixed element the importance and energy domain of capture and loss increase with T: for those reasons, the energy range of charge equilibrium (illustrated with solid lines on the next figs.) is wider with Fermi and increases with temperature and atomic number of projectiles. For the same reasons, electron loss is smaller while the lighter the element, the lower the temperature and the Betatron process, such that there are conditions for which electron loss is not allowed at low energies, but only electron capture is established.

  14. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  15. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins.

    PubMed

    Lauf, U; Lopez, P; Falk, M M

    2001-06-01

    A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.

  16. Generic tags for Mn(ii) and Gd(iii) spin labels for distance measurements in proteins.

    PubMed

    Yang, Yin; Gong, Yan-Jun; Litvinov, Aleksei; Liu, Hong-Kai; Yang, Feng; Su, Xun-Cheng; Goldfarb, Daniella

    2017-10-11

    High-affinity chelating tags for Gd(iii) and Mn(ii) ions that provide valuable high-resolution distance restraints for biomolecules were used as spin labels for double electron-electron resonance (DEER) measurements. The availability of a generic tag that can bind both metal ions and provide a narrow and predictable distance distribution for both ions is attractive owing to their different EPR-related characteristics. Herein we introduced two paramagnetic tags, 4PSPyMTA and 4PSPyNPDA, which are conjugated to cysteine residues through a stable thioether bond, forming a short and, depending on the metal ion coordination mode, a rigid tether with the protein. These tags exhibit high affinity for both Mn(ii) and Gd(iii) ions. The DEER performance of the 4PSPyMTA and 4PSPyNPDA tags, in complex with Gd(iii) or Mn(ii), was evaluated for three double cysteine mutants of ubiquitin, and the Gd(iii)-Gd(iii) and Mn(ii)-Mn(ii) distance distributions they generated were compared. All three Gd(iii) complexes of the ubiquitin-PyMTA and ubiquitin-PyNPDA conjugates produced similar and expected distance distributions. In contrast, significant variations in the maxima and widths of the distance distributions were observed for the Mn(ii) analogs. Furthermore, whereas PyNPDA-Gd(iii) and PyNPDA-Mn(ii) delivered similar distance distributions, appreciable differences were observed for two mutants with PyMTA, with the Mn(ii) analog exhibiting a broader distance distribution and shorter distances. ELDOR (electron-electron double resonance)-detected NMR measurements revealed some distribution in the Mn(ii) coordination environment for the protein conjugates of both tags but not for the free tags. The broader distance distributions generated by 4PSPyMTA-Mn(ii), as compared with Gd(iii), were attributed to the distributed location of the Mn(ii) ion within the PyMTA chelate owing to its smaller size and lower coordination number that leave the pyridine nitrogen uncoordinated. Accordingly, in

  17. Electron Acceleration and Ionization Production in High-Power Heating Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Pedersen, T.

    2012-12-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60-80 km. Artificial ionization production is indicated by significant 427.8 nm emissions from the 1st negative band of N2+ and the appearance of transmitter-induced bottomside traces in ionosonde data during the periods of most intense optical emissions. However, the exact mechanisms producing the artificial plasmas remain to be determined. Yet the only existing theoretical models explain the development of artificial plasma as an ionizing wavefront moving downward due to ionization by electrons accelerated by HF-excited strong Langmuir turbulence (SLT) generated near the plasma resonance, where the pump frequency matches the plasma frequency. However, the observations suggest also the significance of interactions with upper hybrid and electron Bernstein waves near multiples of the electron gyrofrequency. We describe recent observations and discuss suitable acceleration mechanisms.

  18. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    PubMed

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves. Copyright © 2015, American Association for the Advancement of Science.

  19. Influence of the carrier-envelope phase of few-cycle pulses on ponderomotive surface-plasmon electron acceleration.

    PubMed

    Irvine, S E; Dombi, P; Farkas, Gy; Elezzabi, A Y

    2006-10-06

    Control over basic processes through the electric field of a light wave can lead to new knowledge of fundamental light-matter interaction phenomena. We demonstrate, for the first time, that surface-plasmon (SP) electron acceleration can be coherently controlled through the carrier-envelope phase (CEP) of an excitation optical pulse. Analysis indicates that the physical origin of the CEP sensitivity arises from the electron's ponderomotive interaction with the oscillating electromagnetic field of the SP wave. The ponderomotive electron acceleration mechanism provides sensitive (nJ energies), high-contrast, single-shot CEP measurement capability of few-cycle laser pulses.

  20. RF emittance in a low energy electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  1. Laser-plasma mirrors: from electron acceleration to harmonics generation

    NASA Astrophysics Data System (ADS)

    Thévenet, Maxence; Bocoum, Maïmouna; Faure, Jérôme; Leblanc, Adrien; Vincenti, Henri; Quéré, Fabien

    2016-10-01

    Accelerating electrons in the > 10 TV/m fields inside an ultrashort ultraintense laser pulse has been a long-standing goal in experimental physics, motivated by promising theoretical predictions. The biggest hurdle was to have electrons injected in the center of the laser pulse. Recent experimental and numerical results showed that this problem could be solved using a plasma mirror, i.e. an overdense plasma with a sharp (electron beam. Using particle-in-cell simulations, the ejection process was identified as a push-pull mechanism occuring at each laser period, resulting in a train of attosecond electron bunches injected in the reflected field. We present a study and a model of this process, and show the gradient characteristic length is the crucial parameter for this phenomenon. Finally, the electron ejection process was put into perspective with respect to the high harmonic generation mechanisms on plasma mirrors, giving new insights into the motion of the plasma mirror surface. funded by the European Research Council, Contract No. 306708, ERC Starting Grant FEMTOELEC.

  2. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  3. Lamprey Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison; Deters, Kate

    2017-05-26

    Pacific Northwest National Laboratory has developed a super-small acoustic tracking tag designed just for juvenile lamprey. In this video, PNNL researcher Alison Colotelo describes how she and her colleague Kate Deters inject young lamprey with the PNNL tag.

  4. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    PubMed Central

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications. PMID:27320197

  5. Electron acceleration in solar flares and the transition from nonthermal to thermal hard X-ray phases

    NASA Technical Reports Server (NTRS)

    Smith, D. F.

    1985-01-01

    Observations are reviewed which indicate that hard X-rays during the impulsive phase of a flare typically start with a primarily nonthermal phase which undergoes a transition to a primarily thermal phase as the flare progresses. Recent theoretical work on the modified two-stream instability as an efficient electron accelerator and modeling of thermal hard X-ray sources is considered. A scenario which is termed the dissipative thermal model is proposed to explain the observations. Fast tearing modes occurring in a loop give rise to cross-field ion motion. This in turn excites the modified two-stream instability which converts about 50 percent of the ion energy into accelerated electrons along the loop as long as the plasma beta is less than 0.3. These electrons impact the chromosphere and boil off a part of it which rises up the loop. This density increase coupled with the temperature increase due to tearing causes the beta to increase beyond 0.3 and efficient electron acceleration ceases. This leads to the primarily thermal phase.

  6. Design of a covert RFID tag network for target discovery and target information routing.

    PubMed

    Pan, Qihe; Narayanan, Ram M

    2011-01-01

    Radio frequency identification (RFID) tags are small electronic devices working in the radio frequency range. They use wireless radio communications to automatically identify objects or people without the need for line-of-sight or contact, and are widely used in inventory tracking, object location, environmental monitoring. This paper presents a design of a covert RFID tag network for target discovery and target information routing. In the design, a static or very slowly moving target in the field of RFID tags transmits a distinct pseudo-noise signal, and the RFID tags in the network collect the target information and route it to the command center. A map of each RFID tag's location is saved at command center, which can determine where a RFID tag is located based on each RFID tag's ID. We propose the target information collection method with target association and clustering, and we also propose the information routing algorithm within the RFID tag network. The design and operation of the proposed algorithms are illustrated through examples. Simulation results demonstrate the effectiveness of the design.

