Science.gov

Sample records for acceleration space thruster

  1. The FRC Acceleration Space Thruster (FAST) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Houts, Mike; Slough, John; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The objective of the FRC (Field Reversed Configuration) Acceleration Space Thruster (FAST) Experiment is to investigate the use of a repetitive FRC source as a thruster, specifically for an NEP (nuclear electric propulsion) system. The Field Reversed Configuration is a plasmoid with a closed poloidal field line structure, and has been extensively studied as a fusion reactor core. An FRC thruster works by repetitively producing FRCs and accelerating them to high velocity. An FRC thruster should be capable of I(sub sp)'s in the range of 5,000 - 25,000 seconds and efficiencies in the range of 60 - 80 %. In addition, they can have thrust densities as high as 10(exp 6) N/m2, and as they are inductively formed, they do not suffer from electrode erosion. The jet-power should be scalable from the low to the high power regime. The FAST experiment consists of a theta-pinch formation chamber, followed by an acceleration stage. Initially, we will produce and accelerate single FRCs. The initial focus of the experiment will be on the ionization, formation and acceleration of a single plasmoid, so as to determine the likely efficiency and I(sub sp). Subsequently, we will modify the device for repetitive burst-mode operation (5-10 shots). A variety of diagnostics are or will be available for this work, including a HeNe interferometer, high-speed cameras, and a Thomson-scattering system. The status of the experiment will be described.

  2. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  3. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  4. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were treated on five different 30 cm diameter bombardment thrusters to evaluate the effects of grid geometry variations on thruster discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. The effects on discharge chamber performance of main magnetic field changes, magnetic baffle current, cathode pole piece length and cathode position were also investigated.

  5. Ion accelerator systems for high power 30-cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    An investigation of two- and three-grid accelerator systems for high power ion thruster operation has been performed. Two-grid translation tests show that overcompensation of the 30-cm thruster SHAG (Small Hole Accelerator Grid) leads to a premature impingement limit. By better matching the SHAG grid set spacing to the 30-cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30-cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  6. Mercury ion thruster research, 1977. [plasma acceleration

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1977-01-01

    The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.

  7. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  8. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  9. Advanced space propulsion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1981-01-01

    Experiments showed that stray magnetic fields can adversely affect the capacity of a hollow cathode neutralizer to couple to an ion beam. Magnetic field strength at the neutralizer cathode orifice is a crucial factor influencing the coupling voltage. The effects of electrostatic accelerator grid aperture diameters on the ion current extraction capabilities were examined experimentally to describe the divergence, deflection, and current extraction capabilities of grids with the screen and accelerator apertures displaced relative to one another. Experiments performed in orificed, mercury hollow cathodes support the model of field enhanced thermionic electron mission from cathode inserts. Tests supported the validity of a thermal model of the cathode insert. A theoretical justification of a Saha equation model relating cathode plasma properties is presented. Experiments suggest that ion loss rates to discharge chamber walls can be controlled. A series of new discharge chamber magnetic field configurations were generated in the flexible magnetic field thruster and their effect on performance was examined. A technique used in the thruster to measure ion currents to discharge chamber walls is described. Using these ion currents the fraction of ions produced that are extracted from the discharge chamber and the energy cost of plasma ions are computed.

  10. MHD plasma acceleration in plasma thrusters: a variational approach

    SciTech Connect

    Andreussi, T.; Pegoraro, F.

    2010-12-14

    A Hamiltonian formulation of the MHD plasma flow equations in terms of noncanonical variables is briefly discussed for the case of stationary axisymmetric configurations. This formulation makes it possible to cast these flow equations in a variational form with mixed (closed and/or open) boundary conditions. Within this framework the modelling of the acceleration channel of an applied-field Magneto-Plasma-Dynamic (MPD) thruster for space propulsion is discussed and shown to provide general relationships between the flow features and the thruster performance.

  11. NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project funded by the Science Mission Directorate ; potential use is propulsion for deep space science missions

  12. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  13. Plasma acceleration processes in an ablative pulsed plasma thruster

    SciTech Connect

    Koizumi, Hiroyuki; Noji, Ryosuke; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2007-03-15

    Plasma acceleration processes in an ablative pulsed plasma thruster (APPT) were investigated. APPTs are space propulsion options suitable for microspacecraft, and have recently attracted much attention because of their low electric power requirements and simple, compact propellant system. The plasma acceleration mechanism, however, has not been well understood. In the present work, emission spectroscopy, high speed photography, and magnetic field measurements are conducted inside the electrode channel of an APPT with rectangular geometry. The successive images of neutral particles and ions give us a comprehensive understanding of their behavior under electromagnetic acceleration. The magnetic field profile clarifies the location where the electromagnetic force takes effect. As a result, it is shown that high density, ablated neutral gas stays near the propellant surface, and only a fraction of the neutrals is converted into plasma and electromagnetically accelerated, leaving the residual neutrals behind.

  14. A Plasmoid Thruster for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  15. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  16. Micropropulsion in space via dust-plasma thruster

    SciTech Connect

    Avinash, K.; Zank, G. P.

    2007-05-15

    A new engine for propulsion in space, i.e., the dust-plasma thruster, is proposed. The scheme uses plasma thermal energy to charge externally injected sub-micrometer-sized particles and simultaneously create electric fields in the plasma that accelerates them. Particles are subsequently charge stripped and exhausted to produce electrically neutral thrust obviating the need of a charge neutralizer. For reasonable plasma and particle parameters, thrust and specific impulse over a broad range may be produced. The dependence of thrust on particle size, number of injected particles, and plasma temperature density allows for a better thruster precision. The scheme is shown to have modest power requirements. It may be realized in a simple design where there are no high voltage grids or electrodes, charge neutralizer, valves, pressurized gases, etc., and can operate in space or vacuum. A layout for the possible configuration is described.

  17. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  18. IEC Thrusters for Space Probe Applications and Propulsion

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Momota, Hiromu; Wu, Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-03-01

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a "plasma analytic probe" for interrogation of the object.

  19. IEC Thrusters for Space Probe Applications and Propulsion

    SciTech Connect

    Miley, George H.; Momota, Hiromu; Wu Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-03-16

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.

  20. Exceedance statistics of accelerations resulting from thruster firings on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1981-01-01

    Spacecraft acceleration resulting from firings of vernier control system thrusters is an important consideration in the design, planning, execution and post-flight analysis of laboratory experiments in space. In particular, scientists and technologists involved with the development of experiments to be performed in space in many instances required statistical information on the magnitude and rate of occurrence of spacecraft accelerations. Typically, these accelerations are stochastic in nature, so that it is useful to characterize these accelerations in statistical terms. Statistics of spacecraft accelerations are summarized.

  1. Exceedance statistics of accelerations resulting from thruster firings on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1983-01-01

    Spacecraft acceleration resulting from firings of vernier control system thrusters is an important consideration in the design, planning, execution and post-flight analysis of laboratory experiments in space. In particular, scientists and technologists involved with the development of experiments to be performed in space in many instances required statistical information on the magnitude and rate of occurrence of spacecraft accelerations. Typically, these accelerations are stochastic in nature, so that it is useful to characterize these accelerations in statistical terms. Statistics of spacecraft accelerations are summarized. Previously announced in STAR as N82-12127

  2. Electron dynamics and ion acceleration in expanding-plasma thrusters

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Cannat, F.; Jarrige, J.; Elias, P. Q.; Packan, D.

