Recent developments in shock-capturing schemes
NASA Technical Reports Server (NTRS)
Harten, Ami
1991-01-01
The development of the shock capturing methodology is reviewed, paying special attention to the increasing nonlinearity in its design and its relation to interpolation. It is well-known that higher-order approximations to a discontinuous function generate spurious oscillations near the discontinuity (Gibbs phenomenon). Unlike standard finite-difference methods which use a fixed stencil, modern shock capturing schemes use an adaptive stencil which is selected according to the local smoothness of the solution. Near discontinuities this technique automatically switches to one-sided approximations, thus avoiding the use of discontinuous data which brings about spurious oscillations.
Accelerators and Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Burlon, A. A.; Kreiner, A. J.; Valda, A.
2002-08-01
Within the frame of Accelerator Based Boron Neutron Capture Therapy (AB-BNCT), the 7Li (p,n) 7Be reaction, relatively near its energy threshold is one of the most promising, due to its high yield and low neutron energy. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron flux. The 10B(n,αγ)7Li boron neutron capture reaction produces a 0.478 MeV gamma ray in 94% of the cases. The neutron yield was measured through the detection of this gamma ray using a hyperpure germanium detector with an anti-Compton shield. In addition, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4×108 cm-2s-1mA-1 was obtained at 4.2 cm from the phantom surface. In order to optimize the design of the neutron production target and the beam shaping assembly extensive Monte Carlo Neutron and Photon (MCNP) simulations have been performed. Neutron fields from a thick LiF and a Li metal target (with both a D2O-graphite and a Al/AlF3-graphite moderator/reflector assembly) were evaluated along the centerline of a head and a whole body phantom. Simulations were carried out for 1.89, 2.0 and 2.3 MeV proton beams. The results show that it is more advantageous to irradiate the target with 2.3 MeV near-resonance protons, instead of very near threshold, because of the higher neutron yield at this energy. On the other hand, the Al/AlF3-graphite exhibits a more efficient performance than D2O in terms of tumor to maximum healthy tissue dose ratio. Treatment times of less than 15 min and tumor control probabilities larger than 98% are obtained for a 50 mA, 2.3 MeV proton beam. The alternative neutron-producing reaction 13C(d,n) is also briefly reviewed. A
Upwind and symmetric shock-capturing schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1987-01-01
The development of numerical methods for hyperbolic conservation laws has been a rapidly growing area for the last ten years. Many of the fundamental concepts and state-of-the-art developments can only be found in meeting proceedings or internal reports. This review paper attempts to give an overview and a unified formulation of a class of shock-capturing methods. Special emphasis is on the construction of the basic nonlinear scalar second-order schemes and the methods of extending these nonlinear scalar schemes to nonlinear systems via the extact Riemann solver, approximate Riemann solvers, and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows is discussed. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas dynamics problems.
On high-resolution finite volume shock capturing schemes
NASA Astrophysics Data System (ADS)
Causon, D. M.; Clarke, N.
1990-07-01
Conservative, shock capturing methods for the unsteady Euler equations are reviewed and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well-known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. We describe a scheme which is efficient in both respects.
On high resolution finite volume shock capturing schemes
NASA Astrophysics Data System (ADS)
Causon, D. M.; Clarke, N.
Conservative shock-capturing methods for the unsteady Euler equations are reviewed, and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. A scheme which is efficient in both respects is described.
On the Nonlinearity of Modern Shock-Capturing Schemes
NASA Technical Reports Server (NTRS)
Harten, A.
1986-01-01
The development is reviewed of shock capturing methods, paying special attention to the increasing nonlinearity in the design of numerical schemes. The nature is studies of this nonlinearity and its relation to upwind differencing is examined. This nonlinearity of the modern shock capturing methods is essential, in the sense that linear analysis is not justified and may lead to wrong conclusions. Examples to demonstrate this point are given.
Accelerator-driven boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Edgecock, Rob
2014-05-01
Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.
Biotechnology for the acceleration of carbon dioxide capture and sequestration.
Savile, Christopher K; Lalonde, James J
2011-12-01
The potential for enzymatic acceleration of carbon dioxide capture from combustion products of fossil fuels has been demonstrated. Carbonic anhydrase (CA) accelerates post combustion CO(2) capture, but available CAs are woefully inadequate for the harsh conditions employed in most of these processes. In this review, we summarize recent approaches to improve CA, and processes employing this enzyme, to maximize the benefit from this extremely fast biocatalyst. Approaches to overcoming limitations include sourcing CAs from thermophilic organisms, using protein engineering to evolve thermo-tolerant enzymes, immobilizing the enzyme for stabilization and confinement to cooler regions and process modifications that minimize the (thermo-, solvent) stress on the enzyme. PMID:21737251
Hybrid proton acceleration scheme using relativistic intense laser light
Andreev, A. A.; Platonov, K. Yu.; Schnuerer, M.; Prasad, R.; Ter-Avetisyan, S.
2013-03-15
Ion acceleration phenomena at relativistic intense laser interaction with thin foil targets are studied to find an efficient laser-target interaction concept at the conditions, where neither the ponderomotive pressure of the laser light nor the hot electron pressure is negligible. Particle in cell simulations and the analytical model are allowing to predict optimum laser-target parameters and suggesting a significant increase of proton energy if a hybrid proton acceleration scheme is used. In the proposed scenario, the laser polarisation is changed during the acceleration process: First with circularly polarised laser light the target is accelerated as a whole by the ponderamotive pressure, and then with linearly polarised laser light the electrons are heated which additionally increases the accelerating field. The calculations are in good agreement with experimental findings.
Convergence Acceleration for Multistage Time-Stepping Schemes
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli L.; Rossow, C-C; Vasta, V. N.
2006-01-01
The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7 x 10(exp 6) and 100.0 x 10(exp 6). Results are also obtained for a transonic wing flow. For both 2-D and 3-D problems, the computational time of a well-tuned standard RK scheme is reduced at least a factor of four.
Accelerated failure time model under general biased sampling scheme.
Kim, Jane Paik; Sit, Tony; Ying, Zhiliang
2016-07-01
Right-censored time-to-event data are sometimes observed from a (sub)cohort of patients whose survival times can be subject to outcome-dependent sampling schemes. In this paper, we propose a unified estimation method for semiparametric accelerated failure time models under general biased estimating schemes. The proposed estimator of the regression covariates is developed upon a bias-offsetting weighting scheme and is proved to be consistent and asymptotically normally distributed. Large sample properties for the estimator are also derived. Using rank-based monotone estimating functions for the regression parameters, we find that the estimating equations can be easily solved via convex optimization. The methods are confirmed through simulations and illustrated by application to real datasets on various sampling schemes including length-bias sampling, the case-cohort design and its variants. PMID:26941240
A CLASSIFICATION SCHEME FOR TURBULENT ACCELERATION PROCESSES IN SOLAR FLARES
Bian, Nicolas; Kontar, Eduard P.; Emslie, A. Gordon E-mail: eduard@astro.gla.ac.uk
2012-08-01
We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the acceleration processes as either resonant, non-resonant, or resonant-broadened, depending on whether the particle motion is free-streaming along the magnetic field, diffusive, or a combination of the two. Stochastic acceleration by moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions for the momentum-dependent diffusion coefficient D(p), both for general forms of the accelerating force and for the situation when the electromagnetic force is wave-like, with a specified dispersion relation {omega} = {omega}(k). Finally, for models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared with observations of the time profile of the radiation field produced by the accelerated particles, such as those occuring during solar flares.
Electron capture acceleration channel in a slit laser beam
Wang, P. X.; Scheid, W.; Ho, Y. K.
2007-03-12
Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.
High Energy Density Physics and Exotic Acceleration Schemes
Cowan, T.; Colby, E.; /SLAC
2005-09-27
The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to
Recent progress on essentially non-oscillatory shock capturing schemes
NASA Technical Reports Server (NTRS)
Osher, Stanley; Shu, Chi-Wang
1989-01-01
An account is given of the construction of efficient implementations of 'essentially nonoscillatory' (ENO) schemes that approximate systems of hyperbolic conservation laws. ENO schemes use a local adaptive stencil to automatically obtain information from regions of smoothness when the solution develops discontinuities. Approximations employing ENOs can thereby obtain uniformly high accuracy to the very onset of discontinuities, while retaining a sharp and essentially nonoscillatory shock transition. For ease of implementation, ENO schemes applying the adaptive stencil concept to the numerical fluxes and employing a TVD Runge-Kutta-type time discretization are constructed.
Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme
NASA Astrophysics Data System (ADS)
Badziak, J.; Rosiński, M.; Jabłoński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Rączka, P.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.
2015-01-01
Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes.
Global search acceleration in the nested optimization scheme
NASA Astrophysics Data System (ADS)
Grishagin, Vladimir A.; Israfilov, Ruslan A.
2016-06-01
Multidimensional unconstrained global optimization problem with objective function under Lipschitz condition is considered. For solving this problem the dimensionality reduction approach on the base of the nested optimization scheme is used. This scheme reduces initial multidimensional problem to a family of one-dimensional subproblems being Lipschitzian as well and thus allows applying univariate methods for the execution of multidimensional optimization. For two well-known one-dimensional methods of Lipschitz optimization the modifications providing the acceleration of the search process in the situation when the objective function is continuously differentiable in a vicinity of the global minimum are considered and compared. Results of computational experiments on conventional test class of multiextremal functions confirm efficiency of the modified methods.
Optimized capture section for a muon accelerator front end
NASA Astrophysics Data System (ADS)
Kamal Sayed, Hisham; Berg, J. Scott
2014-07-01
In a muon accelerator complex, a target is bombarded by a multi-MW proton beam to produce pions, which decay into the muons which are thereafter bunched, cooled, and accelerated. The front end of the complex captures those pions, then manipulates their phase space, and that of the muons into which they decay, to maximize the number of muons within the acceptance of the downstream systems. The secondary pion beam produced at the target is captured by a high field target solenoid that tapers down to a constant field throughout the rest of the front end. In this study we enhance the useful muon flux by introducing a new design of the longitudinal profile of the solenoid field at, and downstream of, the target. We find that the useful muon flux exiting the front end is larger when the field at the target is higher, the distance over which the field tapers down is shorter, and the field at the end of the taper is higher. We describe how the solenoid field profile impacts the transverse and longitudinal phase space of the beam and thereby leads to these dependencies.
Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy
Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.; Kreiner, Andres J.
2010-08-04
Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.
Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.
Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry
NASA Astrophysics Data System (ADS)
Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.
2014-09-01
The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are
Accelerator based epithermal neutron source for neutron capture therapy
Brugger, R.; Kunze, J.
1991-05-01
Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.
Target studies for accelerator-based boron neutron capture therapy
Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.
1996-03-01
Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.
Capture, acceleration and bunching rf systems for the MEIC booster and storage rings
Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei; Morozov, Vasiliy; Rimmer, Robert A.; Wang, Haipeng; Zhang, Yuhong
2015-09-01
The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energy ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.
High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications
Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.
1999-06-06
Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.
Dissipative issue of high-order shock capturing schemes with non-convex equations of state
NASA Astrophysics Data System (ADS)
Heuzé, Olivier; Jaouen, Stéphane; Jourdren, Hervé
2009-02-01
It is well known that, closed with a non-convex equation of state (EOS), the Riemann problem for the Euler equations allows non-standard waves, such as split shocks, sonic isentropic compressions or rarefaction shocks, to occur. Loss of convexity then leads to non-uniqueness of entropic or Lax solutions, which can only be resolved via the Liu-Oleinik criterion (equivalent to the existence of viscous profiles for all admissible shock waves). This suggests that in order to capture the physical solution, a numerical scheme must provide an appropriate level of dissipation. A legitimate question then concerns the ability of high-order shock capturing schemes to naturally select such a solution. To investigate this question and evaluate modern as well as future high-order numerical schemes, there is therefore a crucial need for well-documented benchmarks. A thermodynamically consistent C∞ non-convex EOS that can be easily introduced in Eulerian as well as Lagrangian hydrocodes for test purposes is here proposed, along with a reference solution for an initial value problem exhibiting a complex composite wave pattern (the Bizarrium test problem). Two standard Lagrangian numerical approaches, both based on a finite volume method, are then reviewed (vNR and Godunov-type schemes) and evaluated on this Riemann problem. In particular, a complete description of several state-of-the-art high-order Godunov-type schemes applicable to general EOSs is provided. We show that this particular test problem reveals quite severe when working on high-order schemes, and recommend it as a benchmark for devising new limiters and/or next-generation highly accurate schemes.
Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)
Rivlin, Lev A
2010-12-09
We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)
A numerical study of ENO and TVD schemes for shock capturing
NASA Technical Reports Server (NTRS)
Chang, Shih-Hung; Liou, Meng-Sing
1988-01-01
The numerical performance of a second-order upwind-based total variation diminishing (TVD) scheme and that of a uniform second-order essentially non-oscillatory (ENO) scheme for shock capturing are compared. The TVD scheme used is a modified version of Liou, using the flux-difference splitting (FDS) of Roe and his superbee function as the limiter. The construction of the basic ENO scheme is based on Harten, Engquist, Osher, and Chakravarthy, and the 2-D extensions are obtained by using a Strang-type of fractional-step time-splitting method. Numerical results presented include both steady and unsteady, 1-D and 2-D calculations. All the chosen test problems have exact solutions so that numerical performance can be measured by comparing the computer results to them. For 1-D calculations, the standard shock-tube problems of Sod and Lax are chosen. A very strong shock-tube problem, with the initial density ratio of 400 to 1 and pressure ratio of 500 to 1, is also used to study the behavior of the two schemes. For 2-D calculations, the shock wave reflection problems are adopted for testing. The cases presented in this report include flows with Mach numbers of 2.9, 5.0, and 10.0.
Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.
1998-01-01
Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.
Accelerator Based Neutron Beams for Neutron Capture Therapy
Yanch, Jacquelyn C.
2003-04-11
The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and
High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows
NASA Technical Reports Server (NTRS)
Yee, H. C.; Klopfer, G. H.; Montagne, J.-L.
1988-01-01
A class of implicit Total Variation Diminishing (TVD) type algorithms suitable for transonic and supersonic multidimensional Euler and Navier-Stokes equations was extended to hypersonic computations. The improved conservative shock-capturing schemes are spatially second- and third-order, and are fully implicit. They can be first- or second-order accurate in time and are suitable for either steady or unsteady calculations. Enhancement of stability and convergence rate for hypersonic flows is discussed. With the proper choice of the temporal discretization and suitable implicit linearization, these schemes are fairly efficient and accurate for very complex two-dimensional hypersonic inviscid and viscous shock interactions. This study is complimented by a variety of steady and unsteady viscous and inviscid hypersonic blunt-body flow computations. Due to the inherent stiffness of viscous flow problems, numerical experiments indicated that the convergence rate is in general slower for viscous flows than for inviscid steady flows.
Computational Tools for Accelerating Carbon Capture Process Development
Miller, David; Sahinidis, N V; Cozad, A; Lee, A; Kim, H; Morinelly, J; Eslick, J; Yuan, Z
2013-06-04
This presentation reports development of advanced computational tools to accelerate next generation technology development. These tools are to develop an optimized process using rigorous models. They include: Process Models; Simulation-Based Optimization; Optimized Process; Uncertainty Quantification; Algebraic Surrogate Models; and Superstructure Optimization (Determine Configuration).
Diffusion Acceleration Schemes for Self-Adjoint Angular Flux Formulation with a Void Treatment
Yaqi Wang; Hongbin Zhang; Richard C. Martineau
2014-02-01
A Galerkin weak form for the monoenergetic neutron transport equation with a continuous finite element method and discrete ordinate method is developed based on self-adjoint angular flux formulation. This weak form is modified for treating void regions. A consistent diffusion scheme is developed with projection. Correction terms of the diffusion scheme are derived to reproduce the transport scalar flux. A source iteration that decouples the solution of all directions with both linear and nonlinear diffusion accelerations is developed and demonstrated. One-dimensional Fourier analysis is conducted to demonstrate the stability of the linear and nonlinear diffusion accelerations. Numerical results of these schemes are presented.
A Compact and High Performance Muon Capture Channel for Muon Accelerators
Stratakis, D.; Gallardo, J.; Palmer, R.B.
2011-03-28
It is widely believed that a neutrino factory would deliver unparallel performance in studying neutrino mixing and would provide tremendous sensitivity to new physics in the neutrino sector. Here we will describe and simulate the front-end of the neutrino factory system, which plays critical role in determining the number of muons that can be accepted by the downstream accelerators. In this system, a proton bunch on a target creates secondaries that drift into a capture transport channel. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to nearly equal central energies, and initiates ionization cooling. For this, the muon beams are transported through sections containing high-gradient cavities and strong focusing solenoids. In this paper we present results of optimization and variation studies toward obtaining the maximum number of muons for a neutrino factory by using a compact transport channel. It has been suggested computationally and experimentally that the maximum achievable gradient is enhanced by introducing an external magnetic field at right angles to the rf electric field since it suppresses field-emission processes. Here, we have discussed a possible scheme for extending the concept of magnetic insulation to capture, transport, and cool muons in a neutrino factory. We incorporated this idea into a new lattice design where the rf cavities are shaped so that their walls were tangential to the magnetic-field lines. We showed that, with magnetic insulation, the field-emitted electrons impact the cavity surface with energies four orders-of-magnitude less than in conventional pillbox cavities; consequently, damage from field-emission is suppressed significantly. While demanding in terms of power requirements, this neutrino factory lattice showed satisfactory performance in both cooling and collecting the accepted muons within the requirements for the IDSNF. Optimizations were also made
Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows
NASA Astrophysics Data System (ADS)
Kotov, D. V.; Yee, H. C.; Wray, A. A.; Sjögreen, B.; Kritsuk, A. G.
2016-02-01
The Yee & Sjögreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov et al. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjögreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the
Study of Design Knowledge Capture (DKC) schemes implemented in magnetic bearing applications
NASA Technical Reports Server (NTRS)
1990-01-01
A design knowledge capture (DKC) scheme was implemented using frame-based techniques. The objective of such a system is to capture not only the knowledge which describes a design, but also that which explains how the design decisions were reached. These knowledge types were labelled definitive and explanatory, respectively. Examination of the design process helped determine what knowledge to retain and at what stage that knowledge is used. A discussion of frames resulted in the recognition of their value to knowledge representation and organization. The FORMS frame system was used as a basis for further development, and for examples using magnetic bearing design. The specific contributions made by this research include: determination that frame-based systems provide a useful methodology for management and application of design knowledge; definition of specific user interface requirements, (this consists of a window-based browser); specification of syntax for DKC commands; and demonstration of the feasibility of DKC by applications to existing designs. It was determined that design knowledge capture could become an extremely valuable engineering tool for complicated, long-life systems, but that further work was needed, particularly the development of a graphic, window-based interface.
Computational Tools for Accelerating Carbon Capture Process Development
Miller, David
2013-01-01
The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.
Laser accelerated protons captured and transported by a pulse power solenoid
NASA Astrophysics Data System (ADS)
Burris-Mog, T.; Harres, K.; Nürnberg, F.; Busold, S.; Bussmann, M.; Deppert, O.; Hoffmeister, G.; Joost, M.; Sobiella, M.; Tauschwitz, A.; Zielbauer, B.; Bagnoud, V.; Herrmannsdoerfer, T.; Roth, M.; Cowan, T. E.
2011-12-01
Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we present simulation results of the available spectrum after transport through the gantry.
A free surface capturing discretization for the staggered grid finite difference scheme
NASA Astrophysics Data System (ADS)
Duretz, T.; May, D. A.; Yamato, P.
2016-03-01
The coupling that exists between surface processes and deformation within both the shallow crust and the deeper mantle-lithosphere has stimulated the development of computational geodynamic models that incorporate a free surface boundary condition. We introduce a treatment of this boundary condition that is suitable for staggered grid, finite difference schemes employing a structured Eulerian mesh. Our interface capturing treatment discretizes the free surface boundary condition via an interface that conforms with the edges of control volumes (e.g. a `staircase' representation) and requires only local stencil modifications to be performed. Comparisons with analytic solutions verify that the method is first-order accurate. Additional intermodel comparisons are performed between known reference models to further validate our free surface approximation. Lastly, we demonstrate the applicability of a multigrid solver to our free surface methodology and demonstrate that the local stencil modifications do not strongly influence the convergence of the iterative solver.
Experimental test of a new antiproton acceleration scheme in the Fermilab Main Injector
Wu, V.; Bhat, C.M.; Chase, B.E.; Dey, J.E.; Meisner, K.G.; /Fermilab
2005-05-01
In an effort to provide higher intensity and lower emittance antiproton beam to the Tevatron collider for high luminosity operation, a new Main Injector (MI) antiproton acceleration scheme has been developed [1-4]. In this scheme, beam is accelerated from 8 to 27 GeV using the 2.5 MHz rf system and from 27 to 150 GeV using the 53 MHz rf system. This paper reports the experimental results of beam study. Simulation results are reported in a different PAC'05 paper [5]. Experiments are conducted with proton beam from the Booster. Acceleration efficiency, emittance growth and beam harmonic transfer between 2.5 MHz (h=28) and 53 MHz (h=588) buckets have been studied. Beam study shows that one can achieve an overall acceleration efficiency of about 100%, longitudinal emittance growth less than 20% and negligible transverse emittance growth. accelerated to 150 GeV and injected to the Tevatron. The multi-bunch coalescing process is eliminated in this acceleration scheme. Consequently, longitudinal emittance growth is reduced. Smaller emittance growth reduces beam loss.
Convergence Acceleration of Runge-Kutta Schemes for Solving the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, Roy C., Jr.; Turkel, Eli; Rossow, C.-C.
2007-01-01
The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 can be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. Turbulent flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on convergence are investigated for Reynolds numbers between 5:7 x 10(exp 6) and 100 x 10(exp 6). It is demonstrated that the implicit preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between four and ten.
NASA Astrophysics Data System (ADS)
Kuznetsov, A. S.; Malyshkin, G. N.; Makarov, A. N.; Sorokin, I. N.; Sulyaev, Yu. S.; Taskaev, S. Yu.
2009-04-01
A pilot accelerator-based source of epithermal neutrons, which is intended for wide application in clinics for boron neutron capture therapy, has been constructed at the Budker Institute of Nuclear Physics (Novosibirsk). A stationary proton beam has been obtained and near-threshold neutron generation regime has been realized. Results of the first experiments on neutron generation using the proposed source are described.
Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L
2010-12-01
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. PMID:21198098
Optimization of the combined proton acceleration regime with a target composition scheme
NASA Astrophysics Data System (ADS)
Yao, W. P.; Li, B. W.; Zheng, C. Y.; Liu, Z. J.; Yan, X. Q.; Qiao, B.
2016-01-01
A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 1022 W cm-2, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.
Linear accelerator design study with direct plasma injection scheme for warm dense matter
Kondo, K.; Kanesue, T; Okamura, M.
2011-03-28
Warm Dense Matter (WDM) is a challenging science field, which is related to heavy ion inertial fusion and planetary science. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beams ({approx} MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a Interdigital H-mode (IH) accelerator has a potential for the beam parameter. We show feasible parameters of the IH accelerator for WDM. WDM physics is a challenging science and is strongly related to Heavy Ion Fusion science. WDM formation by Direct Plasma Injection Scheme (DPIS) with IH accelerator, which is a compact system, is proposed. Feasible parameters for IH accelerator are shown for WDM state. These represents that DPIS with IH accelerator can access a different parameter region of WDM.
NASA Astrophysics Data System (ADS)
Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.
2010-03-01
Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species
Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)
Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.
2007-02-12
A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.
Application of Intel Many Integrated Core (MIC) accelerators to the Pleim-Xiu land surface scheme
NASA Astrophysics Data System (ADS)
Huang, Melin; Huang, Bormin; Huang, Allen H.
2015-10-01
The land-surface model (LSM) is one physics process in the weather research and forecast (WRF) model. The LSM includes atmospheric information from the surface layer scheme, radiative forcing from the radiation scheme, and precipitation forcing from the microphysics and convective schemes, together with internal information on the land's state variables and land-surface properties. The LSM is to provide heat and moisture fluxes over land points and sea-ice points. The Pleim-Xiu (PX) scheme is one LSM. The PX LSM features three pathways for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from wet canopies. To accelerate the computation process of this scheme, we employ Intel Xeon Phi Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.3x and 11.7x as compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670.
On Sub-linear Convergence for Linearly Degenerate Waves in Capturing Schemes
Banks, J W; Aslam, T; Rider, W J
2008-03-17
A common attribute of capturing schemes used to find approximate solutions to the Euler equations is a sub-linear rate of convergence with respect to mesh resolution. Purely nonlinear jumps, such as shock waves produce a first-order convergence rate, but linearly degenerate discontinuous waves, where present, produce sub-linear convergence rates which eventually dominate the global rate of convergence. The classical explanation for this phenomenon investigates the behavior of the exact solution to the numerical method in combination with the finite error terms, often referred to as the modified equation. For a first-order method, the modified equation produces the hyperbolic evolution equation with second-order diffusive terms. In the frame of reference of the traveling wave, the solution of a discontinuous wave consists of a diffusive layer that grows with a rate of t{sup 1/2}, yielding a convergence rate of 1/2. Self-similar heuristics for higher order discretizations produce a growth rate for the layer thickness of {Delta}t{sup 1/(p+1)} which yields an estimate for the convergence rate as p/(p+1) where p is the order of the discretization. In this paper we show that this estimated convergence rate can be derived with greater rigor for both dissipative and dispersive forms of the discrete error. In particular, the form of the analytical solution for linear modified equations can be solved exactly. These estimates and forms for the error are confirmed in a variety of demonstrations ranging from simple linear waves to multidimensional solutions of the Euler equations.
A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application
Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.
1998-06-01
Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.
Converged accelerated finite difference scheme for the multigroup neutron diffusion equation
Terranova, N.; Mostacci, D.; Ganapol, B. D.
2013-07-01
Computer codes involving neutron transport theory for nuclear engineering applications always require verification to assess improvement. Generally, analytical and semi-analytical benchmarks are desirable, since they are capable of high precision solutions to provide accurate standards of comparison. However, these benchmarks often involve relatively simple problems, usually assuming a certain degree of abstract modeling. In the present work, we show how semi-analytical equivalent benchmarks can be numerically generated using convergence acceleration. Specifically, we investigate the error behavior of a 1D spatial finite difference scheme for the multigroup (MG) steady-state neutron diffusion equation in plane geometry. Since solutions depending on subsequent discretization can be envisioned as terms of an infinite sequence converging to the true solution, extrapolation methods can accelerate an iterative process to obtain the limit before numerical instability sets in. The obtained results have been compared to the analytical solution to the 1D multigroup diffusion equation when available, using FORTRAN as the computational language. Finally, a slowing down problem has been solved using a cascading source update, showing how a finite difference scheme performs for ultra-fine groups (104 groups) in a reasonable computational time using convergence acceleration. (authors)
C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg
2011-09-01
We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.
An accelerator-based epithermal photoneutron source for boron neutron capture therapy
Mitchell, H.E.
1996-04-01
Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.
An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...
Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital
NASA Astrophysics Data System (ADS)
Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.
The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.
High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.
Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I
2011-12-01
A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. PMID:21459008
NASA Technical Reports Server (NTRS)
Gallegos, A.; Perez-Peraza, J.; Alvarez, M.
1985-01-01
Lower limits of photon fluxes were evaluated from electron capture during acceleration in solar flares, because the arbitrary q sub c asterisk assumed in this work evolves very slow with velocity, probably much more slowly than the physical actual situation: in fact, more emission is expected toward the IR region. Nevertheless the authors claim to show that the factibility of sounding acceleration processes, charge evolution processes and physical parameters of the source itself, by the observational analysis of this kind of emissions. For instance, it would be interesting to search observationally, for the predicted flux and energy drift of F sub e ions interacting with the atomic 0 and F sub e of the source matter, or, even more feasible for the X-ray lines at 4.2 keV and 2.624 + 0.003 KeV from Fe and S ions in ionized Fe at T = 10 to the 7th power K respectively, the 418 + or - 2 eV and 20 + or - 4 eV lines of Fe and S in ionized Fe at 5 x 10 to the 6th power K, which are predicted from Fermi acceleration.
Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy
Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.
1989-01-01
We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.
Brugger, R.; Kunze, J.
1991-05-01
Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.
1999-01-01
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.
1999-05-11
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.
Designing accelerator-based epithermal neutron beams for boron neutron capture therapy
Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.
1998-09-01
The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}
Novel Slow Extraction Scheme for Proton Accelerators Using Pulsed Dipole Correctors and Crystals
Shiltsev, V.; /Fermilab
2012-05-01
Slow extraction of protons beams from circular accelerators is currently widely used for a variety of beam-based experiments. The method has some deficiencies including limited efficiency of extraction, radiation induced due to scattering on the electrostatic septa and limited beam pipe aperture, beam dynamics effects of space charge forces and magnet power supplies ripple. Here we present a novel slow extraction scheme employing a number of non-standard accelerator elements, such as Silicone crystal strips and pulsed stripline dipole correctors, and illustrate practicality of these examples at the 8 GeV proton Recycler Ring at Fermilab. The proposed method of non-resonant slow extraction of protons by bent crystals in combination with orbit fast deflectors shows great promise in simulations. We propose to initiate an R&D program in the Fermilab 8 GeV Recycler to address the key issues of the method: (a) feasibility of very short crystals - from few mm down to 0.2 mm; (b) their efficiency in the channelling and volume reflection regimes; (c) practical aspects of the fast deflectors.
Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications
NASA Astrophysics Data System (ADS)
Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.
2015-06-01
The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Gallegos, A.
1985-01-01
The conditions for establishment of charge transfer during acceleration of nuclei up to Fe, for typical conditions of solar flare regions T = 5 x 10 to the 3rd power to 2.5 x 10 to the 8th power degrees K were explored. Results show that such conditions are widely assorted, depending on the acceleration mechanism, the kind of projections and their velocity, the target elements, the source temperature and consequently on the degree of ionization of matter and the local charge state of the accelerated ions. Nevertheless, in spite of that assorted behavior, there are some general tendencies that can be summarized as follows. In atomic H electron capture is systematically established from thermal energies up to high energies, whatever the element and for both acceleration process. For a given element and fixed temperature (T), the probability and energy domain of electron capture and loss with Fermi are higher than with Betatron acceleration. For a given acceleration process the heavier the ion the higher the probability and the wider the energy range for electron capture and loss. For given acceleration mechanism and fixed element the importance and energy domain of capture and loss increase with T: for those reasons, the energy range of charge equilibrium (illustrated with solid lines on the next figs.) is wider with Fermi and increases with temperature and atomic number of projectiles. For the same reasons, electron loss is smaller while the lighter the element, the lower the temperature and the Betatron process, such that there are conditions for which electron loss is not allowed at low energies, but only electron capture is established.