  7. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  8. Systematics of quark/gluon tagging

    DOE PAGES

    Gras, Philippe; Höche, Stefan; Kar, Deepak; ...

    2017-07-18

    By measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (C F versus C A). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we findmore » a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.« less

  9. Systematics of quark/gluon tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gras, Philippe; Höche, Stefan; Kar, Deepak

    By measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (C F versus C A). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we findmore » a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.« less

  10. Electron Acceleration from the Interaction of VULCAN 100TW Laser with Au Foils and its Dependence on Laser Polarisation

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Bellei, C.; Kneip, S.; Mangles, S. P. D.; Palmer, C.; Willingale, L.; Dangor, A. E.; Najmudin, Z.; Clarke, R. J.; Heathcote, R.; Henig, A.; Schreiber, J.; Saevert, A.; Kaluza, M.

    2008-11-01

    Electrons as well as ions can be accelerated to high energies (MeV) by high intensity laser interactions with solid targets. An overview of an experiment on the Vulcan laser (pulse length cτ˜150μm, energy on target ˜60 J), will be presented. In this experiment electron acceleration from thick overdense plasmas is investigated by conducting thickness scans using Au foil targets ranging from 10 to 100 μm. The electron spectra, of the most energetic electrons produced in the interaction, are measured along the laser direction and extend up to 40MeV. Surprisingly the electron acceleration depends on target thickness. Simultaneously rear surface proton beam profiles show a dependence of target thickness. Both effects are attributed to electron recirculation. In addition the effects of polarisation was investigated. A decrease in number and effective temperature of energetic electrons is observed for circular polarisation as compared to linear polarisation.

  11. Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID.

    PubMed

    Khadka, Grishma; Hwang, Suk-Seung

    2017-01-01

    Radio-frequency identification (RFID) is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other's communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD) technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.

  12. Photon-tagged and B-meson-tagged b-jet production at the LHC

    DOE PAGES

    Huang, Jinrui; Kang, Zhong -Bo; Vitev, Ivan; ...

    2015-09-18

    Tagged jet measurements in high energy hadronic and nuclear reactions provide constraints on the energy and parton flavor origin of the parton shower that recoils against the tagging particle. Such additional insight can be especially beneficial in illuminating the mechanisms of heavy flavor production in proton–proton collisions at the LHC and their modification in the heavy ion environment, which are not fully understood. With this motivation, we present theoretical results for isolated-photon-tagged and B-meson-tagged b-jet production at √s NN = 5.1 TeV for comparison to the upcoming lead–lead data. We find that photon-tagged b-jets exhibit smaller momentum imbalance shift inmore » nuclear matter, and correspondingly smaller energy loss, than photon-tagged light flavor jets. Our results show that B-meson tagging is most effective in ensuring that the dominant fraction of recoiling jets originate from prompt b-quarks. Furthermore, in this channel the large suppression of the cross section is not accompanied by a significant momentum imbalance shift.« less

  13. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  14. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE PAGES

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; ...

    2016-04-28

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  15. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  16. Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetti, E.; Shanks, R. P.; Manahan, G. G.

    2010-11-19

    Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUVmore » FELs.« less

  17. Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator

    NASA Astrophysics Data System (ADS)

    Gamelin, A.; Bruni, C.; Radevych, D.

    2018-05-01

    The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.

  18. Slow positron beam production by a 14 MeV C.W. electron accelerator

    NASA Astrophysics Data System (ADS)

    Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-10-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.

  19. Optically controlled laser-plasma electron accelerator for compact gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2018-02-01

    Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.

  20. Backward-propagating MeV electrons in ultra-intense laser interactions: Standing wave acceleration and coupling to the reflected laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orban, Chris, E-mail: orban@physics.osu.edu; Feister, Scott; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459

    Laser-accelerated electron beams have been created at a kHz repetition rate from the reflection of intense (∼10{sup 18 }W/cm{sup 2}), ∼40 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-in-Cell simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave can “inject” electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standingmore » wave acceleration: a highly relativistic case (a{sub 0} ≥ 1), and a moderately relativistic case (a{sub 0} ∼ 0.5) which operates over a larger fraction of the laser period. In previous studies, other groups have investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this by investigating electron acceleration in the specular (back reflection) direction and over a wide range of intensities (10{sup 17}–10{sup 19 }W cm{sup −2})« less

  1. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  2. Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Mauk, B. H.; Cohen, I. J.; Jaynes, A. N.; Craft, J. V.; Wilder, F. D.; Baker, D. N.; Reeves, G. D.; Gershman, D. J.; Avanov, L. A.; Dorelli, J. C.; Giles, B. L.; Pollock, C. J.; Schmid, D.; Nakamura, R.; Strangeway, R. J.; Russell, C. T.; Artemyev, A. V.; Runov, A.; Angelopoulos, V.; Spence, H. E.; Torbert, R. B.; Burch, J. L.

    2016-08-01

    We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at 7-9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from 130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

  3. Energy Limits of Electron Acceleration in the Plasma Sheet During Substorms: A Case Study with the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Mauk, B. H.; Cohen, I. J.; Jaynes, A. N.; Craft, J. V.; Wilder, F. D.; Baker, D. N.; hide

    2016-01-01

    We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASAs Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at approx. 7-9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from approx. 130 keV to >500 keV, with each depolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

  4. Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Graham, K. N.

    1974-01-01

    Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.

  5. Electron-beam dynamics for an advanced flash-radiography accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth frommore » beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.« less

  6. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming

    2017-09-01

    Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.

  7. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets whenmore » intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at

  8. Collimated electron beam accelerated at 12 kV from a Penning discharge.

    PubMed

    Toader, D; Oane, M; Ticoş, C M

    2015-01-01

    A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.

  9. Acceleration and Propagation of Anomalous Cosmic Rays and Near-Relativistic Electrons in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2017-12-01

    Voyager 1/2 LECP observations at the termination shock (TS) crossings established that energetic ions (40keV-1MeV) appeared to be locally accelerated "termination shock particles", and since then have exhibited remarkably steady and similar intensities at both spacecraft throughout the heliosheath (HS). On the other hand, the anomalous cosmic rays (ACRs, 4-80 MeV total energy H, He, and O ions) increased more or less steadily across the shock and then gradually peaked years later. All the time in the HS, the ACRs at each spacecraft exhibited a striking "common spectrum", i.e., closely similar intensity histories when ordered by total energy. Near-relativistic electrons (30 keV-1 MeV) exhibited seemingly mutually inconsistent behavior while the two Voyagers transited the shock and HS, with the VGR2 electrons peaking at the shock, but later disappearing for a year (in 2010) and then slowly recovering, as opposed to the less variable VGR1 electrons whose remarkably smooth time history (2008-2012) was very similar to the VGR1 ACRs. Consequently, shock acceleration seems to be operating locally at the TS along with another spatially distributed acceleration/transport mechanism within the HS. The "reservoir" equation (Roelof, AIP Conf. Proc., 1500, 174-179 and 180-184, 2012) offers quantitative explanations for many of these apparently disparate observations. Meso-scale gradients and curvatures in the magnetic field produce transverse transport of energetic particles and (in direct consequence) "transverse compressive" acceleration that relates the fractional rate of momentum d(lnp)/dt=-(1/3)div(Vperp) to the divergence of the component of the plasma velocity transverse to the magnetic field. However, this acceleration rate must compete with the extinction rate of singly-charged ions due to charge exchange with the cold interstellar neutral H-atoms that permeate the HS. The agreement of the Voyager 1/2 LECP observations with the acceleration/extinction processes has

  10. Study on the parameters of the scanning system for the 300 keV electron accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.

    2016-01-22

    This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters ofmore » the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.« less

  11. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  12. POLAR 5 - An electron accelerator experiment within an aurora. III - Evidence for significant spacecraft charging by an electron accelerator at ionospheric altitudes

    NASA Technical Reports Server (NTRS)

    Jacobsen, T. A.; Maynard, N. C.