    2015-12-01

    In most expanding-plasma thrusters, ion acceleration occurs due to the formation of ambipolar-type electric fields; a process that depends strongly on the electron dynamics of the discharge. The electron properties also determine the heat flux leaving the thruster as well as the maximum ion energy, which are important parameters for the evaluation of thruster performance. Here we perform an experimental and theoretical investigation with both magnetized, and unmagnetized, low-pressure thrusters to explicitly determine the relationship between the ion energy, E i , and the electron temperature, T e0. With no magnetic field a relatively constant value of {{E}i}/{{T}e0}≈ 6 is found for xenon, while when a magnetic nozzle is present, {{E}i}/{{T}e0} is between about 4-5. These values are shown to be a function of both the magnetic field strength, as well as the electron energy distribution function, which changes significantly depending on the mass flow rate (and hence neutral gas pressure) used in the thruster. The relationship between the ion energy and electron temperature allows estimates to be made for polytropic indices of use in a number of fluid models, as well as estimates of the upper limits to the performance of these types of systems, which for xenon and argon result in maximum specific impulses of about 2500 s and 4500 s respectively.

  3. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  4. Liquid-Metal-Fed Pulsed Electromagnetic Thrusters For In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.

    2004-01-01

    We describe three pulsed electromagnetic thruster concepts, which span four orders of magnitude in power processing capability (100 W to >100 kW), for in-space propulsion applications. The primary motivation for using a pulsed system is to is to enable high (instantaneous) power operation, which provides high acceleration efficiency, while using considerably less (continuous) power from the spacecraft power system. Unfortunately, conventional pulsed thrusters require failure-prone electrical switches and gas-puff valves. The series of thrusters described here directly address this problem, through the use of liquid metal propellant, by either eliminating both components or providing less taxing operational requirements, thus yielding a path toward both efficient and reliable pulsed electromagnetic thrusters. The emphasis of this paper is to conceptually describe each of the thruster concepts; however, initial test results with gallium propellant in one thruster geometry are presented. These tests reveal that a greater understanding of gallium material compatibility, contamination, and wetting behavior will be necessary before a completely functional thruster can be developed. Initial experimental results aimed at providing insight into these issues are presented.

  5. Design, fabrication, and operation of dished accelerator grids on a 30-cm ion thruster.

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Banks, B. A.; Byers, D. C.

    1972-01-01

    Several closely-spaced dished accelerator grid systems have been fabricated and tested on a 30-cm diameter mercury bombardment thruster and they appear to be a solution to the stringent requirements imposed by the near-term, high-thrust, low specific impulse electric propulsion missions. The grids were simultaneously hydroformed and then simultaneously stress relieved. The ion extraction capability and discharge chamber performance were studied as the total accelerating voltage, the ratio of net-to-total voltage, grid spacing, and dish direction were varied.

  6. Design, fabrication, and operation of dished accelerator grids on a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Banks, B. A.; Byers, D. C.

    1972-01-01

    Several closely-space dished accelerator grid systems were fabricated and tested on a 30-cm diameter mercury bombardment thruster and they appear to be a solution to the stringent requirements imposed by the near-term, high-thrust, low specific impulse electric propulsion missions. The grids were simultaneously hydroformed and then simultaneously stress relieved. The ion extraction capability and discharge chamber performance were studied as the total accelerating voltage, the ratio of net-to-total voltage, grid spacing, and dish direction were varied.

  7. Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics

    NASA Technical Reports Server (NTRS)

    Vahrenkamp, R. P.

    1976-01-01

    Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.

  8. System tests with electric thruster beam and accelerator directly powered from laboratory solar arrays

    NASA Technical Reports Server (NTRS)

    Stover, J. B.

    1976-01-01

    Laboratory high voltage solar arrays were operated directly connected to power the beam and accelerator loads of an 8-centimeter ion thruster. The beam array comprised conventional 2 by 2 centimeter solar cells; the accelerator array comprised multiple junction edge-illuminated solar cells. Conventional laboratory power supplies powered the thruster's other loads. Tests were made to evaluate thruster performance and to investigate possible electrical interactions between the solar arrays and the thruster. Thruster performance was the same as with conventional laboratory beam and accelerator power supplies. Most of the thruster beam short circuits that occurred during solar array operation were cleared spontaneously without automatic or manual intervention. No spontaneous clearing occurred during conventional power supply operation.

  9. Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.; Anderson, John R.; Bond, Thomas A.; Cardwell, G. I.; Christensen, Jon A.

    1997-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.

  10. Analysis and design of ion thrusters for large space systems

    NASA Technical Reports Server (NTRS)

    James, E. L.

    1980-01-01

    This study undertakes the analysis and conceptual design of a 0.5 Newton electrostatic ion thruster suitable for use on large space system missions in the next decade. Either argon or xenon gas shall be used as propellant. A 50 cm diameter discharge chamber was selected to meet stipulated performance goals. The discharge plasma is contained at the boundary by a periodic structure of alternating permanent magnets generating a series of line cusps. Anode strips between the magnets collect Maxwellian electrons generated by a central cathode. Ion extraction utilizes either two or three grid optics at the user's choice. An extensive analysis was undertaken to investigate optics behavior in the high power environment of this large thruster. A plasma bridge neutralizer operating on inert gas provides charge neutralizing electrons to complete the design. The resulting conceptual thruster and the necessary power management and control requirements are described.

  11. High performance auxiliary-propulsion ion thruster with ion-machined accelerator grid

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Banks, B. A.

    1975-01-01

    An improvement in thruster performance was achieved by reducing the diameter of the accelerator grid holes. The smaller accelerator grid holes resulted in a reduction in neutral mercury atoms escaping the discharge chamber, which in turn enhanced the discharge propellant utilization from approximately 68 percent to 92 percent. The accelerator grids were fabricated by ion machining with an 8-centimeter-diameter thruster, and the screen grid holes individually focused ion beamlets onto the blank accelerator grid. The resulting accelerator grid holes are less than 1.12 millimeters in diameter, while previously used accelerator grids had hole diameters of 1.69 millimeters. The thruster could be operated with the small-hole accelerator grid at neutralizer potential.

  12. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were tested on five different 30-cm diameter bombardment thrustors to evaluate the effects of grid geometry variations on thrustor discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole-diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. Also investigated were the effects on discharge chamber performance of main magnetic field changes, magnetic baffle current cathode pole piece length and cathode position.

  13. Characterization of ion accelerating systems on NASA LeRC's ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1992-01-01

    An investigation is conducted regarding ion-accelerating systems for two NASA thrusters to study the limits of ion-extraction capability or perveance. A total of nine two-grid ion-accelerating systems are tested with the 30- and 50-cm-diam ring-cusp inert-gas ion thrusters emphasizing the extension of ion-extraction. The vacuum-tank testing is described using xenon, krypton, and argon propellants, and thruster performance is computed with attention given to theoretical design considerations. Reductions in perveance are noted with decreasing accelerator-hole-to-screen-hole diameter ratios. Perveance values vary indirectly with the ratio of discharge voltage to total accelerating voltage, and screen/accelerator electrode hole-pair alignment is also found to contribute to perveance values.