A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows
Owkes, Mark Desjardins, Olivier
2013-09-15
The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.
Comparative study of high-resolution shock-capturing schemes for a real gas
NASA Technical Reports Server (NTRS)
Montagne, J.-L.; Yee, H. C.; Vinokur, M.
1988-01-01
Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30 percent. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.
Comparative study of high-resolution shock-capturing schemes for a real gas
NASA Technical Reports Server (NTRS)
Montagne, J.-L.; Yee, H. C.; Vinokur, M.
1987-01-01
Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30%. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.
NASA Astrophysics Data System (ADS)
Xiao, Lin; Zhang, Yunong
2016-03-01
For avoiding obstacles and joint physical constraints of robot manipulators, this paper proposes and investigates a novel obstacle avoidance scheme (termed the acceleration-level obstacle-avoidance scheme). The scheme is based on a new obstacle-avoidance criterion that is designed by using the gradient neural network approach for the first time. In addition, joint physical constraints such as joint-angle limits, joint-velocity limits and joint-acceleration limits are incorporated into such a scheme, which is further reformulated as a quadratic programming (QP). Two important 'bridge' theorems are established so that such a QP can be converted equivalently to a linear variational inequality and then equivalently to a piecewise-linear projection equation (PLPE). A numerical algorithm based on a PLPE is thus developed and applied for an online solution of the resultant QP. Four path-tracking tasks based on the PA10 robot in the presence of point and window-shaped obstacles demonstrate and verify the effectiveness and accuracy of the acceleration-level obstacle-avoidance scheme. Besides, the comparisons between the non-obstacle-avoidance and obstacle-avoidance results further validate the superiority of the proposed scheme.
Addition of Improved Shock-Capturing Schemes to OVERFLOW 2.1
NASA Technical Reports Server (NTRS)
Burning, Pieter G.; Nichols, Robert H.; Tramel, Robert W.
2009-01-01
Existing approximate Riemann solvers do not perform well when the grid is not aligned with strong shocks in the flow field. Three new approximate Riemann algorithms are investigated to improve solution accuracy and stability in the vicinity of strong shocks. The new algorithms are compared to the existing upwind algorithms in OVERFLOW 2.1. The new algorithms use a multidimensional pressure gradient based switch to transition to a more numerically dissipative algorithm in the vicinity of strong shocks. One new algorithm also attempts to artificially thicken captured shocks in order to alleviate the errors in the solution introduced by "stair-stepping" of the shock resulting from the approximate Riemann solver. This algorithm performed well for all the example cases and produced results that were almost insensitive to the alignment of the grid and the shock.
Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering
Yeh, Wei-Chang; Lai, Chyh-Ming
2015-01-01
Data clustering is commonly employed in many disciplines. The aim of clustering is to partition a set of data into clusters, in which objects within the same cluster are similar and dissimilar to other objects that belong to different clusters. Over the past decade, the evolutionary algorithm has been commonly used to solve clustering problems. This study presents a novel algorithm based on simplified swarm optimization, an emerging population-based stochastic optimization approach with the advantages of simplicity, efficiency, and flexibility. This approach combines variable vibrating search (VVS) and rapid centralized strategy (RCS) in dealing with clustering problem. VVS is an exploitation search scheme that can refine the quality of solutions by searching the extreme points nearby the global best position. RCS is developed to accelerate the convergence rate of the algorithm by using the arithmetic average. To empirically evaluate the performance of the proposed algorithm, experiments are examined using 12 benchmark datasets, and corresponding results are compared with recent works. Results of statistical analysis indicate that the proposed algorithm is competitive in terms of the quality of solutions. PMID:26348483
GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF
NASA Astrophysics Data System (ADS)
Mielikainen, J.; Huang, B.; Huang, A.
2011-12-01
multiple levels, which correspond to various vertical heights in the atmosphere. The size of the CONUS 12 km domain is 433 x 308 horizontal grid points with 35 vertical levels. First, the entire SBU-YLIN Fortran code was rewritten in C in preparation of GPU accelerated version. After that, C code was verified against Fortran code for identical outputs. Default compiler options from WRF were used for gfortran and gcc compilers. The processing time for the original Fortran code is 12274 ms and 12893 ms for C version. The processing times for GPU implementation of SBU-YLIN microphysics scheme with I/O are 57.7 ms and 37.2 ms for 1 and 2 GPUs, respectively. The corresponding speedups are 213x and 330x compared to a Fortran implementation. Without I/O the speedup is 896x on 1 GPU. Obviously, ignoring I/O time speedup scales linearly with GPUs. Thus, 2 GPUs have a speedup of 1788x without I/O. Microphysics computation is just a small part of the whole WRF model. After having completely implemented WRF on GPU, the inputs for SBU-YLIN do not have to be transferred from CPU. Instead they are results of previous WRF modules. Therefore, the role of I/O is greatly diminished once all of WRF have been converted to run on GPUs. In the near future, we expect to have a WRF running completely on GPUs for a superior performance.
NASA Astrophysics Data System (ADS)
Bauder, William K.
Improved neutron capture cross section data for transuranic and minor actinides are essential for assessing possibilities for next generation reactors and advanced fuel cycles. The Measurement of Actinide Neutron TRAnsmutation (MANTRA) project aims to make a comprehensive set of energy integrated neutron capture cross section measurements for all relevant isotopes from Th to Cf. The ability to extract these cross sections relies on the use of Accelerator Mass Spectrometry (AMS) to analyze isotopic concentrations in samples irradiated in the Advanced Test Reactor (ATR). The AMS measurements were performed at the Argonne Tandem Linear Accelerator System (ATLAS) and required a number of key technical developments to the ion source, accelerator, and detector setup. In particular, a laser ablation material injection system was developed at the electron cyclotron resonance ion source. This system provides a more effective method to produce ion beams from samples containing only 1% actinide material and offers some benefits for reducing cross talk in the source. A series of four actinide measurements are described in this dissertation. These measurements represent the most substantial AMS work attempted at ATLAS and the first results of the MANTRA project. Isotopic ratios for one and two neutron captures were measured in each sample with total uncertainties around 10%. These results can be combined with a MCNP model for the neutron fluence to infer actinide neutron capture cross sections.
Wu, Vincent; Bhat, C.M.; MacLachlan, J.A.; /Fermilab
2005-05-01
During Fermilab collider operation, the Main Injector (MI) provides high intensity and low emittance proton and antiproton beams for the Tevatron. The present coalescing scheme for antiprotons in the Main Injector yields about a factor of two increase in the longitudinal emittance and a factor of 5% to 20% decrease in intensity before injection to the Tevatron. In order to maximize the integrated luminosity delivered to the collider experiments, it is important to minimize the emittance growth and maximize the intensity of the MI beam. To this end, a new scheme using a combination of 2.5 MHz and 53 MHz accelerations has been developed and tested. This paper describes the full simulation of the new acceleration scheme, taking account of space charge, 2.5 MHz and 53 MHz beam loading, and the effect of residual 53 MHz rf voltage during 2.5 MHz acceleration and rf manipulations. The simulations show the longitudinal emittance growth at the 10% level with no beam loss. The experimental test of the new scheme is reported in another PAC05 paper.
Yaqi Wang; Jean C. Ragusa
2011-10-01
Diffusion synthetic acceleration (DSA) schemes compatible with adaptive mesh refinement (AMR) grids are derived for the SN transport equations discretized using high-order discontinuous finite elements. These schemes are directly obtained from the discretized transport equations by assuming a linear dependence in angle of the angular flux along with an exact Fick's law and, therefore, are categorized as partially consistent. These schemes are akin to the symmetric interior penalty technique applied to elliptic problems and are all based on a second-order discontinuous finite element discretization of a diffusion equation (as opposed to a mixed or P1 formulation). Therefore, they only have the scalar flux as unknowns. A Fourier analysis has been carried out to determine the convergence properties of the three proposed DSA schemes for various cell optical thicknesses and aspect ratios. Out of the three DSA schemes derived, the modified interior penalty (MIP) scheme is stable and effective for realistic problems, even with distorted elements, but loses effectiveness for some highly heterogeneous configurations. The MIP scheme is also symmetric positive definite and can be solved efficiently with a preconditioned conjugate gradient method. Its implementation in an AMR SN transport code has been performed for both source iteration and GMRes-based transport solves, with polynomial orders up to 4. Numerical results are provided and show good agreement with the Fourier analysis results. Results on AMR grids demonstrate that the cost of DSA can be kept low on locally refined meshes.
NASA Astrophysics Data System (ADS)
Scrivens, R.
2000-08-01
A neutrino factory for νμ would require a high-power proton beam bombarding a target to produce pions that decay to muons which can be accelerated. Such a proton driver could be realized with a high-power linac, which could produce short bunches in the interaction point. If the bunch structure could be maintained to the input of a linear accelerator, the re-bunching of muons would be avoided. A preliminary design of the longitidinal beam dynamics for the acceleration of short muon bunches with a large-energy spread will be presented. Muons bunches are assumed at the linac input to consist of a phase space occupying a region from 200-400 MeV with a bunch length of 24 ps. They are captured and accelerated to 1 GeV with a resulting bunch length of 100 ps. Seventy five percent of the muons are transported within these limits.
Summary Report of Working Group 3: High Energy Density Physics and Exotic Acceleration Schemes
Shvets, Gennady; Schoessow, Paul
2006-11-27
This report summarizes presented results and discussions in the Working Group 3 at the Twelfth Advanced Accelerator Concepts Workshop in 2006. Presentations on varied topics, such as laser proton acceleration, novel radiation sources, active medium accelerators, and many others, are reviewed, and the status and future directions of research in these areas are summarized.
Vello A. Kuuskraa
2007-10-15
This White Paper, the first of a series, analyzes one strategy for accelerating the deployment of carbon capture and storage (CCS) by the coal-fueled electricity generation industry. This strategy involves providing reimbursement for the incremental costs of installing and operating CCS systems, with reimbursement provided for retrofitting existing coal-fuelled electricity generation plants with CCS, incorporating CCS into new plants, and launching large-scale demonstrations of geologic storage of carbon. 14 refs., 4 figs., 23 tabs., 3 apps.
NASA Astrophysics Data System (ADS)
Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.
Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.
2010-08-04
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.
TE/TM scheme for computation of electromagnetic fields in accelerators
Zagorodnov, Igor . E-mail: zagor@temf.de; Weiland, Thomas . E-mail: thomas.weiland@temf.de
2005-07-20
We propose a new two-level economical conservative scheme for short-range wake field calculation in three dimensions. The scheme does not have dispersion in the longitudinal direction and is staircase free (second order convergent). Unlike the finite-difference time domain method (FDTD), it is based on a TE/TM like splitting of the field components in time. Additionally, it uses an enhanced alternating direction splitting of the transverse space operator that makes the scheme computationally as effective as the conventional FDTD method. Unlike the FDTD ADI and low-order Strang methods, the splitting error in our scheme is only of fourth order. As numerical examples show, the new scheme is much more accurate on the long-time scale than the conventional FDTD approach.
Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme
NASA Astrophysics Data System (ADS)
Mielikainen, J.; Huang, B.; Huang, A. H.-L.
2014-12-01
The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations
Advanced modeling to accelerate the scale up of carbon capture technologies
Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu
2015-06-01
In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.
Comparison of accelerator-based with reactor-based waste transmutation schemes
Sailor, W.C.; Beard, C.A.; Venneri, F.; Davidson, J.W.
1993-12-01
Accelerator-based transmutation of waste (ATW) systems for the destruction of commercial LWR spent fuel are compared with systems based on thermal reactors accomplish the same objectives. When the same technology is assumed for the actinide-burning aspect of the two systems, it is seen that the size of the accelerator is determined only by the choice of how many of the long-lived fission products to burn. if none are transmuted, then the accelerator is not necessary. This result is independent of the choice of fluid carrier, and whether the actinides are destroyed in an ATW system or in a separate reactor.
About the scheme of the infrared FEL system for the accelerator based on HF wells
Kabanov, V.S.; Dzergach, A.I.
1995-12-31
Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.
Darwish, M.D.; Moukalled, F.
1996-09-01
This article deals with the development of a new method for accelerating the solution of flow problems discretized using high-resolution convective schemes. The technique is based on the normalized variable and space formulation (NVSF) methodology and is denoted here by the normalized weighting-factor (NWF) method. In contrast with the well-known deferred-correction (DC) procedure, the NWF method is fully implicit and is derived by directly replacing the control-volume face values by their functional relationships in the discretized equation. The direct substitution is performed by the introduction of a variable, NWF, that accounts for the multiplicity of interpolation profiles in HR schemes. The new method is compared with the widely used DC procedure and is shown to be, on average, four times faster.
Ceotto, Michele; Zhuang, Yu; Hase, William L
2013-02-01
This paper shows how a compact finite difference Hessian approximation scheme can be proficiently implemented into semiclassical initial value representation molecular dynamics. Effects of the approximation on the monodromy matrix calculation are tested by propagating initial sampling distributions to determine power spectra for analytic potential energy surfaces and for "on the fly" carbon dioxide direct dynamics. With the approximation scheme the computational cost is significantly reduced, making ab initio direct semiclassical dynamics computationally more feasible and, at the same time, properly reproducing important quantum effects inherent in the monodromy matrix and the pre-exponential factor of the semiclassical propagator. PMID:23406107
Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu
2015-01-01
Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504
Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.
2007-10-26
There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented.
Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies
Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu
2015-06-18
Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.
Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen
2014-05-01
The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.
Turcksin, B.; Ragusa, J. C.
2013-07-01
A DSA technique to accelerate the iterative convergence of S{sub n} transport solves is derived for bilinear discontinuous (BLD) finite elements on rectangular grids. The diffusion synthetic acceleration equations are discretized using BLD elements by adapting the Modified Interior Penalty technique, introduced in [4] for triangular grids. The MIP-DSA equations are SPD and thus are solved using a preconditioned CG technique. Fourier analyses and implementation of the technique in a BLD S{sub n} transport code show that the technique is stable is effective. (authors)
Real-time damage monitoring scheme in PSC girder bridge using output-only acceleration data
NASA Astrophysics Data System (ADS)
Kim, Jeong-Tae; Park, Jae-Hyung; Do, Han-Sung; Lee, Jung-Mi
2007-04-01
Artificial neural networks (ANNs) have been increasingly utilized for structural health monitoring (SHM) due to the advantage that it needs only a few training data to detect damage in structures. In this study, a new damage monitoring method using a set of parallel ANNs and acceleration signals is developed for alarming locations of damage in PSC girder bridges. First, theoretical backgrounds are described. The problem addressed in this paper is defined as the stochastic process. In addition, a parallel ANN-algorithm using output-only acceleration responses is newly designed for damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility of the proposed method is evaluated from numerical model tests on PSC beams for which accelerations were acquired before and after several damage cases.
Singh, Saurabh; Upadhyay, Mohita; Sharma, Jyoti; Gupta, Shalini; Vivekanandan, Perumal; Elangovan, Ravikrishnan
2016-05-23
Bacterial infections continue to be a major cause of deaths globally, particularly in resource-poor settings. In the absence of rapid and affordable diagnostic solutions, patients are mostly administered broad spectrum antibiotics leading to antibiotics resistance and poor recovery. Culture diagnosis continues to be a gold standard for diagnosis of bacterial infection, despite its long turnaround time of 24 to 48 h. We have developed a portable immunomagnetic cell capture (iMC(2)) system that allows rapid culture diagnosis of bacterial pathogens. Our approach involves the culture growth of the blood samples in broth media for 6 to 8 h, followed by immunomagnetic enrichment of the target cells using the iMC(2) device. The device comprises a disposable capture chip that has two chambers of 5 ml and 50 μl volume connected through a channel with a manual valve. Bacterial cells bound to antibody coated magnetic nanoparticles are swept from the 5 ml sample chamber into the 50 μl recovery chamber by moving an external magnetic field with respect to the capture chip using a linear positioner. This enables specific isolation and up to 100× enrichment of the target cells. The presence of bacteria in the recovered sample is confirmed visually using a lateral flow immunoassay. The system is demonstrated in buffer and blood samples spiked with S. typhi. The method has high sensitivity (10 CFU ml(-1)), specificity and a rapid turnaround time of less than 7 h, a significant improvement over conventional methods. PMID:27118505
Optimization of an accelerator-based epithermal neutron source for neutron capture therapy
Kononov, O.E.; Kononov, V.N.; Bokhovko, M.V.; Korobeynikov, V.V.; Soloviev, A.N.; Chu, W.T.
2004-02-20
A modeling investigation was performed to choose moderator material and size for creating optimal epithermal neutron beams for BNCT based on a proton accelerator and the 7Li(p,n)7Be reaction as a neutrons source. An optimal configuration is suggested for the beam shaping assembly made from polytetrafluoroethylene and magnesium fluorine. Results of calculation were experimentally tested and are in good agreement with measurements.
Accelerating progress toward operational excellence of fossil energy plants with CO2 capture
Zitney, S.; Liese, E.; Mahapatra, P.; Turton, R. Bhattacharyya, D.
2012-01-01
To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTARTM). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.
Performance evaluation of the Hermite scheme on many-core accelerators
NASA Astrophysics Data System (ADS)
Nakasato, Naohito
2016-02-01
We are developing a software library to calculate gravitational interaction for the Hermite scheme on parallel computing systems supported by OpenCL API. Our library is partly compatible with a standard GRAPE-6A interface and is easily usable in existing N-body codes. Since our library is based on OpenCL standard API, our library is working on many parallel computing systems such as a multi-core CPU, a GPU, and a many-core architecture. We report the performance evaluation of our library on computing platforms from various vendors.
Convergence acceleration of implicit schemes in the presence of high aspect ratio grid cells
NASA Technical Reports Server (NTRS)
Buelow, B. E. O.; Venkateswaran, S.; Merkle, C. L.
1993-01-01
The performance of Navier-Stokes codes are influenced by several phenomena. For example, the robustness of the code may be compromised by the lack of grid resolution, by a need for more precise initial conditions or because all or part of the flowfield lies outside the flow regime in which the algorithm converges efficiently. A primary example of the latter effect is the presence of extended low Mach number and/or low Reynolds number regions which cause convergence deterioration of time marching algorithms. Recent research into this problem by several workers including the present authors has largely negated this difficulty through the introduction of time-derivative preconditioning. In the present paper, we employ the preconditioned algorithm to address convergence difficulties arising from sensitivity to grid stretching and high aspect ratio grid cells. Strong grid stretching is particularly characteristic of turbulent flow calculations where the grid must be refined very tightly in the dimension normal to the wall, without a similar refinement in the tangential direction. High aspect ratio grid cells also arise in problems that involve high aspect ratio domains such as combustor coolant channels. In both situations, the high aspect ratio cells can lead to extreme deterioration in convergence. It is the purpose of the present paper to address the reasons for this adverse response to grid stretching and to suggest methods for enhancing convergence under such circumstances. Numerical algorithms typically possess a maximum allowable or optimum value for the time step size, expressed in non-dimensional terms as a CFL number or vonNeumann number (VNN). In the presence of high aspect ratio cells, the smallest dimension of the grid cell controls the time step size causing it to be extremely small, which in turn results in the deterioration of convergence behavior. For explicit schemes, this time step limitation cannot be exceeded without violating stability restrictions
Convergence acceleration of implicit schemes in the presence of high aspect ratio grid cells
NASA Astrophysics Data System (ADS)
Buelow, B. E. O.; Venkateswaran, S.; Merkle, C. L.
1993-07-01
The performance of Navier-Stokes codes are influenced by several phenomena. For example, the robustness of the code may be compromised by the lack of grid resolution, by a need for more precise initial conditions or because all or part of the flowfield lies outside the flow regime in which the algorithm converges efficiently. A primary example of the latter effect is the presence of extended low Mach number and/or low Reynolds number regions which cause convergence deterioration of time marching algorithms. Recent research into this problem by several workers including the present authors has largely negated this difficulty through the introduction of time-derivative preconditioning. In the present paper, we employ the preconditioned algorithm to address convergence difficulties arising from sensitivity to grid stretching and high aspect ratio grid cells. Strong grid stretching is particularly characteristic of turbulent flow calculations where the grid must be refined very tightly in the dimension normal to the wall, without a similar refinement in the tangential direction. High aspect ratio grid cells also arise in problems that involve high aspect ratio domains such as combustor coolant channels. In both situations, the high aspect ratio cells can lead to extreme deterioration in convergence. It is the purpose of the present paper to address the reasons for this adverse response to grid stretching and to suggest methods for enhancing convergence under such circumstances. Numerical algorithms typically possess a maximum allowable or optimum value for the time step size, expressed in non-dimensional terms as a CFL number or vonNeumann number (VNN). In the presence of high aspect ratio cells, the smallest dimension of the grid cell controls the time step size causing it to be extremely small, which in turn results in the deterioration of convergence behavior. For explicit schemes, this time step limitation cannot be exceeded without violating stability restrictions
Direct current H{sup -} source for boron neutron capture therapy tandem accelerator
Belchenko, Yu.; Sanin, A.; Gusev, I.; Khilchenko, A.; Kvashnin, A.; Rashchenko, V.; Savkin, V.; Zubarev, P.
2008-02-15
One year experience of dc H{sup -} source operation at 2 MeV tandem accelerator is described. The source delivers H{sup -} ion beams with controlled current in the range of 1-8 mA and energy up to 25 keV. Normalized 1 rms emittance for 8 mA beam is less than 0.2{pi} mm mrad. Negative ions are produced on the cesiated anode of the Penning discharge, driven by plasma injection from the hollow cathode inserts.
MANTRA: Measuring Neutron Capture Cross Sections in Actinides with Accelerator Mass Spectrometry
NASA Astrophysics Data System (ADS)
Bauder, W.; Pardo, R. C.; Collon, P.; Palchan, T.; Scott, R.; Vondrasek, R.; Nusair, O.; Nair, C.; Paul, M.; Kondev, F.; Chen, J.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.
2013-10-01
With rising global energy needs, there is substantial interest in nuclear energy research. To explore possibilities for advanced fuel cycles, better neutron cross section data are needed for the minor actinides. The MANTRA (Measurement of Actinide Neutron TRAsmutation) project will improve these data by measuring integral (n, γ) cross sections. The cross sections will be extracted by measuring isotopic ratios in pure actinide samples, irradiated in the Advanced Test Reactor at Idaho National Lab, using Accelerator Mass Spectrometry(AMS) at the Argonne Tandem Linac Accelerator System (ATLAS). MANTRA presents a unique AMS challenge because of the goal to measure multiple isotopic ratios on a large number of samples. To meet these challenges, we have modified the AMS setup at ATLAS to include a laser ablation system for solid material injection into our ECR ion source. I will present work on the laser ablation system and modified source geometry, as well as preliminary measurements of unirradiated actinide samples at ATLAS. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1993-01-01
The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.
G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel
2010-04-01
The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.
NASA Astrophysics Data System (ADS)
Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira
2015-07-01
At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.
2014-01-01
Background Monitoring mosquito population dynamics is essential to guide selection and evaluation of malaria vector control interventions but is typically implemented by mobile, centrally-managed teams who can only visit a limited number of locations frequently enough to capture longitudinal trends. Community-based (CB) mosquito trapping schemes for parallel, continuous monitoring of multiple locations are therefore required that are practical, affordable, effective, and reliable. Methods A CB surveillance scheme, with a monthly sampling and reporting cycle for capturing malaria vectors, using Centers for Disease Control and Prevention light traps (LT) and Ifakara Tent Traps (ITT), were conducted by trained community health workers (CHW) in 14 clusters of households immediately surrounding health facilities in rural south-east Zambia. At the end of the study, a controlled quality assurance (QA) survey was conducted by a centrally supervised expert team using human landing catch (HLC), LT and ITT to evaluate accuracy of the CB trapping data. Active surveillance of malaria parasite infection rates amongst humans was conducted by CHWs in the same clusters to determine the epidemiological relevance of these CB entomological surveys. Results CB-LT and CB-ITT exhibited relative sampling efficiencies of 50 and 7%, respectively, compared with QA surveys using the same traps. However, cost per sampling night was lowest for CB-LT ($13.6), followed closely by CB-ITT ($18.0), both of which were far less expensive than any QA survey (HLC: $138, LT: $289, ITT: $269). Cost per specimen of Anopheles funestus captured was lowest for CB-LT ($5.3), followed by potentially hazardous QA-HLC ($10.5) and then CB-ITT ($28.0), all of which were far more cost-effective than QA-LT ($141) and QA-ITT ($168). Time-trends of malaria diagnostic positivity (DP) followed those of An. funestus density with a one-month lag and the wide range of mean DP across clusters was closely associated with mean
NASA Astrophysics Data System (ADS)
Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.
2016-02-01
A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.
Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E
2016-02-01
A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming. PMID:26932053
Powell, J.; Ludewig, H.; Todosow, M.; Reich, M.
1995-06-01
Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.
NASA Astrophysics Data System (ADS)
Zhu, Dianwen; Li, Changqing
2016-01-01
Fluorescence molecular tomography (FMT) is a significant preclinical imaging modality that has been actively studied in the past two decades. It remains a challenging task to obtain fast and accurate reconstruction of fluorescent probe distribution in small animals due to the large computational burden and the ill-posed nature of the inverse problem. We have recently studied a nonuniform multiplicative updating algorithm that combines with the ordered subsets (OS) method for fast convergence. However, increasing the number of OS leads to greater approximation errors and the speed gain from larger number of OS is limited. We propose to further enhance the convergence speed by incorporating a first-order momentum method that uses previous iterations to achieve optimal convergence rate. Using numerical simulations and a cubic phantom experiment, we have systematically compared the effects of the momentum technique, the OS method, and the nonuniform updating scheme in accelerating the FMT reconstruction. We found that the proposed combined method can produce a high-quality image using an order of magnitude less time.
NASA Astrophysics Data System (ADS)
Burris-Mog, Trevor J.
The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system
NASA Astrophysics Data System (ADS)
Kar, Satyabrata
2015-11-01
All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.
NASA Astrophysics Data System (ADS)
Santos, Frederico P.; Filho, Hermes Alves; Barros, Ricardo C.
2013-10-01
The scattering source iterative (SI) scheme is traditionally applied to converge fine-mesh numerical solutions to fixed-source discrete ordinates (SN) neutron transport problems. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent (low leakage). In this work we describe an acceleration technique based on an improved initial guess for the scattering source distribution within the slab. In other words, we use as initial guess for the fine-mesh scattering source, the coarse-mesh solution of the neutron diffusion equation with special boundary conditions to account for the classical SN prescribed boundary conditions, including vacuum boundary conditions. Therefore, we first implement a spectral nodal method that generates coarse-mesh diffusion solution that is completely free from spatial truncation errors, then we reconstruct this coarse-mesh solution within each spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh scattering source in the first SN transport sweep (forward and backward) across the spatial grid. We consider a number of numerical experiments to illustrate the efficiency of the offered diffusion synthetic acceleration (DSA) technique.
Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin
2013-11-01
The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.
Hiraga, F
2015-12-01
The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. PMID:26235186
Kumar, Anoop; Gupta, S K; Kale, S R
2007-04-01
Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops. PMID:18476411
Kunze, J.F.; Brugger, R.M.
1995-03-01
The use of boron neutron capture therapy (BNCT) has been considered for nearly 30 years, and been practiced in Japan since the late 1970`s. Early experiments in the USA were generally nonpromising. However, new boron-containing ligand compounds were developed, which would seek out brain tumors. Concentration levels of the order of 30 micrograms of boron per gram of tissue become possible, and interest in the BNCT technique was revived in the USA beginning about 1985, with research reactors as the obvious source of the neutrons for the treatment. However, the limited number of research reactors in the USA (and the world) would mean that this treatment modality would be quite limited. The goals of this work was: (1) Examine as many as possible reactions of charged particles on various targets of an accelerator, and determine those that would give high neutron yields of a convenient energy. (2) Determine, through calculations (using Monte Carlo stochastic computer codes), the best design for a moderator/reflector assembly which would give high thermal flux at a nominal 5 cm depth in the head of a patient, with minimal radiation dose from gamma rays and fast neutrons. (3) Perform a benchmark experiment using a positive ion accelerator. The Li-7(p,n) reaction was chosen for the benchmark, since it was readily available for most accelerators, and was one of the two highest yielding reactions from Task No. 1. Since the University of Missouri has no accelerator, possible accelerators at other universities were investigated, as to availability and cost. A unit having capability in the 2.5 MeV range was desired.
Goyal, Sharad; Daroui, Parima; Khan, Atif J; Kearney, Thomas; Kirstein, Laurie; Haffty, Bruce G
2013-01-01
The aim of this study was to report 3-year outcomes of toxicity, cosmesis, and local control using a once daily fractionation scheme (49.95 Gy in 3.33 Gy once daily fractions) for accelerated partial breast irradiation (APBI) using three-dimensional conformal radiotherapy (3D-CRT). Between July 2008 and August 2010, women aged ≥40 years with ductal carcinoma in situ or node-negative invasive breast cancer ≤3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study. Women were treated with APBI using 3–5 photon beams, delivering 49.95 Gy over 15 once daily fractions over 3 weeks. Patients were assessed for toxicities, cosmesis, and local control rates before APBI and at specified time points. Thirty-four patients (mean age 60 years) with Tis 0 (n = 9) and T1N0 (n = 25) breast cancer were treated and followed up for an average of 39 months. Only 3% (1/34) patients experienced a grade 3 subcutaneous fibrosis and breast edema and 97% of the patients had good/excellent cosmetic outcome at 3 years. The 3-year rate of ipsilateral breast tumor recurrence (IBTR) was 0% while the rate of contralateral breast events was 6%. The 3-year disease-free survival (DFS), overall survival (OS), and breast cancer-specific survival (BCSS) was 94%, 100%, and 100%, respectively. Our novel accelerated partial breast fractionation scheme of 15 once daily fractions of 3.33 Gy (49.95 Gy total) is a remarkably well-tolerated regimen of 3D-CRT-based APBI. A larger cohort of patients is needed to further ascertain the toxicity of this accelerated partial breast regimen. PMID:24403270
Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M
2015-12-01
A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. PMID:26300076
2010-07-01
IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti
2011-08-01
The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.