    1980-01-01

    The POLAR 5 rocket experiment carried an electron accelerator on a 'daughter' payload which injected a 0.1 A beam of 10 keV electrons in a pulsed mode every 410 ms. With spin and precession, injections were made over a wide range of pitch angles. Measurements from a double probe electric field instrument and from particle detectors on the 'mother' payload and from a crude RPA on the 'daughter' payload are interpreted to indicate that the 'daughter' charges to a potential between several hundred volts and 1 kV. The neutralizing return current to the 'daughter' is shown to be asymmetrically distributed with the majority being collected from the direction of the beam. The additional electrons necessary to neutralize the daughter are thought to be produced and heated through beam-plasma interactions postulated by Maehlum et al. (1980) and Grandal et al. (1980) to explain the particle and optical measurements. Significant electric fields emanating from the charged 'daughter' and the beam are seen at distances exceeding 100 m at the 'mother' payload.

  13. On The Detection Of Footprints From Strong Electron Acceleration In High-Intensity Laser Fields, Including The Unruh Effect

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Homma, K.; Hörlein, R.; Karsch, S.; Krausz, F.; Maia, C.; Osterhoff, J.; Popp, A.; Schmid, K.; Schreiber, J.; Schützhold, R.; Tajima, T.; Veisz, L.; Wulz, J.; Yamazaki, T.

    2010-04-01

    The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3 1018V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of as = 2 1028 g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. In upcoming experiments with intense accelerating fields, we will encounter a set of opportunities to experimentally study the radiation from electrons under extreme fields. Even before the Unruh radiation detection, we should run into the copious Larmor radiation. The detection of Larmor radiation and its characterization themselves have never been experimentally carried out to the best of our knowledge, and thus this amounts to a first serious study of physics at extreme acceleration. For example, we can study radiation damping effects like the Landau-Lifshitz radiation. Furthermore, the experiment should be able to confirm or disprove whether the Larmor and Landau-Lifshitz radiation components may be enhanced by a collective (N2) radiation, if a tightly clumped cluster of electrons is accelerated. The technique of laser driven dense electron sheet formation by irradiating a thin DLC foil target should provide such a coherent electron cluster with a very high density. If and when such mildly relativistic electron sheets are realized, a counterpropagating second laser can interact with them coherently. Under

  14. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study.

    PubMed

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-12-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users' motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources . Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems.

  15. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study

    PubMed Central

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-01-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users’ motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources. Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems. PMID:23471473

  16. Tag retention, growth, and survival of red swamp crayfish marked with a visible implant tag

    USGS Publications Warehouse

    Isely, J.J.; Stockett, P.E.

    2001-01-01

    Eighty juvenile (means: 42.4 mm total length, 1.6 g) red swamp crayfish Procambarus clarkii were implanted with sequentially numbered visible implant tags and held in the laboratory. Tags were injected transversely into the musculature just beneath the exoskeleton of the third abdominal segment from the cephalothorax; tags were visible upon inspection. An additional 20 crayfish were left untagged and served as controls. After 150 d, tag retention was 80% and all tags were readable. No tagged crayfish died during the study, and no differences in total length or weight were detected between tagged and control crayfish. All individuals molted at least three times during the 150-d study, and some individuals molted up to six times, suggesting that most tags would be permanently retained. The readability in the field without specialized equipment makes the visible implant tag ideal for studies of crayfish ecology, management, and culture.

  17. Differences in 1D electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2018-03-01

    In some laboratory and most astrophysical situations, plasma wake-field acceleration of electrons is one dimensional, i.e., variation transverse to the beam's motion can be ignored. Thus, one dimensional, particle-in-cell (PIC), fully electromagnetic simulations of electron plasma wake field acceleration are conducted in order to study the differences in electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes. First, we show that caution needs to be taken when using fluid simulations, as PIC simulations prove that an approximation for an electron bunch not to evolve in time for a few hundred plasma periods only applies when it is sufficiently relativistic. This conclusion is true irrespective of the plasma temperature. We find that in the linear regime and GeV energies, the accelerating electric field generated by the plasma wake is similar to the linear and MeV regimes. However, because GeV energy driving bunch stays intact for a much longer time, the final acceleration energies are much larger in the GeV energies case. In the GeV energy range and blowout regime, the wake's accelerating electric field is much larger in amplitude compared with the linear case and also plasma wake geometrical size is much larger. Thus, the correct positioning of the trailing bunch is needed to achieve the efficient acceleration. For the considered case, optimally, there should be approximately (90-100)c/ωpe distance between the trailing and driving electron bunches in the GeV blowout regime.

  18. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  19. Multi-Threaded DNA Tag/Anti-Tag Library Generator for Multi-Core Platforms

    DTIC Science & Technology

    2009-05-01

    base pair)  Watson ‐ Crick  strand pairs that bind perfectly within pairs, but poorly across pairs. A variety  of  DNA  strand hybridization metrics...AFRL-RI-RS-TR-2009-131 Final Technical Report May 2009 MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE PLATFORMS...TYPE Final 3. DATES COVERED (From - To) Jun 08 – Feb 09 4. TITLE AND SUBTITLE MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE

  20. Emitting electron spectra and acceleration processes in the jet of PKS 0447-439

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Yan, Dahai; Dai, Benzhong; Zhang, Li

    2014-02-01

    We investigate the electron energy distributions (EEDs) and the corresponding acceleration processes in the jet of PKS 0447-439, and estimate its redshift through modeling its observed spectral energy distribution (SED) in the frame of a one-zone synchrotron-self Compton (SSC) model. Three EEDs formed in different acceleration scenarios are assumed: the power-law with exponential cut-off (PLC) EED (shock-acceleration scenario or the case of the EED approaching equilibrium in the stochastic-acceleration scenario), the log-parabolic (LP) EED (stochastic-acceleration scenario and the acceleration dominating), and the broken power-law (BPL) EED (no acceleration scenario). The corresponding fluxes of both synchrotron and SSC are then calculated. The model is applied to PKS 0447-439, and modeled SEDs are compared to the observed SED of this object by using the Markov Chain Monte Carlo method. The results show that the PLC model fails to fit the observed SED well, while the LP and BPL models give comparably good fits for the observed SED. The results indicate that it is possible that a stochastic acceleration process acts in the emitting region of PKS 0447-439 and the EED is far from equilibrium (acceleration dominating) or no acceleration process works (in the emitting region). The redshift of PKS 0447-439 is also estimated in our fitting: z = 0.16 ± 0.05 for the LP case and z = 0.17 ± 0.04 for BPL case.

  1. Radio evidence for shock acceleration of electrons in the solar corona

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  2. The effect of a longitudinal density gradient on electron plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2016-12-01

    Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.

  3. Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Drew Lawson; Fennell, J. F.; Blake, J. B.

    Here, we present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7–9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the thresholdmore » are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.« less

  4. Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

    DOE PAGES

    Turner, Drew Lawson; Fennell, J. F.; Blake, J. B.; ...

    2016-08-01

    Here, we present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7–9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the thresholdmore » are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.« less

  5. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2012-12-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  6. Antenna for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  7. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2017-01-01

    At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.

  8. Comparison of the Effects of Wave-Particle Interactions and the Kinetic Suprathermal Electron Population on the Acceleration of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Tam, S. W. Y.; Chang, T.

    2002-01-01

    Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.

  9. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  10. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  11. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies

    PubMed Central

    Anthony, Kelsey C.; You, Changjiang; Piehler, Jacob; Pomeranz Krummel, Daniel A.

    2014-01-01

    SUMMARY There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle (AuNPtris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of AuNPtris-NTA labeled proteins by electron microscopy is further ensured by the reagent’s short conformationally restricted linker. We have employed AuNPtris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. AuNPtris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our new labeling reagent should find broad application in non-covalent site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies. PMID:24560806

  12. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.

    PubMed

    Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V

    2012-06-01

    To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.