  14. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  15. Space simulation experiments on reaction control system thruster plumes

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1972-01-01

    A space simulation procedure was developed for studying rocket plume contamination effects using a 5-pound bipropellant reaction control system thruster. Vacuum chamber pressures of 3 x 10 to the minus 5 torr (70 miles altitude) were achieved with the thruster firing in pulse trains consisting of eight pulses (50 msec on, 100 msec off, and seven minutes between pulse trains). The final vacuum was achieved by cooling all vacuum chamber surfaces to liquid helium temperature and by introducing a continuous argon leak of 48 std. cc/sec into the test chamber. An effort was made to simulate propellant system flow dynamics corresponding to actual spacecraft mission use. Fast time response liquid flow rate measurements showed that large variations occurred in the ratio of oxidizer to fuel flow for pulse-on times up to 120 msec. These variations could lead to poor combustion efficiency and the production of contamination.

  16. Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

    2004-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

  17. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30-cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with previously published experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  18. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  19. Long life monopropellant hydrazine thruster evaluation for Space Station Freedom application - Test results

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Cook, Joseph C.; Ragland, Brenda L.; Pate, Leah R.

    1992-01-01

    In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) conducted a hydrazine thruster technology demonstration program. The goal of this program was to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pounds-seconds, corresponding to a throughput of approximately 6400 pounds of propellant. Long life thrusters were procured from The Marquardt Company, Hamilton Standard, and Rocket Research Company, Testing at JSC was completed on the thruster designs to quantify life while simulating expected thruster firing duty cycles and durations for SSF. This paper presents a review of the SSF propulsion system hydrazine thruster requirements, summaries of the three long life thruster designs procured by JSC and acceptance test results for each thruster, the JSC thruster life evaluation test program, and the results of the JSC test program.

  20. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  1. Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David

    2008-01-01

    Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.

  2. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.

  3. Engineering Risk Assessment of Space Thruster Challenge Problem

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  4. Long life monopropellant hydrazine thruster evaluation for Space Station Freedom application

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Henderson, John B.

    1991-01-01

    In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) is conducting a hydrazine thruster technology demonstration program. The goal of this program is to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pound-seconds, corresponding to a throughput of approximately 6400 pounds of propellant, with a high performance (234 pound-seconds per propellant pound). Long life thrusters were procured from Hamilton Standard, The Marquardt Company, and Rocket Research Company. Testing has initiated on the thruster designs to identify life while simulating expected thruster firing duty cycles and durations for SSF using monopropellant grade hydrazine. This paper presents a review of the SSF propulsion system and requirements as applicable to hydrazine thrusters, the three long life thruster designs procured by JSC and the resultant acceptance test data for each thruster, and the JSC test plan and facility.

  5. Qualification of Commercial XIPS(R) Ion Thrusters for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Polk, James E.; Wirz, Richard E.; Snyder, J.Steven; Mikellides, Ioannis G.; Katz, Ira; Anderson, John

    2008-01-01

    Electric propulsion systems based on commercial ion and Hall thrusters have the potential for significantly reducing the cost and schedule-risk of Ion Propulsion Systems (IPS) for deep space missions. The large fleet of geosynchronous communication satellites that use solar electric propulsion (SEP), which will approach 40 satellites by year-end, demonstrates the significant level of technical maturity and spaceflight heritage achieved by the commercial IPS systems. A program to delta-qualify XIPS(R) ion thrusters for deep space missions is underway at JPL. This program includes modeling of the thruster grid and cathode life, environmental testing of a 25-centimeter electromagnetic (EM) thruster over DAWN-like vibe and temperature profiles, and wear testing of the thruster cathodes to demonstrate the life and benchmark the model results. This paper will present the delta-qualification status of the XIPS thruster and discuss the life and reliability with respect to known failure mechanisms.

  6. Fast Camera Imaging of Hall Thruster Ignition

    SciTech Connect

    C.L. Ellison, Y. Raitses and N.J. Fisch

    2011-02-24

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 μs. The cathode introduces azimuthal asymmetry, which persists for about 30 μs into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

  7. Development of a multiplexed electrospray micro-thruster with post-acceleration and beam containment

    NASA Astrophysics Data System (ADS)

    Lenguito, G.; Gomez, A.

    2013-10-01

    We report the development of a compact thruster based on Multiplexed ElectroSprays (MES). It relied on a microfabricated Si array of emitters coupled with an extractor electrode and an accelerator electrode. The accelerator stage was introduced for two purposes: containing beam opening and avoiding electrode erosion due to droplet impingement, as well as boosting specific impulse and thrust. Multiplexing is generally necessary as a thrust multiplier to reach eventually the level required (O(102) μN) by small satellites. To facilitate system optimization and debugging, we focused on a 7-nozzle MES device and compared its performance to that of a single emitter. To ensure uniformity of operation of all nozzles their hydraulic impedance was augmented by packing them with micrometer-size beads. Two propellants were tested: a solution of 21.5% methyl ammonium formate in formamide and the better performing pure ionic liquid ethyl ammonium nitrate (EAN). The 7-MES device spraying EAN at ΔV = 5.93 kV covered a specific impulse range from 620 s to 1900 s and a thrust range from 0.6 μN to 5.4 μN, at 62% efficiency. Remarkably, less than 1% of the beam was demonstrated to impact on the accelerator electrode, which bodes well for long-term applications in space.

  8. MOA - The Magnetic Field Amplified Thruster, a Novel Concept for a Pulsed Plasma Accelerator

    SciTech Connect

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2008-01-21

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept is MOA - Magnetic field Oscillating Amplified thruster. Based on computer simulations, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR (www.qasar.at), the company in Vienna, which has been set up to further develop and test the Alfven wave technology and its applications.

  9. MOA—The Magnetic Field Amplified Thruster, a Novel Concept for a Pulsed Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2008-01-01

    More than 60 years after the later Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept is MOA—Magnetic field Oscillating Amplified thruster. Based on computer simulations, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an `afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R&D activities at QASAR (www.qasar.at), the company in Vienna, which has been set up to further develop and test the Alfvén wave technology and its applications.

  10. Using the DC self-bias effect for simultaneous ion-electron beam generation in space thruster applications

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2014-10-01

    In this work we discuss ways to use the self-bias effect for broad ion-electron beam generation and present recent experimental results. In asymmetrical systems the self-bias effect leads to rectification of the applied RF voltage to a DC voltage dropped across the space charge sheath near to the electrode having smaller area. Thus, continuous ion acceleration is possible towards the smaller electrode with periodical electron extraction due to the RF plasma potential oscillations. We propose a new concept of neutralizer-free gridded space thruster called NEPTUNE. In this concept, the RF electrodes in contact with the plasma are replaced by a two-grid system such that ``the smaller electrode'' is now the external grid. The grids are biased with RF power across a capacitor. This allows to locate RF space charge sheath between the acceleration grids while still keeping the possibility of a DC self-bias generation. Here we present first proof-of-concept of the NEPTUNE thruster prototype and give basic parameters spacing for such thruster. Comparison of the main parameters of the beam generated using RF and a classical ``DC with neutralizer'' acceleration method shows several advantages of the NEPTUNE concept. This work was supported by a Marie Curie International Incoming Fellowships within the 7th European Community Framework (NEPTUNE PIIF-GA-2012-326054).