J. P. Ozelis; V. Bookwalter; B. Madre; C. E. Reece
2005-05-01
Jefferson Lab has extensively used a proprietary web-based system (Pansophy) that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, as a coherent knowledge management product during the construction of the cryomodules for the SNS Superconducting Linac, providing elements of process and procedure control, data capture and review, and data mining and analysis. With near real-time and potentially global access to production data, process monitoring and performance analyses could be pursued in a timely manner, providing crucial feedback. The extensibility, portability, and accessibility of Pansophy via universally available software components provide the essential features needed in any information and project management system capable of meeting the needs of future accelerator construction efforts, requiring an unprecedented level of regional and international coordination and collaboration, to which Pansophy is well suited.
Fundamental Limitations in Advanced LC Schemes
Mikhailichenko, A. A.
2010-11-04
Fundamental limitations in acceleration gradient, emittance, alignment and polarization in acceleration schemes are considered in application for novel schemes of acceleration, including laser-plasma and structure-based schemes. Problems for each method are underlined whenever it is possible. Main attention is paid to the scheme with a tilted laser bunch.
Michiue, Hiroyuki; Sakurai, Yoshinori; Kondo, Natsuko; Kitamatsu, Mizuki; Bin, Feng; Nakajima, Kiichiro; Hirota, Yuki; Kawabata, Shinji; Nishiki, Tei-ichi; Ohmori, Iori; Tomizawa, Kazuhito; Miyatake, Shin-ichi; Ono, Koji; Matsui, Hideki
2014-03-01
New anti-cancer therapy with boron neutron capture therapy (BNCT) is based on the nuclear reaction of boron-10 with neutron irradiation. The median survival of BNCT patients with glioblastoma was almost twice as long as those receiving standard therapy in a Japanese BNCT clinical trial. In this clinical trial, two boron compounds, BPA (boronophenylalanine) and BSH (sodium borocaptate), were used for BNCT. BPA is taken up into cells through amino acid transporters that are expressed highly in almost all malignant cells, but BSH cannot pass through the cell membrane and remains outside the cell. We simulated the energy transfer against the nucleus at different locations of boron from outside the cell to the nuclear region with neutron irradiation and concluded that there was a marked difference between inside and outside the cell in boron localization. To overcome this disadvantage of BSH in BNCT, we used a cell-penetrating peptide system for transduction of BSH. CPP (cell-membrane penetrating peptide) is very common peptide domains that transduce many physiologically active substances into cells in vitro and in vivo. BSH-fused CPPs can penetrate the cell membrane and localize inside a cell. To increase the boron ratio in one BSH-peptide molecule, 8BSH fused to 11R with a dendritic lysine structure was synthesized and administrated to malignant glioma cells and a brain tumor mouse model. 8BSH-11R localized at the cell nucleus and showed a very high boron value in ICP results. With neutron irradiation, the 8BSH-11R administrated group showed a significant cancer killing effect compared to the 100 times higher concentration of BSH-administrated group. We concluded that BSH-fused CPPs were one of the most improved and potential boron compounds in the next-stage BNCT trial and 8BSH-11R may be applied in the clinical setting. PMID:24452095
NASA Astrophysics Data System (ADS)
Kim, Don-Soo
Dose measurements and radiation transport calculations were investigated for the interactions within the human brain of fast neutrons, slow neutrons, thermal neutrons, and photons associated with accelerator-based boron neutron capture therapy (ABNCT). To estimate the overall dose to the human brain, it is necessary to distinguish the doses from the different radiation sources. Using organic scintillators, human head phantom and detector assemblies were designed, constructed, and tested to determine the most appropriate dose estimation system to discriminate dose due to the different radiation sources that will ultimately be incorporated into a human head phantom to be used for dose measurements in ABNCT. Monoenergetic and continuous energy neutrons were generated via the 7Li(p,n)7Be reaction in a metallic lithium target near the reaction threshold using the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell. A human head phantom was built to measure and to distinguish the doses which result from proton recoils induced by fast neutrons, alpha particles and recoil lithium nuclei from the 10B(n,alpha)7Li reaction, and photons generated in the 7Li accelerator target as well as those generated inside the head phantom through various nuclear reactions at the same time during neutron irradiation procedures. The phantom consists of two main parts to estimate dose to tumor and dose to healthy tissue as well: a 3.22 cm3 boron loaded plastic scintillator which simulates a boron containing tumor inside the brain and a 2664 cm3 cylindrical liquid scintillator which represents the surrounding healthy tissue in the head. The Monte Carlo code MCNPX(TM) was used for the simulation of radiation transport due to neutrons and photons and extended to investigate the effects of neutrons and other radiation on the brain at various depths.
Chin, Lijin; Chung, Arthur Y C; Clarke, Charles
2014-01-01
Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246
Zhang, Yaping; Yang, Jun; Shi, Ronghua; Su, Qingde; Yao, Li; Li, Panpan
2011-07-01
A method was developed to determine eight acetanilide herbicides from cereal crops based on accelerated solvent extraction (ASE) and solid-phase extraction (SPE) followed by gas chromatography-electron capture detector (GC-ECD) analysis. During the ASE process, the effect of four parameters (temperature, static time, static cycles and solvent) on the extraction efficiency was considered and compared with shake-flask extraction method. After extraction with ASE, four SPE tubes (graphitic carbon black/primary secondary amine (GCB/PSA), GCB, Florisil and alumina-N) were assayed for comparison to obtain the best clean-up efficiency. The results show that GCB/PSA cartridge gave the best recoveries and cleanest chromatograms. The analytical process was validated by the analysis of spiked blank samples. Performance characteristics such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision and recovery were studied. At 0.05 mg/kg spiked level, recoveries and precision values for rice, wheat and maize were 82.3-115.8 and 1.1-13.6%, respectively. For all the herbicides, LOD and LOQ ranged from 0.8 to 1.7 μg/kg and from 2.4 to 5.3 μg/kg, respectively. The proposed analytical methodology was applied for the analysis of the targets in samples; only three herbicides, propyzamid, metolachlor and diflufenican, were detected in two samples. PMID:21656677
Ruth, R.D.; Chen, P.
1986-03-01
In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.
Progress on plasma accelerators
Chen, P.
1986-05-01
Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.
Hashimoto, Y; Hiraga, F; Kiyanagi, Y
2015-12-01
We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. PMID:26272165
NASA Astrophysics Data System (ADS)
Yamazaki, Senju; Iwasaki, Tomoko Ogura; Hachiya, Shogo; Takahashi, Tomonori; Takeuchi, Ken
2016-07-01
A solid-state drive (SSD) with 1Xnm triple-level cell (TLC) NAND flash is proposed for low cost data storage applications with long-term data-retention requirements. Specifically, cold data storage requires 20 years data-retention with 100 write/erase (W/E) cycles, whereas digital archive storage requires 1000 years retention time with 1 W/E cycle. To achieve these requirements, a flexible-nLC scheme is proposed to improve the reliability of 1Xnm TLC NAND flash (Yamazaki et al., 2015). The proposed scheme combines two schemes, n-out-of-8 level cell (nLC) (Tanakamaru et al., 2014) and asymmetric coding (AC) (Tanakamaru et al., 2012) with the addition of a vertical flag. By measuring 1Xnm TLC NAND flash memory, the proposed scheme reduces errors by 72% and 69% for digital archive and cold flash respectively, compared to the conventional nLC scheme.
Simulations of RF capture with barrier bucket in booster at injection
Gardner, C.J.
2012-01-23
As part of the effort to increase the number of ions per bunch in RHIC, a new scheme for RF capture of EBIS ions in Booster at injection has been developed. The scheme was proposed by M. Blaskiewicz and J.M. Brennan. It employs a barrier bucket to hold a half turn of beam in place during capture into two adjacent harmonic 4 buckets. After acceleration, this allows for 8 transfers of 2 bunches from Booster into 16 buckets on the AGS injection porch. During the Fall of 2011 the necessary hardware was developed and implemented by the RF and Controls groups. The scheme is presently being commissioned by K.L. Zeno with Au32+ ions from EBIS. In this note we carry out simulations of the RF capture. These are meant to serve as benchmarks for what can be achieved in practice. They also allow for an estimate of the longitudinal emittance of the bunches on the AGS injection porch.
Badziak, J.; Rosiński, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.
2015-03-15
A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.
NASA Astrophysics Data System (ADS)
Badziak, J.; Rosiński, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.
2015-03-01
A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ˜ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.
Fernow, R.C.
1995-07-01
Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.
Optimal Staging of Acceleration and Cooling in a Neutrino Factory
NASA Astrophysics Data System (ADS)
Johnstone, C.; Berz, M.; Makino, K.
2005-12-01
Schemes to produce intense sources of high-energy muons, Neutrino Factories, beta beams, and colliders, require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large initial emittances must be reduced or cooled both in size and in energy spread before the muons can be efficiently accelerated to multi-GeV energies. The acceleration stage becomes critical in formulating and optimizing muon beams; individual stages are strongly interlinked and not independent as is the case in most conventional acceleration systems. Most importantly, the degree of cooling, or cooling channel, depends on the choice of acceleration. This work discusses two basic, but different approaches to a Neutrino Factory and how the optimal strategy depends on beam parameters and method of acceleration.
NASA Astrophysics Data System (ADS)
Zimmermann, Frank
Research & development for future accelerators are reviewed. First, I discuss colliding hadron beams, in particular upgrades to the Large Hadron Collider (LHC). This is followed by an overview of new concepts and technologies for lepton ring colliders, with examples taken from VEPP-2000, DAFNE-2, and Super-KEKB. I then turn to recent progress and studies for the multi-TeV Compact Linear Collider (CLIC). Some generic linear-collider research, centered at the KEK Accelerator Test Facility, is described next. Subsequently, I survey the neutrino factory R&D performed in the framework of the US feasibility study IIa, and I also comment on a novel scheme for producing monochromatic neutrinos from an electron-capture beta beam. Finally, I present innovative ideas for a high-energy muon collider and I consider recent experimental progress on laser and plasma acceleration.
NASA Astrophysics Data System (ADS)
Zimmermann, Frank
2006-01-01
Research & development for future accelerators are reviewed. First, I discuss colliding hadron beams, in particular upgrades to the Large Hadron Collider (LHC). This is followed by an overview of new concepts and technologies for lepton ring colliders, with examples taken from VEPP-2000, DAFNE-2, and Super-KEKB. I then turn to recent progress and studies for the multi-TeV Compact Linear Collider (CLIC). Some generic linear-collider research, centered at the KEK Accelerator Test Facility, is described next. Subsequently, I survey the neutrino factory R&D performed in the framework of the US feasibility study IIa, and I also comment on a novel scheme for producing monochromatic neutrinos from an electron-capture beta beam. Finally, I present innovative ideas for a high-energy muon collider and I consider recent experimental progress on laser and plasma acceleration.
Implicit and semi-implicit schemes: Algorithms
NASA Astrophysics Data System (ADS)
Keppens, R.; Tóth, G.; Botchev, M. A.; van der Ploeg, A.
1999-06-01
This study formulates general guidelines to extend an explicit code with a great variety of implicit and semi-implicit time integration schemes. The discussion is based on their specific implementation in the Versatile Advection Code, which is a general purpose software package for solving systems of non-linear hyperbolic (and/or parabolic) partial differential equations, using standard high resolution shock capturing schemes. For all combinations of explicit high resolution schemes with implicit and semi-implicit treatments, it is shown how second-order spatial and temporal accuracy for the smooth part of the solutions can be maintained. Strategies to obtain steady state and time accurate solutions implicitly are discussed. The implicit and semi-implicit schemes require the solution of large linear systems containing the Jacobian matrix. The Jacobian matrix itself is calculated numerically to ensure the generality of this implementation. Three options are discussed in terms of applicability, storage requirements and computational efficiency. One option is the easily implemented matrix-free approach, but the Jacobian matrix can also be calculated by using a general grid masking algorithm, or by an efficient implementation for a specific Lax-Friedrich-type total variation diminishing (TVD) spatial discretization. The choice of the linear solver depends on the dimensionality of the problem. In one dimension, a direct block tridiagonal solver can be applied, while in more than one spatial dimension, a conjugate gradient (CG)-type iterative solver is used. For advection-dominated problems, preconditioning is needed to accelerate the convergence of the iterative schemes. The modified block incomplete LU-preconditioner is implemented, which performs very well. Examples from two-dimensional hydrodynamic and magnetohydrodynamic computations are given. They model transonic stellar outflow and recover the complex magnetohydrodynamic bow shock flow in the switch-on regime
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. PMID:26260448
Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun
2015-01-01
The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively. PMID:26568953
Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun
2015-01-01
The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively. PMID:26568953
Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I
2014-06-01
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. PMID:24387907
Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.
Staging acceleration and cooling in a Neutrino Factory
NASA Astrophysics Data System (ADS)
Johnstone, C.; Berz, M.; Makino, K.
2006-03-01
All schemes to produce intense sources of high-energy muons—Neutrino factories, beta beams, Colliders—require collection, RF capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large initial emittances must be reduced or "cooled" both in size and in energy spread before the muons can be efficiently accelerated to multi-GeV energies. The acceleration stage becomes critical in formulating and optimizing muon beams; individual stages are strongly interlinked and not independent as is the case in most conventional acceleration systems. Most importantly, the degree of cooling, or cooling channel, depends on the choice of acceleration. In the current US baseline scenario, the cooling required for acceleration is about a factor of 10 in transverse emittance per plane. Longitudinal cooling is also required. In the proposed Japanese scenario, using an alternative acceleration scheme, no cooling is presumed. This work discusses two basic, but different approaches to a Neutrino Factory and how the optimal strategy depends on beam parameters and method of acceleration.
Yau, T.K. . E-mail: tkokyau@gmail.com; Lee, Anne; Wong, Dominique; Pang, Ellie S.Y.; Ng, W.T.; Yeung, Rebecca; Soong, Inda S.
2006-11-15
Purpose: The aim of this study was to evaluate the impact of different chemotherapy regimens in patients with advanced nasopharyngeal carcinoma (NPC) treated by induction-concurrent chemoradiotherapy. Methods and Materials: Between 1998 and 2003, 75 Stage IV(A-B) NPC patients were treated with 3 cycles of induction chemotherapy with cisplatin plus 5-fluorouracil (PF) (n = 41) or cisplatin plus gemcitabine (PG) (n = 34), followed by accelerated radiotherapy in concurrence with 2 cycles of cisplatin. In 18 (24%) patients, cisplatin was completely replaced by carboplatin in both concurrent cycles, mainly because of borderline renal functions. Results: The median follow-up was 3.6 years. The 3-year locoregional failure-free survival, progression-free survival, and overall survival of the whole group were 80%, 68%, and 80% respectively. No significant difference was found between patients treated with either induction regimens. However, patients with only carboplatin in the 2 concurrent cycles had significantly inferior 3-year locoregional failure-free survival (56% vs. 86%, p = 0.014), progression-free survival (39% vs. 72%, p = 0.001), and overall survival (61% vs. 87%, p = 0.046) when compared with the rest of the group. In multivariate analysis, the complete replacement of cisplatin by carboplatin during concurrent chemoradiotherapy was still an independent adverse factor in locoregional failure-free survival (hazard ratio, 3.662; 95% CI, 1.145-11.765; p = 0.029) and progression-free survival (hazard ratio, 3.390; 95% CI, 1.443-7.937; p = 0.005). Conclusions: The more convenient PG regimen is as effective as the PF regimen as induction chemotherapy for patients with advanced NPC. Replacing cisplatin with carboplatin in the concurrent phase carries a poor prognosis.
On symmetric and upwind TVD schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1985-01-01
A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.
Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van
2007-04-15
This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point
NASA Astrophysics Data System (ADS)
Caplan, R. M.
2013-04-01
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time
ERIC Educational Resources Information Center
Lord, Lynda
2007-01-01
The idea for the art lesson presented in this article grew out of watching the lively actions of fourth grade students. Since drawing is the author's first love, she is always looking for new ways to teach it. This time, instead of setting up a still life, she decided to teach students how to capture their actions on paper. (Contains 5 online…
Potter, S Steven; Brunskill, Eric W
2012-01-01
This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264
Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.
1999-11-02
In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.
Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.
1999-01-01
In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.
Recirculating Linac Acceleration - End-to-End Simulation
Alex Bogacz
2010-03-01
A conceptual design of a high-pass-number Recirculating Linear Accelerator (RLA) for muons is presented. The scheme involves three superconducting linacs (201 MHz): a single pass linear Pre-accelerator followed by a pair multi-pass (4.5-pass) 'Dogbone' RLAs. Acceleration starts after ionization cooling at 220 MeV/c and proceeds to 12.6 GeV. The Pre-accelerator captures a large muon phase space and accelerates muons to relativistic energies, while adiabatically decreasing the phase-space volume, so that effective acceleration in the RLA is possible. The RLA further compresses and shapes up the longitudinal and transverse phase-spaces, while increasing the energy. Appropriate choice of multi-pass linac optics based on FODO focusing assures large number of passes in the RLA. The proposed 'Dogbone' configuration facilitates simultaneous acceleration of both mu± species through the requirement of mirror symmetric optics of the return 'droplet' arcs. Finally, presented end-to-end simulation validates the efficiency and acceptance of the accelerator system.
NASA Astrophysics Data System (ADS)
Zhong, Shuixin; Chen, Zitong
2015-02-01
To improve the wind and precipitation forecasts over South China, a modified orographic drag parameterization (OP) scheme that considers both the gravity wave drag (GWD) and the mountain blocking drag (MBD) effects was implemented in the Global/Regional Assimilation and Prediction System Tropical Mesoscale Model (GRAPES_TMM). Simulations were performed over one month starting from 1200 UTC 19 June 2013. The initial and lateral boundary conditions were obtained from the NCEP global forecast system output. The simulation results were compared among a control (CTL) experiment without the OP scheme, a GWDO experiment with the OP scheme that considers only the GWD effect, and an MBD experiment with the modified OP scheme (including both GWD and MBD). The simulation with the modified OP scheme successfully captured the main features of precipitation, including its distribution and intensity, and improved the wind circulation forecast in the lower troposphere. The modified OP scheme appears to improve the wind forecast by accelerating the ascending air motion and reinforcing the convergence in the rainfall area. Overall, the modified OP scheme exerts positive impacts on the forecast of large-scale atmospheric fields in South China.
Cascaded radiation pressure acceleration
Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan
2015-07-15
A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.
Issues regarding acceleration in crystals
Chen, P.; Cline, D.B.; Gabella, W.E.
1992-12-01
Both self-acceleration and laser-acoustic acceleration in crystals are considered. The conduction electrons in the crystal are treated as a plasma and are the medium through which the acceleration takes place. Self-acceleration is the possible acceleration of part of a bunch due to plasma oscillations driven by the leading part. Laser- acoustic acceleration uses a laser in quasi-resonance with an acoustic wave to pump up the plasma oscillation to accelerate a beam. Self-driven schemes though experimentally simple seem problematic because single bunch densities must be large.
Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu
2006-06-15
The characteristics of moderator assembly dimension are investigated for the usage of {sup 7}Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D{sub 2}O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors.
Mokbel, Haifaa; Al Dine, Enaam Jamal; Elmoll, Ahmad; Liaud, Céline; Millet, Maurice
2016-04-01
An analytical method associating accelerated solvent extraction (ASE) and solid-phase micro-extraction (SPME) in immersion mode combined with gas chromatography dual electrons capture detectors (SPME-GC-2ECD) has been developed and studied for the simultaneous determination of 19 organochlorine pesticides (OCPs) and 22 polychlorinated biphenyls (PCBs) in air samples (active and XAD-2 passive samplers). Samples were extracted with ASE with acetonitrile using the following conditions: temperature, 150 °C; pressure, 1500 psi; static, 15 min; cycles, 3; purge, 300 s; flush, 100 %. Extracts were reduced to 1 mL, and 500 μL of this extract, filled with deionised water, was subject to SPME extraction. Experimental results indicated that the proposed method attained the best extraction efficiency under the optimised conditions: extraction of PCB-OCP mixture using 100-μm PDMS fibre at 80 °C for 40 min with no addition of salt. The performance of the proposed ASE-SPME-GC-2ECD methodology with respect to linearity, limit of quantification and detection was evaluated by spiking of XAD-2 resin with target compounds. The regression coefficient (R (2)) of most compounds was found to be high of 0.99. limits of detection (LODs) are between 0.02 and 4.90 ng m(-3), and limits of quantification (LOQs) are between 0.05 and 9.12 ng m(-3) and between 0.2 and 49 ng/sampler and 0.52 and 91 ng/sampler, respectively, for XAD-2 passive samplers. Finally, a developed procedure was applied to determine selected PCBs and OCPs in the atmosphere. PMID:26780048
Theoretical treatment of fluid flow for accelerating bodies
NASA Astrophysics Data System (ADS)
Gledhill, Irvy M. A.; Roohani, Hamed; Forsberg, Karl; Eliasson, Peter; Skews, Beric W.; Nordström, Jan
2016-03-01
Most computational fluid dynamics simulations are, at present, performed in a body-fixed frame, for aeronautical purposes. With the advent of sharp manoeuvre, which may lead to transient effects originating in the acceleration of the centre of mass, there is a need to have a consistent formulation of the Navier-Stokes equations in an arbitrarily moving frame. These expressions should be in a form that allows terms to be transformed between non-inertial and inertial frames and includes gravity, viscous terms, and linear and angular acceleration. Since no effects of body acceleration appear in the inertial frame Navier-Stokes equations themselves, but only in their boundary conditions, it is useful to investigate acceleration source terms in the non-inertial frame. In this paper, a derivation of the energy equation is provided in addition to the continuity and momentum equations previously published. Relevant dimensionless constants are derived which can be used to obtain an indication of the relative significance of acceleration effects. The necessity for using computational fluid dynamics to capture nonlinear effects remains, and various implementation schemes for accelerating bodies are discussed. This theoretical treatment is intended to provide a foundation for interpretation of aerodynamic effects observed in manoeuvre, particularly for accelerating missiles.
Progress on laser plasma accelerators
Chen, P.
1986-04-01
Several laser plasma accelerator schemes are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA). Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy requirements are discussed.
High-Order Energy Stable WENO Schemes
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2008-01-01
A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.
Neutron capture reactions at DANCE
Bredeweg, T. A.
2008-05-12
The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4{pi} BaF{sub 2} array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 {mu}g) and/or radioactive (< or approx. 100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on {sup 241,243}Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio ({alpha} = {sigma}{sub {gamma}}/{sigma}{sub f}) for {sup 235}U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.
Neutron capture reactions at DANCE
NASA Astrophysics Data System (ADS)
Bredeweg, T. A.
2008-05-01
The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (<~100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.
Studies of accelerated compact toruses
Hartman, C.W.; Eddleman, J.; Hammer, J.H.
1983-01-04
In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.
Microelectromechanical acceleration-sensing apparatus
Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.
2006-12-12
An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.
NASA Technical Reports Server (NTRS)
2007-01-01
The New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter's outermost large moon, Callisto, as the spacecraft flew past Jupiter in late February. New Horizons' closest approach distance to Jupiter was 2.3 million kilometers (1.4 million miles), not far outside Callisto's orbit, which has a radius of 1.9 million kilometers (1.2 million miles). However, Callisto happened to be on the opposite side of Jupiter during the spacecraft's pass through the Jupiter system, so these images, taken from 4.7 million kilometers (3.0 million miles) and 4.2 million kilometers (2.6 million miles) away, are the closest of Callisto that New Horizons obtained.
Callisto's ancient, crater-scarred surface makes it very different from its three more active sibling satellites, Io, Europa and Ganymede. Callisto, 4,800 kilometers (3000 miles) in diameter, displays no large-scale geological features other than impact craters, and every bright spot in these images is a crater. The largest impact feature on Callisto, the huge basin Valhalla, is visible as a bright patch at the 10 o'clock position. The craters are bright because they have excavated material relatively rich in water ice from beneath the dark, dusty material that coats most of the surface.
The two images show essentially the same side of Callisto -- the side that faces Jupiter -- under different illumination conditions. The images accompanied scans of Callisto's infrared spectrum with New Horizons' Linear Etalon Imaging Spectral Array (LEISA). The New Horizons science team designed these scans to study how the infrared spectrum of Callisto's water ice changes as lighting and viewing conditions change, and as the ice cools through Callisto's late afternoon. The infrared spectrum of water ice depends slightly on its temperature, and a goal of New Horizons when it reaches the Pluto system (in 2015) is to use the water ice features in the spectrum of Pluto's moon Charon, and
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Sidorin, Anatoly
2010-01-05
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
A tracking code for injection and acceleration studies in synchrotrons
Lessner, E.; Symon, K. |
1996-11-01
CAPTURE-SPC is a Monte-Carlo-based tracking program that simulates the injection and acceleration processes in proton synchrotrons. The time evolution of a distribution of charged particles is implemented by a symplectic, second-order-accurate integration algorithm. The recurrence relations follow a time-stepping leap--frog method. The time-step can be varied optionally to reduce computer time. Space-charge forces are calculated by binning the phase-projected particle distribution. The statistical fluctuations introduced by the binning process are reduced by presmoothing the data by the cloud-in-cell method and by filtering. Both the bin size and amount of filtering can be varied during the acceleration cycle so that the bunch fine structure is retained while the short wavelength noise is attenuated. The initial coordinates of each macro particle together with its time of injection are retained throughout the calculations. This information is useful in determining low-loss injection schemes.
Progress in advanced accelerator concepts
Sessler, A.M.
1994-08-01
A review is given of recent progress in this field, drawing heavily upon material presented at the Workshop on Advanced Accelerator Concepts, The Abbey, June 12--18, 1994. Attention is addressed to (1) plasma based concepts, (2) photo-cathodes, (3) radio frequency sources and Two-Beam Accelerators, (4) near and far-field schemes (including collective accelerators), (5) beam handling and conditioning, and (6) exotic collider concepts (such as photon colliders and muon colliders).
Cascaded target normal sheath acceleration
Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.
2013-11-15
A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.
Can Accelerators Accelerate Learning?
NASA Astrophysics Data System (ADS)
Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.
2009-03-01
The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.
Rebuild of Capture Cavity 1 at Fermilab
Harms, E.; Arkan, T.; Borissov, E.; Dhanaraj, N.; Hocker, A.; Orlov, Y.; Peterson, T.; Premo, K.
2014-01-01
The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.
Teng, L.C.
1960-01-19
ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.
Higher order Godunov schemes for isothermal hydrodynamics
NASA Technical Reports Server (NTRS)
Balsara, Dinshaw S.
1994-01-01
In this paper we construct higher order Godunov schemes for isothermal flow. Isothermal hydrodynamics serves as a good representation for several systems of astrophysical interest. The schemes designed here have second-order accuracy in space and time and some are third-order accurate for advection. Moreover, several ingredients of these schemes are essential components of even higher order. The methods designed here have excellent ability to represent smooth flow yet capture shocks with high resolution. Several test problems are presented. The algorithms presented here are compared with other algorithms having a comparable formal order of accuracy.
Muon Acceleration - RLA and FFAG
Bogacz, Alex
2011-10-01
Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).
NASA Astrophysics Data System (ADS)
Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.
2011-07-01
The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.
NASA Astrophysics Data System (ADS)
Savard, Guy
2002-04-01
The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.
Accelerator based epithermal neutron source
NASA Astrophysics Data System (ADS)
Taskaev, S. Yu.
2015-11-01
We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.
Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes
Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.
2005-05-24
The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4{pi}BaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.
ERIC Educational Resources Information Center
Dunbar, Laura
2014-01-01
This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.
Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration
Badziak, J.; Jablonski, S.; Pisarczyk, T.; Raczka, P.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Rosinski, M.; Borodziuk, S.; Krousky, E.; Liska, R.; Kucharik, M.; Ullschmied, J.
2012-05-15
Acceleration of dense matter to high velocities is of high importance for high energy density physics, inertial confinement fusion, or space research. The acceleration schemes employed so far are capable of accelerating dense microprojectiles to velocities approaching 1000 km/s; however, the energetic efficiency of acceleration is low. Here, we propose and demonstrate a highly efficient scheme of acceleration of dense matter in which a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and then accelerated in a guiding channel by the pressure of a hot plasma produced in the cavity by the laser beam or by the photon pressure of the ultra-intense laser radiation trapped in the cavity. We show that the acceleration efficiency in this scheme can be much higher than that achieved so far and that sub-relativisitic projectile velocities are feasible in the radiation pressure regime.
Policy Needs for Carbon Capture & Storage
NASA Astrophysics Data System (ADS)
Peridas, G.
2007-12-01
Climate change is one of the most pressing environmental problems of our time. The widespread consensus that exists on climate science requires deep cuts in greenhouse gas emissions, on the order of 50-80% globally from current levels. Reducing energy demand, increasing energy efficiency and sourcing our energy from renewable sources will, and should, play a key role in achieving these cuts. Fossil fuels however are abundant, relatively inexpensive, and still make up the backbone of our energy system. Phasing out fossil fuel use will be a gradual process, and is likely to take far longer than the timeframe dictated by climate science for reducing emissions. A reliable way of decarbonizing the use of fossil fuels is needed. Carbon capture and storage (CCS) has already proven to be a technology that can safely and effectively accomplish this task. The technological know-how and the underground capacity exist to store billions of tons of carbon dioxide in mature oil and gas fields, and deep saline formations. Three large international commercial projects and several other applications have proved this, but substantial barriers remain to be overcome before CCS becomes the technology of choice in all major emitting sectors. Government has a significant role to play in surmounting these barriers. Without mandatory limits on greenhouse gas emissions and a price on carbon, CCS is likely to linger in the background. The expected initial carbon price levels and their potential volatility under such a scheme dictates that further policies be used in the early years in order for CCS to be implemented. Such policies could include a new source performance standard for power plants, and a low carbon generation obligation that would relieve first movers by spreading the additional cost of the technology over entire sectors. A tax credit for capturing and permanently sequestering anthropogenic CO2 would aid project economics. Assistance in the form of loan guarantees for components
Cascaded proton acceleration by collisionless electrostatic shock
Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.
2015-07-15
A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.