  13. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  14. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    DOE PAGES

    Liu, Tao; Zhang, Tong; Wang, Dong; ...

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU)more » is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. As a result, theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.« less

  15. MeV electron acceleration at 1 kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard

    2017-01-01

    We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  16. Method for designing gas tag compositions

    DOEpatents

    Gross, Kenny C.

    1995-01-01

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

  17. Method for designing gas tag compositions

    DOEpatents

    Gross, K.C.

    1995-04-11

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

  18. Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Committee Task Group No. 72.

    PubMed

    Beddar, A Sam; Biggs, Peter J; Chang, Sha; Ezzell, Gary A; Faddegon, Bruce A; Hensley, Frank W; Mills, Michael D

    2006-05-01

    Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

  19. Preliminary research concerning the use of electron accelerators to improve the conservability and to extend the shelf-life of fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Minea, R.; Oproiu, C.; Pascanu, S.; Matei, C.; Ferdes, O.

    1996-06-01

    The potential of ionizing radiation treatment for food preservation, shelf-life extension, control of microbial load and reduction of pathogenic microorganism was demonstrated. The irradiations were performed under normal conditions on the Institute of Physics and Technology for Radiation Device's linear electron accelerator, which has the following parameters: 5 μA mean beam current, 6 MeV electron mean energy, pulse period 3.5 μs and dose rates between 100-1500 Gy/min. This research project was aimed at assuring the consumer's acceptance for radiation-treated food and to obtain a significant reduction of food losses. We also propose a promising solution for the radiation processing of some bulk food products at the place of storage, consisting of a mobile electron accelerator. The main characteristics of the mobile electron accelerator are: electron energy 3 to 5 MeV, maximum beam power 5 kW, vertical electron beam; irradiation is possible both with electron beams and with bremsstrahlung. The results of our preliminary research lead to the conclusion that electron-beam irradiation and the use of electron accelerators is a promising solution for food preservation and food safety. Interesting future applications are outlined.

  20. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    NASA Technical Reports Server (NTRS)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  1. WebTag: Web browsing into sensor tags over NFC.

    PubMed

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.

  2. WebTag: Web Browsing into Sensor Tags over NFC

    PubMed Central

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Álvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm. PMID:23012511

  3. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.

    2015-12-15

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less

  4. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-01

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  5. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].

    PubMed

    Nakamura, T; Uwamino, Y

    1986-02-01

    The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.

  6. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  7. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  8. Cornell-BNL Electron Energy Recovery Linac FFAG Test Accelerator (CBETA)

    NASA Astrophysics Data System (ADS)

    Trbojevic, Dejan; Peggs, Steve; Berg, Scott; Brooks, Stephen; Mahler, George; Meot, Francois; Tsoupas, Nicholaos; Witte, Holger; Hoffstaetter, Georg; Bazarov, Ivan; Mayes, Christopher; Patterson, Ritchie; Smolenski, Karl; Li, Yulin; Dobbins, John; BNL Team; Cornell University Team

    A novel energy recovery linac (ERL) with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack is being constructed as a result of collaboration of the Cornell University with Brookhaven National Laboratory. The existing injector and superconducting linac at Cornell University are being installed together with a single NS-FFAG arcs and straight section at the opposite side of the linac to form an ERL system. The 6 MeV electron beam from injector is transferred into the 36 MeV superconducting linac and accelerated by four successive passes: from 42 to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase and with 4 passes electron energy is recovered and brought back to the initial energy of 6 MeV. This is going to be the first 4 pass superconducting ERL and the first NS-FFAG permanent magnet structure to bring the electron beam back to the linac.

  9. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  10. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    NASA Astrophysics Data System (ADS)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  11. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    NASA Astrophysics Data System (ADS)

    Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F. S.; Mori, W. B.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2007-06-01

    The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample particle-in-cell (PIC) simulation of a 30fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×1018cm-3 to produce an ultrashort (10 fs) monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005)PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.

  12. Tag loss and short-term mortality associated with passive integrated transponder tagging of juvenile Lost River suckers

    USGS Publications Warehouse

    Burdick, Summer M.

    2011-01-01

    Passive integrated transponder (PIT) tags are commonly used to mark small catostomids, but tag loss and the effect of tagging on mortality have not been assessed for juveniles of the endangered Lost River sucker Deltistes luxatus. I evaluated tag loss and short-term (34-d) mortality associated with the PIT tagging of juvenile Lost River suckers in the laboratory by using a completely randomized design and three treatment groups (PIT tagged, positive control, and control). An empty needle was inserted into each positive control fish, whereas control fish were handled but not tagged. Only one fish expelled its PIT tag. Mortality rate averaged 9.8 ± 3.4% (mean ± SD) for tagged fish; mortality was 0% for control and positive control fish. All tagging mortalities occurred in fish with standard lengths of 71 mm or less, and most of the mortalities occurred within 48 h of tagging. My results indicate that 12.45- × 2.02-mm PIT tags provide a viable method of marking juvenile Lost River suckers that are 72 mm or larger.

  13. Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August

    2016-09-13

    Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with thismore » code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.« less

  14. rf breakdown measurements in electron beam driven 200 GHz copper and copper-silver accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-11-30

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  15. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  16. PROBING DYNAMICS OF ELECTRON ACCELERATION WITH RADIO AND X-RAY SPECTROSCOPY, IMAGING, AND TIMING IN THE 2002 APRIL 11 SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.

    Based on detailed analysis of radio and X-ray observations of a flare on 2002 April 11 augmented by realistic three-dimensional modeling, we have identified a radio emission component produced directly at the flare acceleration region. This acceleration region radio component has distinctly different (1) spectrum, (2) light curves, (3) spatial location, and, thus, (4) physical parameters from those of the separately identified trapped or precipitating electron components. To derive evolution of physical parameters of the radio sources we apply forward fitting of the radio spectrum time sequence with the gyrosynchrotron source function with five to six free parameters. At themore » stage when the contribution from the acceleration region dominates the radio spectrum, the X-ray- and radio-derived electron energy spectral indices agree well with each other. During this time the maximum energy of the accelerated electron spectrum displays a monotonic increase with time from {approx}300 keV to {approx}2 MeV over roughly one minute duration indicative of an acceleration process in the form of growth of the power-law tail; the fast electron residence time in the acceleration region is about 2-4 s, which is much longer than the time of flight and so requires a strong diffusion mode there to inhibit free-streaming propagation. The acceleration region has a relatively strong magnetic field, B {approx} 120 G, and a low thermal density, n{sub e} {approx}< 2 Multiplication-Sign 10{sup 9} cm{sup -3}. These acceleration region properties are consistent with a stochastic acceleration mechanism.« less

  17. Survival and tag loss in Moapa White River springfish implanted with passive integrated transponder tags

    USGS Publications Warehouse

    Dixon, Christopher J.; Mesa, Matthew G.

    2011-01-01

    We monitored survival and tag loss among Moapa White River springfish Crenichthys baileyi moapae that were surgically implanted with passive integrated transponder (PIT; 9 × 2 mm) tags. The fish used in the study ranged from 40 to 67 mm in total length and from 1.0 to 6.5 g in mass; the PIT tag: body weight ratios were 1.0–6.1%. Fish were held for 41 d in live cages within a small, warm desert stream. Survival did not differ between untagged control fish (94.5%) and tagged fish (95.6%). Survival did not appear to be influenced by fish size or PIT tag: body weight ratio, but the small number of fish that died precluded a detailed analysis. Tag retention was 100% among the 86 fish that survived over the 41 d. Our results suggest that surgically implanting 9-mm PIT tags into Moapa White River springfish as small as 40 mm is an effective method for marking them because it has minimal impacts on survival and tag retention is high. More work is needed on the effects of PIT tagging on growth and other performance metrics of springfish and other small desert fishes.

  18. Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHNEIDER,LARRY X.