  11. Post-Test Analysis of the Deep Space One Spare Flight Thruster Ion Optics

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Sengupta, Anita; Brophy, John R.

    2004-01-01

    The Deep Space 1 (DSl) spare flight thruster (FT2) was operated for 30,352 hours during the extended life test (ELT). The test was performed to validate the service life of the thruster, study known and identify unknown life limiting modes. Several of the known life limiting modes involve the ion optics system. These include loss of structural integrity for either the screen grid or accelerator grid due to sputter erosion from energetic ions striking the grid, sputter erosion enlargement of the accelerator grid apertures to the point where the accelerator grid power supply can no longer prevent electron backstreaming, unclearable shorting between the grids causes by flakes of sputtered material, and rouge hole formation due to flakes of material defocusing the ion beam. Grid gap decrease, which increases the probability of electron backstreaming and of arcing between the grids, was identified as an additional life limiting mechanism after the test. A combination of accelerator grid aperture enlargement and grid gap decrease resulted in the inability to prevent electron backstreaming at full power at 26,000 hours of the ELT. Through pits had eroded through the accelerator grid webbing and grooves had penetrated through 45% of the grid thickness in the center of the grid. The upstream surface of the screen grid eroded in a chamfered pattern around the holes in the central portion of the grid. Sputter deposited material, from the accelerator grid, adhered to the downstream surface of the screen grid and did not spall to form flakes. Although a small amount of sputter deposited material protruded into the screen grid apertures, no rouge holes were found after the ELT.

  12. Optimum performance of MHD-augumented chemical rocket thrusters for space propulsion applications

    SciTech Connect

    Schulz, R.J.; Chapman, J.N.

    1995-12-31

    The use of magnetohydrodynamic (MHD) acceleration of a chemical rocket exhaust stream, to augment the thrust of small, space-propulsion type chemical thrusters was examined, with the purpose of identifying {open_quotes}optimum{close_quotes} performance. Optimum performance is defined herein as the highest spacecraft acceleration levels with concurrent highest specific impulse, that the hybrid propulsion system can generate, given a fixed mass flow of propellant and fixed chamber pressure (150 psia). The exhaust nozzle-MHD channel selected was of the simplest kind, a three-segmented Faraday generator, for simplicity in design, manufacture, and power control circuit assembly. The channel expanded in only one plane or direction, the plane intersecting the electrodes. The distance between the side walls was fixed. Three different fuel oxidizer combinations were investigated: H{sub 2} - O{sub 2}, fuel oil - O{sub 2}, and hydrazine - nitrogen tetroxide. These represent the spectrum of typical liquid rocket propellants. The fraction of the propellant flow representing potassium, as K{sub 2}CO{sub 3}, was kept constant at 1/2 percent of the total propellant flow. The results of the study verify that the MHD-augmented chemical thruster will be an important propulsion system option for space missions requiring accelerations of the order of milli-gravities with specific impulses of the order of 4,000 seconds. The system study showed that a 3-segmented, diverging Faraday channel with about a 2{degrees} divergence angle, enclosed by a 4 Tesla magnet, was capable of providing exhaust gas exit velocities of the order of 40000 m/s for all three propellant combinations. Hence, a hybrid propulsion system of the type identified here is capable of providing thrusts of the order of 400 Newtons, spacecraft accelerations of the order 2 milli-gravities, with electric power requirements of about 2.4 megawatts, based on propellant total mass flow rates of about 10 grams per second.

  13. On the capabilities of nano electrokinetic thrusters for space propulsion

    NASA Astrophysics Data System (ADS)

    Diez, F. J.; Hernaiz, G.; Miranda, J. J.; Sureda, M.

    2013-02-01

    A theoretical analysis considering the capabilities of nano electrokinetic thrusters for space propulsion is presented. The work describes an electro-hydro-dynamic model of the electrokinetic flow in nano-channels and represents the first attempt to exploit the advantages of the electrokinetic effect as the basis for a new class of nano-scale thrusters suitable for space propulsion. Among such advantages are their small volume, fundamental simplicity, overall low mass, and actuation efficiency. Their electrokinetic efficiency is affected by the slip length, surface charge, pH and molarity. These design variables are analyzed and optimized for the highest electrokinetic performance inside nano-channels. The optimization is done for power consumption, thrust and specific impulse resulting in high theoretical efficiency ˜99% with corresponding high thrust-to-power ratios. Performance curves are obtained for the electrokinetic design variables showing that high molarity electrolytes lead to high thrust and specific impulse values, whereas low molarities provide highest thrust-to-power ratios and efficiencies. A theoretically designed 100 nm wide by 1 μm long emitter optimized using the ideal performance charts developed would deliver thrusts from 5 to 43 μN, specific impulse from 60 to 210 s, and would have power consumption between 1-15 mW. It should be noted that although this is a detail analytical analysis no prototypes exist and any future experimental work will face challenges that could affect the final performance. By designing an array composed of thousands of these single electrokinetic emitters, it would result in a flexible and scalable propulsion system capable of providing a wide range of thrust control for different mission scenarios and maintaining very high efficiencies and thrust-to-power ratio by varying the number of emitters in use at any one time.

  14. A high power ion thruster for deep space missions.

    PubMed

    Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper. PMID:22852684

  15. A high power ion thruster for deep space missions

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  16. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  17. Space Shuttle reaction control system thruster metal nitrate removal and characterization

    NASA Technical Reports Server (NTRS)

    Saulsberry, R. L.; Mccartney, P. A.

    1993-01-01

    The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.

  18. Space Shuttle reaction control system thruster metal nitrate removal and characterization

    NASA Astrophysics Data System (ADS)

    Saulsberry, R. L.; McCartney, P. A.

    1993-11-01

    The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.

  19. Oxygen-hydrogen thrusters for Space Station auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Berkman, D. K.

    1984-01-01

    The feasibility and technology requirements of a low-thrust, high-performance, long-life, gaseous oxygen (GO2)/gaseous hydrogen (GH2) thruster were examined. Candidate engine concepts for auxiliary propulsion systems for space station applications were identified. The low-thrust engine (5 to 100 lb sub f) requires significant departure from current applications of oxygen/hydrogen propulsion technology. Selection of the thrust chamber material and cooling method needed or long life poses a major challenge. The use of a chamber material requiring a minimum amount of cooling or the incorporation of regenerative cooling were the only choices available with the potential of achieving very high performance. The design selection for the injector/igniter, the design and fabrication of a regeneratively cooled copper chamber, and the design of a high-temperature rhenium chamber were documented and the performance and heat transfer results obtained from the test program conducted at JPL using the above engine components presented. Approximately 115 engine firings were conducted in the JPL vacuum test facility, using 100:1 expansion ratio nozzles. Engine mixture ratio and fuel-film cooling percentages were parametrically investigated for each test configuration.

  20. Control structure interactions in large space structures Analysis using energy approach. [for constant and pulsed thrusters

    NASA Technical Reports Server (NTRS)

    Shrivastava, S. K.; Ried, R. C.; Manoharan, M. G.