Accelerator simulation of astrophysical processes
NASA Technical Reports Server (NTRS)
Tombrello, T. A.
1983-01-01
Phenomena that involve accelerated ions in stellar processes that can be simulated with laboratory accelerators are described. Stellar evolutionary phases, such as the CNO cycle, have been partially explored with accelerators, up to the consumption of He by alpha particle radiative capture reactions. Further experimentation is indicated on reactions featuring N-13(p,gamma)O-14, O-15(alpha, gamma)Ne-19, and O-14(alpha,p)F-17. Accelerated beams interacting with thin foils produce reaction products that permit a determination of possible elemental abundances in stellar objects. Additionally, isotopic ratios observed in chondrites can be duplicated with accelerator beam interactions and thus constraints can be set on the conditions producing the meteorites. Data from isotopic fractionation from sputtering, i.e., blasting surface atoms from a material using a low energy ion beam, leads to possible models for processes occurring in supernova explosions. Finally, molecules can be synthesized with accelerators and compared with spectroscopic observations of stellar winds.
Previte, Michael J R; Zhang, Yongxia; Aslan, Kadir; Geddes, Chris D
2007-11-01
In this paper, we describe an optical geometry that facilitates our further characterization of the temperature changes above silver island films (SiFs) on sapphire plates, when exposed to microwave radiation. Since sapphire transmits IR, we designed an optical scheme to capture real-time temperature images of a thin water film on sapphire plates with and without SiFs during the application of a short microwave pulse. Using this optical scheme, we can accurately determine the temperature profile of solvents in proximity to metal structures when exposed to microwave irradiation. We believe that this optical scheme will provide us with a basis for further studies in designing metal structures to further improve plasmonic-fluorescence clinical sensing applications, such as those used in microwave accelerated metal-enhanced fluorescence (MAMEF). PMID:17902038
Capture Their Attention: Capturing Lessons Using Screen Capture Software
ERIC Educational Resources Information Center
Drumheller, Kristina; Lawler, Gregg
2011-01-01
When students miss classes for university activities such as athletic and academic events, they inevitably miss important class material. Students can get notes from their peers or visit professors to find out what they missed, but when students miss new and challenging material these steps are sometimes not enough. Screen capture and recording…
2010-07-15
IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.
A nonconservative scheme for isentropic gas dynamics
Chen, Gui-Qiang |; Liu, Jian-Guo
1994-05-01
In this paper, we construct a second-order nonconservative for the system of isentropic gas dynamics to capture the physical invariant regions for preventing negative density, to treat the vacuum singularity, and to control the local entropy from dramatically increasing near shock waves. The main difference in the construction of the scheme discussed here is that we use piecewise linear functions to approximate the Riemann invariants w and z instead of the physical variables {rho} and m. Our scheme is a natural extension of the schemes for scalar conservation laws and it can be numerical implemented easily because the system is diagonalized in this coordinate system. Another advantage of using Riemann invariants is that the Hessian matrix of any weak entropy has no singularity in the Riemann invariant plane w-z, whereas the Hessian matrices of the weak entropies have singularity at the vacuum points in the physical plane p-m. We prove that this scheme converges to an entropy solution for the Cauchy problem with L{sup {infinity}} initial data. By convergence here we mean that there is a subsequent convergence to a generalized solution satisfying the entrophy condition. As long as the entropy solution is unique, the whole sequence converges to a physical solution. This shows that this kind of scheme is quite reliable from theoretical view of point. In addition to being interested in the scheme itself, we wish to provide an approach to rigorously analyze nonconservative finite difference schemes.
Optimization and beam control in large-emittance accelerators: Neutrino factories;
Carol Johnstone
2004-08-23
Schemes for intense sources of high-energy muons require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large emittances must be reduced or ''cooled'' both in size and in energy spread before the muons can be efficiently accelerated. Therefore, formation of muon beams sufficiently intense to drive a Neutrino Factory or Muon Collider requires multi-stage preparation. Further, because of the large beam phase space which must be successfully controlled, accelerated, and transported, the major stages that comprise such a facility: proton driver, production, capture, phase rotation, cooling, acceleration, and storage are complex and strongly interlinked. Each of the stages must be consecutively matched and simultaneously optimized with upstream and downstream systems, meeting challenges not only technically in the optics and component design, but also in the modeling of both new and extended components. One design for transverse cooling, for example, employs meter-diameter solenoids to maintain strong focusing--300-500 mr beam divergences--across ultra-large momentum ranges, {ge} {+-}20% {delta}p/p, defying conventional approximations to the dynamics and field representation. To now, the interplay of the different systems and staging strategies has not been formally addressed. This work discusses two basic, but different approaches to a Neutrino Factory and how the staging strategy depends on beam parameters and method of acceleration.
High-quality electron beams from a helical inverse free-electron laser accelerator.
Duris, J; Musumeci, P; Babzien, M; Fedurin, M; Kusche, K; Li, R K; Moody, J; Pogorelsky, I; Polyanskiy, M; Rosenzweig, J B; Sakai, Y; Swinson, C; Threlkeld, E; Williams, O; Yakimenko, V
2014-01-01
Compact, table-top sized accelerators are key to improving access to high-quality beams for use in industry, medicine and academic research. Among laser-based accelerating schemes, the inverse free-electron laser (IFEL) enjoys unique advantages. By using an undulator magnetic field in combination with a laser, GeV m(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators. Here we show for the first time the capture and high-gradient acceleration of monoenergetic electron beams from a helical IFEL. Using a modest intensity (~10(13) W cm(-2)) laser pulse and strongly tapered 0.5 m long undulator, we demonstrate >100 MV m(-1) accelerating gradient, >50 MeV energy gain and excellent output beam quality. Our results pave the way towards compact, tunable GeV IFEL accelerators for applications such as driving soft X-ray free-electron lasers and producing γ-rays by inverse Compton scattering. PMID:25222026
Overriding auditory attentional capture.
Dalton, Polly; Lavie, Nilli
2007-02-01
Attentional capture by color singletons during shape search can be eliminated when the target is not a feature singleton (Bacon & Egeth, 1994). This suggests that a "singleton detection" search strategy must be adopted for attentional capture to occur. Here we find similar effects on auditory attentional capture. Irrelevant high-intensity singletons interfered with an auditory search task when the target itself was also a feature singleton. However, singleton interference was eliminated when the target was not a singleton (i.e., when nontargets were made heterogeneous, or when more than one target sound was presented). These results suggest that auditory attentional capture depends on the observer's attentional set, as does visual attentional capture. The suggestion that hearing might act as an early warning system that would always be tuned to unexpected unique stimuli must therefore be modified to accommodate these strategy-dependent capture effects. PMID:17557587
NASA Technical Reports Server (NTRS)
2004-01-01
This image of a model capture magnet was taken after an experiment in a Mars simulation chamber at the University of Aarhus, Denmark. It has some dust on it, but not as much as that on the Mars Exploration Rover Spirit's capture magnet. The capture and filter magnets on both Mars Exploration Rovers were delivered by the magnetic properties team at the Center for Planetary Science, Copenhagen, Denmark.
NASA Astrophysics Data System (ADS)
England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.
2014-10-01
The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.
Royle, J. Andrew; Chandler, Richard B.; Sollmann, Rahel; Gardner, Beth
2013-01-01
Spatial Capture-Recapture provides a revolutionary extension of traditional capture-recapture methods for studying animal populations using data from live trapping, camera trapping, DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recapture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recapture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology, conservation biology, and fisheries and wildlife management.
A COMPLETE SCHEME FOR A MUON COLLIDER.
PALMER,R.B.; BERG, J.S.; FERNOW, R.C.; GALLARDO, J.C.; KIRK, H.G.; ALEXAHIN, Y.; NEUFFER, D.; KAHN, S.A.; SUMMERS, D.
2007-09-01
A complete scheme for production, cooling, acceleration, and ring for a 1.5 TeV center of mass muon collider is presented, together with parameters for two higher energy machines. The schemes starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Six dimensional cooling in long-period helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids.
New injection scheme using a pulsed quadrupole magnet in electron storage rings
NASA Astrophysics Data System (ADS)
Harada, Kentaro; Kobayashi, Yukinori; Miyajima, Tsukasa; Nagahashi, Shinya
2007-12-01
We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM) with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR) in High Energy Accelerator Research Organization (KEK). The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3T/m and a shorter pulse width of 2.4μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.
Critical Issues in Plasma Accelerator
NASA Astrophysics Data System (ADS)
Uesaka, M.; Hosokai, T.
2004-10-01
Updated achievements and critical issues in plasma accelerators are summarized. As to laser plasma accelerators, we cover the results of plasma cathodes by U.Michigan, LBNL, LOA and U.Tokyo. Although many new results of accelerated electrons have been reported, the electrons do not yet form a bunch with narrow energy spread. Several injection schemes and measurements to verify ultrashort bunch (tens fs) with narrow energy spread, low emittance and many charges are planned. E-162 experiments by UCLA / USC / SLAC and a newly proposed experiment on density transition trapping are introduced for electron beam driven plasma accelerators. Their main purpose is realization of GeV plasma accelerator, but application to pump-and-probe analysis for investigation of ultrafast quantum phenomena is also promising.
NASA Astrophysics Data System (ADS)
Lawrence, George P.
1996-05-01
The accelerator for the Accelerator Production of Tritium (APT) project is a high-power RF linac designed to produce a 100-mA CW proton beam at an energy of 1300 MeV. A heavy-metal target produces large quantities of spallation neutrons, which are slowed to thermal energies and captured in a feed material to make tritium. The baseline accelerator design consists of a 75-keV proton injector, a 7-MeV radio-frequency quadrupole (RFQ), a 100-MeV coupled-cavity drift-tube linac (CCDTL), and a 1300-MeV side-coupled linac (SCL). The RFQ operates at a frequency of 350 MHz, while the CCDTL and SCL operate at 700-MHz. A quadrupole-magnet transport system conveys the 1300-MeV beam to production target/blanket assemblies where beam expanders using non-linear magnetic elements transform the linac output distribution into large-area rectangular distributions having a nearly uniform density. All the linac accelerating structures use conventional water-cooled copper technology. The SCL section is based on the well-proven 800-MeV LANSCE high-duty-factor linac at Los Alamos. The CCDTL is a new hybrid accelerating structure that combines the best features of the conventional drift-tube linac and the coupled-cavity linac to provide efficient and stable acceleration in the intermediate velocity range. Approximately 263 1-MW CW klystrons are needed to drive the 130-MW proton beam. The total ac-power requirement for the APT plant is about 438 MW, most of which is needed for the accelerator. An advanced-technology option is being considered that would replace the conventional SCL with a superconducting RF linac composed of sequences of 4-cell elliptical-type cavities. This option would reduce the electric power consumption significantly and would provide increased operational flexibility. * Work supported by the US Department of Energy.
NASA Technical Reports Server (NTRS)
1992-01-01
The first single crewmember EVA capture attempt of the Intelsat VI as seen from Endeavour's aft flight deck windows. EVA Mission Specialist Pierre Thuot standing on the Remote Manipulator System (RMS) end effector platform, with the satellite capture bar attempting to attach it to the free floating communications satellite.
Qader, A.; Hooper, B.; Stevens, G.
2009-11-15
Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO.
This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…
Applications of Electron Linear Induction Accelerators
NASA Astrophysics Data System (ADS)
Westenskow*, Glen; Chen, Yu-Jiuan
Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:
Electrostatic quadrupole DC accelerators for BNCT applications
Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.
1994-04-01
A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.
NASA Astrophysics Data System (ADS)
Badziak, Jan; Jabłoński, Slawomir
2014-05-01
The results of particle-in-cell simulations of acceleration of carbon ions and a heavy (0.5 μg) gold micro-projectile in the laser-induced cavity pressure acceleration (LICPA) scheme at the conditions relevant to fast ignition of deuterium-tritium (DT) fusion are presented. It is shown that the LICPA accelerator employing a picosecond 100 kJ laser driver can produce quasi-monoenergetic carbon ion beams of parameters significantly higher than those achieved in the conventional radiation pressure acceleration (RPA) scheme and the beam parameters meet the ion fast ignition requirements fairly well. The LICPA accelerator can also efficiently accelerate the heavy micro-projectile to high velocities (> 5 × 108 cm s-1) required for the impact ignition of DT fusion and the acceleration efficiency for LICPA is almost an order of magnitude higher than that for RPA.
Capture cavity II results at FNAL
Branlard, Julien; Chase, Brian; Cancelo, G.; Carcagno, R.; Edwards, H.; Fliller, R.; Hanna, B.; Harms, Elvan; Hocker, A.; Koeth, T.; Kucera, M.; /Fermilab
2007-06-01
As part of the research and development towards the International Linear Collider (ILC), several test facilities have been developed at Fermilab. This paper presents the latest Low Level RF (LLRF) results obtained with Capture Cavity II (CCII) at the ILC Test Accelerator (ILCTA) test facility. The main focus will be on controls and RF operations using the SIMCON based LLRF system developed in DESY [1]. Details about hardware upgrades and future work will be discussed.
Electron capture decay in Jovian planets
NASA Astrophysics Data System (ADS)
Zito, R. R.; Schiferl, D.
1987-12-01
Following the commonly acknowledged fact that the decay of K-40 substantially contributes to the heating of planetary interiors, an examination is made of the possibility that interior heat in the Jovian planets and stars, where interior pressures may exceed 45 Mbar, may be generated by the pressure-accelerated electron capture decay of a variety of isotopes. The isotopes considered encompass K-40, V-50, Te-123, La-138, Al-26, and Cl-36.
IMPACCT: Carbon Capture Technology
2012-01-01
IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.
Vacuum electron acceleration by an intense laser
Wang, P.X.; Ho, Y.K.; Yuan, X.Q.; Kong, Q.; Sessler, A.M.; Esarey, E.; Nishida, Y.
2001-01-12
Using 3D test particle simulations, the characteristics and essential conditions under which an electron, in a vacuum laser beam, can undergo a capture and acceleration scenario (CAS). When a{sub 0} {approx}> 100 the electron can be captured and violently accelerated to energies {approx}> 1 GeV, with an acceleration gradient {approx}> 10 GeV/cm, where a{sub 0} = eE{sub 0}/m{sub e}{omega}c is the normalized laser field amplitude. The physical mechanism behind the CAS is that diffraction of the focused laser beam leads to a slowing down of the effective wave phase velocity along the captured electron trajectory, such that the electron can be trapped in the acceleration phase of the wave for a longer time and thus gain significant energy from the field.
Several CASE Lessons Can Improve Students' Control of Variables Reasoning Scheme Ability
ERIC Educational Resources Information Center
Babai, Reuven; Levit-Dori, Tamar
2009-01-01
This study addressed one aspect of scientific reasoning, the control of variables reasoning scheme. We explored whether a short intervention aimed at accelerating this reasoning scheme by CASE lessons would improve students' ability to apply this scheme in problems related to the biology curriculum. About 120 students from grade nine were assessed…
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
Willcock, J J; Lumsdaine, A; Quinlan, D J
2008-08-19
Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.
Phase motion of accelerated electrons in vacuum laser acceleration
Hua, J. F.; Lin, Y. Z.; Tang, Ch. X.; Ho, Y. K.; Kong, Q.
2007-01-15
The phase stability in the capture and acceleration scenario (CAS) is studied and compared with that of conventional linear electron accelerators (CLEAs). For the CAS case, it has been found that a slow phase slippage occurs due to the difference between the electron velocity and the phase velocity of the longitudinal accelerating electric field. Thus, CAS electrons cannot remain in a fixed small phase region of the accelerating field to obtain a quasimonoenergy gain in contrast to the stability of phase oscillation in CLEAs. Also, the energy spread of the output electron beam for the CAS case cannot be kept as small as the CLEA because there is no good phase bunching phenomenon generated by phase oscillation.
Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.
1979-08-29
The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.
Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.
1982-08-17
The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.
Bell, J.S.
1959-09-15
An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.
An expert system based intelligent control scheme for space bioreactors
NASA Technical Reports Server (NTRS)
San, Ka-Yiu
1988-01-01
An expert system based intelligent control scheme is being developed for the effective control and full automation of bioreactor systems in space. The scheme developed will have the capability to capture information from various resources including heuristic information from process researchers and operators. The knowledge base of the expert system should contain enough expertise to perform on-line system identification and thus be able to adapt the controllers accordingly with minimal human supervision.
Indirect visual cryptography scheme
NASA Astrophysics Data System (ADS)
Yang, Xiubo; Li, Tuo; Shi, Yishi
2015-10-01
Visual cryptography (VC), a new cryptographic scheme for image. Here in encryption, image with message is encoded to be N sub-images and any K sub-images can decode the message in a special rules (N>=2, 2<=K<=N). Then any K of the N sub-images are printed on transparency and stacked exactly, the message of original image will be decrypted by human visual system, but any K-1 of them get no information about it. This cryptographic scheme can decode concealed images without any cryptographic computations, and it has high security. But this scheme lacks of hidden because of obvious feature of sub-images. In this paper, we introduce indirect visual cryptography scheme (IVCS), which encodes sub-images to be pure phase images without visible strength based on encoding of visual cryptography. The pure phase image is final ciphertexts. Indirect visual cryptography scheme not only inherits the merits of visual cryptography, but also raises indirection, hidden and security. Meanwhile, the accuracy alignment is not required any more, which leads to the strong anti-interference capacity and robust in this scheme. System of decryption can be integrated highly and operated conveniently, and its process of decryption is dynamic and fast, which all lead to the good potentials in practices.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Research in Boron Neutron Capture Therapy at MIT LABA
Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.; Howard, W.B.; Song, H.; Blackburn, B.; Binello, E.
1997-02-01
A 4.1 MeV tandem electrostatic accelerator designed for research into Boron Neutron Capture Therapy (BNCT) has recently been installed in the MIT Laboratory for Accelerator Beam Applications (LABA). This accelerator uses a very high current switch mode high voltage power supply in conjunction with a multi-cusp negative ion source to supply the multimilliampere current required for clinical BNCT applications. A number of individual research projects aimed at evaluating the potential of this accelerator design as a hospital-based neutron source for radiation therapy of both tumors and rheumatoid arthritis are described here. {copyright} {ital 1997 American Institute of Physics.}
Linear accelerator for tritium production
Garnett, R.W.; Billen, J.H.; Chan, K.C.; Genzlinger, R.; Gray, E.R.; Nath, S.; Rusnak, B.; Schrage, D.L.; Stovall, J.E.; Takeda, H.; Wood, R.; Wangler, T.P.; Young, L.M.
1996-06-01
For many years now, Los Alamos National Laboratory has been working to develop a conceptual design of a facility for accelerator production of tritium (APT). The APT accelerator will produce high energy protons which will bombard a heavy metal target, resulting in the production of large numbers of spallation neutrons. These neutrons will be captured by a low-{ital Z} target to produce tritium. This paper describes the latest design of a room-temperature, 1.0 GeV, 100 mA, cw proton accelerator for tritium production. The potential advantages of using superconducting cavities in the high-energy section of the linac are also discussed and a comparison is made with the baseline room-temperature accelerator. {copyright} {ital 1996 American Institute of Physics.}
Comparison of the AUSM(+) and H-CUSP Schemes for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Liou, Meng-Sing
2003-01-01
Many turbomachinery CFD codes use second-order central-difference (C-D) schemes with artificial viscosity to control point decoupling and to capture shocks. While C-D schemes generally give accurate results, they can also exhibit minor numerical problems including overshoots at shocks and at the edges of viscous layers, and smearing of shocks and other flow features. In an effort to improve predictive capability for turbomachinery problems, two C-D codes developed by Chima, RVCQ3D and Swift, were modified by the addition of two upwind schemes: the AUSM+ scheme developed by Liou, et al., and the H-CUSP scheme developed by Tatsumi, et al. Details of the C-D scheme and the two upwind schemes are described, and results of three test cases are shown. Results for a 2-D transonic turbine vane showed that the upwind schemes eliminated viscous layer overshoots. Results for a 3-D turbine vane showed that the upwind schemes gave improved predictions of exit flow angles and losses, although the HCUSP scheme predicted slightly higher losses than the other schemes. Results for a 3-D supersonic compressor (NASA rotor 37) showed that the AUSM+ scheme predicted exit distributions of total pressure and temperature that are not generally captured by C-D codes. All schemes showed similar convergence rates, but the upwind schemes required considerably more CPU time per iteration.
Electron acceleration in a two-stage laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Li, Ruxin; Liu, Jiansheng; Xia, Changquan; Wang, Wentao; Lu, Haiyang; Wang, Cheng; Deng, Aihua; Li, Wentao; Zhang, Hui; Liang, Xiaoyan; Leng, Yuxin; Lu, Xiaoming; Wang, Cheng; Wang, Jianzhou; Shen, Baifei; Nakajima, Kazuhisa; Xu, Zhizhan
2012-07-01
Near-GeV electron beam generation from a two-stage laser wakefield accelerator (LWFA) is reported. Electron injection and acceleration are separated into two distinct LWFA stages and controlled independently from each other by employing two gas cells filled with a He/O2 mixture and pure He gas, respectively. Electrons with a Maxwellian spectrum, generated from the injection stage assisted by ionization-induced injection, are seeded into the acceleration stage with a 3-mm long gas cell and accelerated to produce a 0.8-GeV quasimonoenergetic electron beam for a 45 TW 40 fs laser pulse, corresponding to an acceleration gradient of 187 GV/m. In the injection stage, the produced electron beam properties can be optimized by adjusting the input laser intensity and the plasma density so that quasimonoenergetic electron beams are obtained owing to the self-focusing effects of the laser beam. The ionization-induced injection scheme has been extensively employed for a capillary discharge plasma waveguide to demonstrate channel-guided LWFA beyond 1 GeV. Using a 4-cm capillary made of oxygen containing acrylic resin results in optically guiding 130 TW 55 fs laser pulse that accelerates electrons up to 1.8 GeV in contrast with no electron acceleration in a polyethylene capillary free of oxygen.
Multi-dimensional ENO schemes for general geometries
NASA Technical Reports Server (NTRS)
Harten, Ami; Chakravarthy, Sukumar R.
1991-01-01
A class of ENO schemes is presented for the numerical solution of multidimensional hyperbolic systems of conservation laws in structured and unstructured grids. This is a class of shock-capturing schemes which are designed to compute cell-averages to high order accuracy. The ENO scheme is composed of a piecewise-polynomial reconstruction of the solution form its given cell-averages, approximate evolution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is based on an adaptive selection of stencil for each cell so as to avoid spurious oscillations near discontinuities while achieving high order of accuracy away from them.
A pilot evaluation of two G-seat cueing schemes
NASA Technical Reports Server (NTRS)
Showalter, T. W.
1978-01-01
A comparison was made of two contrasting G-seat cueing schemes. The G-seat, an aircraft simulation subsystem, creates aircraft acceleration cues via seat contour changes. Of the two cueing schemes tested, one was designed to create skin pressure cues and the other was designed to create body position cues. Each cueing scheme was tested and evaluated subjectively by five pilots regarding its ability to cue the appropriate accelerations in each of four simple maneuvers: a pullout, a pushover, an S-turn maneuver, and a thrusting maneuver. A divergence of pilot opinion occurred, revealing that the perception and acceptance of G-seat stimuli is a highly individualistic phenomena. The creation of one acceptable G-seat cueing scheme was, therefore, deemed to be quite difficult.
Amplification of Beam Acceleration in a Plasma by Plasma Instability
Valeri Lebedev
1998-09-01
Although achieving of high accelerating field in a plasma has been demonstrated experimentally, a practical use of such a scheme for building a large accelerator is questionable. A novel scheme of beam acceleration by a plasma wave is considered in this article. The scheme is based on an initial excitation of a plasma wave by a probe beam with comparatively modest intensity. This seed excitation is then amplified by plasma instability, so that the test beam which follows the probe beam with a small delay will be accelerated by the plasma wave with an amplitude significantly exceeding the initial amplitude of the wave. Because of small interaction between the synchronization beam and the plasma, such a scheme allows one to excite a plasma over large length and, consequently, to build a large accelerator.
Contingent Attentional Capture
NASA Technical Reports Server (NTRS)
Remington, Roger; Folk, Charles L.
1994-01-01
Four experiments address the degree of top-down selectivity in attention capture by feature singletons through manipulations of the spatial relationship and featural similarity of target and distractor singletons in a modified spatial cuing paradigm. Contrary to previous studies, all four experiments show that when searching for a singleton target, an irrelevant featural singleton captures attention only when defined by the same feature value as the target. Experiments 2, 3, and 4 provide a potential explanation for this empirical discrepancy by showing that irrelevant singletons can produce distraction effects that are independent of shifts of spatial attention. The results further support the notion that attentional capture is contingent on top-down attention control settings but indicates that such settings can be instantiated at the level of feature values.
Spatial Knowledge Capture Library
Energy Science and Technology Software Center (ESTSC)
2005-05-16
The Spatial Knowledge Capture Library is a set of algorithms to capture regularities in shapes and trajectories through space and time. We have applied Spatial Knowledge Capture to model the actions of human experts in spatial domains, such as an AWACS Weapons Director task simulation. The library constructs a model to predict the experts response to sets of changing cues, such as the movements and actions of adversaries on a battlefield, The library includes amore » highly configurable feature extraction functionality, which supports rapid experimentation to discover causative factors. We use k-medoid clustering to group similar episodes of behavior, and construct a Markov model of system state transitions induced by agents actions.« less
NASA Technical Reports Server (NTRS)
Harwell, William D.
1987-01-01
In an effort to recover the Westar and Palapa satellites and the considerable investment each represented, NASA and Hughes undertook the Satellite Retrieval Mission. The mechanism used to capture each of the errant satellites was the AKM (Apogee Kick Motor) Capture Device (ACD), also referred to as the Stinger. The ACD had three interface requirements: interface with the Manned Maneuvering Unit (MMU) for transportation to and stabilization of the spacecrafts; interface with each satellite for retrieval; and finally, interface with the Shuttle's Remote Manipulator System (RMS or robot arm) for satellite transport back to the Orbiter's payload bay. The majority of the design requirements were associated with the capture and release of the satellites. In addition to these unique requirements, the general EVA, RMS grapple, and RMS manipulation requirements applied. These requirements included thermal, glare, snag, RMS runaway and crewman safety considerations.
Nonstandard finite difference schemes
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.
1995-01-01
The major research activities of this proposal center on the construction and analysis of nonstandard finite-difference schemes for ordinary and partial differential equations. In particular, we investigate schemes that either have zero truncation errors (exact schemes) or possess other significant features of importance for numerical integration. Our eventual goal is to bring these methods to bear on problems that arise in the modeling of various physical, engineering, and technological systems. At present, these efforts are extended in the direction of understanding the exact nature of these nonstandard procedures and extending their use to more complicated model equations. Our presentation will give a listing (obtained to date) of the nonstandard rules, their application to a number of linear and nonlinear, ordinary and partial differential equations. In certain cases, numerical results will be presented.
Plasma-based Accelerator with Magnetic Compression
Paul F. Schmit and Nathaniel J. Fisch
2012-06-28
Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest (#24; O(10 kG)), axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat-wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression compared to other proposed schemes to overcome dephasing are identified.
Neutron capture measurements for nuclear astrophysics
NASA Astrophysics Data System (ADS)
Reifarth, Rene
2005-04-01
Almost all of the heavy elements are produced via neutron capture reactions in a multitude of stellar production sites. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. Neutron captures measurements on heavy radioactive isotopes provide a unique opportunity to largely improve these physics components, and thereby address important questions of nuclear astrophysics. Such species are branch-points in the otherwise uniquely defined path of subsequent n-captures along the s-process path in the valley of stability. These branch points reveal themselves through unmistakable signatures recovered from pre-solar meteoritic grains that originate in individual element producing stars. Measurements on radioactive isotopes for neutron energies in the keV region represent a stringent challenge for further improvements of experimental techniques. This holds true for the neutron sources, the detection systems and the technology to handle radioactive material. Though the activation method or accelerator mass spectroscopy of the reaction products could be applied in a limited number of cases, Experimental facilities like DANCE at LANL, USA and n-TOF at CERN, Switzerland are addressing the need for such measurements on the basis of the more universal method of detecting the prompt capture gamma-rays, which is required for the application of neutron time-of-flight (TOF) techniques. With a strongly optimized neutron facility at the Rare Isotope Accelerator (RIA) isotopes with half-lives down to tens of days could be investigated, while present facilities require half-lives of a few hundred days. Recent neutron capture experiments on radioactive isotopes with relevance for nuclear astrophysics and possibilities for future experimental setups will be discussed during the talk.
US Spacesuit Knowledge Capture
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen
2011-01-01
The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes
Direct plasma injection scheme with various ion beams
Okamura, M.
2010-09-15
The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.
1993-01-01
Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.
A new antiproton beam transfer scheme without coalescing
Weiren Chou et al.
2003-06-04
An effective way to increase the luminosity in the Fermilab Tevatron collider program Run2 is to improve the overall antiproton transfer efficiency. During antiproton coalescing in the Main Injector (MI), about 10-15% particles get lost. This loss could be avoided in a new antiproton transfer scheme that removes coalescing from the process. Moreover, this scheme would also eliminate emittance dilution due to coalescing. This scheme uses a 2.5 MHz RF system to transfer antiprotons from the Accumulator to the Main Injector. It is then followed by a bunch rotation in the MI to shorten the bunch length so that it can be captured by a 53 MHz RF bucket. Calculations and ESME simulations show that this scheme works. No new hardware is needed to implement this scheme.
Impossibility of unconditional stability and robustness of diffusive acceleration schemes
Azmy, Y.Y.
1998-01-01
The authors construct a problem for which exists no preconditioner with a cell-centered diffusion coupling stencil that is unconditionally stable and robust. In particular they consider an asymptotic limit of the Periodic Horizontal Interface (PHI) configuration wherein the cell height in both layers approaches zero like {sigma}{sup 2} while the total cross section varies like a in one layer and like 1/{sigma} in the other layer. In such case they show that the conditions for stability and robustness of the flat eigenmodes of the iteration residual imply instability of the modes flat in the y-dimension and rapidly varying in the x-dimension. This paper is important for radiation transport studies.