    2000-06-01

    The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of componentmore » and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.« less

  19. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  20. Terahertz radiation source using a high-power industrial electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  1. From the track to the ocean: Using flow control to improve marine bio-logging tags for cetaceans

    PubMed Central

    Fiore, Giovani; Anderson, Erik; Garborg, C. Spencer; Murray, Mark; Johnson, Mark; Moore, Michael J.; Howle, Laurens

    2017-01-01

    Bio-logging tags are an important tool for the study of cetaceans, but superficial tags inevitably increase hydrodynamic loading. Substantial forces can be generated by tags on fast-swimming animals, potentially affecting behavior and energetics or promoting early tag removal. Streamlined forms have been used to reduce loading, but these designs can accelerate flow over the top of the tag. This non-axisymmetric flow results in large lift forces (normal to the animal) that become the dominant force component at high speeds. In order to reduce lift and minimize total hydrodynamic loading this work presents a new tag design (Model A) that incorporates a hydrodynamic body, a channel to reduce fluid speed differences above and below the housing and wing to redirect flow to counter lift. Additionally, three derivatives of the Model A design were used to examine the contribution of individual flow control features to overall performance. Hydrodynamic loadings of four models were compared using computational fluid dynamics (CFD). The Model A design eliminated all lift force and generated up to ~30 N of downward force in simulated 6 m/s aligned flow. The simulations were validated using particle image velocimetry (PIV) to experimentally characterize the flow around the tag design. The results of these experiments confirm the trends predicted by the simulations and demonstrate the potential benefit of flow control elements for the reduction of tag induced forces on the animal. PMID:28196148

  2. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  3. Monte Carlo method for calculating the radiation skyshine produced by electron accelerators

    NASA Astrophysics Data System (ADS)

    Kong, Chaocheng; Li, Quanfeng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Tang, Chuanxiang; Zhu, Li; Zhang, Hui; Pei, Zhigang; Ming, Shenjin

    2005-06-01

    Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.

  4. A neutron track etch detector for electron linear accelerators in radiotherapy

    PubMed Central

    Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip

    2010-01-01

    Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893

  5. Acceleration and Pickup Ring of Energetic Electrons Observed in Relativistic Magnetic Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Ping, Y. L.; Zhong, J. Y.; Wang, X. G.; Sheng, Z. M.; Zhao, G.

    2017-11-01

    Pickup ring of energetic electrons found in relativistic magnetic reconnection (MR) driven by two relativistic intense femtosecond laser pulses is investigated by particle simulation in 3D geometry. Magnetic reconnection processes and configurations are characterized by plasma current density distributions at different axial positions. Two helical structures associated with the circular polarization of laser pulses break down in the reconnection processes to form a current sheet between them, where energetic electrons are found to pile up and the outflow relativistic electron jets are observed. In the field line diffusion region, electrons are accelerated to multi-MeV with a flatter power-law spectrum due to MR. The development of the pickup ring of energetic electrons is strongly dependent upon laser peak intensities.

  6. Design of a Covert RFID Tag Network for Target Discovery and Target Information Routing

    PubMed Central

    Pan, Qihe; Narayanan, Ram M.

    2011-01-01

    Radio frequency identification (RFID) tags are small electronic devices working in the radio frequency range. They use wireless radio communications to automatically identify objects or people without the need for line-of-sight or contact, and are widely used in inventory tracking, object location, environmental monitoring. This paper presents a design of a covert RFID tag network for target discovery and target information routing. In the design, a static or very slowly moving target in the field of RFID tags transmits a distinct pseudo-noise signal, and the RFID tags in the network collect the target information and route it to the command center. A map of each RFID tag’s location is saved at command center, which can determine where a RFID tag is located based on each RFID tag’s ID. We propose the target information collection method with target association and clustering, and we also propose the information routing algorithm within the RFID tag network. The design and operation of the proposed algorithms are illustrated through examples. Simulation results demonstrate the effectiveness of the design. PMID:22163693

  7. Direct Laser Acceleration in Laser Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Shaw, J. L.; Froula, D. H.; Marsh, K. A.; Joshi, C.; Lemos, N.

    2017-10-01

    The direct laser acceleration (DLA) of electrons in a laser wakefield accelerator (LWFA) has been investigated. We show that when there is a significant overlap between the drive laser and the trapped electrons in a LWFA cavity, the accelerating electrons can gain energy from the DLA mechanism in addition to LWFA. The properties of the electron beams produced in a LWFA, where the electrons are injected by ionization injection, have been investigated using particle-in-cell (PIC) code simulations. Particle tracking was used to demonstrate the presence of DLA in LWFA. Further PIC simulations comparing LWFA with and without DLA show that the presence of DLA can lead to electron beams that have maximum energies that exceed the estimates given by the theory for the ideal blowout regime. The magnitude of the contribution of DLA to the energy gained by the electron was found to be on the order of the LWFA contribution. The presence of DLA in a LWFA can also lead to enhanced betatron oscillation amplitudes and increased divergence in the direction of the laser polarization. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Social Tagging of Mission Data

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  9. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  10. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE PAGES

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...

    2018-04-13

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  11. Genetically encoded fluorescent tags

    PubMed Central

    Thorn, Kurt

    2017-01-01

    Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed. PMID:28360214

  12. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.

    2017-10-01

    Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.

  13. Shielding for High-Energy Electron Accelerator Installations. National Bureau of Standards Handbook 97.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    Recommendations for radiation shielding, protection, and measurement are presented. This handbook is an extension of previous recommendations for protection against radiation from--(1) high energy and power electron accelerators, (2) food processing equipment, and (3) general sterilization equipment. The new recommendations are concerned with…

  14. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min

  15. An MCNP-based model for the evaluation of the photoneutron dose in high energy medical electron accelerators.

    PubMed

    Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis

    The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.

  16. A compact electron cyclotron resonance proton source for the Paul Scherrer Institute's proton accelerator facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgarten, C.; Barchetti, A.; Einenkel, H.

    2011-05-15

    A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.

  17. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating.

    PubMed

    Shen, X F; Qiao, B; Zhang, H; Kar, S; Zhou, C T; Chang, H X; Borghesi, M; He, X T

    2017-05-19

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20  nC) can be obtained at intensity 10^{22}  W/cm^{2}.

  18. Review on SAW RFID tags.

    PubMed

    Plessky, Victor P; Reindl, Leonhard M

    2010-03-01

    SAW tags were invented more than 30 years ago, but only today are the conditions united for mass application of this technology. The devices in the 2.4-GHz ISM band can be routinely produced with optical lithography, high-resolution radar systems can be built up using highly sophisticated, but low-cost RF-chips, and the Internet is available for global access to the tag databases. The "Internet of Things," or I-o-T, will demand trillions of cheap tags and sensors. The SAW tags can overcome semiconductor-based analogs in many aspects: they can be read at a distance of a few meters with readers radiating power levels 2 to 3 orders lower, they are cheap, and they can operate in robust environments. Passive SAW tags are easily combined with sensors. Even the "anti-collision" problem (i.e., the simultaneous reading of many nearby tags) has adequate solutions for many practical applications. In this paper, we discuss the state-of-the-art in the development of SAW tags. The design approaches will be reviewed and optimal tag designs, as well as encoding methods, will be demonstrated. We discuss ways to reduce the size and cost of these devices. A few practical examples of tags using a time-position coding with 10(6) different codes will be demonstrated. Phase-coded devices can additionally increase the number of codes at the expense of a reduction of reading distance. We also discuss new and exciting perspectives of using ultra wide band (UWB) technology for SAW-tag systems. The wide frequency band available for this standard provides a great opportunity for SAW tags to be radically reduced in size to about 1 x 1 mm(2) while keeping a practically infinite number of possible different codes. Finally, the reader technology will be discussed, as well as detailed comparison made between SAW tags and IC-based semiconductor device.

  19. Evidence for Field-parallel Electron Acceleration in Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haerendel, G.

    It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.

  20. Tag retention, growth, and survival of red swamp crayfish Procambarus clarkii marked with coded wire tags

    USGS Publications Warehouse

    Isely, J.J.; Eversole, A.G.