    1983-01-01

    A simple energy approach to study the problem of control structure interactions in large space structures is presented. For the illustrative cases of free-free beam and free rectangular plate, the vibrational energy imparted during operation of constant and pulsed thrusters is found in a nondimensional form. Then based on a parametric study, suggestions are made on the choice of the thruster location and parameters to minimize the control structure interactions.

  1. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    SciTech Connect

    Y. Raitses; D. Staack; A. Smirnov; N.J. Fisch

    2005-03-16

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission.

  2. The Development of Plasma Thrusters and Its Importance for Space Technology and Science Education at University of Brasilia

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Calvoso, Lui; Gessini, Paolo; Ferreira, Ivan

    Since 2004 The Plasma Physics Laboratory of University of Brasilia (Brazil) is developing Hall Plasma Thurusters for Satellite station keeping and orbit control. The project is supported by CNPq, CAPES, FAP DF and from The Brazillian Space Agency-AEB. The project is part of The UNIESPAÇO Program for Space Activities Development in Brazillian Universities. In this work we are going to present the highlights of this project together with its vital contribution to include University of Brasilia in the Brazillian Space Program. Electric propulsion has already shown, over the years, its great advantages in being used as main and secondary thruster system of several space mission types. Between the many thruster concepts, one that has more tradition in flying real spacecraft is the Hall Effect Thruster (HET). These thrusters, first developed by the USSR in the 1960s, uses, in the traditional design, the radial magnetic field and axial electric field to trap electrons, ionize the gas and accelerate the plasma to therefore generate thrust. In contrast to the usual solution of using electromagnets to generate the magnetic field, the research group of the Plasma Physics Laboratory of University of Brasília has been working to develop new models of HETs that uses combined permanent magnets to generate the necessary magnetic field, with the main objective of saving electric power in the final system design. Since the beginning of this research line it was developed and implemented two prototypes of the Permanent Magnet Hall Thruster (PMHT). The first prototype, called P-HALL1, was successfully tested with the using of many diagnostics instruments, including, RF probe, Langmuir probe, Ion collector and Ion energy analyzer. The second prototype, P-HALL2, is currently under testing, and it’s planned the increasing of the plasma diagnostics and technology analysis, with the inclusion of a thrust balance, mass spectroscopy and Doppler broadening. We are also developing an

  3. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  4. Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; de Grys, Kristi; Mathers, Alex

    2010-01-01

    In a Qualification Life Test (QLT) of the BPT-4000 Hall thruster that recently accumulated greater than 10,000 h it was found that the erosion of the acceleration channel practically stopped after approximately 5,600 h. Numerical simulations of this thruster using a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver reveal that the process that led to this significant reduction of the erosion was multifaceted. It is found that when the channel receded from its early-in-life geometry to its steady-state configuration several changes in the near-wall plasma and sheath were induced by the magnetic field that, collectively, constituted an effective shielding of the walls from any significant ion bombardment. Because all such changes in the behavior of the ionized gas near the eroding surfaces were caused by the topology of the magnetic field there, we term this process "magnetic shielding."

  5. Ion Thruster and Power Processor Developed for the Deep Space 1 Mission

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    1999-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program has provided a single-string primary propulsion system to NASA's Deep Space 1 spacecraft. This spacecraft will carry about 81 kg of xenon propellant for the ion thruster, which can be throttled down from 2.3 to 0.5 kW as the spacecraft moves away from the Sun. The propellant load will provide about 20 months of propulsion at the one-half power throttle setpoint of 1.2 kW. This mission will validate the 2.5-kW ion propulsion system and will fly by the asteroid 1992 KD in 1999. If funding permits, Deep Space 1 also will encounter comets Wilson-Harrington and Borrelly in 2001. NASA Lewis Research Center's On-Board Propulsion Branch was responsible for the development of the 30-cm-diameter ion thruster, the 2.5-kW power processor unit (PPU), and the Digital Control and Interface Unit (DCIU) that controls the PPU/thruster/feed system and provides data and recovery from fault conditions. Lewis transferred the thruster and PPU technologies to the Hughes Electron Dynamics Division, which was selected to build two sets of flight thrusters, as well as the PPU's and DCIU's. Hughes subcontracted the DCIU development to Spectrum Astro Incorporated. The Jet Propulsion Laboratory (JPL) was primarily responsible for the NSTAR project management, thruster lifetests, the feed system, diagnostics, and the propulsion subsystem integration. A total of four engineering model thrusters and three breadboard PPU's were built, integrated, and tested. More than 50 development tests were conducted along with thruster design verification tests of 2000 and 1000 hours. In addition, an 8000-hr life demonstration test was successfully completed and demonstrated wear-rates consistent with full-power lifetimes in excess of 12,000 hours.

  6. Hydrogen-oxygen space shuttle ACPS thruster technology review

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.; Herr, P. N.

    1972-01-01

    The generation of technology for injectors, cooled thrust chambers, valves, and ignition systems is discussed. The thrusters are designed to meet a unique and stringent set of requirements, including: long life for 100 mission reuses, high performance, light weight, ability to provide long duration firings as well as small impulse bits, ability to operate over wide ranges of propellant inlet conditions and to withstand reentry heating. The program has included evaluation of thrusters designed for ambient temperature and cold gaseous propellants at the vehicle interface.

  7. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  8. Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Manzella, David

    2006-01-01

    Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.

  9. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  10. Lorentz Force Accelerator Technology Investigated

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; LaPointe, Michael R.; Arrington, Lynn A.; Kamhawi, Hani; Benson, Scott W.; Hoskins, W. Andrew

    2004-01-01

    The NASA Glenn Research Center is developing Lorenz force accelerators (LFAs) for a wide variety of space applications. These range from the precision control of formation-flying spacecraft to the primary propulsion system for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters (PPT) and magnetoplasmadynamic (MPD) thrusters.

  11. Plasma flows in MPD thrusters

    NASA Astrophysics Data System (ADS)

    Giannelli, Sebastiano; Andreussi, Tommaso; Pegoraro, Francesco; Andrenucci, Mariano

    2011-10-01

    A fundamental description of the plasma acceleration process in magnetoplasmadynamic (MPD) thrusters is presented. The properties of plasma flows in self-field MPD thrusters are investigated by adopting a stationary, axisymmetric, resistive magnetohydrodynamic plasma model. First, the acceleration process in a cylindrical MPD channel is analyzed by neglecting the gasdynamic pressure term. A class of solutions is presented, which allows for a simple analytical treatment of the flow. The physical and mathematical nature of the flow is thus described in terms of two characteristic parameters: a dimensionless channel length, scaled with the plasma resistive length, and a dimensionless parameter which depends on the applied voltage. Then, the effect of gasdynamic pressure is investigated. The presented approach gives an effective description of the plasma acceleration process and defines a framework for the parametric analysis of plasma flows in MPD thrusters. Alta SpA: www.alta-space.com.