New Technical Risk Management Development for Carbon Capture Process
Engel, David W.; Letellier, Bruce; Edwards, Brian; Leclaire, Rene; Jones, Edward
2012-04-30
The basic CCSI objective of accelerating technology development and commercial deployment of carbon capture technologies through the extensive use of numerical simulation introduces a degree of unfamiliarity and novelty that potentially increases both of the traditional risk elements. In order to secure investor confidence and successfully accelerate the marketability of carbon capture technologies, it is critical that risk management decision tools be developed in parallel with numerical simulation capabilities and uncertainty quantification efforts. The focus of this paper is on the development of a technical risk model that incorporates the specific technology maturity development (level).
Improving the accuracy of central difference schemes
NASA Technical Reports Server (NTRS)
Turkel, Eli
1988-01-01
General difference approximations to the fluid dynamic equations require an artificial viscosity in order to converge to a steady state. This artificial viscosity serves two purposes. One is to suppress high frequency noise which is not damped by the central differences. The second purpose is to introduce an entropy-like condition so that shocks can be captured. These viscosities need a coefficient to measure the amount of viscosity to be added. In the standard scheme, a scalar coefficient is used based on the spectral radius of the Jacobian of the convective flux. However, this can add too much viscosity to the slower waves. Hence, it is suggested that a matrix viscosity be used. This gives an appropriate viscosity for each wave component. With this matrix valued coefficient, the central difference scheme becomes closer to upwind biased methods.
Wang, Zhehui; Barnes, Cris W.
2002-01-01
There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.
ERIC Educational Resources Information Center
Ford, William J.
2010-01-01
This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…
Pope, K.E.
1958-01-01
This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.
NASA Technical Reports Server (NTRS)
Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.
1986-01-01
Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.
ERIC Educational Resources Information Center
Langton, Stephen R. H.; Law, Anna S.; Burton, A. Mike; Schweinberger, Stefan R.
2008-01-01
We report three experiments that investigate whether faces are capable of capturing attention when in competition with other non-face objects. In Experiment 1a participants took longer to decide that an array of objects contained a butterfly target when a face appeared as one of the distracting items than when the face did not appear in the array.…
Rowe-Magnus, D A; Mazel, D
1999-10-01
Integrons are the primary mechanism for antibiotic-resistance gene capture and dissemination among Gram-negative bacteria. The recent finding of super-integron structures in the genomes of several bacterial species has expanded their role in genome evolution and suggests that they are the source of mobile multi-resistant integrons. PMID:10508722
Carbon Smackdown: Carbon Capture
Jeffrey Long
2010-09-01
In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air
ERIC Educational Resources Information Center
Ramaswami, Rama
2009-01-01
Digital lecture capture and broadcast solutions have been around for only about 10 years, but are poised for healthy growth. Frost & Sullivan research analysts estimate that the market (which amounts to $25 million currently) will quadruple by 2013. It's still dominated by a few key players, however: Sonic Foundry holds a hefty 40 percent-plus…
Carbon Smackdown: Carbon Capture
Jeffrey Long
2010-07-12
In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air
ERIC Educational Resources Information Center
Wheeler, Mary L.
1994-01-01
Discusses the study of identification codes and check-digit schemes as a way to show students a practical application of mathematics and introduce them to coding theory. Examples include postal service money orders, parcel tracking numbers, ISBN codes, bank identification numbers, and UPC codes. (MKR)
Relativistically strong CO{sub 2} laser driver for plasma-channeled particle acceleration
Pogorelsky, I.V.
1995-12-31
Long-wavelength, short-duration laser pulses are desirable for plasma wakefield particle acceleration and plasma waveguiding. The first picosecond terawatt CO{sub 2} laser is under development to test laser-driven electron acceleration schemes.
Neutron capture of 26Mg at thermonuclear energies
NASA Astrophysics Data System (ADS)
Mohr, P.; Beer, H.; Oberhummer, H.; Staudt, G.
1998-08-01
The neutron capture cross section of 26Mg was measured relative to the known gold cross section at thermonuclear energies using the fast cyclic activation technique. The experiment was performed at the 3.75 MV Van-de-Graaff accelerator, Forschungszentrum Karlsruhe. The experimental capture cross section is the sum of resonant and direct contributions. For the resonance at En,lab=220 keV our new results are in disagreement with the data from Weigmann, Macklin, and Harvey [Phys. Rev. C 14, 1328 (1976)]. An improved Maxwellian averaged capture cross section is derived from the new experimental data taking into account s- and p-wave capture and resonant contributions. The properties of so-called potential resonances which influence the p-wave neutron capture of 26Mg are discussed in detail.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Warming, R. F.; Harten, A.
1985-01-01
Highly accurate and yet stable shock-capturing finite difference schemes have been designed for the computation of the Euler equations of gas dynamics. Four different principles for the construction of high resolution total variation diminishing (TVD) schemes are available, including hybrid schemes, a second-order extension of Godunov's scheme by van Leer (1979), the modified flux approach of Harten (1983, 1984), and the numerical fluctuation approach of Roe (1985). The present paper has the objective to review the class of second-order TVD schemes via the modified flux approach. Attention is given to first-order TVD schemes, a second-order accurate explicit TVD scheme, the global order of accuracy of the second-order TVD scheme, extensions to systems and two-dimensional conservation laws, numerical experiments with a second-order explicit TVD scheme, implicit TVD schemes, and second-order implicit TVD schemes.
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
2007-02-06
A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).
Contaldi, Carlo R.
2014-10-01
The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].
Advanced Telemetry Data Capturing
Paschke, G.A.
2000-05-16
This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.
High Transformer ratios in collinear wakefield accelerators.
Power, J. G.; Conde, M.; Yusof, Z.; Gai, W.; Jing, C.; Kanreykin, A.; Schoessow, P.; High Energy Physics; Euclid Techlabs, LLC
2008-01-01
Based on our previous experiment that successfully demonstrated wakefield transformer ratio enhancement in a 13.625 GHz dielectric-loaded collinear wakefield accelerator using the ramped bunch train technique, we present here a redesigned experimental scheme for even higher enhancement of the efficiency of this accelerator. Design of a collinear wakefield device with a transformer ratio R2, is presented. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2. To match the wavelength of the fundamental mode of the wakefield with the bunch length (sigmaz=2 mm) of the new Argonne wakefield accelerator (AWA) drive gun (where the experiment will be performed), a 26.625 GHz dielectric based accelerating structure is required. This transformer ratio enhancement technique based on our dielectric-loaded waveguide design will result in a compact, high efficiency accelerating structures for future wakefield accelerators.
Hybridization schemes for clusters
NASA Astrophysics Data System (ADS)
Wales, David J.
The concept of an optimum hybridization scheme for cluster compounds is developed with particular reference to electron counting. The prediction of electron counts for clusters and the interpretation of the bonding is shown to depend critically upon the presumed hybridization pattern of the cluster vertex atoms. This fact has not been properly appreciated in previous work, particularly in applications of Stone's tensor surface harmonic (TSH) theory, but is found to be a useful tool when dealt with directly. A quantitative definition is suggested for the optimum cluster hybridization pattern based directly upon the ease of interpretation of the molecular orbitals, and results are given for a range of species. The relationship of this scheme to the detailed cluster geometry is described using Löwdin's partitioned perturbation theory, and the success and range of application of TSH theory are discussed.
Elliott, C.J.; Fisher, H.; Pepin, J.; Gillmann, R.
1996-07-01
Traffic classification techniques were evaluated using data from a 1993 investigation of the traffic flow patterns on I-20 in Georgia. First we improved the data by sifting through the data base, checking against the original video for questionable events and removing and/or repairing questionable events. We used this data base to critique the performance quantitatively of a classification method known as Scheme F. As a context for improving the approach, we show in this paper that scheme F can be represented as a McCullogh-Pitts neural network, oar as an equivalent decomposition of the plane. We found that Scheme F, among other things, severely misrepresents the number of vehicles in Class 3 by labeling them as Class 2. After discussing the basic classification problem in terms of what is measured, and what is the desired prediction goal, we set forth desirable characteristics of the classification scheme and describe a recurrent neural network system that partitions the high dimensional space up into bins for each axle separation. the collection of bin numbers, one for each of the axle separations, specifies a region in the axle space called a hyper-bin. All the vehicles counted that have the same set of in numbers are in the same hyper-bin. The probability of the occurrence of a particular class in that hyper- bin is the relative frequency with which that class occurs in that set of bin numbers. This type of algorithm produces classification results that are much more balanced and uniform with respect to Classes 2 and 3 and Class 10. In particular, the cancellation of errors of classification that occurs is for many applications the ideal classification scenario. The neural network results are presented in the form of a primary classification network and a reclassification network, the performance matrices for which are presented.
Target activated frame capture
NASA Astrophysics Data System (ADS)
Roberts, G. Marlon; Fitzgerald, James; McCormack, Michael; Steadman, Robert
2008-04-01
Over the past decade, technological advances have enabled the use of increasingly intelligent systems for battlefield surveillance. These systems are triggered by a combination of external devices including acoustic and seismic sensors. Such products are mainly used to detect vehicles and personnel. These systems often use infra-red imagery to record environmental information, but Textron Defense Systems' Terrain Commander is one of a small number of systems which analyze these images for the presence of targets. The Terrain Commander combines acoustic, infrared, magnetic, seismic, and visible spectrum sensors to detect nearby targets in military scenarios. When targets are detected by these sensors, the cameras are triggered and images are captured in the infrared and visible spectrum. In this paper we discuss a method through which such systems can perform target tracking in order to record and transmit only the most pertinent surveillance images. This saves bandwidth which is crucial because these systems often use communication systems with throughputs below 2400bps. This method is expected to be executable on low-power processors at frame rates exceeding 10HZ. We accomplish this by applying target activated frame capture algorithms to infra-red video data. The target activated frame capture algorithms combine edge detection and motion detection to determine the best frames to be transmitted to the end user. This keeps power consumption and bandwidth requirements low. Finally, the results of the algorithm are analyzed.
Li, H.; Yu, S.S.; Sessler, A.M.
1994-10-01
In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunches desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the {open_quotes}adiabatic capture{close_quotes} scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the {open_quotes}after burner{close_quotes} scheme which is implemented in their RK-TBA design for efficiency enhancement.
Capturing near-Earth asteroids around Earth
NASA Astrophysics Data System (ADS)
Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.
2012-12-01
The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the
Inverse free-electron laser accelerator
Pellegrini, C.; Campisi, R.
1982-01-01
We first describe the basic physical properties of an inverse free-electron laser and make an estimate of the order of magnitude of the accelerating field obtainable with such a system; then apply the general ideas to the design of an actual device and through this example we give a more accurate evaluation of the fundamental as well as the technical limitations that this acceleration scheme imposes.
Convergence acceleration of viscous flow computations
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1982-01-01
A multiple-grid convergence acceleration technique introduced for application to the solution of the Euler equations by means of Lax-Wendroff algorithms is extended to treat compressible viscous flow. Computational results are presented for the solution of the thin-layer version of the Navier-Stokes equations using the explicit MacCormack algorithm, accelerated by a convective coarse-grid scheme. Extensions and generalizations are mentioned.
Dispersion Analysis of the Pulseline Accelerator
Caporaso, G J; Briggs, R J; Poole, B R; Nelson, S D
2005-05-10
The authors analyze the sheath helix model of the pulseline accelerator. They find the dispersion relation for a shielded helix with a dielectric material between the shield and the helix and compare it against the results from 3-D electromagnetic simulations. Expressions for the fields near the beam axis are obtained. A scheme to taper the properties of the helix to maintain synchronism with the accelerated ions is described. An approximate circuit model of the system that includes beam loading is derived.
Complex Greenland outlet glacier flow captured
Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin
2016-01-01
The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316
Complex Greenland outlet glacier flow captured.
Aschwanden, Andy; Fahnestock, Mark A; Truffer, Martin
2016-01-01
The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316
A one-dimensional shock capturing finite element method and multi-dimensional generalizations
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Mallet, M.; Zanutta, R.; Taki, Y.; Tezduyar, T. E.
1985-01-01
Multi-dimensional generalizations of a one-dimensional finite element shock capturing scheme are proposed. A scalar model problem is used to emphasize that 'preferred directions' are important in multi-dimensional applications. Schemes are developed for the two-dimensional Euler equations. One, based upon characteristics, employs the Mach lines and streamlines as preferred directions.
Advanced concepts for acceleration
Keefe, D.
1986-07-01
Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)
Don't Use Airtracks to Measure Gravity Acceleration.
ERIC Educational Resources Information Center
Kluk, Edward; Lopez, John L.
1992-01-01
Presents one way, using simple materials available in hardware stores, to obtain accurate measurements of gravity acceleration in student laboratories. Analyzes a time-of-flight measuring scheme and discusses the experimental arrangements to make the measurements. (MDH)
Controlling electron injection in laser plasma accelerators using multiple pulses
Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P.
2012-12-21
Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.
Accelerators and the Accelerator Community
Malamud, Ernest; Sessler, Andrew
2008-06-01
In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.
Neutron beam design, development, and performance for neutron capture therapy
Harling, O.K.; Bernard, J.A. ); Zamenhof, R.G. )
1990-01-01
The report presents topics presented at a workshop on neutron beams and neutron capture therapy. Topics include: neutron beam design; reactor-based neutron beams; accelerator-based neutron beams; and dosimetry and treatment planning. Individual projects are processed separately for the databases. (CBS)
An Investigation of High-Order Shock-Capturing Methods for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Casper, Jay; Baysal, Oktay
1997-01-01
Topics covered include: Low-dispersion scheme for nonlinear acoustic waves in nonuniform flow; Computation of acoustic scattering by a low-dispersion scheme; Algorithmic extension of low-dispersion scheme and modeling effects for acoustic wave simulation; The accuracy of shock capturing in two spatial dimensions; Using high-order methods on lower-order geometries; and Computational considerations for the simulation of discontinuous flows.
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows
NASA Astrophysics Data System (ADS)
Sjoegreen, Bjoern; Yee, Helen C.
2002-11-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great
Classification Schemes: Developments and Survival.
ERIC Educational Resources Information Center
Pocock, Helen
1997-01-01
Discusses the growth, survival and future of library classification schemes. Concludes that to survive, a scheme must constantly update its policies, and readily adapt itself to accommodate growing disciplines and changing terminology. (AEF)
Pascolutti, Mauro; Campitelli, Marc; Nguyen, Bao; Pham, Ngoc; Gorse, Alain-Dominique; Quinn, Ronald J
2015-01-01
Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a
Pascolutti, Mauro; Campitelli, Marc; Nguyen, Bao; Pham, Ngoc; Gorse, Alain-Dominique; Quinn, Ronald J.
2015-01-01
Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a
Factorizable Schemes for the Equations of Fluid Flow
NASA Technical Reports Server (NTRS)
Sidilkover, David
1999-01-01
We present an upwind high-resolution factorizable (UHF) discrete scheme for the compressible Euler equations that allows to distinguish between full-potential and advection factors at the discrete level. The scheme approximates equations in their general conservative form and is related to the family of genuinely multidimensional upwind schemes developed previously and demonstrated to have good shock-capturing capabilities. A unique property of this scheme is that in addition to the aforementioned features it is also factorizable, i.e., it allows to distinguish between full-potential and advection factors at the discrete level. The latter property facilitates the construction of optimally efficient multigrid solvers. This is done through a relaxation procedure that utilizes the factorizability property.
Numerical simulation of shock wave diffraction by TVD schemes
NASA Technical Reports Server (NTRS)
Young, Victor Y. C.; Yee, H. C.
1987-01-01
An upwind total variation diminishing (TVD) scheme and a predictor-corrector symmetric TVD scheme were used to numerically simulate the blast wave diffraction on a stationary object. The objective is to help design an optimum configuration so that lateral motion is minimized and at the same time vortex shedding and flow separation are reduced during a blast wave encounter. Results are presented for a generic configuration for both a coarse grid and a fine grid to illustrate the global and local diffraction flow fields. Numerical experiments for the shock wave reflection on a wedge are also included to validate the current approach. Numerical study indicated that these TVD schemes are more stable and produced higher shock resolution than classical shock capturing methods such as the explicit MacCormack scheme.
Entropy-bounded discontinuous Galerkin scheme for Euler equations
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2015-08-01
An entropy-bounded Discontinuous Galerkin (EBDG) scheme is proposed in which the solution is regularized by constraining the entropy. The resulting scheme is able to stabilize the solution in the vicinity of discontinuities and retains the optimal accuracy for smooth solutions. The properties of the limiting operator according to the entropy-minimum principle are proofed, and an optimal CFL-criterion is derived. We provide a rigorous description for locally imposing entropy constraints to capture multiple discontinuities. Significant advantages of the EBDG-scheme are the general applicability to arbitrary high-order elements and its simple implementation for multi-dimensional configurations. Numerical tests confirm the properties of the scheme, and particular focus is attributed to the robustness in treating discontinuities on arbitrary meshes.
Yasas, F M
1977-01-01
In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries. PMID:12265562
Capturing the Daylight Dividend
Peter Boyce; Claudia Hunter; Owen Howlett
2006-04-30
Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.
Glenn, Travis C; Faircloth, Brant C
2016-09-01
Evolutionary biologists from Darwin forward have dreamed of having data that would elucidate our understanding of evolutionary history and the diversity of life. Sequence capture is a relatively old DNA technology, but its use is growing rapidly due to advances in (i) massively parallel DNA sequencing approaches and instruments, (ii) massively parallel bait construction, (iii) methods to identify target regions and (iv) sample preparation. We give a little historical context to these developments, summarize some of the important advances reported in this special issue and point to further advances that can be made to help fulfill Darwin's dream. PMID:27454358
Using Steffe's Advanced Fraction Schemes
ERIC Educational Resources Information Center
McCloskey, Andrea V.; Norton, Anderson H.
2009-01-01
Recognizing schemes, which are different from strategies, can help teachers understand their students' thinking about fractions. Using Steffe's advanced fraction schemes, the authors describe a progression of development that upper elementary and middle school students might follow in understanding fractions. Each scheme can be viewed as a…
Perceptual objects capture attention.
Yeshurun, Yaffa; Kimchi, Ruth; Sha'shoua, Guy; Carmel, Tomer
2009-06-01
A recent study has demonstrated that the mere organization of some elements in the visual field into an object attracts attention automatically [Kimchi, R., Yeshurun, Y., & Cohen-Savransky, A. (2007). Automatic, stimulus-driven attentional capture by objecthood. Psychonomic Bulletin & Review, 14(1), 166-172]. We tested whether similar results will emerge when the target is not a part of the object and with simplified task demands. A matrix of 16 black L elements in various orientations preceded the presentation of a Vernier target. The target was either added to the matrix (Experiment 1), or appeared after its offset (Experiment 2). On some trials four elements formed a square-like object, and on some of these trials the target appeared in the center of the object. No featural uniqueness or abrupt onset was associated with the object and it did not predict the target location or the direction of the target's horizontal offset. Performance was better when the target appeared in the center of the object than in a different location than the object, even when the target appeared after the matrix offset. These findings support the hypothesis that a perceptual object captures attention (Kimchi et al., 2007), and demonstrate that this automatic deployment of attention to the object is robust and involves a spatial component. PMID:18299141
Accelerated Leadership Development: Fast Tracking School Leaders
ERIC Educational Resources Information Center
Earley, Peter; Jones, Jeff
2010-01-01
"Accelerated Leadership Development" captures and communicates the lessons learned from successful fast-track leadership programmes in the private and public sector, and provides a model which schools can follow and customize as they plan their own leadership development strategies. As large numbers of headteachers and other senior staff retire,…
Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
Reinhart, Robert M G; McClenahan, Laura J; Woodman, Geoffrey F
2016-06-01
How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory representations used to control attention while performing visual search. We found that subjects used both types of memories to control attention when they performed the visual search task with a large reward at stake, or when they were cued to respond as fast as possible. However, under normal circumstances, one type of target memory was sufficient for slower task performance. The use of multiple types of memory representations appears to provide converging top-down control of attention, allowing people to step on the attentional accelerator in a variety of high-pressure situations. PMID:27056975
Annual Report: Carbon Capture (30 September 2012)
Luebke, David; Morreale, Bryan; Richards, George; Syamlal, Madhava
2014-04-16
Capture of carbon dioxide (CO{sub 2}) is a critical component in reducing greenhouse gas emissions from fossil fuel-based processes. The Carbon Capture research to be performed is aimed at accelerating the development of efficient, cost-effective technologies which meet the post-combustion programmatic goal of capture of 90% of the CO{sub 2} produced from an existing coal-fired power plant with less than a 35% increase in the cost of electricity (COE), and the pre-combustion goal of 90% CO{sub 2} capture with less than a 10% increase in COE. The specific objective of this work is to develop innovative materials and approaches for the economic and efficient capture of CO{sub 2} from coal-based processes, and ultimately assess the performance of promising technologies at conditions representative of field application (i.e., slip stream evaluation). The Carbon Capture research includes seven core technical research areas: post-combustion solvents, sorbents, and membranes; pre-combustion solvents, sorbents, and membranes; and oxygen (O{sub 2}) production. The goal of each of these tasks is to develop advanced materials and processes that are able to reduce the energy penalty and cost of CO{sub 2} (or O{sub 2}) separation over conventional technologies. In the first year of development, materials will be examined by molecular modeling, and then synthesized and experimentally characterized at lab scale. In the second year, they will be tested further under ideal conditions. In the third year, they will be tested under realistic conditions. The most promising materials will be tested at the National Carbon Capture Center (NCCC) using actual flue or fuel gas. Systems analyses will be used to determine whether or not materials developed are likely to meet the Department of Energy (DOE) COE targets. Materials which perform well and appear likely to improve in performance will be licensed for further development outside of the National Energy Technology Laboratory (NETL
Upwind schemes and bifurcating solutions in real gas computations
NASA Technical Reports Server (NTRS)
Suresh, Ambady; Liou, Meng-Sing
1992-01-01
The area of high speed flow is seeing a renewed interest due to advanced propulsion concepts such as the National Aerospace Plane (NASP), Space Shuttle, and future civil transport concepts. Upwind schemes to solve such flows have become increasingly popular in the last decade due to their excellent shock capturing properties. In the first part of this paper the authors present the extension of the Osher scheme to equilibrium and non-equilibrium gases. For simplicity, the source terms are treated explicitly. Computations based on the above scheme are presented to demonstrate the feasibility, accuracy and efficiency of the proposed scheme. One of the test problems is a Chapman-Jouguet detonation problem for which numerical solutions have been known to bifurcate into spurious weak detonation solutions on coarse grids. Results indicate that the numerical solution obtained depends both on the upwinding scheme used and the limiter employed to obtain second order accuracy. For example, the Osher scheme gives the correct CJ solution when the super-bee limiter is used, but gives the spurious solution when the Van Leer limiter is used. With the Roe scheme the spurious solution is obtained for all limiters.
Experiment specific processing of residual acceleration data
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. I. D.
1992-01-01
To date, most Spacelab residual acceleration data collection projects have resulted in data bases that are overwhelming to the investigator of low-gravity experiments. This paper introduces a simple passive accelerometer system to measure low-frequency accelerations. Model responses for experiments using actual acceleration data are produced and correlations are made between experiment response and the accelerometer time history in order to test the idea that recorded acceleration data and experimental responses can be usefully correlated. Spacelab 3 accelerometer data are used as input to a variety of experiment models, and sensitivity limits are obtained for particular experiment classes. The modeling results are being used to create experiment-specific residual acceleration data processing schemes for interested investigators.
Neutron-Resonance Capture Analysis of Materials
Postma, H.; Bode, P.; Blaauw, M.; Corvi, F.
1999-11-14
Epithermal neutron activation analysis is a well-established approach to improve the sensitivity for certain elements by suppressing the activation of interfering elements. If epithermal neutrons of a given energy could be selected, the signal-to-noise ratio might be further improved by taking advantage of resonance capture. This reaction occurs mainly by intermediate and heavy nuclei. Moreover, most of these reactions take place with epithermal or fast neutrons. Intense epithermal neutrons are available as ''white'' beams at accelerator-driven neutron sources. Neutron resonance capture offers interesting analytical opportunities. Low-Z elements have little capture of epithermal neutrons and are thus virtually absent in the time-of-flight spectrum. Relatively large objects can be placed in the neutron beam and analyzed nondestructively. The induced radioactivity is relatively low. If an element has several stable isotopes, each of these isotopes can be recognized by its specific resonances. This would allow for multitracer studies with several isotopically labeled compounds. Different from mass spectrometry, the sample remains intact and can be used for further studies after analysis. Applications may be in the field of archaeology, metallurgy, and certification of reference materials.
An improved lambda-scheme for one-dimensional flows
NASA Technical Reports Server (NTRS)
Moretti, G.; Dipiano, M. T.
1983-01-01
A code for the calculation of one-dimensional flows is presented, which combines a simple and efficient version of the lambda-scheme with tracking of discontinuities. The latter is needed to identify points where minor departures from the basic integration scheme are applied to prevent infiltration of numerical errors. Such a tracking is obtained via a systematic application of Boolean algebra. It is, therefore, very efficient. Fifteen examples are presented and discussed in detail. The results are exceptionally good. All discontinuites are captured within one mesh interval.
Robust automated knowledge capture.
Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt
2011-10-01
This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.
NASA Technical Reports Server (NTRS)
Macconochie, I. O.; Eldred, C. H.; Martin, J. A.
1983-01-01
A satellite in the form of a large rotating rim which can be used to boost spacecraft from low-Earth orbit to higher orbits is described. The rim rotates in the plane of its orbit such that the lower portion of the rim is traveling at suborbital velocity, while the upper portion is travelling at greater than orbital velocity. Ascending spacecraft or payloads arrive at the lowest portion of the rim at suborbital velocities, where the payloads are released on a trajectory for higher orbits; descending payloads employ the reverse procedure. Electric thrusters placed on the rim maintain rim rotational speed and altitude. From the standpoint of currently known materials, the capture-ejector concept may be useful for relatively small velocity increments.
NASA Technical Reports Server (NTRS)
Cloyd, Richard A. (Inventor); Bryan, Thomas C. (Inventor)
2003-01-01
A passive ball capture joint has a sleeve with a plurality of bores distributed about a circumference thereof and formed therethrough at an acute angle relative to the sleeve's longitudinal axis. A spring-loaded retainer is slidingly fitted in each bore and is biased such that, if allowed, will extend at least partially into the sleeve to retain a ball therein. A ring, rotatably mounted about the bores, has an interior wall defining a plurality of shaped races that bear against the spring-loaded retainers. A mechanized rotational force producer is coupled to the ring. The ring can be rotated from a first position (that presses the retainers into the sleeve to lock the ball in place) to a second position (that allows the retainers to springback out of the sleeve to release the ball).
Capturing the uncultivated majority
Green, Brian D.; Keller, Martin
2007-04-02
The metagenomic analysis of environmental microbialcommunities continues to be a rapidly developing area of study. DNAisolation, the first step in capturing the uncultivated majority, hasseen many advances in recent years. Protocols have been developed todistinguish DNA from live versus dead cells and to separate extracellularfrom intracellular DNA. Looking to increase our understanding of the rolethat members of a microbial community play in ecological processes,several techniques have been developed that are enabling greater indepthanalysis of environmental metagenomes. These include the development ofenvironmental gene tags and the serial analysis of 16S rRNA gene sequencetags. In addition, new screening methods have been designed to select forspecific functional genes within metagenomic libraries. Finally, newcultivation methods continue to be developed to improve our ability tocapture a greater diversity of microorganisms within theenvironment.
Jayne, John T.; Worsnop, Douglas R.
2016-02-23
In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.
Payne, Lloyd R.; Cole, David L.
2010-03-30
A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.
Quench detector for superconducting elements of the NICA accelerator complex
NASA Astrophysics Data System (ADS)
Ivanov, E. V.; Svetov, L. A.; Smirnova, Z. I.
2014-07-01
A universal quench detector is designed for new superconducting accelerators of the NICA accelerator complex under construction at JINR. The presence of a two-channel digital input permits the detector to be used both for comparing voltage across two nearest magnets by a bridge scheme and for separating a resistive constituent of the voltage across a controlled element.
R&D Topics for Neutrino Factory Acceleration
NASA Astrophysics Data System (ADS)
Berg, J. Scott
2008-02-01
The muons in a neutrino factory must be accelerated from the energy of the capture, phase rotation, and cooling systems (around 120 MeV kinetic energy) to the energy of the storage ring (around 25 GeV). This is done with a sequence of accelerators of different types: a linac, one or more recirculating linear accelerators, and finally one or more fixed field alternating gradient accelerators (FFAGs). I discuss the R&D that is needed to arrive at a complete system which we can have confidence will accelerate the beam and for which we can obtain a cost estimate.
Acceleration modules in linear induction accelerators
NASA Astrophysics Data System (ADS)
Wang, Shao-Heng; Deng, Jian-Jun
2014-05-01
The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.
A Continuing Search for a Near-Perfect Numerical Flux Scheme. Part 1; [AUSM+
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1994-01-01
While enjoying demonstrated improvement in accuracy, efficiency, and robustness over existing schemes, the Advection Upstream Splitting Scheme (AUSM) was found to have some deficiencies in extreme cases. This recent progress towards improving the AUSM while retaining its advantageous features is described. The new scheme, termed AUSM+, features: unification of velocity and Mach number splitting; exact capture of a single stationary shock; and improvement in accuracy. A general construction of the AUSM+ scheme is layed out and then focus is on the analysis of the a scheme and its mathematical properties, heretofore unreported. Monotonicity and positivity are proved, and a CFL-like condition is given for first and second order schemes and for generalized curvilinear co-ordinates. Finally, results of numerical tests on many problems are given to confirm the capability and improvements on a variety of problems including those failed by prominent schemes.
Two-color-laser-driven direct electron acceleration in infinite vacuum.
Wong, Liang Jie; Kärtner, Franz X
2011-03-15
We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration. The scheme succeeds by exploiting the Gouy phase shift to cause an acceleration-favoring interference of fields only as the electron enters its effectively final accelerating cycle. Optimization conditions and power scaling characteristics are discussed. PMID:21403741
Badziak, J.; Borodziuk, S.; Pisarczyk, T.; Chodukowski, T.; Krousky, E.; Masek, K.; Skala, J.; Ullschmied, J.; Rhee, Yong-Joo
2010-06-21
An efficient scheme of acceleration and collimation of dense plasma is proposed and examined. In the scheme, a target placed in a cavity coupled with a guiding channel is irradiated by a laser beam introduced into the cavity through a hole and accelerated along the channel by the pressure of the ablating plasma confined in the cavity. Using 1.315 mum, 0.3 ns laser pulse of energy up to 200 J and a thin CH target, it was shown that the energetic efficiency of acceleration in this scheme is an order of magnitude higher than in the case of conventional ablative acceleration.
Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows
NASA Technical Reports Server (NTRS)
Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang
2009-01-01
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.
High luminosity operation of the Fermilab accelerator complex
Shekhar Mishra
2003-07-15
Run-II at Fermilab is progressing steadily. In the Run-II scheme, 36 antiproton bunches collide with 36 proton bunches at the CDF and D0 interaction regions in the Tevatron at 980 GeV per beam. The current status and performance of the Fermilab Accelerator complex is reviewed. The plan for Run-II, accelerator upgrades and integration of the Recycler in the accelerator chain will be presented.
Intact capture of hypervelocity projectiles.
Tsou, P
1990-01-01
The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media. PMID:11538362
NASA Technical Reports Server (NTRS)
Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily
2013-01-01
The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor
High transformer ratio drive beams for wakefield accelerator studies
England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W.
2012-12-21
For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.
Airbreathing Acceleration Toward Earth Orbit
Whitehead, J C
2007-05-09
As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.
The LICPA accelerator of dense plasma and ion beams
NASA Astrophysics Data System (ADS)
Badziak, J.; Jabloński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.; Torrisi, L.
2014-04-01
Laser-induced cavity pressure acceleration (LICPA) is a novel scheme of acceleration of dense matter having a potential to accelerate plasma projectiles with the energetic efficiency much higher than the achieved so far with other methods. In this scheme, a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and accelerated along a guiding channel by the thermal pressure created in the cavity by the laser-produced plasma or by the photon pressure of the ultraintense laser radiation trapped in the cavity. This paper summarizes briefly the main results of our recent LICPA studies, in particular, experimental investigations of ion beam generation and heavy macroparticle acceleration in the hydrodynamic LICPA regime (at moderate laser intensities ~ 1015W/cm2) and numerical, particle-in-cell (PIC) studies of production of ultraintense ion beams and fast macroparticles using the photon pressure LICPA regime (at high laser intensities > 1020 W/cm2). It is shown that in both LICPA regimes the macroparticles and ion beams can be accelerated much more efficiently than in other laser-based acceleration scheme commonly used and the accelerated plasma/ion bunches can have a wide variety of parameters. It creates a prospect for a broad range of applications of the LICPA accelerator, in particular in such domains as high energy density physics, ICF research (ion fast ignition, impact ignition) or nuclear physics.
NASA Technical Reports Server (NTRS)
Tsou, Peter; Griffiths, D. J.; Albee, A. L.
1994-01-01
The ability to capture projectiles intact at hypervelocities in underdense media open a new area of study in physics. Underdense material behaves markedly different than solid, liquid, or gas upon hypervelocity impact. This new phenomenon enables applications in science that would either not be possible or would be very costly by other means. This phenomenon has been fully demonstrated in the laboratory and validated in space. Even more interesting is the fact that this hypervelocity intact capture was accomplished passively. A better understanding of the physics of intact capture will lead to improvements in intact capture. A collection of physical observations of this phenomenon is presented here.
Resource capture by single leaves
Long, S.P.
1992-05-01
Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.
Welcomme, Robin L.; Cowx, Ian G.; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai
2010-01-01
The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production. PMID:20713391
NASA Astrophysics Data System (ADS)
Achenbach, Joel
2000-03-01
Captured by Aliens is a long and twisted voyage from science to the supernatural and back again. I hung out in Roswell, N.M., spent time with the Mars Society, met a guy who was figuring out the best way to build a spaceship to go to Alpha Centauri. I visited the set of the X-Files and talked to Mulder and Scully. One day over breakfast I was told by NASA administrator Dan Goldin, We live in a fog, man! He wants the big answers to the big questions. I spent a night in the base of a huge radio telescope in the boondocks of West Virginia, awaiting the signal from the aliens. I was hypnotized in a hotel room by someone who suspected that I'd been abducted by aliens and that this had triggered my interest in the topic. In the last months of his life, I talked to Carl Sagan, who believed that the galaxy riots with intelligent civilizations. He's my hero, for his steadfast adherence to the scientific method. What I found in all this is that the big question that needs immediate attention is not what's out THERE, but what's going on HERE, on Earth, and why we think the way we do, and how we came to be here in the first place.
Gould, William R.; Kendall, William L.
2013-01-01
Capture-recapture methods were initially developed to estimate human population abundance, but since that time have seen widespread use for fish and wildlife populations to estimate and model various parameters of population, metapopulation, and disease dynamics. Repeated sampling of marked animals provides information for estimating abundance and tracking the fate of individuals in the face of imperfect detection. Mark types have evolved from clipping or tagging to use of noninvasive methods such as photography of natural markings and DNA collection from feces. Survival estimation has been emphasized more recently as have transition probabilities between life history states and/or geographical locations, even where some states are unobservable or uncertain. Sophisticated software has been developed to handle highly parameterized models, including environmental and individual covariates, to conduct model selection, and to employ various estimation approaches such as maximum likelihood and Bayesian approaches. With these user-friendly tools, complex statistical models for studying population dynamics have been made available to ecologists. The future will include a continuing trend toward integrating data types, both for tagged and untagged individuals, to produce more precise and robust population models.
NASA Astrophysics Data System (ADS)
Tacke, Kenneth L.
1998-12-01
Primex Aerospace Company, under contract with the U.S. Army Armament Research Development & Engineering Center (ARDEC), has developed a portable vehicle capture system for use at vehicle checkpoints. Currently when a vehicle does not stop at a checkpoint, there are three possible reactions: let the vehicle go unchallenged, pursue the vehicle or stop the vehicle with lethal force. This system provides a non-lethal alternative that will stop and contain the vehicle. The system is completely portable with the heaviest component weighing less than 120 pounds. It can be installed with no external electrical power or permanent anchors required. In its standby mode, the system does not impede normal traffic, but on command erects a barrier in less than 1.5 seconds. System tests have been conducted using 5,100 and 8.400 pound vehicles, traveling at speeds up to 45 mph. The system is designed to minimize vehicle damage and occupant injury, typically resulting in deceleration forces of less than 2.5 gs on the vehicle. According to the drivers involved in tests at 45 mph, the stopping forces feel similar to a panic stop with the vehicle brakes locked. The system is completely reusable and be rapidly reset.
Lasers and new methods of particle acceleration
Parsa, Z.
1998-02-01
There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements.
Muon capture for the front end of a muon collider
Neuffer, D.; Yoshikawa, C.; /MUONS Inc., Batavia
2011-03-01
We discuss the design of the muon capture front end for a {mu}{sup +}-{mu}{sup -} Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.
Muon Collider Progress: Accelerators
Zisman, Michael S.
2011-09-10
A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.
NASA Astrophysics Data System (ADS)
Thirolf, P. G.
2015-02-01
High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called `fission-fusion', which will be introduced in the second part of the article. Accelerating fissile species (e.g. 232Th ) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. `Waiting points' at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in `terra incognita' of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction
Thirolf, P. G.
2015-02-24
High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional
NASA Astrophysics Data System (ADS)
Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.
2015-12-01
Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance
A numerical study of a class of TVD schemes for compressible mixing layers
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.
1989-01-01
At high Mach numbers the two-dimensional time-developing mixing layer develops shock waves, positioned around large-scale vortical structures. A suitable numerical method has to be able to capture the inherent instability of the flow, leading to the roll-up of vortices, and also must be able to capture shock waves when they develop. Standard schemes for low speed turbulent flows, for example spectral methods, rely on resolution of all flow-features and cannot handle shock waves, which become too thin at any realistic Reynolds number. The performance of a class of second-order explicit total variation diminishing (TVD) schemes on a compressible mixing layer problem was studied. The basic idea is to capture the physics of the flow correctly, by resolving down to the smallest turbulent length scales, without resorting to turbulence or sub-grid scale modeling, and at the same time capture shock waves without spurious oscillations. The present study indicates that TVD schemes can capture the shocks accurately when they form, but (without resorting to a finer grid) have poor accuracy in computing the vortex growth. The solution accuracy depends on the choice of limiter. However a larger number of grid points are in general required to resolve the correct vortex growth. The low accuracy in computing time-dependent problems containing shock waves as well as vortical structures is partly due to the inherent shock-capturing property of all TVD schemes. In order to capture shock waves without spurious oscillations these schemes reduce to first-order near extrema and indirectly produce clipping phenomena, leading to inaccuracy in the computation of vortex growth. Accurate simulation of unsteady turbulent fluid flows with shock waves will require further development of efficient, uniformly higher than second-order accurate, shock-capturing methods.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 Click for larger view
These two graphics are planning tools used by Mars Exploration Rover engineers to plot and scheme the perfect location to place the rock abrasion tool on the rock collection dubbed 'El Capitan' near Opportunity's landing site. 'El Capitan' is located within a larger outcrop nicknamed 'Opportunity Ledge.'
The rover visualization team from NASA Ames Research Center, Moffett Field, Calif., initiated the graphics by putting two panoramic camera images of the 'El Capitan' area into their three-dimensional model. The rock abrasion tool team from Honeybee Robotics then used the visualization tool to help target and orient their instrument on the safest and most scientifically interesting locations. The blue circle represents one of two current targets of interest, chosen because of its size, lack of dust, and most of all its distinct and intriguing geologic features. To see the second target location, see the image titled 'Plotting and Scheming.'
The rock abrasion tool is sensitive to the shape and texture of a rock, and must safely sit within the 'footprint' indicated by the blue circles. The rock area must be large enough to fit the contact sensor and grounding mechanism within the area of the outer blue circle, and the rock must be smooth enough to get an even grind within the abrasion area of the inner blue circle. If the rock abrasion tool were not grounded by its support mechanism or if the surface were uneven, it could 'run away' from its target. The rock abrasion tool is location on the rover's instrument deployment device, or arm.
Over the next few martian days, or sols, the rover team will use these and newer, similar graphics created with more recent, higher-resolution panoramic camera images and super-spectral data from the miniature thermal emission spectrometer. These data will be used to pick the best
Uniformly high-order accurate non-oscillatory schemes, 1
NASA Technical Reports Server (NTRS)
Harten, A.; Osher, S.
1985-01-01
The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.
Status of BINP proton tandem accelerator
NASA Astrophysics Data System (ADS)
Burdakov, A.; Davydenko, V.; Dolgushin, V.; Dranichnikov, A.; Ivanov, A.; Farrell, J. P.; Khilchenko, A.; Kobets, V.; Konstantinov, S.; Krivenko, A.; Kudryavtsev, A.; Tiunov, M.; Savkin, V.; Shirokov, V.; Sorokin, I.
2007-08-01
The status of a unique 2.0 MeV, 10 mA proton tandem accelerator with vacuum insulation is presented. The accelerator is intended to be used in facilities generating resonant gamma rays for explosives detection and epithermal neutrons for boron neutron-capture therapy of brain tumors. A magnetically coupled DC voltage multiplier derived from an industrial ELV-type electron accelerator is used as a high voltage source for the accelerator. A dc high current negative ion source has been developed for injection into the tandem. In the tandem accelerator there is set of nested potential electrodes with openings which form a channel for accelerating the negative hydrogen ion beam and subsequently accelerating the proton beam after stripping in the gas target. The electrodes are connected to a high voltage feedthrough insulator to which required potentials are applied from the high voltage power supply by means of a resistor voltage divider. In the paper the first experimental results obtained with the vacuum insulated tandem accelerator are also given.
Decay curve study in a standard electron capture decay
Nishimura, D.; Fukuda, M.; Kisamori, K.; Kuwada, Y.; Makisaka, K.; Matsumiya, R.; Matsuta, K.; Mihara, M.; Takagi, A.; Yokoyama, R.; Izumikawa, T.; Ohtsubo, T.; Suzuki, T.; Yamaguchi, T.
2010-05-12
We have searched for a time-modulated decay in a standard electron capture experiment for {sup 140}Pr, in order to confirm a report from GSI, where an oscillatory decay has been observed for hydrogen-like {sup 140}Pr and {sup 142}Pm ions in the cooler storage ring. {sup 140}Pr has been produced with the {sup 140}Ce(p, n) reaction by a pulsed proton beam accelerated from the Van de Graaff accelerator at Osaka University. Resultant time dependence of the K{sub a}lpha and K{sub b}eta X-ray intensities from the daughter shows no oscillatory behavior.
A closure scheme for chemical master equations
Smadbeck, Patrick; Kaznessis, Yiannis N.
2013-01-01
Probability reigns in biology, with random molecular events dictating the fate of individual organisms, and propelling populations of species through evolution. In principle, the master probability equation provides the most complete model of probabilistic behavior in biomolecular networks. In practice, master equations describing complex reaction networks have remained unsolved for over 70 years. This practical challenge is a reason why master equations, for all their potential, have not inspired biological discovery. Herein, we present a closure scheme that solves the master probability equation of networks of chemical or biochemical reactions. We cast the master equation in terms of ordinary differential equations that describe the time evolution of probability distribution moments. We postulate that a finite number of moments capture all of the necessary information, and compute the probability distribution and higher-order moments by maximizing the information entropy of the system. An accurate order closure is selected, and the dynamic evolution of molecular populations is simulated. Comparison with kinetic Monte Carlo simulations, which merely sample the probability distribution, demonstrates this closure scheme is accurate for several small reaction networks. The importance of this result notwithstanding, a most striking finding is that the steady state of stochastic reaction networks can now be readily computed in a single-step calculation, without the need to simulate the evolution of the probability distribution in time. PMID:23940327
Hampshire Probation Sports Counselling Scheme.
ERIC Educational Resources Information Center
Waldman, Keith
A sports counseling scheme for young people on criminal probation in Hampshire (England) was developed in the 1980s as a partnership between the Sports Council and the Probation Service. The scheme aims to encourage offenders, aged 14 and up, to make constructive use of their leisure time; to allow participants the opportunity to have positive…
NASA Technical Reports Server (NTRS)
Tsou, P.
1991-01-01
The focus of this development effort is to capture dust particles at hypervelocities intact and unmelted in order to preserve volatile organics. At the same time, the capture process must minimize any organic elemental or compound contamination to prevent any compromise of exobiological analyses. Inorganic silicate aerogel has been developed as a successful capture medium to satisfy both requirements of intact capture and minimal organic contamination. Up to 6 km/s, silicate projectiles from a few microns up to 100 microns have been captured intact without any melting and with minimal loss of mass. Carbon in silicate aerogel can be reduced to less than 1 part in 1000 and hydrogen 3 parts in 1000 when baked in air. Under controlled inert gas environments, additional hydrocarbon reduction can be achieved.
Thermal Neutron Capture Cross Sections of the PalladiumIsotopes
Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.
2006-07-17
Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision comparable to the recommended values even when only onegamma-ray cross section was measured. The calculated and experimentallevel feedings could also be compared to determine spin and parityassignments for low-lying levels.
Automatic capture verification by charge-neutral sensing.
Kadhiresan, V A; Olive, A; Gornick, C; Spinelli, J; Villalta, D
1999-01-01
Automatic capture verification can prolong pulse generator longevity and increase patient safety. However, the detection of evoked response following pacing is complicated due to afterpotentials caused by polarization of electrodes. This study describes a new capture verification scheme, which neutralizes the charges between the pacing electrodes. The hypothesis of the charge-neutral sensing is that the afterpotentials in the ring and the tip are opposite in polarity when pacing in a bipolar mode between ring and tip. Summing the unipolar signals sensed at the tip and the ring should effectively cancel the afterpotentials. This scheme was implemented in an external computer based system and tested during pacemaker implant/replacement on 23 patients during VVI pacing (17 acutely implanted leads and 6 chronic leads). Surface ECG was recorded to provide a marker for capture and noncapture. The pacing voltage was gradually decreased until a noncapture beat was noted. To avoid fusion beats, the pacing rate was programmed approximately 50% higher than the intrinsic rate. The evoked response was high pass filtered and the integral average was calculated for both capture and noncapture beats. The system signal to noise ratio (SNR) was expressed as ratio of the minimum integral average of all capture beats to the maximum integral average of all noncapture beats. The system SNR was 8.6 +/- 1.3 (mean +/- S.E.M; range 1.5-22.8), indicating that the charge-neutral sensing method has, on average, a ninefold safety margin in providing capture verification. Further, evaluation is needed to fully assess this feature in patients with chronic leads. PMID:9990603
River Capture in Disequilibrium Landscapes
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Perron, J.; Willett, S.; Goren, L.
2013-12-01
The process of river piracy or river capture has long drawn interest as a potential mechanism by which drainage basins large and small evolve towards an equilibrium state. River capture transfers both drainage area and drainage lines from one river basin to another, which can cause large, abrupt shifts in network topology, drainage divide positions, and river incision rates. Despite numerous case studies in which river capture has been proposed to have occurred, there is no general, mechanistic framework for understanding the controls on river capture, nor are there quantitative criteria for determining if capture has occurred. Here we use new metrics of landscape disequilibrium to first identify landscapes in which drainage reorganization is occurring. These metrics are based on a balance between an integral of the contributing drainage area and elevation. In an analysis of rivers in the Eastern United States we find that many rivers are in a state of disequilibrium and are experiencing recent or ongoing area exchange between basins. In these disequilibrium basins we find widespread evidence for network rearrangement via river capture at multiple scales. We then conduct numerical experiments with a 2-D landscape evolution model to explore the conditions in which area exchange among drainage basins is likely to occur as discrete capture events as opposed to continuous divide migration. These experiments indicate that: (1) capture activity increases with the degree of disequilibrium induced by persistent spatial gradients in tectonic forcing or by temporal changes in climate or tectonic forcing; (2) capture activity is strongly controlled by the initial planform drainage network geometry; and (3) capture activity scales with the fluvial incision rate constant in the river power erosion law.
IDR muon capture front end and variations
Neuffer, David; Prior, Gersende; Rogers, Christopher; Snopok, Pavel; Yoshikawa, Cary; /MUONS Inc., Batavia
2010-12-01
The (International Design Report) IDR neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of {mu}'s produced from a proton source target is explored. It requires a drift section from the target, a bunching section and a {phi}-{delta}E rotation section leading into the cooling channel. The rf frequency changes along the bunching and rotation transport in order to form the {mu}'s into a train of equal-energy bunches suitable for cooling and acceleration. Optimization and variations are discussed. An important concern is rf limitations within the focusing magnetic fields; mitigation procedures are described. The method can be extended to provide muons for a {mu}{sup +}-{mu}{sup -} Collider; variations toward optimizing that extension are discussed.
IDR Muon Capture Front End and Variations
NASA Astrophysics Data System (ADS)
Neuffer, D.; Prior, G.; Rogers, C.; Snopok, P.; Yoshikawa, C.
2011-10-01
The (International Design Report) IDR neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of μ's produced from a proton source target is explored. It requires a drift section from the target, a bunching section and a φ-δE rotation section leading into the cooling channel. The rf frequency changes along the bunching and rotation transport in order to form the 's into a train of equal-energy bunches suitable for cooling and acceleration. Optimization and variations are discussed. An important concern is rf limitations within the focusing magnetic fields; mitigation procedures are described. The method can be extended to provide muons for a μ+-μ- Collider; variations toward optimizing that extension are discussed.
Iodine neutron capture therapy
NASA Astrophysics Data System (ADS)
Ahmed, Kazi Fariduddin
A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at
Friedmann, S
2007-10-03
Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several
Radio-frequency quadrupole linear accelerator
Wangler, T.P.; Stokes, R.H.
1980-01-01
The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.
NASA Astrophysics Data System (ADS)
White, G. R.; Ainsworth, R.; Akagi, T.; Alabau-Gonzalvo, J.; Angal-Kalinin, D.; Araki, S.; Aryshev, A.; Bai, S.; Bambade, P.; Bett, D. R.; Blair, G.; Blanch, C.; Blanco, O.; Blaskovic-Kraljevic, N.; Bolzon, B.; Boogert, S.; Burrows, P. N.; Christian, G.; Corner, L.; Davis, M. R.; Faus-Golfe, A.; Fukuda, M.; Gao, J.; García-Morales, H.; Geffroy, N.; Hayano, H.; Heo, A. Y.; Hildreth, M.; Honda, Y.; Huang, J. Y.; Hwang, W. H.; Iwashita, Y.; Jang, S.; Jeremie, A.; Kamiya, Y.; Karataev, P.; Kim, E. S.; Kim, H. S.; Kim, S. H.; Kim, Y. I.; Komamiya, S.; Kubo, K.; Kume, T.; Kuroda, S.; Lam, B.; Lekomtsev, K.; Liu, S.; Lyapin, A.; Marin, E.; Masuzawa, M.; McCormick, D.; Naito, T.; Nelson, J.; Nevay, L. J.; Okugi, T.; Omori, T.; Oroku, M.; Park, H.; Park, Y. J.; Perry, C.; Pfingstner, J.; Phinney, N.; Rawankar, A.; Renier, Y.; Resta-López, J.; Ross, M.; Sanuki, T.; Schulte, D.; Seryi, A.; Shevelev, M.; Shimizu, H.; Snuverink, J.; Spencer, C.; Suehara, T.; Sugahara, R.; Takahashi, T.; Tanaka, R.; Tauchi, T.; Terunuma, N.; Tomás, R.; Urakawa, J.; Wang, D.; Warden, M.; Wendt, M.; Wolski, A.; Woodley, M.; Yamaguchi, Y.; Yamanaka, T.; Yan, J.; Yokoya, K.; Zimmermann, F.; ATF2 Collaboration
2014-01-01
A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.
An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Radespiel, R.; Swanson, R. C.
1989-01-01
Two efficient and robust finite-volume multigrid schemes for solving the Navier-Stokes equations are investigated. These schemes employ either a cell centered or a cell vertex discretization technique. An explicit Runge-Kutta algorithm is used to advance the solution in time. Acceleration techniques are applied to obtain faster steady-state convergence. Accuracy and convergence of the schemes are examined. Computational results for transonic airfoil flows are essentially the same, even for a coarse mesh. Both schemes exhibit good convergence rates for a broad range of artificial dissipation coefficients.
Voloschenko, A. M.
2006-07-01
In the paper a way to prevent the P1 synthetic acceleration (P1SA) scheme degradation in solving small absorption highly heterogeneous (SAHH) multidimensional problems that ensures fast pointwise convergence of the P1SA scheme is discussed. Numerical experiment has shown that the lack of the difference scheme mono-tonicity is the reason of the consistent P1SA scheme degradation in solving SAHH problems. So, improvement of the difference scheme mono-tonicity also improves convergence of the consistent P1SA scheme in solving SAHH problems. In the paper we discuss remedies those improve the difference scheme mono-tonicity without essential degradation in accuracy. We also present results which demonstrate that a suitable choice of the fix-up function in the adaptive weighted diamond difference (AWDD) scheme essentially extends the class of SAHH problems, which can be efficiently accelerated by the consistent P1SA scheme. (authors)
Laser acceleration in novel media
NASA Astrophysics Data System (ADS)
Tajima, T.
2014-05-01
With newly available compact laser technology [1] we are capable of producing 100 PW-class laser pulses with a single-cycle duration on the femtosecond timescale. With this fs intense laser we can produce a coherent X-ray pulse that is also compressed, well into the hard X-ray regime (˜10 keV) and with a power up to as much as 10 Exawatts. We suggest utilizing these coherent X-rays to drive the acceleration of particles. Such X-rays are focusable far beyond the diffraction limit of the original laser wavelength and when injected into a crystal it forms a metallic-density electron plasma ideally suited for laser wakefield acceleration. If the X-ray field is limited by the Schwinger field at the focal size of ˜100 nm, the achievable energy is 1 PeV over 50 m. (If the X-rays are focused further, much higher energies beyond this are possible). These processes are not limited to only electron acceleration, and if ions are pre-accelerated to beyond GeV they are capable of being further accelerated using a LWFA scheme [2] to similar energies as electrons over the same distance-scales. Such high energy proton (and ion) beams can induce copious neutrons, which can also give rise to intense compact muon beams and neutrino beams that may be portable. High-energy gamma rays can also be efficiently emitted with a bril- liance many orders of magnitude above the brightest X-ray sources by this accelerating process, from both the betatron radiation as well as the dominant radiative-damping dynamics. With the exceptional conditions enabled by this technology we envision a whole scope of new physical phenomena, including: the possibility of laser self-focus in the vacuum, neutron manipulation by the beat of such lasers, zeptosecond spectroscopy of nuclei, etc. Further, we now introduce along with the idea of vacuum as a nonlinear medium, the Schwinger Fiber Accelerator. This is a self-organized vacuum fiber acceleration concept, in which the repeated process of self-focusing and
Intact capture of hypervelocity particles
NASA Technical Reports Server (NTRS)
Tsou, P.; Brownlee, D. E.; Albee, A. L.
1986-01-01
Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.
Intact capture of hypervelocity particles
NASA Astrophysics Data System (ADS)
Tsou, P.; Brownlee, D. E.; Albee, A. L.
Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.
Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.
Wang, Xiaofei; Fullana, Jose-Maria; Lagrée, Pierre-Yves
2015-01-01
A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed. PMID:25145651
Sensitivity of land surface and Cumulus schemes for Thunderstorm prediction
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Mohanty, U. C.; Kumar, Krishan
2016-06-01
The cloud processes play an important role in all forms of precipitation. Its proper representation is one of the challenging tasks in mesoscale numerical simulation. Studies have revealed that mesoscale feature require proper initialization which may likely to improve the convective system rainfall forecasts. Understanding the precipitation process, model initial condition accuracy and resolved/sub grid-scale precipitation processes representation, are the important areas which needed to improve in order to represent the mesoscale features properly. Various attempts have been done in order to improve the model performance through grid resolution, physical parameterizations, etc. But it is the physical parameterizations which provide a convective atmosphere for the development and intensification of convective events. Further, physical parameterizations consist of cumulus convection, surface fluxes of heat, moisture, momentum, and vertical mixing in the planetary boundary layer (PBL). How PBL and Cumulus schemes capture the evolution of thunderstorm have been analysed by taking thunderstorm cases occurred over Kolkata, India in the year 2011. PBL and cumulus schemes were customized for WSM-6 microphysics because WSM series has been widely used in operational forecast. Results have shown that KF (PBL scheme) and WSM-6 (Cumulus Scheme) have reproduced the evolution of surface variable such as CAPE, temperature and rainfall very much like observation. Further, KF and WSM-6 scheme also provided the increased moisture availability in the lower atmosphere which was taken to higher level by strong vertical velocities providing a platform to initiate a thunderstorm much better. Overestimation of rain in WSM-6 occurs primarily because of occurrence of melting and freezing process within a deeper layer in WSM-6 scheme. These Schemes have reproduced the spatial pattern and peak rainfall coverage closer to TRMM observation. It is the the combination of WSM-6, and KF schemes
Tajima, Toshiki
2006-04-18
A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.
Tajima, Toshiki
2005-06-14
A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.
Synchronized Ion Acceleration by Ultraintense Slow Light.
Brantov, A V; Govras, E A; Kovalev, V F; Bychenkov, V Yu
2016-02-26
An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils. PMID:26967421
Synchronized Ion Acceleration by Ultraintense Slow Light
NASA Astrophysics Data System (ADS)
Brantov, A. V.; Govras, E. A.; Kovalev, V. F.; Bychenkov, V. Yu.
2016-02-01
An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.
Laser pulse shaping for high gradient accelerators
NASA Astrophysics Data System (ADS)
Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.
2016-09-01
In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.
NASA Technical Reports Server (NTRS)
Yee, H. C.
1995-01-01
Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula
Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.
2004-01-01
The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux
Future accelerators using micro-fabrication technology
Maschke, A.W.
1983-01-01
Historically, each generation of new accelerators has produced a thousand-fold increase over their predecessors. Thus, the d.c. accelerators were surpassed by weak focusing cyclotrons and synchrotrons. Then strong focusing machines surpassed the weak focusing ones, and now we are in the process of designing machines for 10 to 20 TeV. This paper is devoted to the study of the next generation of accelerators which we can contemplate will be in the range of 1000 TeV. The radiation loss in a circular machine would correspond to approximately 20 TeV/turn. It is clear then that the future generation of accelerators will have to be linear accelerators. Furthermore, since the center of mass energy of a 1000 TeV machine is only approximately 1.5 TeV, these linacs will be built in pairs and operated primarily as linear colliders. This meas that the average beam power in one of the devices will be quite large. This in turn leads us toward high efficiency acceleration schemes, capable of high repetition rates. The poor efficiency of laser accelerators and other exotic proposals make them poor candidates for a future generation collider.
ISS Update: Capturing a Dragon
NASA Public Affairs Officer Josh Byerly talks with Melanie Miller, Robotics Officer, about the capture of the SpaceX Dragon commercial cargo craft by the Expedition 33 crew of the International Spa...
Radiative capture reactions in astrophysics
Brune, Carl R.; Davids, Barry
2015-08-07
Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.
ISS Update: Capturing a Dragon
NASA Public Affairs Officer Josh Byerly talks with space station training instructors Jeff Tuxhorn and Graeme Newman, who trained the space station crews on how to capture SpaceXâs Dragon spacecr...
Use of random Martian atmosphere to evaluate potential entry guidance schemes
NASA Technical Reports Server (NTRS)
Tomlinson, Barbara S.; Suit, William T.
1990-01-01
A random Martian atmosphere was developed and was used with three guidance schemes to determine the effect of random density variations on the guidance. This random atmosphere was shown to be useful for testing the robustness of guidance schemes for vehicles encountering random disturbances during aerobraking for capture into planetary orbit. Levels of disturbance that could be tolerated and areas where performance could be improved were established. The need for Monte Carlo studies to define the excursion boundaries of capture orbit parameters was indicated.
NASA Astrophysics Data System (ADS)
Wu, Jiin-chuan; Wang, Chi-Chang
1996-03-01
A frame change data driving scheme (FCDDS) for ferroelectric LCD(FLCD) of matrix- addressing is developed which uses only positive voltages for the row and column waveforms to achieve bipolar driving waveforms on the FLCD pixels. Thus the required supply voltage for the driver chips is half that of the conventional driving scheme. Each scan line is addressed in only twice the switching time (tau) (minimum response time of FLC) so that this scheme is suitable for high duty ratio panels. In order to meet this bistable electro-optic effect of FLCD and zero net dc voltage across each pixel of the liquid crystal, turning on and turning off pixels are done at different time slots and frame slots. This driving scheme can be easily implemented using commercially available STN LCD drivers plus a small external circuit or by making an ASIC which is a slight modification of the STN driver. Both methods are discussed.