    1998-01-01

    Juvenile red swamp crayfish (or crawfish), Procambarus clarkii (20-41 mm in total length) were collected from a crayfish culture pond by dipnetting and tagged with sequentially numbered, standard length, binary-coded wire tags. Four replicates of 50 crayfish were impaled perpendicular to the long axis of the abdomen with a fixed needle. Tags were injected transversely into the ventral surface of the first or second abdominal segment and were imbedded in the musculature just beneath the abdominal sternum. Tags were visible upon inspection. Additionally, two replicates of 50 crayfish were not tagged and were used as controls. Growth, survival, and tag retention were evaluated after 7 d in individual containers, after 100 d in aquaria, and after 200 d in field cages. Tag retention during each sample period was 100%, and average mortality of tagged crayfish within 7 d of tagging was 1%. Mortality during the remainder of the study was high (75-91%) but was similar between treatment and control samples. Most of the deaths were probably due to cannibalism. Average total length increased threefold during the course of the study, and crayfish reached maturity. Because crayfish were mature by the end of the study, we concluded that the coded wire tag was retained through the life history of the crayfish.

  1. Enhanced quasi-static particle-in-cell simulation of electron cloud instabilities in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feng, Bing

    Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac

  2. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    NASA Astrophysics Data System (ADS)

    Van Lancker, Marc; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-05-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat à l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.

  3. Tagging-based, electronically cleansed CT colonography: evaluation of patient comfort and image readability.

    PubMed

    Zalis, Michael E; Perumpillichira, James J; Magee, Cordula; Kohlberg, Gavriel; Hahn, Peter F

    2006-04-01

    To prospectively compare the homogeneity, adequacy, and patient acceptance of nonionic iodine-based regimens with those of a barium-based regimen for computed tomographic (CT) colonography with electronic subtraction cleansing. After institutional review board approval and informed consent were obtained, 68 subjects (41 men (60%) men, 27 (40%) women; mean age, 60 years +/- 6 [standard deviation]) with average or moderate risk factors for development of colorectal carcinoma were recruited and placed into three study groups. Group 1 (n = 25) ingested 150-mL aliquots of 2% barium sulfate suspension with meals and snacks for 48 hours prior to imaging, without other diet modification or a cathartic. Group 2 (n = 21) ingested 10-mL aliquots of nonionic iodinated contrast material (iopromide) with a concentration of 300 mg per milliliter with meals and snacks for 2 days before imaging, without diet modification or a cathartic. Group 3 (n = 22) ingested nonionic iodinated contrast material (iohexol) with a concentration of 300 mg per milliliter with meals and snacks for 2 days before imaging and ingested 34 g of magnesium citrate the evening prior to imaging. CT colonography was also performed on 10 control subjects who ingested polyethylene glycol electrolyte solution prior to imaging. Subjective and numerical measures of bowel preparation quality, homogeneity, and patient comfort among the noncathartic and cathartic cohorts were compared with nonparametric analysis of variance, the Fisher exact test, and the F test, as appropriate. The study was HIPAA compliant. Study subjects who received tagging preparations reported significantly improved discomfort scores when compared with those of the control subjects (P < .05, each comparison). There was no significant difference in discomfort scores among groups 1, 2, and 3. For each reader, scores of subtracted image readability were highest for group 3. Dichotomized rates of preparation "success" were also greatest for group 3

  4. Comparison of measured electron energy spectra for six matched, radiotherapy accelerators.

    PubMed

    McLaughlin, David J; Hogstrom, Kenneth R; Neck, Daniel W; Gibbons, John P

    2018-05-01

    This study compares energy spectra of the multiple electron beams of individual radiotherapy machines, as well as the sets of spectra across multiple matched machines. Also, energy spectrum metrics are compared with central-axis percent depth-dose (PDD) metrics. A lightweight, permanent magnet spectrometer was used to measure energy spectra for seven electron beams (7-20 MeV) on six matched Elekta Infinity accelerators with the MLCi2 treatment head. PDD measurements in the distal falloff region provided R 50 and R 80-20 metrics in Plastic Water ® , which correlated with energy spectrum metrics, peak mean energy (PME) and full-width at half maximum (FWHM). Visual inspection of energy spectra and their metrics showed whether beams on single machines were properly tuned, i.e., FWHM is expected to increase and peak height decrease monotonically with increased PME. Also, PME spacings are expected to be approximately equal for 7-13 MeV beams (0.5-cm R 90 spacing) and for 13-16 MeV beams (1.0-cm R 90 spacing). Most machines failed these expectations, presumably due to tolerances for initial beam matching (0.05 cm in R 90 ; 0.10 cm in R 80-20 ) and ongoing quality assurance (0.2 cm in R 50 ). Also, comparison of energy spectra or metrics for a single beam energy (six machines) showed outlying spectra. These variations in energy spectra provided ample data spread for correlating PME and FWHM with PDD metrics. Least-squares fits showed that R 50 and R 80-20 varied linearly and supralinearly with PME, respectively; however, both suggested a secondary dependence on FWHM. Hence, PME and FWHM could serve as surrogates for R 50 and R 80-20 for beam tuning by the accelerator engineer, possibly being more sensitive (e.g., 0.1 cm in R 80-20 corresponded to 2.0 MeV in FWHM). Results of this study suggest a lightweight, permanent magnet spectrometer could be a useful beam-tuning instrument for the accelerator engineer to (a) match electron beams prior to beam commissioning

  5. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  6. Numerical and experimental hydrodynamic analysis of suction cup bio-logging tag designs for marine mammals

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Shorter, Alex; Howle, Laurens; Johnson, Mark; Moore, Michael

    2012-11-01

    The improvement and miniaturization of sensing technologies has made bio-logging tags, utilized for the study of marine mammal behavior, more practical. These sophisticated sensing packages require a housing which protects the electronics from the environment and provides a means of attachment to the animal. The hydrodynamic forces on these housings can inadvertently remove the tag or adversely affect the behavior or energetics of the animal. A modification to the original design of a suction cup bio-logging tag housing was desired to minimize the adverse forces. In this work, hydrodynamic loading of two suction cup tag designs, original and modified designs, were analyzed using computational fluid dynamics (CFD) models and validated experimentally. Overall, the simulation and experimental results demonstrated that a tag housing that minimized geometric disruptions to the flow reduced drag forces, and that a tag housing with a small frontal cross-sectional area close to the attachment surface reduced lift forces. Preliminary results from experimental work with a common dolphin cadaver indicates that the suction cups used to attach the tags to the animal provide sufficient attachment force to resist failure at predicted drag and lift forces in 10 m/s flow.

  7. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  8. Evaluation of Intercontinental Transport of Ozone Using Full-tagged, Tagged-N and Sensitivity Methods

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Liu, J.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Fan, S.; Li, X.; Tao, S.

    2014-12-01

    Long-range transport of ozone is of great concern, yet the source-receptor relationships derived previously depend strongly on the source attribution techniques used. Here we describe a new tagged ozone mechanism (full-tagged), the design of which seeks to take into account the combined effects of emissions of ozone precursors, CO, NOx and VOCs, from a particular source, while keeping the current state of chemical equilibrium unchanged. We label emissions from the target source (A) and background (B). When two species from A and B sources react with each other, half of the resulting products are labeled A, and half B. Thus the impact of a given source on downwind regions is recorded through tagged chemistry. We then incorporate this mechanism into the Model for Ozone and Related chemical Tracers (MOZART-4) to examine the impact of anthropogenic emissions within North America, Europe, East Asia and South Asia on ground-level ozone downwind of source regions during 1999-2000. We compare our results with two previously used methods -- the sensitivity and tagged-N approaches. The ozone attributed to a given source by the full-tagged method is more widely distributed spatially, but has weaker seasonal variability than that estimated by the other methods. On a seasonal basis, for most source/receptor pairs, the full-tagged method estimates the largest amount of tagged ozone, followed by the sensitivity and tagged-N methods. In terms of trans-Pacific influence of ozone pollution, the full-tagged method estimates the strongest impact of East Asian (EA) emissions on the western U.S. (WUS) in MAM and JJA (~3 ppbv), which is substantially different in magnitude and seasonality from tagged-N and sensitivity studies. This difference results from the full-tagged method accounting for the maintenance of peroxy radicals (e.g., CH3O2, CH3CO3, and HO2), in addition to NOy, as effective reservoirs of EA source impact across the Pacific, allowing for a significant contribution to

  9. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  10. X-ray photoelectron spectroscopy and secondary electron yield analysis of Al and Cu samples exposed to an accelerator environment

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. A.; McDowell, M. W.; Ma, Q.; Harkay, K. C.