  12. Expanding the Capabilities of the Pulsed Plasma Thruster for In-Space and Atmospheric Operation

    NASA Astrophysics Data System (ADS)

    Johnson, Ian Kronheim

    Of all in-space propulsion systems to date, the Pulsed Plasma Thruster (PPT) is unique in its simplicity and wide range of operational parameters. This study examined multiple uses of the thruster for in-space and atmospheric propulsion, as well as the creation of a CubeSat satellite and atmospheric airship as test beds for the thruster. The PPT was tested as a solid-propellant feed source for the High Power Helicon Thruster, a compact plasma source capable of generating order of magnitude higher plasma densities than comparable power level systems. Replacing the gaseous feed system reduced the thruster size and complexity, as well as allowing for extremely discrete discharges, minimizing the influence of wall effects. Teflon (C2F4) has been the traditional propellant for PPTs due to a high exhaust velocity and ability to ablate without surface modification over long durations. A number of alternative propellants, including minerals and metallics commonly found on asteroids, were tested for use with the PPT. Compounds with significant fractions of sulfur showed the highest performance increase, with specific thrusts double that of Teflon. A PPT with sulfur propellant designed for CubeSat operation, as well as the subsystems necessary for autonomous operation, was built and tested in the laboratory. The PPT was modified for use at atmospheric pressures where the impulse was well defined as a function of the discharge chamber volume, capacitor energy, and background pressure. To demonstrate that the air-breathing PPT was a viable concept the device was launched on two atmospheric balloon flights.

  13. Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster

    SciTech Connect

    Rafalskyi, Dmytro Popelier, Lara; Aanesland, Ane

    2014-02-07

    The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition, and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied

  14. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  15. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    The Plasma Physics Laboratory of UnB has been developing a Permanent Magnet Hall Thruster (PHALL) for the UNIESPAÇO program, part of the Space Activities Program conducted by AEB- The Brazillian Space Agency since 2004. Electric propulsion is now a very successful method for primary and secondary propulsion systems. It is essential for several existing geostationary satellite station keeping systems and for deep space long duration solar system missions, where the thrusting system can be designed to be used on orbit transfer maneuvering and/or for satellite attitude control in long term space missions. Applications of compact versions of Permanent Magnet Hall Thrusters on future brazillian space missions are needed and foreseen for the coming years beginning with the use of small divergent cusp field (DCFH) Hall Thrusters type on CUBESATS ( 5-10 kg , 1W-5 W power consumption) and on Micro satellites ( 50- 100 kg, 10W-100W). Brazillian (AEB) and German (DLR) space agencies and research institutions are developing a new rocket dedicated to small satellite launching. The VLM- Microsatellite Launch Vehicle. The development of PHALL compact versions can also be important for the recently proposed SBG system, a future brazillian geostationary satellite system that is already been developed by an international consortium of brazillian and foreign space industries. The exploration of small bodies in the Solar System with spacecraft has been done by several countries with increasing frequency in these past twenty five years. Since their historical beginning on the sixties, most of the Solar System missions were based on gravity assisted trajectories very much depended on planet orbit positioning relative to the Sun and the Earth. The consequence was always the narrowing of the mission launch window. Today, the need for Solar System icy bodies in situ exploration requires less dependence on gravity assisted maneuvering and new high precision low thrust navigation methods

  16. A study of cylindrical Hall thruster for low power space applications

    SciTech Connect

    Y. Raitses; N.J. Fisch; K.M. Ertmer; C.A. Burlingame

    2000-07-27

    A 9 cm cylindrical thruster with a ceramic channel exhibited performance comparable to the state-of-the-art Hall thrusters at low and moderate power levels. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations. Preliminary experiments on a 2 cm cylindrical thruster suggest the possibility of a high performance micro Hall thruster.

  17. The MPD arcjet thruster system for Electric Propulsion Experiment onboard Space Flyer Unit

    NASA Astrophysics Data System (ADS)

    Toki, Kyoichiro; Shimizu, Yukio; Kuriki, Kyoichi; Suzuki, Hiroshi; Kunii, Yoshinori

    The Electric Propulsion Experiment (EPEX) will be tested in the Space Flyer Unit Mission One (SFU-1) as the first space-flown hydrazine MPD arcjet thruster system in the world. The development was continued after the breadboard model system endurance test in 1988 to start the engineering model fabrication/test. Presently the components of EPEX are scheduled to be integrated in a Payload Unit (PLU) box together with two other experiments in order to dedicate them to a system integration test following several environment tests.

  18. High-Power Magnetoplasmadynamic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several of the bold new interplanetary and deep space missions envisioned by the Human Exploration and Development of Space (HEDS) Strategic Enterprise. As the lead center for electric propulsion, the NASA Glenn Research Center is actively involved in the design, development, and testing of high-power electromagnetic technologies to meet these demanding mission requirements. One concept of particular interest is the magnetoplasmadynamic (MPD) thruster, shown schematically in the preceding figure. In its basic form, the MPD thruster consists of a central cathode surrounded by a concentric cylindrical anode. A high-current arc is struck between the anode and cathode, which ionizes and accelerates a gas (plasma) propellant. In the self-field version of the thruster, an azimuthal magnetic field generated by the current returning through the cathode interacts with the radial discharge current flowing through the plasma to produce an axial electromagnetic body force, providing thrust. In applied field-versions of the thruster, a magnetic field coil surrounding the anode is used to provide additional radial and axial magnetic fields that can help stabilize and accelerate the plasma propellant. The following figure shows an experimental megawatt-class MPD thruster developed at Glenn. The MPD thruster is fitted inside a magnetic field coil, which in turn is mounted on a thrust stand supported by thin metal flexures. A calibrated position transducer is used to determine the force provided by the thruster as a function of thrust stand displacement. Power to the thruster is supplied by a 250-kJ capacitor bank, which provides up to 30- MW to the thruster for a period of 2 msec. This short period of time is sufficient to establish thruster performance similar to steady-state operation, and it allows a number of thruster designs to be quickly and economically evaluated. In concert

  19. Toroidal Plasma Thruster for Interplanetary and Interstellar Space Flights

    SciTech Connect

    N.N. Gorelenkov; L.E. Zakharov; and M.V. Gorelenkova

    2001-07-11

    This work involves a conceptual assessment for using the toroidal fusion reactor for deep space interplanetary and interstellar missions. Toroidal thermonuclear fusion reactors, such as tokamaks and stellarators, are unique for space propulsion, allowing for a design with the magnetic configuration localized inside toroidal magnetic field coils. Plasma energetic ions, including charged fusion products, can escape such a closed configuration at certain conditions, a result of the vertical drift in toroidal rippled magnetic field. Escaping particles can be used for direct propulsion (since toroidal drift is directed one way vertically) or to create and heat externally confined plasma, so that the latter can be used for propulsion. Deuterium-tritium fusion neutrons with an energy of 14.1 MeV also can be used for direct propulsion. A special design allows neutrons to escape the shield and the blanket of the tokamak. This provides a direct (partial) conversion of the fusion energy into the directed motion of the propellant. In contrast to other fusion concepts proposed for space propulsion, this concept utilizes the natural drift motion of charged particles out of the closed magnetic field configuration.

  20. Laser Fine-Adjustment Thruster For Space Vehicles

    SciTech Connect

    Rezunkov, Yu. A.; Egorov, M. S.; Repina, E. V.; Safronov, A. L.; Rebrov, S. G.