On the marginal stability of upwind schemes
NASA Astrophysics Data System (ADS)
Gressier, J.; Moschetta, J.-M.
Following Quirk's analysis of Roe's scheme, general criteria are derived to predict the odd-even decoupling. This analysis is applied to Roe's scheme, EFM Pullin's scheme, EIM Macrossan's scheme and AUSM Liou's scheme. Strict stability is shown to be desirable to avoid most of these flaws. Finally, the link between marginal stability and accuracy on shear waves is established.
Relaxation schemes for Chebyshev spectral multigrid methods
NASA Technical Reports Server (NTRS)
Kang, Yimin; Fulton, Scott R.
1993-01-01
Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.
Toward transformational carbon capture systems
Miller, David C.; Litynski, John T.; Brickett, Lynn A.; Morreale, Bryan D.
2015-10-28
This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.
Resonance capture at arbitrary inclination
NASA Astrophysics Data System (ADS)
Namouni, F.; Morais, M. H. M.
2015-01-01
Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1:5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180° with 5° increments totalling nearly 6 × 105 numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10°,110°]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60°,130°]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.
Neutron densities from muon capture
NASA Astrophysics Data System (ADS)
Huan Ching, Chiang; Oset, Eulogio
1991-10-01
We show that, because of Pauli blocking and renormalization of the weak currents in nuclei, the muon capture rates are rather sensitive to the neutron distributions. We also show that, because of intrinsic theoretical uncertainties, neutron radia cannot be determined with precision but some reasonable limits can be given. However, the ratio of capture rates in different isotopes serves to determine the neutron radii of the isotopes provided the neutron density distribution for one of them is known.
A New Time-Space Accurate Scheme for Hyperbolic Problems. 1; Quasi-Explicit Case
NASA Technical Reports Server (NTRS)
Sidilkover, David
1998-01-01
This paper presents a new discretization scheme for hyperbolic systems of conservations laws. It satisfies the TVD property and relies on the new high-resolution mechanism which is compatible with the genuinely multidimensional approach proposed recently. This work can be regarded as a first step towards extending the genuinely multidimensional approach to unsteady problems. Discontinuity capturing capabilities and accuracy of the scheme are verified by a set of numerical tests.
Advanced concepts for high-gradient acceleration
Whittum, D.H.
1998-08-01
The promise of high-gradient accelerator research is a future for physics beyond the 5-TeV energy scale. Looking beyond what can be engineered today, the authors examine basic research directions for colliders of the future, from mm-waves to lasers, and from solid-state to plasmas, with attention to material damage, beam-dynamics, a workable collision scheme, and energetics.
Capture Gamma-Ray Libraries for Nuclear Applications
Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.
2010-05-01
The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90percent of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.
Membrane-based systems for carbon capture and hydrogen purification
Berchtold, Kathryn A
2010-11-24
This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the
Cojoc, Gheorghe; Florescu, Ana-Maria; Krull, Alexander; Klemm, Anna H.; Pavin, Nenad; Jülicher, Frank; Tolić, Iva M.
2016-01-01
Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3–4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells. PMID:27166749
Cojoc, Gheorghe; Florescu, Ana-Maria; Krull, Alexander; Klemm, Anna H; Pavin, Nenad; Jülicher, Frank; Tolić, Iva M
2016-01-01
Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3-4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells. PMID:27166749
Capture of the gaze does not capture the mind.
Lange, Elke B; Starzynski, Christian; Engbert, Ralf
2012-08-01
Sudden visual changes attract our gaze, and related eye movement control requires attentional resources. Attention is a limited resource that is also involved in working memory--for instance, memory encoding. As a consequence, theory suggests that gaze capture could impair the buildup of memory respresentations due to an attentional resource bottleneck. Here we developed an experimental design combining a serial memory task (verbal or spatial) and concurrent gaze capture by a distractor (of high or low similarity to the relevant item). The results cannot be explained by a general resource bottleneck. Specifically, we observed that capture by the low-similar distractor resulted in delayed and reduced saccade rates to relevant items in both memory tasks. However, while spatial memory performance decreased, verbal memory remained unaffected. In contrast, the high-similar distractor led to capture and memory loss for both tasks. Our results lend support to the view that gaze capture leads to activation of irrelevant representations in working memory that compete for selection at recall. Activation of irrelevant spatial representations distracts spatial recall, whereas activation of irrelevant verbal features impairs verbal memory performance. PMID:22648605
NASA Technical Reports Server (NTRS)
White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.
2012-01-01
The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.
Harmonic Ratcheting for Ferrite Tuned RF Acceleration of Charged Particles
NASA Astrophysics Data System (ADS)
Cook, Nathan; Brennan, Mike
2013-04-01
One of the most persistent difficulties in the design of RF cavities for acceleration of charged particles is the rapid and efficient acceleration of particles over a large range of frequencies. From medical synchrotrons to accelerator driven systems, there is a strong need for fast acceleration of protons and light ions over hundreds of MeV. Conventionally, this is a costly undertaking, requiring specially designed ferrite loaded cavities to be tuned over a large range of frequencies. Ferromagnetic materials allow for the precise adjustment of cavity resonant frequency, but rapid changes in the frequency as well as operation outside material specific frequency ranges result in significant Q-loss to the cavity. This leads to a considerable increase in power required and is thus undesirable for regular operation. We introduce an acceleration scheme known as harmonic ratcheting which can be used to reduce the cavity frequency range needed for accelerating an ion beam in a synchrotron. In particular, this scheme addresses the need for high rep. rate machines for applications such as radiation therapy in which low beam intensity is needed. We demonstrate with simulations the type of ramps achievable using this technique and consider its advantages over h=1 acceleration schemes.
Acceleration of fatigue tests for built-up titanium components
NASA Technical Reports Server (NTRS)
Watanabe, R. T.
1976-01-01
A study was made of the feasibility of a room-temperature scheme of accelerating fatigue tests for Mach 3 advanced supersonic transport aircraft. The test scheme used equivalent room-temperature cycles calculated for supersonic flight conditions. Verification tests were conducted using specimens representing titanium wing lower surface structure. Test-acceleration parameters were developed for the test with an auxiliary test set. Five specimens were tested with a flight-by-flight load and temperature spectrum to simulate typical Mach 3 operation. Two additional sets of five specimens were tested at room temperature to evaluate the test-acceleration scheme. The fatigue behavior of the specimens generally correlated well with the proposed correction method.
A provably-secure ECC-based authentication scheme for wireless sensor networks.
Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho
2014-01-01
A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes. PMID:25384009
A Provably-Secure ECC-Based Authentication Scheme for Wireless Sensor Networks
Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho
2014-01-01
A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes. PMID:25384009
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
Adiabatic Shock Capturing in Perfect Gas Hypersonic Flows
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2009-01-01
This paper considers the streamline-upwind Petrov/Galerkin (SUPG) method applied to the compressible Euler and Navier-Stokes equations in conservation-variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, is briefly reviewed. Of particular interest is the behavior of the shock capturing operator, which is required to regularize the scheme in the presence of strong, shock-induced gradients. A standard shock capturing operator which has been widely used in previous studies by several authors is presented and discussed. Specific modifications are then made to this standard operator which are designed to produce a more physically consistent discretization in the presence of strong shock waves. The actual implementation of the term in a finite dimensional approximation is also discussed. The behavior of the standard and modified scheme is then compared for several supersonic/hypersonic flows. The modified shock capturing operator is found to preserve enthalpy in the inviscid portion of the flowfield substantially better than the standard operator.
High resolution schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Harten, A.
1983-01-01
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.
Integrated optical 3D digital imaging based on DSP scheme
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.
2008-03-01
We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.
NASA Astrophysics Data System (ADS)
Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan
2015-11-01
Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.
Ohira, Yutaka
2013-04-10
We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.
Capturing carbon and saving coal
Johnson, J.
2007-10-15
Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.
CHAOTIC CAPTURE OF NEPTUNE TROJANS
Nesvorny, David; Vokrouhlicky, David
2009-06-15
Neptune Trojans (NTs) are swarms of outer solar system objects that lead/trail planet Neptune during its revolutions around the Sun. Observations indicate that NTs form a thick cloud of objects with a population perhaps {approx}10 times more numerous than that of Jupiter Trojans and orbital inclinations reaching {approx}25 deg. The high inclinations of NTs are indicative of capture instead of in situ formation. Here we study a model in which NTs were captured by Neptune during planetary migration when secondary resonances associated with the mean-motion commensurabilities between Uranus and Neptune swept over Neptune's Lagrangian points. This process, known as chaotic capture, is similar to that previously proposed to explain the origin of Jupiter's Trojans. We show that chaotic capture of planetesimals from an {approx}35 Earth-mass planetesimal disk can produce a population of NTs that is at least comparable in number to that inferred from current observations. The large orbital inclinations of NTs are a natural outcome of chaotic capture. To obtain the {approx}4:1 ratio between high- and low-inclination populations suggested by observations, planetary migration into a dynamically excited planetesimal disk may be required. The required stirring could have been induced by Pluto-sized and larger objects that have formed in the disk.
Passive correction of persistent current multipoles in superconducting accelerator dipoles
Fisk, H.E.; Hanft, R.A.; Kuchnir, M.; McInturff, A.D.
1986-07-01
Correction of the magnetization sextupole and decapole fields with strips of superconductor placed just inside the coil winding is discussed. Calculations have been carried out for such a scheme, and tests have been conducted on a 4 cm aperture magnet. The calculated sextupole correction at the injection excitation of 330 A, 5% of full field, was expected to be 77% effective, while the measured correction is 83%, thus suggesting the scheme may be useful for future accelerators such as SSC and LHC.
Nonlinear secret image sharing scheme.
Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively. PMID:25140334
Nonlinear Secret Image Sharing Scheme
Shin, Sang-Ho; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2m⌉ bit-per-pixel (bpp), respectively. PMID:25140334
Energy partitioning schemes: a dilemma.
Mayer, I
2007-01-01
Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components. PMID:17328441
NASA Astrophysics Data System (ADS)
La Mantia, David; Kumara, Nuwan; Kayani, Asghar; Simon, Anna; Tanis, John
2016-05-01
Total cross sections for single and double capture, as well as the corresponding cross sections for capture resulting in the emission of an Ar K x ray, were measured. This work was performed at Western Michigan University with the use of the tandem Van de Graaff accelerator. A 45 MeV beam of fully-stripped fluorine ions was collided with argon gas molecules in a differentially pumped cell. Surface barrier detectors were used to observe the charge changed projectiles and a Si(Li) x-ray detector, placed at 90o to the incident beam, were used to measure coincidences with Ar K x rays. The total capture cross sections are compared to previously measured cross sections in the existing literature. The coincidence cross sections, considerably smaller than the total cross sections, are found to be nearly equal for single and double capture in contrast to the total cross sections, which vary by about an order of magnitude. Possible reasons for this behavior are discussed. Supported in part by the NSF.
A theory of two-beam acceleration of charged particles in a plasma waveguide
Ostrovsky, A.O.
1993-11-01
The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.
Vacuum laser acceleration of relativistic electrons using plasma mirror injectors
NASA Astrophysics Data System (ADS)
Thévenet, M.; Leblanc, A.; Kahaly, S.; Vincenti, H.; Vernier, A.; Quéré, F.; Faure, J.
2016-04-01
Accelerating particles to relativistic energies over very short distances using lasers has been a long-standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has been extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of petawatt lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort relativistic electron beams.
An intelligent robotics control scheme
NASA Technical Reports Server (NTRS)
Orlando, N. E.
1984-01-01
The problem of robot control is viewed at the level of communicating high-level commands produced by intelligent algorithms to the actuator/sensor controllers. Four topics are considered in the design of an integrated control and communications scheme for an intelligent robotic system: the use of abstraction spaces, hierarchical versus heterarchical control, distributed processing, and the interleaving of the steps of plan creation and plan execution. A scheme is presented for an n-level distributed hierarchical/heterarchical control system that effectively interleaves intelligent planning, execution, and sensory feedback. A three-level version of this scheme has been successfully implemented in the Intelligent Systems Research Lab at NASA Langley Research Center. This implementation forms the control structure for DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), a testbed system integrating AI software with robotics hardware.
Accelerating Particles with Plasma
Litos, Michael; Hogan, Mark
2014-11-05
Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.
NASA Technical Reports Server (NTRS)
Cheng, D. Y.
1971-01-01
Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.
Coarse-mesh diffusion synthetic acceleration in slab geometry
Kim, K.S.; Palmer, T.S.
2000-07-01
It has long been known that the success of a diffusion synthetic acceleration (DSA) scheme is very sensitive to the consistency between the discretization of the transport and diffusion acceleration equations. Acceleration schemes involving inconsistent discretizations have been successful, but no prescription is available that determines a priori an allowable degree of inconsistency. It is notable, however, that all current DSA schemes involve diffusion equations discretized on the spatial mesh used to solve the transport equations. Often the solution of a large number of low-order equations is an expensive part of the transport simulation. This motivates the desire to find stable and rapidly convergent acceleration schemes that are discretized on a mesh that is coarse relative to the transport mesh. The authors present here results showing that the low-order diffusion equation can be solved on a mesh coarser (by a factor of 2) than that used for the slab geometry transport equation. Their results show that coarse-mesh DSA is unconditionally stable and is as rapidly convergent as a DSA method discretized on the transport mesh. They have used Adams and Martin's modified four-step acceleration method (M4S) applied to the linear discontinuous (LD) finite element transport equations in slab geometry. To evaluate their procedure, they have performed a Fourier analysis to calculate theoretical spectral radii. They compare this analysis with convergence behavior observed in an implementation code for several model problems.
Adaptive capture of expert behavior
Jones, R.D.; Barrett, C.L.; Hand, U.; Gordon, R.C.
1994-08-01
The authors smoothed and captured a set of expert rules with adaptive networks. The motivation for doing this is discussed. (1) Smoothing leads to stabler control actions. (2) For some sets of rules, the evaluation of the rules can be sped up. This is important in large-scale simulations where many intelligent elements are present. (3) Variability of the intelligent elements can be achieved by adjusting the weights in an adaptive network. (4) After capture has occurred, the weights can be adjusted based on performance criteria. The authors thus have the capability of learning a new set of rules that lead to better performance. The set of rules the authors chose to capture were based on a set of threat determining rules for tank commanders. The approach in this paper: (1) They smoothed the rules. The rule set was converted into a simple set of arithmetic statements. Continuous, non-binary inputs, are now permitted. (2) An operational measure of capturability was developed. (3) They chose four candidate networks for the rule set capture: (a) multi-linear network, (b) adaptive partial least squares, (c) connectionist normalized local spline (CNLS) network, and (d) CNLS net with a PLS preprocessor. These networks were able to capture the rule set to within a few percent. For the simple tank rule set, the multi-linear network performed the best. When the rules were modified to include more nonlinear behavior, CNLS net performed better than the other three nets which made linear assumptions. (4) The networks were tested for robustness to input noise. Noise levels of plus or minus 10% had no real effect on the network performance. Noise levels in the plus or minus 30% range degraded performance by a factor of two. Some performance enhancement occurred when the networks were trained with noisy data. (5) The scaling of the evaluation time was calculated. (6) Human variation can be mimicked in all the networks by perturbing the weights.
Clinical requirements and accelerator concepts for BNCT
Ludewigt, B.A.; Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Leung, K.N.; Reginato, L.L.; Wells, R.P.
1997-05-01
Accelerator-based neutron sources are an attractive alternative to nuclear reactors for providing epithermal neutron beams for Boron Neutron Capture Therapy. Based on clinical requirements and neutronics modeling the use of proton and deuteron induced reactions in {sup 7}Li and {sup 9}Be targets has been compared. Excellent epithermal neutron beams can be produced via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies of {approximately}2.5 MeV. An electrostatic quadrupole accelerator and a lithium target, which can deliver and handle 2.5 MeV protons at beam currents up to 50 mA, are under development for an accelerator-based BNCT facility at the Lawrence Berkeley National Laboratory.
Psychological effects of thought acceleration.
Pronin, Emily; Jacobs, Elana; Wegner, Daniel M
2008-10-01
Six experiments found that manipulations that increase thought speed also yield positive affect. These experiments varied in both the methods used for accelerating thought (i.e., instructions to brainstorm freely, exposure to multiple ideas, encouragement to plagiarize others' ideas, performance of easy cognitive tasks, narration of a silent video in fast-forward, and experimentally controlled reading speed) and the contents of the thoughts that were induced (from thoughts about money-making schemes to thoughts of five-letter words). The results suggested that effects of thought speed on mood are partially rooted in the subjective experience of thought speed. The results also suggested that these effects can be attributed to the joy-enhancing effects of fast thinking (rather than only to the joy-killing effects of slow thinking). This work is inspired by observations of a link between "racing thoughts" and euphoria in cases of clinical mania, and potential implications of that observed link are discussed. PMID:18837610
A hybrid numerical scheme for the numerical solution of the Burgers' equation
NASA Astrophysics Data System (ADS)
Jiwari, Ram
2015-03-01
In this article, a hybrid numerical scheme based on Euler implicit method, quasilinearization and uniform Haar wavelets has been developed for the numerical solutions of Burgers' equation. Most of the numerical methods available in the literature fail to capture the physical behavior of the equations when viscosity ν → 0. In Jiwari (2012), the author presented the numerical results up to ν = 0.003 and the scheme failed for values smaller than ν = 0.003. The main aim in the development of the present scheme is to overcome the drawback of the scheme developed in Jiwari (2012). Lastly, three test problems are chosen to check the accuracy of the proposed scheme. The approximated results are compared with existing numerical and exact solutions found in literature. The use of uniform Haar wavelet is found to be accurate, simple, fast, flexible, convenient and at small computation costs.
Link, W.A.; Barker, R.J.
2005-01-01
We present a hierarchical extension of the Cormack?Jolly?Seber (CJS) model for open population capture?recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis?Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.
Acceleration gradient of a plasma wakefield accelerator
Uhm, Han S.
2008-02-25
The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.
Angular Acceleration Without Torque?
NASA Astrophysics Data System (ADS)
Kaufman, Richard D.
2012-01-01
Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2
NASA Technical Reports Server (NTRS)
Fraser, T. M.
1973-01-01
The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.
Angular Acceleration without Torque?
ERIC Educational Resources Information Center
Kaufman, Richard D.
2012-01-01
Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.
ERIC Educational Resources Information Center
Willis, Mariam
2012-01-01
Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…
Development of nonlinear weighted compact schemes with increasingly higher order accuracy
NASA Astrophysics Data System (ADS)
Zhang, Shuhai; Jiang, Shufen; Shu, Chi-Wang
2008-07-01
In this paper, we design a class of high order accurate nonlinear weighted compact schemes that are higher order extensions of the nonlinear weighted compact schemes proposed by Deng and Zhang [X. Deng, H. Zhang, Developing high-order weighted compact nonlinear schemes, J. Comput. Phys. 165 (2000) 22-44] and the weighted essentially non-oscillatory schemes of Jiang and Shu [G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202-228] and Balsara and Shu [D.S. Balsara, C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160 (2000) 405-452]. These nonlinear weighted compact schemes are proposed based on the cell-centered compact scheme of Lele [S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16-42]. Instead of performing the nonlinear interpolation on the conservative variables as in Deng and Zhang (2000), we propose to directly interpolate the flux on its stencil. Using the Lax-Friedrichs flux splitting and characteristic-wise projection, the resulted interpolation formulae are similar to those of the regular WENO schemes. Hence, the detailed analysis and even many pieces of the code can be directly copied from those of the regular WENO schemes. Through systematic test and comparison with the regular WENO schemes, we observe that the nonlinear weighted compact schemes have the same ability to capture strong discontinuities, while the resolution of short waves is improved and numerical dissipation is reduced.
Non-Statistical Effects in Neutron Capture
Koehler, P. E.; Guber, K. H.; Harvey, J. A.; Wiarda, D.; Bredeweg, T. A.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Reifarth, R.
2009-01-28
There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width ({gamma}{sub n}{sup 0}) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a {sup 147}Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the {gamma}{sub n}{sup 0} distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,{alpha}) measurements had revealed that the {alpha} strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C{sub 6}D{sub 6}{gamma}-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a {sup 95}Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.
Non-Statistical Effects in Neutron Capture
Koehler, Paul Edward; Bredeweg, t a; Guber, Klaus H; Harvey, John A; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wiarda, Dorothea; Wouters, J. M.
2009-01-01
There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width ({Gamma}n{sup 0}) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a 147Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the {Gamma}n{sup 0} distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,{alpha}) measurements had revealed that the {alpha} strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C6D6 ?-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a 95Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.
The solenoid muon capture system for the MELC experiment
NASA Astrophysics Data System (ADS)
Djilkibaev, Rashid M.; Lobashev, Vladimir M.
1996-05-01
A solenoid capture system for the MELC experiment in which the efficiency of soft muon generation from the primary proton (600 MeV) is 10-4 in comparison with 10-8 for ordinary schemes has been proposed. Both signs of muons with an intensity 1011 μ-/sec for negative and 2×1011 μ+/sec for positive component can be generated by a pulse proton beam with an average current up to ≂200 μA. A detail 3-D calculation of the magnetic field for the MELC setup are presented. Production of muon from pion decay in solenoid capture system is studied. The target life time and radiation condition of the superconducting coil are considered.
Electron capture imaging of two-dimensional materials
NASA Astrophysics Data System (ADS)
Labaigt, G.; Dubois, A.; Hansen, J. P.
2014-06-01
We demonstrate that electron transfer induced by fast ion impact can be used as an imaging technique of two-dimensional materials. Applied to a keV proton beam passing through a graphene surface, it is shown that coherent single-electron capture gives a sub-ångström-scale spatial resolution image of the electronic structure of a single sheet. This imaging scheme is shown to be particularly effective, resolving missing atoms (vacancies) in the lattice, in a narrow projectile 5-10-keV energy region, where the capture probability exhibits a minimum at the center of the hexagonal cells. This geometry-dependent phenomenon is caused by the coupling dynamic between the initial state and a multi-electron entangled one-hole state and is therefore highly sample selective.
NASA Astrophysics Data System (ADS)
Alibubin, M. U.; Sunarto, A.; Sulaiman, J.
2016-06-01
In this paper, we present the concept of Half-sweep Accelerated OverRelaxation (HSAOR) iterative method with a nonlocal discretization scheme for solving nonlinear two-point boundary value problems. Second order finite difference scheme has been used to derive the half-sweep finite difference (HSFD) approximations of the problems. Then, the nonlocal discretization scheme is applied in order to transform the system of nonlinear approximation equations into the corresponding system of linear equations. Numerical results showed that HSAOR method is superior compared to Full-sweep Gauss-seidel (FSGS), Full-sweep Successive OverRelaxation (FSSOR) and Full-sweep Accelerated Over Relaxation (FSAOR) methods.
Metric-discontinuous zonal grid calculations using the Osher scheme
NASA Technical Reports Server (NTRS)
Rai, M. M.; Hessenius, K. A.; Chakravarthy, S. R.
1984-01-01
Computations on zonal grids - in particular, grids with metric discontinuities resulting from the interspersion of highly clustered regions with coarse regions - are possible using a fully conservative form of the Osher upwind scheme. These zonal grids can result from an abrupt clustering of points near solution discontinuities or near other flow features that require improved resolution. The zonal approach is shown to capture shocks with almost 'shock-fitting' quality but with minimal effort. Results for inviscid flow, including quasi-one-dimensional nozzle flow, supersonic flow over a cylinder, and blast-wave diffraction by a ramp, are presented. These calculations demonstrate the powerful capabilities of the Osher scheme used in conjunction with zonal grids in simulating flow fields with complex shock patterns.
A generic efficient adaptive grid scheme for rocket propulsion modeling
NASA Technical Reports Server (NTRS)
Mo, J. D.; Chow, Alan S.
1993-01-01
The objective of this research is to develop an efficient, time-accurate numerical algorithm to discretize the Navier-Stokes equations for the predictions of internal one-, two-dimensional and axisymmetric flows. A generic, efficient, elliptic adaptive grid generator is implicitly coupled with the Lower-Upper factorization scheme in the development of ALUNS computer code. The calculations of one-dimensional shock tube wave propagation and two-dimensional shock wave capture, wave-wave interactions, shock wave-boundary interactions show that the developed scheme is stable, accurate and extremely robust. The adaptive grid generator produced a very favorable grid network by a grid speed technique. This generic adaptive grid generator is also applied in the PARC and FDNS codes and the computational results for solid rocket nozzle flowfield and crystal growth modeling by those codes will be presented in the conference, too. This research work is being supported by NASA/MSFC.
One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...
Jackman, Joshua A; Linardy, Eric; Yoo, Daehan; Seo, Jeongeun; Ng, Wei Beng; Klemme, Daniel J; Wittenberg, Nathan J; Oh, Sang-Hyun; Cho, Nam-Joon
2016-03-01
A plasmonic nanohole sensor for virus-like particle capture and virucidal drug evaluation is reported. Using a materials-selective surface functionalization scheme, passive immobilization of virus-like particles only within the nanoholes is achieved. The findings demonstrate that a low surface coverage of particles only inside the functionalized nanoholes significantly improves nanoplasmonic sensing performance over conventional nanohole arrays. PMID:26450658
Westdickenberg, Michael; Wilkening, Jon
2008-12-10
We introduce variational particle schemes for the porous medium equation and the system of isentropic Euler equations in one space dimension. The methods are motivated by the interpretation of each of these partial differential equations as a 'steepest descent' on a suitable abstract manifold. We show that our methods capture very well the nonlinear features of the flows.
Inertial-particle accelerations in turbulence: a Lagrangian closure
NASA Astrophysics Data System (ADS)
Vajedi, S.; Gustavsson, K.; Mehlig, B.; Biferale, L.
2016-07-01
The distribution of particle accelerations in turbulence is intermittent, with non-Gaussian tails that are quite different for light and heavy particles. In this article we analyse a closure scheme for the acceleration fluctuations of light and heavy inertial particles in turbulence, formulated in terms of Lagrangian correlation functions of fluid tracers. We compute the variance and the flatness of inertial particle accelerations and we discuss their dependency on the Stokes number. The closure incorporates effects induced by the Lagrangian correlations along the trajectories of fluid tracers, and its predictions agree well with results of direct numerical simulations of inertial particles in turbulence, provided that the effects induced by the inertial preferential sampling of heavy/light particles outside/inside vortices are negligible. In particular, the scheme predicts the correct functional behaviour of the acceleration variance, as a function of Stokes, as well as the presence of a minimum/maximum for the flatness of the acceleration of heavy/light particles, in good qualitative agreement with numerical data. We also show that the closure works well when applied to the Lagrangian evolution of particles using a stochastic surrogate for the underlying Eulerian velocity field. Our results support the conclusion that there exist important contributions to the statistics of the acceleration of inertial particles independent of the preferential sampling. For heavy particles we observe deviations between the predictions of the closure scheme and direct numerical simulations, at Stokes numbers of order unity. For light particles the deviation occurs for larger Stokes numbers.
Capturing Attention When Attention "Blinks"
ERIC Educational Resources Information Center
Wee, Serena; Chua, Fook K.
2004-01-01
Four experiments addressed the question of whether attention may be captured when the visual system is in the midst of an attentional blink (AB). Participants identified 2 target letters embedded among distractor letters in a rapid serial visual presentation sequence. In some trials, a square frame was inserted between the targets; as the only…
NASA Technical Reports Server (NTRS)
McLemore, Bruce; Cordier, Guy R.; Wood, Terri; Gamst, Harek
2012-01-01
In 2008, NASA's Earth Sciences Missions Operations (ESMO) at Goddard Space Flight Center (GSFC) directed the Earth Observing System Data Operations System (EDOS) project to provide a prototype system to assess the feasibility of high rate data capture for the Japan Aerospace Exploration Agency's (JAXA) Advanced Land Observing Satellite (ALOS) spacecraft via NASA's Tracking and Data Relay Satellite System (TDRSS). The key objective of this collaborative effort between NASA and JAXA was to share science data collected over North and South America previously unavailable due to limitations in ALOS downlink capacity. EDOS provided a single system proof-of-concept in 4 months at White Sands TDRS Ground Terminal The system captured 6 ALOS events error-free at 277 Mbps and delivered the data to the Alaska Satellite Facility (ASF) within 3 hours (May/June '08). This paper describes the successful rapid prototyping approach which led to a successful demonstration and agreement between NASA and JAXA for operational support. The design of the operational system will be discussed with emphasis on concurrent high-rate data capture, Level-O processing, real-time display and high-rate delivery with stringent latency requirements. A similar solution was successfully deployed at Svalbard, Norway to support the Suomi NPP launch (October 2011) and capture all X-band data and provide a 30-day backup archive.
A scheme for symmetrization verification
NASA Astrophysics Data System (ADS)
Sancho, Pedro
2011-08-01
We propose a scheme for symmetrization verification in two-particle systems, based on one-particle detection and state determination. In contrast to previous proposals, it does not follow a Hong-Ou-Mandel-type approach. Moreover, the technique can be used to generate superposition states of single particles.
Invisibly Sanitizable Digital Signature Scheme
NASA Astrophysics Data System (ADS)
Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki
A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.
Geophysical Inversion Through Hierarchical Scheme
NASA Astrophysics Data System (ADS)
Furman, A.; Huisman, J. A.
2010-12-01
Geophysical investigation is a powerful tool that allows non-invasive and non-destructive mapping of subsurface states and properties. However, non-uniqueness associated with the inversion process prevents the quantitative use of these methods. One major direction researchers are going is constraining the inverse problem by hydrological observations and models. An alternative to the commonly used direct inversion methods are global optimization schemes (such as genetic algorithms and Monte Carlo Markov Chain methods). However, the major limitation here is the desired high resolution of the tomographic image, which leads to a large number of parameters and an unreasonably high computational effort when using global optimization schemes. Two innovative schemes are presented here. First, a hierarchical approach is used to reduce the computational effort for the global optimization. Solution is achieved for coarse spatial resolution, and this solution is used as the starting point for finer scheme. We show that the computational effort is reduced in this way dramatically. Second, we use a direct ERT inversion as the starting point for global optimization. In this case preliminary results show that the outcome is not necessarily beneficial, probably because of spatial mismatch between the results of the direct inversion and the true resistivity field.