    2003-09-01

    It is well known that exposure to an accelerator environment can cause ``conditioning'' of the vacuum chamber surfaces. In order to understand the manner in which the surface structure might influence the production of gases and electrons in the accelerator, such surfaces should be studied both before and after exposure to accelerator conditions. Numerous studies have been performed on representative materials prior to being inserted into an accelerator, but very little has been done on materials that have ``lived'' in the accelerator for extended periods. In the present work, we mounted Al and Cu coupons at different positions in a section of the Advanced Photon Source storage ring and removed them following exposures ranging from 6 to 18 months. X-ray photoelectron spectroscopy (XPS) of the surface was performed before and after exposure. Changes were observed that depended on the location and whether the coupon was facing the chamber interior or chamber wall. These results will be presented and compared to XPS and secondary electron yield data obtained from laboratory measurements meant to simulate the accelerator conditions.

  11. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.

    PubMed

    Pimpinella, M; Mihailescu, D; Guerra, A S; Laitano, R F

    2007-10-21

    Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s(w,air), were compared with the corresponding s(w,air) values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s(w,air) values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s(w,air) values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.

  12. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  13. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  14. Simplifications of the RELIEF flow tagging system for laboratory use. [Raman Excitation plus Laser Induced Electronic Fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.; Zhang, Boying; Miles, Richard B.; Diskin, Glenn

    1991-01-01

    The use of an O2:He stimulated Raman cell to generate the Stokes beam for the Raman vibrational pumping step of the RELIEF (Raman Excitation plus Laser-Induced Electronic Fluorescence) flow tagging method is reported. Use of the Raman cell rather than a dye laser provides pump and Stokes beams which are automatically frequency matched and temporally and spatially overlapped. The Nd:YAG pump laser is operated multilongitudinal mode, which eliminates the need for injection seeding, resulting in decreased operation complexity and improved stability with respect to acoustic noise. Results are presented for 1st Stokes conversion efficiency and stimulated Brillouin backscattering loss and are compared to the case of pure O2. Scanning CARS measurements of the Q-branch lineshape for both pure O2 and the O2:He mixture are also presented.

  15. Simulated Prompt Acceleration of Multi-MeV Electrons by the 17 March 2015 Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiao-Chen; Thaller, Scott; Wiltberger, Michael; Wygant, John

    2017-10-01

    Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by ˜1 MeV is inferred on less than a drift timescale as seen in prior shock compression events, which launch a magnetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.

  16. Calibrating acoustic acceleration transmitters for estimating energy use by wild adult Pacific salmon.

    PubMed

    Wilson, S M; Hinch, S G; Eliason, E J; Farrell, A P; Cooke, S J

    2013-03-01

    This study is the first to calibrate acceleration transmitters with energy expenditure using a vertebrate model species. We quantified the relationship between acoustic accelerometer output and oxygen consumption across a range of swim speeds and water temperatures for Harrison River adult sockeye salmon (Oncorhynchus nerka). First, we verified that acceleration transmitters with a sampling frequency of 10 Hz could be used as a proxy for movement in sockeye salmon. Using a mixed effects model, we determined that tailbeat frequency and acceleration were positively correlated (p<0.0001), independent of tag ID. Acceleration (p<0.0001) was positively related to swim speed while fork length (p=0.051) was negatively related to swim speed. Oxygen consumption and accelerometer output (p<0.0001) had a positive linear relationship and were temperature dependent (p<0.0001). There were no differences in swim performance (F(2,12)=1.023, p=0.820) or oxygen consumption (F(1,12)=0.054, p=0.332) between tagged and untagged individuals. Five tagged fish were released into the Fraser River estuary and manually tracked. Of the five fish, three were successfully tracked for 1h. The above relationships were used to determine that the average swim speed was 1.25±0.03 body lengths s(-1) and cost of transport was 3.39±0.17 mg O(2) kg(-1)min(-1), averaged across the three detected fish. Acceleration transmitters can be effectively used to remotely evaluate fine-scale behavior and estimate energy consumption of adult Pacific salmon throughout their homeward spawning migration. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  18. Very low frequency waves stimulated by an electron accelerator in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Holtet, J. A.; Pran, B. K.; Egeland, A.; Grandal, B.; Jacobsen, T. A.; Maehlum, B. N.; Troim, J.

    1981-01-01

    The sounding rocket, Polar 5, carrying a 10 keV electron accelerator in a mother-daughter configuration and other diagnostic instruments, was launched into a slightly disturbed ionosphere with weak auroral activity on February 1, 1976 from Northern Norway to study VLF wave phenomena. The rocket trajectory crossed two auroral regions: one, between 86 and 111 s flight time, and a secondary region between 230 and 330 s. The daughter, carrying the accelerator, was separated axially from the mother in a forward direction at an altitude of 90 km. The VLF experiment, carried by the mother payload, recorded both electromagnetic and electrostatic waves. The receiving antenna was an electric dipole, 0.3 m tip-to-tip, oriented 90 degrees to the rocket spin axis. The onboard particle detector recorded increased electron fluxes in the two auroral regions. A double peaked structure was observed in the fluxes of 4-5 and 12-27 keV electrons within the northern auroral form. The number density of thermal plasma varied during the flight, with maximum density within the main auroral region. To the north of this aurora a slow, steady decrease in the density was observed, with no enhancement in the region of the second aurora.

  19. Injection of externally produced kinetic electrons into a self-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Ralph, Joseph; Albert, Felicie; Shaw, Jessica; Clayton, Christopher; Marsh, Ken; Joshi, Chan; Mori, Warren; Kesler, Leigh; Mills, Sarah; Severson, Brian; Rigby, Alexandra; Glenzer, Siegfried

    2012-10-01

    A two-stage laser wakefield accelerator is being developed at the Lawrence Livermore National Laboratory using the Callisto laser system. The first stage is a high density (˜10^19 cm-3), 5 mm He gas jet plasma which is driven by 30 TW of 800 nm laser light focused to an a0˜ 2. The <100 MeV electrons produced in this stage are deflected by a 0.5 T dipole magnet onto the axis of the second stage, which is a low density (˜10^18 cm-3), 15 mm He gas cell driven by 200 TW of 800 nm light also focused to an a0˜ 2; no additional electrons are trapped in this stage. Electrons injected into the second stage can then be further accelerated to higher energy without increasing the energy spread. Measurements of the transmitted laser profile and spectrum from the second stage indicate that the laser pulse is self-guided throughout the gas cell and that a strong wake is driven. These results compare well with particle-in-cell (PIC) simulations performed with the code OSIRIS. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA-27344.

  20. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  1. Satellite tagging and biopsy sampling of killer whales at subantarctic Marion Island: effectiveness, immediate reactions and long-term responses.