    2010-05-06

    To the present time, a few laser propulsion engine devices have been developed by using dominant mechanisms of laser propulsion. Generally these mechanisms are laser ablation, laser breakdown of gases, and laser detonation waves that are induced due to extraction of the internal energy of polymer propellants. In the paper, we consider the Aero-Space Laser Propulsion Engine (ASLPE) developed earlier, in which all of these mechanisms are realized via interaction of laser radiation with polymers both in continuous wave (CW) and in repetitively pulsed modes of laser operation. The ASLPE is considered to be exploited as a unit of a laser propulsion device being arranged onboard space vehicles moving around the Earth or in interplanetary missions and intended to correct the vehicles orbits. To produce a thrust, a power of the solar pumped lasers designed to the present time is considered in the paper. The problem of increasing the efficiency of the laser propulsion device is analyzed as applied to space missions of vehicles by optimizing the laser propulsion propellant composition.

  1. Plasmas for space propulsion

    NASA Astrophysics Data System (ADS)

    Ahedo, Eduardo

    2011-12-01

    Plasma thrusters are challenging the monopoly of chemical thrusters in space propulsion. The specific energy that can be deposited into a plasma beam is orders of magnitude larger than the specific chemical energy of known fuels. Plasma thrusters constitute a vast family of devices ranging from already commercial thrusters to incipient laboratory prototypes. Figures of merit in plasma propulsion are discussed. Plasma processes and conditions differ widely from one thruster to another, with the pre-eminence of magnetized, weakly collisional plasmas. Energy is imparted to the plasma via either energetic electron injection, biased electrodes or electromagnetic irradiation. Plasma acceleration can be electrothermal, electrostatic or electromagnetic. Plasma-wall interaction affects energy deposition and erosion of thruster elements, and thus is central for thruster efficiency and lifetime. Magnetic confinement and magnetic nozzles are present in several devices. Oscillations and turbulent transport are intrinsic to the performances of some thrusters. Several thrusters are selected in order to discuss these relevant plasma phenomena.

  2. Hydrogen-oxygen auxiliary propulsion for the space shuttle. Volume 2: Low pressure thrusters

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An abbreviated program was conducted to investigate igniter, injector, and thrust chamber technology for a 10.3 N/cm2 (15 psia) chamber pressure, 6660 N (1500 lbf) gaseous H2/O2 APS thruster for the Space Shuttle Vehicle. Successful catalytic igniter tests were conducted with ambient and cold propellants. Injector testing with a heat sink chamber (MR = 2.5, area ratio = 5.0) gave a measured specific impulse of 386 sec with 11% of the fuel used as film coolant. This coolant flow rate was demonstrated to be more than adequate to cool a spun adiabatic wall, flightweight thrust chamber.

  3. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    The Plasma Physics Laboratory of UnB has been developing a Permanent Magnet Hall Thruster (PHALL) for the UNIESPAÇO program, part of the Space Activities Program conducted by AEB- The Brazillian Space Agency since 2004. Electric propulsion is now a very successful method for primary and secondary propulsion systems. It is essential for several existing geostationary satellite station keeping systems and for deep space long duration solar system missions, where the thrusting system can be designed to be used on orbit transfer maneuvering and/or for satellite attitude control in long term space missions. Applications of compact versions of Permanent Magnet Hall Thrusters on future brazillian space missions are needed and foreseen for the coming years beginning with the use of small divergent cusp field (DCFH) Hall Thrusters type on CUBESATS ( 5-10 kg , 1W-5 W power consumption) and on Micro satellites ( 50- 100 kg, 10W-100W). Brazillian (AEB) and German (DLR) space agencies and research institutions are developing a new rocket dedicated to small satellite launching. The VLM- Microsatellite Launch Vehicle. The development of PHALL compact versions can also be important for the recently proposed SBG system, a future brazillian geostationary satellite system that is already been developed by an international consortium of brazillian and foreign space industries. The exploration of small bodies in the Solar System with spacecraft has been done by several countries with increasing frequency in these past twenty five years. Since their historical beginning on the sixties, most of the Solar System missions were based on gravity assisted trajectories very much depended on planet orbit positioning relative to the Sun and the Earth. The consequence was always the narrowing of the mission launch window. Today, the need for Solar System icy bodies in situ exploration requires less dependence on gravity assisted maneuvering and new high precision low thrust navigation methods

  4. Further study of the effect of the downstream plasma condition on accelerator grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1992-01-01

    Further numerical results are presented of earlier particle-in-cell/Monte Carlo calculations of accelerator grid erosion in an ion thruster. A comparison between numerical and experimental results suggests that the accelerator grid impingement is primarily due to ions created far downstream from the accelerator grid. In particular, for the same experimental conditions as those of Monheiser and Wilbur at Colorado State University, it is found that a downstream plasma density of 2 x 10 exp 14/cu m is required to give the same ratio of accelerator grid impingement current to beam current (5 percent). For this condition, a potential hill is found in the downstream region of 2.5 V.

  5. Conical solar absorber/thruster for space propulsion

    SciTech Connect

    Strumpf, H.J.; Borghese, J.B.; Keating, R.F.

    1995-11-01

    Solar-powered space propulsion uses solar heating of a propellant such as hydrogen to impart thrust to a rocket when the hydrogen exists through an appropriately designed nozzle. Because of the low molecular weight of hydrogen, exhaust velocities, and hence specific impulses, can potentially be much greater than for chemical combustion of fuel. A very efficient solar thermal absorber design has been developed. The design consists of two interwound helical coils of rhenium tubing, through which the propellant flows to be heated before being exhausted out a rhenium nozzle. The conical absorbing surface is configured to conform to the extreme solar rays from a solar concentrator; i.e., the receiver apex angle is designed to match the concentrator apex angle. This shape helps to minimize the amount of reflected or emitted energy lost through the receiver aperture.

  6. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  7. Permanent magnet Hall Thrusters development and applications on future brazilian space missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre A.; Miranda, Rodrigo; Schelling, Adriane; de Souza Alves, Lais; Gonçalves Costa, Ernesto; de Oliveira Coelho Junior, Helbert; Castelo Branco, Artur; de Oliveira Lopes, Felipe Nathan

    2015-10-01

    The Plasma Physics Laboratory (PPLUnB) has been developing a Permanent Magnet Hall Thruster (PHALL) for the Space Research Program for Universities (UNIESPAÇO), part of the Brazilian Space Activities Program (PNAE) since 2004. The PHALL project consists on a plasma source design, construction and characterization of the Hall type that will function as a plasma propulsion engine and characterized by several plasma diagnostics sensors. PHALL is based on a plasma source in which a Hall current is generated inside a cylindrical annular channel with an axial electric field produced by a ring anode and a radial magnetic field produced by permanent magnets. In this work it is shown a brief description of the plasma propulsion engine, its diagnostics instrumentation and possible applications of PHALL on orbit transfer maneuvering for future Brazilian geostationary satellite space missions.

  8. LLNL contributions to MPD thrusters for SEI

    NASA Technical Reports Server (NTRS)

    Hooper, Edwin Bickford

    1991-01-01

    Some of the topics covered with respect to the Lawrence Livermore National Laboratory's (LLNL's) contributions to Magnetoplasmadynamic (MPD) Thrusters for the Space Exploration Initiative (SEI) include: an IR camera, plasma-induced erosion/redeposition, the Mirror Fusion Test Facility-B (MFTF-B), the Thruster Lifetime Test Facility, the RACE Compact Torus Accelerator Facility, and a RACE program summary. Some of the other topics addressed include: flux contours for HAM simulation, comparison of RACE data of plasma ring formation with the HAM 2-D magnetohydrodynamic code, and the 2-D Ring Acceleration Code (TRAC).