NASA Technical Reports Server (NTRS)
Foster, John E.
2004-01-01
A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.
Neutron Capture Reactions for Stockpile Stewardship and Basic Science
Parker, W; Agvaanluvsan, U; Becker, J; Wilk, P; Wu, C; Bredeweg, T; Couture, A; Haight, R; Jandel, M; O'Donnell, J; Reifarth, R; Rundberg, R; Ullmann, J; Vieira, D; Wouters, J; Sheets, S; Mitchell, G; Becvar, F; Krticka, M
2007-08-04
The capture process is a nuclear reaction in which a target atom captures an incident projectile, e.g. a neutron. The excited-state compound nucleus de-excites by emitting photons. This process creates an atom that has one more neutron than the target atom, so it is a different isotope of the same element. With low energy (slow) neutron projectiles, capture is the dominant reaction, other than elastic scattering. However, with very heavy nuclei, fission competes with capture as a method of de-excitation of the compound nucleus. With higher energy (faster) incident neutrons, additional reactions are also possible, such as emission of protons or emission of multiple neutrons. The probability of a particular reaction occurring (such as capture) is referred to as the cross section for that reaction. Cross sections are very dependent on the incoming neutron's energy. Capture reactions can be studied either using monoenergetic neutron sources or 'white' neutron sources. A 'white' neutron source has a wide range of neutron energies in one neutron beam. The advantage to the white neutron source is that it allows the study of cross sections as they depend on neutron energies. The Los Alamos Neutron Science Center, located at Los Alamos National Laboratory, provides an intense white neutron source. Neutrons there are created by a high-energy proton beam from a linear accelerator striking a heavy metal (tungsten) target. The neutrons range in energy from subthermal up to very fast - over 100 MeV in energy. Low-energy neutron reaction cross sections fluctuate dramatically from one target to another, and they are very difficult to predict by theoretical modeling. The cross sections for particular capture reactions are important for defense sciences, advanced reactor concepts, transmutation of radioactive wastes and nuclear astrophysics. We now have a strong collaboration between Lawrence Livermore National Laboratory, Los Alamos National Laboratory, North Carolina State
High brightness electron accelerator
Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.
1994-01-01
A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.
Hammond, Andrew P.; /Reed Coll. /SLAC
2010-08-25
One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.
Colgate, S.A.
1993-12-31
The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.
On some numerical scheme of solving diffraction problem on open and closed screens
Ryzhakov, Gleb V.
2015-03-10
In the paper, the problem of diffraction on thin ideally conductive screens is reduced to vector hypersingular integral equation with integral treated in the sense of finite Hadamard value. An numerical scheme to solve the equation is introduced. The scheme is based on piecewise approximation of unknown function. The advantage of the scheme is that integral of singular part is reduced to contour integral which can be analytically calculated so numerical calculation are significantly accelerated. Several examples of resulting numerical experiments are given in comparison with known theoretical and experimental data.
A multigrid scheme for three dimensional body-fitted coordinates in turbomachine applications
Camarero, R.; Reggio, M.
1983-03-01
An efficient numerical scheme for the generation of curvilinear body-fitted coordinate systems in three dimensions is presented. The grid is obtained by the solution of a system of three elliptic partial differential equations. The method is based on the classical SOR scheme with an acceleration of convergence using the multigrid technique. The full approximation scheme has been used and is described with the overall algorithm. A number of numerical experiments are given with comparisons to illustrate the efficiency of the method. Practical applications to typical three-dimensional turbomachinery geometries are then shown.
Orbital electron capture by the nucleus
NASA Technical Reports Server (NTRS)
Bambynek, W.; Behrens, H.; Chen, M. H.; Crasemann, B.; Fitzpatrick, M. L.; Ledingham, K. W. D.; Genz, H.; Mutterer, M.; Intemann, R. L.
1976-01-01
The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases.
Accelerator Physics Working Group Summary
NASA Astrophysics Data System (ADS)
Li, D.; Uesugi, T.; Wildnerc, E.
2010-03-01
The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.
Capturing near-Earth asteroids into bounded Earth orbits using gravity assist
NASA Astrophysics Data System (ADS)
Bao, Changchun; Yang, Hongwei; Barsbold, Baza; Baoyin, Hexi
2015-12-01
In this paper, capturing Near-Earth asteroids (NEAs) into bounded orbits around the Earth is investigated. Several different potential schemes related with gravity assists are proposed. A global optimization method, the particle Swarm Optimization (PSO), is employed to obtain the minimal velocity increments for each scheme. With the optimized results, the minimum required velocity increments as well as the mission time are obtained. Results of numerical simulations also indicate that using MGAs is an efficient approach in the capturing mission. The conclusion complies with the analytical result in this paper that a NEA whose velocity relative to the Earth less than 1.8 km/s can be captured by Earth by just one MGA. For other situations, the combination of MGAs and EGAs is better in sense of the required velocity-increments.
Simulation of transients in natural gas pipelines using hybrid TVD schemes
NASA Astrophysics Data System (ADS)
Zhou, Junyang; Adewumi, Michael A.
2000-02-01
The mathematical model describing transients in natural gas pipelines constitutes a non-homogeneous system of non-linear hyperbolic conservation laws. The time splitting approach is adopted to solve this non-homogeneous hyperbolic model. At each time step, the non-homogeneous hyperbolic model is split into a homogeneous hyperbolic model and an ODE operator. An explicit 5-point, second-order-accurate total variation diminishing (TVD) scheme is formulated to solve the homogeneous system of non-linear hyperbolic conservation laws. Special attention is given to the treatment of boundary conditions at the inlet and the outlet of the pipeline. Hybrid methods involving the Godunov scheme (TVD/Godunov scheme) or the Roe scheme (TVD/Roe scheme) or the Lax-Wendroff scheme (TVD/LW scheme) are used to achieve appropriate boundary handling strategy. A severe condition involving instantaneous closure of a downstream valve is used to test the efficacy of the new schemes. The results produced by the TVD/Roe and TVD/Godunov schemes are excellent and comparable with each other, while the TVD/LW scheme performs reasonably well. The TVD/Roe scheme is applied to simulate the transport of a fast transient in a short pipe and the propagation of a slow transient in a long transmission pipeline. For the first example, the scheme produces excellent results, which capture and maintain the integrity of the wave fronts even after a long time. For the second example, comparisons of computational results are made using different discretizing parameters. Copyright
Plasma inverse transition acceleration
Xie, Ming
2001-06-18
It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood, and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.
Capturing, processing, and rendering real-world scenes
NASA Astrophysics Data System (ADS)
Nyland, Lars S.; Lastra, Anselmo A.; McAllister, David K.; Popescu, Voicu; McCue, Chris; Fuchs, Henry
2000-12-01
While photographs vividly capture a scene from a single viewpoint, it is our goal to capture a scene in such a way that a viewer can freely move to any viewpoint, just as he or she would in an actual scene. We have built a prototype system to quickly digitize a scene using a laser rangefinder and a high-resolution digital camera that accurately captures a panorama of high-resolution range and color information. With real-world scenes, we have provided data to fuel research in many area, including representation, registration, data fusion, polygonization, rendering, simplification, and reillumination. The real-world scene data can be used for many purposes, including immersive environments, immersive training, re-engineering and engineering verification, renovation, crime-scene and accident capture and reconstruction, archaeology and historic preservation, sports and entertainment, surveillance, remote tourism and remote sales. We will describe our acquisition system, the necessary processing to merge data from the multiple input devices and positions. We will also describe high quality rendering using the data we have collected. Issues about specific rendering accelerators and algorithms will also be presented. We will conclude by describing future uses and methods of collection for real- world scene data.
Hot spots and dark current in advanced plasma wakefield accelerators
NASA Astrophysics Data System (ADS)
Manahan, G. G.; Deng, A.; Karger, O.; Xi, Y.; Knetsch, A.; Litos, M.; Wittig, G.; Heinemann, T.; Smith, J.; Sheng, Z. M.; Jaroszynski, D. A.; Andonian, G.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2016-01-01
Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.
The status and evolution of plasma Wakefield particle accelerators.
Joshi, C; Mori, W B
2006-03-15
The status and evolution of the electron beam-driven Plasma Wakefield Acceleration scheme is described. In particular, the effects of the radial electric field of the wake on the drive beam such as multiple envelope oscillations, hosing instability and emission of betatron radiation are described. Using ultra-short electron bunches, high-density plasmas can be produced by field ionization by the electric field of the bunch itself. Wakes excited in such plasmas have accelerated electrons in the back of the drive beam to greater that 4 G eV in just 10 cm in experiments carried out at the Stanford Linear Accelerator Centre. PMID:16483949
The Influence of Accelerator Science on Physics Research
NASA Astrophysics Data System (ADS)
Haussecker, Enzo F.; Chao, Alexander W.
2011-06-01
We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.
Synchronous particle and non-adiabatic capture
Kats, J.M.
1988-01-01
In the theory of particle longitudinal motion, a classical definition of synchronous particle (synchronous energy, phase, and orbit) assumes that there is a one-to-one correspondence between the guiding magnetic field and the frequency of the accelerating electrical field. In practice, that correspondence may not be sustained because of errors in the magnetic field, in the frequency, or because sometimes one does not want to keep that relationship for some reason. In this paper, a definition of synchronous particle is introduced when the magnetic field and the frequency are independent functions of time. The result is that the size and shape of the bucket (separatrix) depends not only on the field rate of change but also on the frequency rate of change. This means, for example, that one can have a stationary bucket even with a rising field. Having the frequency, in addition to the field and voltage, as parameters controlling the shape and the size of the bucket, it is shown how to decrease particle losses during injection and capture. 2 refs., 2 figs.
Effective biasing schemes for duct streaming problems.
Broadhead, B L; Wagner, J C
2005-01-01
The effective use of biasing for the Monte Carlo solution of a void streaming problem is essential to obtaining a reasonable result in a reasonable amount of time. Most general purpose Monte Carlo shielding codes allow for the user to select the particular biasing techniques best oriented to the particular problem of interest. The biasing strategy for void streaming problems many times differs from that of a deep penetration problem. The key in void streaming is to bias particles into the streaming path, whereas in deep penetration problems the biasing is aimed at forcing particles through the shield. Until recently, the biasing scheme in the SCALE SAS4 shielding module was considered inadequate for void streaming problems due to the assumed one-dimensional nature of the automated bias prescription. A modified approach to the automated biasing in SAS4 has allowed for significant gains to be realised in the use of the code for void streaming problems. This paper applies the modified SAS4 procedures to a spent fuel storage cask model with vent ports. The results of the SAS4 analysis are compared with those of the ADVANTG methodology, which is an accelerated version of MCNP. Various options available for the implementation of the SAS4 methodology are reviewed and recommendations offered. PMID:16604687
Summary Report of Working Group 4: Plasma Wakefield Acceleration
Rosenzweig, J.B.; Seryi, A.; /SLAC
2012-06-11
This report gives a guide to the discussions of Working Group 4 of the 2010 Advanced Accelerator Concepts Workshop, which was devoted to theory, simulation and experimental issues associated with plasma wakefield acceleration (PWFA). Sessions were organized thematically in this group, concentrating on broad issues of: exploitation of future facilities such as FACET; pushing the accelerating gradient beyond the current frontier, to over a TeV/m; use of positively charged beams to drive plasma wakes; resonant excitation of the PWFA with pulse trains; beam-plasma instabilities; and injection and capture of electron beams into PWFA systems.
Summary Report of Working Group 4: Plasma Wakefield Acceleration
Rosenzweig, J. B.; Seryi, A.
2010-11-04
This report gives a guide to the discussions of Working Group 4 of the 2010 Advanced Accelerator Concepts Workshop, which was devoted to theory, simulation and experimental issues associated with plasma wakefield acceleration (PWFA). Sessions were organized thematically in this group, concentrating on broad issues of: exploitation of future facilities such as FACET; pushing the accelerating gradient beyond the current frontier, to over a TeV/m; use of positively charged beams to drive plasma wakes; resonant excitation of the PWFA with pulse trains; beam-plasma instabilities; and injection and capture of electron beams into PWFA systems.
Mitigation of Remedial Action Schemes by Decentralized Robust Governor Control
Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei
2014-04-15
This paper presents transient stability improvement by a new distributed hierarchical control architecture (DHC). The integration of remedial action schemes (RAS) to the distributed hierarchical control architecture is studied. RAS in power systems are designed to maintain stability and avoid undesired system conditions by rapidly switching equipment and/or changing operating points according to predetermined rules. The acceleration trend relay currently in use in the US western interconnection is an example of RAS that trips generators to maintain transient stability. The link between RAS and DHC is through fast acting robust turbine/governor control that can also improve transient stability. In this paper, the influence of the decentralized robust turbine/governor control on the design of RAS is studied. Benefits of combining these two schemes are increasing power transfer capability and mitigation of RAS generator tripping actions; the later benefit is shown through simulations.
Stellar capture rates for s-process strong component elements.
NASA Astrophysics Data System (ADS)
Mutti, P.; Corvi, F.; Athanassopoulos, K.; Beer, H.; Krupchitsky, P.
The strong component of the s-process is required for the synthesis of the heaviest s-process elements, namely the lead and the bismuth isotopes. The termination of the path occurs via a cyclic process in which nuclei heavier than bismuth decay via alpha emission to isotopes of lead. In this mass region the abundances are strongly influenced by the double magic 208Pb which, having the smallest cross section of all the heavy elements, acts as a bottle-neck in the s-process path. In the framework of a thorough investigation in the atomic mass region around the neutron magic nuclei, the 209Bi and 207Pb capture cross sections were measured with high resolution at the Geel electron linear accelerator. Capture areas were determined for neutron resonances in a wide energy range and the Maxwellian-averaged cross sections were derived as a function of stellar temperature.
Direct Air Capture of CO2 by Physisorbent Materials.
Kumar, Amrit; Madden, David G; Lusi, Matteo; Chen, Kai-Jie; Daniels, Emma A; Curtin, Teresa; Perry, John J; Zaworotko, Michael J
2015-11-23
Sequestration of CO2, either from gas mixtures or directly from air (direct air capture, DAC), could mitigate carbon emissions. Here five materials are investigated for their ability to adsorb CO2 directly from air and other gas mixtures. The sorbents studied are benchmark materials that encompass four types of porous material, one chemisorbent, TEPA-SBA-15 (amine-modified mesoporous silica) and four physisorbents: Zeolite 13X (inorganic); HKUST-1 and Mg-MOF-74/Mg-dobdc (metal-organic frameworks, MOFs); SIFSIX-3-Ni, (hybrid ultramicroporous material). Temperature-programmed desorption (TPD) experiments afforded information about the contents of each sorbent under equilibrium conditions and their ease of recycling. Accelerated stability tests addressed projected shelf-life of the five sorbents. The four physisorbents were found to be capable of carbon capture from CO2-rich gas mixtures, but competition and reaction with atmospheric moisture significantly reduced their DAC performance. PMID:26440308
Natural materials for carbon capture.
Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy
2010-11-01
Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.
A New High-Current Proton Accelerator
Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.
2009-03-10
A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron registered system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.
A New High-Current Proton Accelerator
NASA Astrophysics Data System (ADS)
Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.
2009-03-01
A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.
Subranging scheme for SQUID sensors
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor)
2008-01-01
A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.
NASA Astrophysics Data System (ADS)
Popa, Mihnea; Roth, Mike
2003-06-01
In this paper we study the relationship between two different compactifications of the space of vector bundle quotients of an arbitrary vector bundle on a curve. One is Grothendieck's Quot scheme, while the other is a moduli space of stable maps to the relative Grassmannian. We establish an essentially optimal upper bound on the dimension of the two compactifications. Based on that, we prove that for an arbitrary vector bundle, the Quot schemes of quotients of large degree are irreducible and generically smooth. We precisely describe all the vector bundles for which the same thing holds in the case of the moduli spaces of stable maps. We show that there are in general no natural morphisms between the two compactifications. Finally, as an application, we obtain new cases of a conjecture on effective base point freeness for pluritheta linear series on moduli spaces of vector bundles.
Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration
Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman
2014-04-15
The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.
Spacecraft capture and docking system
NASA Technical Reports Server (NTRS)
Kong, Kinyuen (Inventor); Rafeek, Shaheed (Inventor); Myrick, Thomas (Inventor)
2001-01-01
A system for capturing and docking an active craft to a passive craft has a first docking assembly on the active craft with a first contact member and a spike projecting outwardly, a second docking assembly on the passive craft having a second contact member and a flexible net deployed over a target area with an open mesh for capturing the end of the spike of the active craft, and a motorized net drive for reeling in the net and active craft to mate with the passive craft's docking assembly. The spike has extendable tabs to allow it to become engaged with the net. The net's center is coupled to a net spool for reeling in. An alignment funnel has inclined walls to guide the net and captured spike towards the net spool. The passive craft's docking assembly includes circumferentially spaced preload wedges which are driven to lock the wedges against the contact member of the active craft. The active craft's docking assembly includes a rotary table and drive for rotating it to a predetermined angular alignment position, and mating connectors are then engaged with each other. The system may be used for docking spacecraft in zero or low-gravity environments, as well as for docking underwater vehicles, docking of ancillary craft to a mother craft in subsonic flight, in-flight refueling systems, etc.
The Dielectric Wall Accelerator
Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.
2009-01-01
The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.
Neutron radiative capture methods for surface elemental analysis
Trombka, J.I.; Senftle, F.; Schmadebeck, R.
1970-01-01
Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.
ACCELERATION RESPONSIVE SWITCH
Chabrek, A.F.; Maxwell, R.L.
1963-07-01
An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)
Space Acceleration Measurement System
NASA Technical Reports Server (NTRS)
1993-01-01
This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.
Wilson, P.B.
1986-02-01
In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)
NASA Astrophysics Data System (ADS)
Murray, Cherry
2009-05-01
Accelerator science has traditionally been associated with high-energy physics and nuclear physics. But the use of accelerators in other areas of science, as well as in medicine and industry, is steadily growing. Accelerators are now, for example, used to treat cancer using proton therapy, which can deposit radiation onto a tumour while causing much less damage to surrounding healthy tissue than with other treatment techniques.
Optically pulsed electron accelerator
Fraser, J.S.; Sheffield, R.L.
1985-05-20
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Optically pulsed electron accelerator
Fraser, John S.; Sheffield, Richard L.
1987-01-01
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Miniaturization Techniques for Accelerators
Spencer, James E.
2003-05-27
The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.
Self-force on an accelerated particle
NASA Astrophysics Data System (ADS)
Linz, Thomas M.; Friedman, John L.; Wiseman, Alan G.
2014-07-01
We calculate the singular field of an accelerated point particle (scalar charge, electric charge or small gravitating mass) moving on an accelerated (nongeodesic) trajectory in a generic background spacetime. Using a mode-sum regularization scheme, we obtain explicit expressions for the self-force regularization parameters. We use a Lorentz gauge for the electromangetic and gravitational cases. This work extends the work of Barack and Ori [1] who demonstrated that the regularization parameters for a point particle in geodesic motion in a Schwarzschild spacetime can be described solely by the leading and subleading terms in the mode-sum (commonly known as the A and B terms) and that all terms of higher order in ℓ vanish upon summation (later they showed the same behavior for geodesic motion in Kerr [2], [3]). We demonstrate that these properties are universal to point particles moving through any smooth spacetime along arbitrary (accelerated) trajectories. Our renormalization scheme is based on, but not identical to, the Quinn-Wald axioms. As we develop our approach, we review and extend work showing that that different definitions of the singular field used in the literature are equivalent to our approach. Because our approach does not assume geodesic motion of the perturbing particle, we are able use our mode-sum formalism to explicitly recover a well-known result: The self-force on static scalar charges near a Schwarzschild black hole vanishes.
A biometric signcryption scheme without bilinear pairing
NASA Astrophysics Data System (ADS)
Wang, Mingwen; Ren, Zhiyuan; Cai, Jun; Zheng, Wentao
2013-03-01
How to apply the entropy in biometrics into the encryption and remote authentication schemes to simplify the management of keys is a hot research area. Utilizing Dodis's fuzzy extractor method and Liu's original signcryption scheme, a biometric identity based signcryption scheme is proposed in this paper. The proposed scheme is more efficient than most of the previous proposed biometric signcryption schemes for that it does not need bilinear pairing computation and modular exponentiation computation which is time consuming largely. The analysis results show that under the CDH and DL hard problem assumption, the proposed scheme has the features of confidentiality and unforgeability simultaneously.
Particle acceleration in flares
NASA Technical Reports Server (NTRS)
Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro
1994-01-01
Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.
Charged particle accelerator grating
Palmer, Robert B.
1986-09-02
A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.
Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O
2014-06-01
The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468
Gyrokinetic Vlasov-Poisson simulation in slab geometry using the conservative IDO scheme
NASA Astrophysics Data System (ADS)
Imadera, Kenji; Kishimoto, Yasuaki; Li, Jiquan; Saito, Daisuke; Utsumi, Takayuki
2008-11-01
We have introduced the IDO-CF (Conservative Form of Interpolated Differential Operator) scheme [1], which is one of the multi-moment schemes and has been applied to various CFD problems, in solving a Vlasov-Poisson system. The IDO scheme is found to be efficient in capturing a sharp domain interface like shock propagation, and in introducing dissipations like particle collision and also external source/sink terms. Furthermore, the IDO-CF scheme has exact mass conservation properties, so that we can apply it to the problems that need long time scale simulations. We first apply the scheme in studying the nonlinear Landau damping and two-stream instability. We have investigated the conservation property of the total mass, energy and entropy, and found that the IDO-CF scheme allows stable simulation over many bounce periods keeping higher accuracy than other multi-moment schemes. We have also developed a gyrokinetic full-f Vlasov code with the IDO-CF scheme in studying the slab ITG driven turbulence. [1] Y.Imai et al., J. Comput. Phys. 227, 2263(2008).
A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul
2015-01-01
A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.
A class of large time step Godunov schemes for hyperbolic conservation laws and applications
NASA Astrophysics Data System (ADS)
Qian, ZhanSen; Lee, Chun-Hian
2011-08-01
A large time step (LTS) Godunov scheme firstly proposed by LeVeque is further developed in the present work and applied to Euler equations. Based on the analysis of the computational performances of LeVeque's linear approximation on wave interactions, a multi-wave approximation on rarefaction fan is proposed to avoid the occurrences of rarefaction shocks in computations. The developed LTS scheme is validated using 1-D test cases, manifesting high resolution for discontinuities and the capability of maintaining computational stability when large CFL numbers are imposed. The scheme is then extended to multidimensional problems using dimensional splitting technique; the treatment of boundary condition for this multidimensional LTS scheme is also proposed. As for demonstration problems, inviscid flows over NACA0012 airfoil and ONERA M6 wing with given swept angle are simulated using the developed LTS scheme. The numerical results reveal the high resolution nature of the scheme, where the shock can be captured within 1-2 grid points. The resolution of the scheme would improve gradually along with the increasing of CFL number under an upper bound where the solution becomes severely oscillating across the shock. Computational efficiency comparisons show that the developed scheme is capable of reducing the computational time effectively with increasing the time step (CFL number).
High-Order Residual-Distribution Schemes for Discontinuous Problems on Irregular Triangular Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2016-01-01
In this paper, we develop second- and third-order non-oscillatory shock-capturing hyperbolic residual distribution schemes for irregular triangular grids, extending our second- and third-order schemes to discontinuous problems. We present extended first-order N- and Rusanov-scheme formulations for hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffusion term does not affect the solution of inviscid problems for vanishingly small viscous coefficient. We then propose second- and third-order blended hyperbolic residual-distribution schemes with the extended first-order Rusanov-scheme. We show that these proposed schemes are extremely accurate in predicting non-oscillatory solutions for discontinuous problems. We also propose a characteristics-based nonlinear wave sensor for accurately detecting shocks, compression, and expansion regions. Using this proposed sensor, we demonstrate that the developed hyperbolic blended schemes do not produce entropy-violating solutions (unphysical stocks). We then verify the design order of accuracy of these blended schemes on irregular triangular grids.
Neutron capture studies of 206Pb at a cold neutron beam
NASA Astrophysics Data System (ADS)
Schillebeeckx, P.; Belgya, T.; Borella, A.; Kopecky, S.; Mengoni, A.; Quétel, C. R.; Szentmiklósi, L.; Trešl, I.; Wynants, R.
2013-11-01
Gamma-ray transitions following neutron capture in 206Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in 206Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed -rays have been incorporated into a decay scheme for neutron capture in 206Pb . Partial capture cross sections for 206Pb(n,) at thermal energy have been derived relative to the cross section for the 1884keV transition after neutron capture in 14N . From the average crossing sum a total thermal neutron capture cross section of mb was derived for the 206Pb(n,) reaction. The thermal neutron capture cross section for 206Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of mb was determined for the 207Pb(n,) reaction.
Acceleration of polarized protons in circular accelerators
Courant, E.D.; Ruth, R.D.
1980-09-12
The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.
Beam manipulation and acceleration with Dielectric-Lined Waveguides
Lemery, Francois
2015-06-01
The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.
Advanced Accelerating Structures and Their Interaction with Electron Beams
Gai Wei
2009-01-22
In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.
Advanced accelerating structures and their interaction with electron beams.
Gai, W.; High Energy Physics
2008-01-01
In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.
Direct Acceleration of Electrons in a Corrugated Plasma Channel
Palastro, J. P.; Antonsen, T. M.; Morshed, S.; York, A. G.; Layer, B.; Aubuchon, M.; Milchberg, H. M.; Froula, D. H.
2009-01-22
Direct laser acceleration of electrons provides a low power tabletop alternative to laser wakefield accelerators. Until recently, however, direct acceleration has been limited by diffraction, phase matching, and material damage thresholds. The development of the corrugated plasma channel [B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] has removed all of these limitations and promises to allow direct acceleration of electrons over many centimeters at high gradients using femtosecond lasers [A. G. York et al., Phys Rev. Lett 100, 195001 (2008), J. P. Palastro et al., Phys. Rev. E 77, 036405 (2008)]. We present a simple analytic model of laser propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. In addition, the laser provides a transverse force that confines the high energy electrons on axis, while expelling low energy electrons.
The evolution of high energy accelerators
Courant, E.D.
1994-08-01
Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.
Building fast well-balanced two-stage numerical schemes for a model of two-phase flows
NASA Astrophysics Data System (ADS)
Thanh, Mai Duc
2014-06-01
We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.
Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons
Ting, A.; Gordon, D.; Kaganovich, D.; Sprangle, P.; Helle, M.; Hafizi, B.
2010-11-04
Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, {approx}1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called ''bucket jumping'' where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.
Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan
2013-11-15
The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.
2003-01-01
The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.
Nonlinear Acceleration Methods for Even-Parity Neutron Transport
W. J. Martin; C. R. E. De Oliveira; H. Park
2010-05-01
Convergence acceleration methods for even-parity transport were developed that have the potential to speed up transport calculations and provide a natural avenue for an implicitly coupled multiphysics code. An investigation was performed into the acceleration properties of the introduction of a nonlinear quasi-diffusion-like tensor in linear and nonlinear solution schemes. Using the tensor reduced matrix as a preconditioner for the conjugate gradients method proves highly efficient and effective. The results for the linear and nonlinear case serve as the basis for further research into the application in a full three-dimensional spherical-harmonics even-parity transport code. Once moved into the nonlinear solution scheme, the implicit coupling of the convergence accelerated transport method into codes for other physics can be done seamlessly, providing an efficient, fully implicitly coupled multiphysics code with high order transport.
Scaling FFAG accelerator for muon acceleration
Lagrange, JB.; Planche, T.; Mori, Y.
2011-10-06
Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.
Angular velocities, angular accelerations, and coriolis accelerations
NASA Technical Reports Server (NTRS)
Graybiel, A.
1975-01-01
Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.
EFFICIENCY PROBLEMS RELATED TO PERMANGANATE OXIDATION SCHEMES
Oxidation schemes for the in-situ destruction of chlorinated solvents, using potassium permanganate, are receiving considerable attention. Indication from field studies and from our own work are that permanganate oxidation schemes have inherent problems that could severely limit...
Proof-of-principle experiments of laser Wakefield acceleration
Nakajima, K.; Kawakubo, T.; Nakanishi, H.
1994-04-01
Recently there has been a great interest in laser-plasma accelerators as possible next-generation particle accelerators because of their potential for ultra high accelerating gradients and compact size compared with conventional accelerators. It is known that the laser pulse is capable of exciting a plasma wave propagating at a phase velocity close to the velocity of light by means of beating two-frequency lasers or an ultra short laser pulse. These schemes came to be known as the Beat Wave Accelerator (BWA) for beating lasers or as the Laser Wakefield Accelerator (LWFA) for a short pulse laser. In this paper, the principle of laser wakefield particle acceleration has been tested by the Nd:glass laser system providing a short pulse with a power of 10 TW and a duration of 1 ps. Electrons accelerated up to 18 MeV/c have been observed by injecting 1 MeV/c electrons emitted from a solid target by an intense laser impact. The accelerating field gradient of 30 GeV/m is inferred.
Realistic costs of carbon capture
Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )
2009-07-01
There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding
None
2011-10-06
1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.
Yamazaki, Yoshishige
2008-02-21
The Japan Proton Accelerator Research Complex (J-PARC) is under construction in Tokai site. The linac beam commissioning started last fall, while the beam commissioning of the 3-GeV Rapid-Cycling Synchrotron (RCS) will start this fall. The status of the J-PARC accelerator is reported with emphasis on the technical development accomplished for the J-PARC.
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi
2005-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.
Diagnostics for induction accelerators
Fessenden, T.J.
1996-04-01
The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.
Accelerators Beyond The Tevatron?
Lach, Joseph
2010-07-01
Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?
Microscale acceleration history discriminators
Polosky, Marc A.; Plummer, David W.
2002-01-01
A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.
None
2011-10-06
1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.
Accelerating global forest mortality
NASA Astrophysics Data System (ADS)
McDowell, N. G.
2014-12-01
Forest mortality is apparently accelerating globally. The evidence supporting this contention is now substantial, as is the evidence suggesting the acceleration has just begun and will become progressively worse in upcoming decades. I will review the data and models used to make these contentions.
None
2011-10-06
1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.