    PubMed

    Reisinger, Ryan R; Oosthuizen, W Chris; Péron, Guillaume; Cory Toussaint, Dawn; Andrews, Russel D; de Bruyn, P J Nico

    2014-01-01

    Remote tissue biopsy sampling and satellite tagging are becoming widely used in large marine vertebrate studies because they allow the collection of a diverse suite of otherwise difficult-to-obtain data which are critical in understanding the ecology of these species and to their conservation and management. Researchers must carefully consider their methods not only from an animal welfare perspective, but also to ensure the scientific rigour and validity of their results. We report methods for shore-based, remote biopsy sampling and satellite tagging of killer whales Orcinus orca at Subantarctic Marion Island. The performance of these methods is critically assessed using 1) the attachment duration of low-impact minimally percutaneous satellite tags; 2) the immediate behavioural reactions of animals to biopsy sampling and satellite tagging; 3) the effect of researcher experience on biopsy sampling and satellite tagging; and 4) the mid- (1 month) and long- (24 month) term behavioural consequences. To study mid- and long-term behavioural changes we used multievent capture-recapture models that accommodate imperfect detection and individual heterogeneity. We made 72 biopsy sampling attempts (resulting in 32 tissue samples) and 37 satellite tagging attempts (deploying 19 tags). Biopsy sampling success rates were low (43%), but tagging rates were high with improved tag designs (86%). The improved tags remained attached for 26±14 days (mean ± SD). Individuals most often showed no reaction when attempts missed (66%) and a slight reaction-defined as a slight flinch, slight shake, short acceleration, or immediate dive-when hit (54%). Severe immediate reactions were never observed. Hit or miss and age-sex class were important predictors of the reaction, but the method (tag or biopsy) was unimportant. Multievent trap-dependence modelling revealed considerable variation in individual sighting patterns; however, there were no significant mid- or long-term changes following

  2. Satellite Tagging and Biopsy Sampling of Killer Whales at Subantarctic Marion Island: Effectiveness, Immediate Reactions and Long-Term Responses

    PubMed Central

    Reisinger, Ryan R.; Oosthuizen, W. Chris; Péron, Guillaume; Cory Toussaint, Dawn; Andrews, Russel D.; de Bruyn, P. J. Nico

    2014-01-01

    Remote tissue biopsy sampling and satellite tagging are becoming widely used in large marine vertebrate studies because they allow the collection of a diverse suite of otherwise difficult-to-obtain data which are critical in understanding the ecology of these species and to their conservation and management. Researchers must carefully consider their methods not only from an animal welfare perspective, but also to ensure the scientific rigour and validity of their results. We report methods for shore-based, remote biopsy sampling and satellite tagging of killer whales Orcinus orca at Subantarctic Marion Island. The performance of these methods is critically assessed using 1) the attachment duration of low-impact minimally percutaneous satellite tags; 2) the immediate behavioural reactions of animals to biopsy sampling and satellite tagging; 3) the effect of researcher experience on biopsy sampling and satellite tagging; and 4) the mid- (1 month) and long- (24 month) term behavioural consequences. To study mid- and long-term behavioural changes we used multievent capture-recapture models that accommodate imperfect detection and individual heterogeneity. We made 72 biopsy sampling attempts (resulting in 32 tissue samples) and 37 satellite tagging attempts (deploying 19 tags). Biopsy sampling success rates were low (43%), but tagging rates were high with improved tag designs (86%). The improved tags remained attached for 26±14 days (mean ± SD). Individuals most often showed no reaction when attempts missed (66%) and a slight reaction–defined as a slight flinch, slight shake, short acceleration, or immediate dive–when hit (54%). Severe immediate reactions were never observed. Hit or miss and age-sex class were important predictors of the reaction, but the method (tag or biopsy) was unimportant. Multievent trap-dependence modelling revealed considerable variation in individual sighting patterns; however, there were no significant mid- or long-term changes following

  3. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Richard P.; Gold, Steven H.

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less

  4. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive

  5. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongjun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Xu, Jiancai, E-mail: jcxu@siom.ac.cn

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials withmore » a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.« less

  6. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    NASA Astrophysics Data System (ADS)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  7. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip.

    PubMed

    Park, Doo Jae; Piglosiewicz, Bjoern; Schmidt, Slawa; Kollmann, Heiko; Mascheck, Manfred; Lienau, Christoph

    2012-12-14

    We report a strong, laser-field induced modification of the propagation direction of ultrashort electron pulses emitted from nanometer-sized gold tapers. Angle-resolved kinetic energy spectra of electrons emitted from such tips are recorded using ultrafast near-infrared light pulses of variable wavelength and intensity for excitation. For sufficiently long wavelengths, we observe a pronounced strong-field acceleration of electrons within the field gradient at the taper apex. We find a distinct narrowing of the emission cone angle of the fastest electrons. We ascribe this to the field-induced steering of subcycle electrons as opposed to the diverging emission of quiver electrons. Our findings are corroborated by simulations based on a modified Simpleman model incorporating the curved, vectorial field gradient in the vicinity of the tip. Our results indicate new pathways for designing highly directional nanometer-sized ultrafast electron sources.

  8. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  9. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, M.; Schumaker, W.; He, Z.-H.

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on themore » HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.« less

  10. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explainmore » the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.« less

  11. Buddy Tag CONOPS and Requirements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotz, Jay Kristoffer; Deland, Sharon M.

    2015-12-01

    This document defines the concept of operations (CONOPS) and the requirements for the Buddy Tag, which is conceived and designed in collaboration between Sandia National Laboratories and Princeton University under the Department of State Key VerificationAssets Fund. The CONOPS describe how the tags are used to support verification of treaty limitations and is only defined to the extent necessary to support a tag design. The requirements define the necessary functions and desired non-functional features of the Buddy Tag at a high level

  12. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterhoff, J.; Nakamura, K.; Bakeman, M.

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  13. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the acceleratorsmore » are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.« less

  15. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  16. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  17. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  18. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    NASA Astrophysics Data System (ADS)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  19. Survival, growth, and tag retention in age-0 Chinook Salmon implanted with 8-, 9-, and 12-mm PIT tags

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Perry, Russell W.; Connor, William P.; Mullins, Frank L.; Rabe, Craig; Nelson, Doug D

    2015-01-01

    The ability to represent a population of migratory juvenile fish with PIT tags becomes difficult when the minimum tagging size is larger than the average size at which fish begin to move downstream. Tags that are smaller (e.g., 8 and 9 mm) than the commonly used 12-mm PIT tags are currently available, but their effects on survival, growth, and tag retention in small salmonid juveniles have received little study. We evaluated growth, survival, and tag retention in age-0 Chinook Salmon Oncorhynchus tshawytscha of three size-groups: 40–49-mm fish were implanted with 8- and 9-mm tags, and 50– 59-mm and 60–69-mm fish were implanted with 8-, 9-, and 12-mm tags. Survival 28 d after tagging ranged from 97.8% to 100% across all trials, providing no strong evidence for a fish-size-related tagging effect or a tag size effect. No biologically significant effects of tagging on growth in FL (mm/d) or weight (g/d) were observed. Although FL growth in tagged fish was significantly reduced for the 40–49-mm and 50–59-mm groups over the first 7 d, growth rates were not different thereafter, and all fish were similar in size by the end of the trials (day 28). Tag retention across all tests ranged from 93% to 99%. We acknowledge that actual implantation of 8- or 9-mm tags into small fish in the field will pose additional challenges (e.g., capture and handling stress) beyond those observed in our laboratory. However, we conclude that experimental use of the smaller tags for small fish in the field is supported by our findings.

  20. Comparing the hierarchy of author given tags and repository given tags in a large document archive

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Palla, Gergely

    2016-10-01

    Folksonomies - large databases arising from collaborative tagging of items by independent users - are becoming an increasingly important way of categorizing information. In these systems users can tag items with free words, resulting in a tripartite item-tag-user network. Although there are no prescribed relations between tags, the way users think about the different categories presumably has some built in hierarchy, in which more special concepts are descendants of some more general categories. Several applications would benefit from the knowledge of this hierarchy. Here we apply a recent method to check the differences and similarities of hierarchies resulting from tags given by independent individuals and from tags given by a centrally managed repository system. The results from our method showed substantial differences between the lower part of the hierarchies, and in contrast, a relatively high similarity at the top of the hierarchies.