  9. Space charge compensation in laser particle accelerators

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    1999-07-01

    Laser particle acceleration (LPA) involves the acceleration of particle beams by electromagnetic waves with relatively short wavelength compared with conventional radio-frequency systems. These short length scales raise the question whether space charge effects may be a limiting factor in LPA performance. This is analyzed in two parts of an accelerator system, the acceleration sections and the drift region of the prebuncher. In the prebuncher, space charge can actually be converted to an advantage for minimizing the energy spread. In the accelerator sections, the laser fields can compensate for space charge forces, but the compensation becomes weaker for high beam energy.

  10. Metallographic Preparation of Space Shuttle Reaction Control System Thruster Electron Beam Welds for Electron Backscatter Diffraction

    NASA Technical Reports Server (NTRS)

    Martinez, James

    2011-01-01

    A Space Shuttle Reaction Control System (RCS) thruster failed during a firing test at the NASA White Sands Test Facility (WSTF), Las Cruces, New Mexico. The firing test was being conducted to investigate a previous electrical malfunction. A number of cracks were found associated with the fuel closure plate/injector assembly (Fig 1). The firing test failure generated a flight constraint to the launch of STS-133. A team comprised of several NASA centers and other research institutes was assembled to investigate and determine the root cause of the failure. The JSC Materials Evaluation Laboratory was asked to compare and characterize the outboard circumferential electron beam (EB) weld between the fuel closure plate (Titanium 6Al-4V) and the injector (Niobium C-103 alloy) of four different RCS thrusters, including the failed RCS thruster. Several metallographic challenges in grinding/polishing, and particularly in etching were encountered because of the differences in hardness, ductility, and chemical resistance between the two alloys and the bimetallic weld. Segments from each thruster were sectioned from the outboard weld. The segments were hot-compression mounted using a conductive, carbon-filled epoxy. A grinding/polishing procedure for titanium alloys was used [1]. This procedure worked well on the titanium; but a thin, disturbed layer was visible on the niobium surface by means of polarized light. Once polished, each sample was micrographed using bright field, differential interference contrast optical microscopy, and scanning electron microscopy (SEM) using a backscatter electron (BSE) detector. No typical weld anomalies were observed in any of the cross sections. However, areas of large atomic contrast were clearly visible in the weld nugget, particularly along fusion line interfaces between the titanium and the niobium. This prompted the need to better understand the chemistry and microstructure of the weld (Fig 2). Energy Dispersive X-Ray Spectroscopy (EDS

  11. The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.

  12. Operational characteristics and plasma measurements in cylindrical Hall thrusters

    SciTech Connect

    Shirasaki, Atsushi; Tahara, Hirokazu

    2007-04-01

    The cylindrical Hall thruster (CHT) is an attractive approach to achieve a long lifetime thruster operation especially in low power space applications. Because of the larger volume-to-surface ratio than conventional coaxial Hall thrusters, the cylindrical Hall thrusters are characterized by a reduced heating of the thruster parts and potential lower erosion. Existing CHTs can feature a short coaxial channel in order to sustain a high ionization in the thruster discharge. A 5.6 cm diameter cylindrical Hall thruster was developed and operated with and without a short coaxial region of the thruster channel, in the power range of 70-300 W. It is shown that the CHT without coaxial region can operate stable and achieve higher thrust efficiency, 22%-32% more than that with a coaxial region. Plasma probe measurements inside the thruster channel and ion energy measurements in the plasma plume suggest that the ionization/acceleration region in the CHT is located near the anode region where a radial magnetic field is stronger.

  13. 8-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8-cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5-cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8-cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  14. Development of a high power microwave thruster, with a magnetic nozzle, for space applications

    NASA Technical Reports Server (NTRS)

    Power, John L.; Chapman, Randall A.

    1989-01-01

    This paper describes the current development of a high-power microwave electrothermal thruster (MET) concept at the NASA Lewis Research Center. Such a thruster would be employed in space for applications such as orbit raining, orbit maneuvering, station change, and possibly trans-lunar or trans-planetary propulsion of spacecraft. The MET concept employs low frequency continuous wave (CW) microwave power to create and continuously pump energy into a flowing propellant gas at relative high pressure via a plasma discharge. The propellant is heated to very high bulk temperatures while passing through the plasma discharge region and then is expanded through a throat-nozzle assembly to produce thrust, as in a conventional rocket engine. Apparatus, which is described, is being assembled at NASA Lewis to test the MET concept to CW power levels of 30 kW at a frequency of 915 MHz. The microwave energy is applied in a resonant cavity applicator and is absorbed by a plasma discharge in the flowing propellant. The ignited plasma acts as a lossy load, and with optimal tuning, energy absorption efficiencies over 95 percent (based on the applied microwave power) are expected. Nitrogen, helium, and hydrogen will be tested as propellants in the MET, at discharge chamber pressures to 10 atm.

  15. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi

    2007-07-24

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________

  16. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch

    2007-11-27

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  17. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  18. Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Bin; Cheng, Jiao; Liu, Chang; York, Thomas M.

    2012-07-01

    The particle-in-cell method previously described in paper (I) has been applied to the investigation of acceleration mechanisms in applied-field magnetoplasmadynamic thrusters. This new approach is an alternative to magnetohydrodynamics models and allows nonlocal dynamic effects of particles and improved transport properties. It was used to model a 100 kW, steady-state, applied-field, argon magnetoplasmadynamic thruster to study the physical acceleration processes with discharge currents of 1000-1500 A, mass flow rates of 0.025-0.1 g/s and applied magnetic field strengths of 0.034-0.102 T. The total thrust calculations were used to verify the theoretical approach by comparison with experimental data. Investigations of the acceleration model offer an underlying understanding of applied-field magnetoplasmadynamic thrusters, including the following conclusions: (1) swirl acceleration mechanism is the dominant contributor to the plasma acceleration, and self-magnetic, Hall, gas-dynamic, and swirl acceleration mechanisms are in an approximate ratio of 1:10:10:100; (2) the Hall acceleration produced mainly by electron swirl is insensitive to the change of externally applied magnetic field and shows only slight increases when the current is raised; (3) self-magnetic acceleration is normally negligible for all cases, while the gas-dynamic acceleration contribution increases with increasing applied magnetic field strength, discharge current, and mass flow rate.

  19. Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms

    SciTech Connect

    Tang Haibin; Cheng Jiao; Liu Chang; York, Thomas M.

    2012-07-15

    The particle-in-cell method previously described in paper (I) has been applied to the investigation of acceleration mechanisms in applied-field magnetoplasmadynamic thrusters. This new approach is an alternative to magnetohydrodynamics models and allows nonlocal dynamic effects of particles and improved transport properties. It was used to model a 100 kW, steady-state, applied-field, argon magnetoplasmadynamic thruster to study the physical acceleration processes with discharge currents of 1000-1500 A, mass flow rates of 0.025-0.1 g/s and applied magnetic field strengths of 0.034-0.102 T. The total thrust calculations were used to verify the theoretical approach by comparison with experimental data. Investigations of the acceleration model offer an underlying understanding of applied-field magnetoplasmadynamic thrusters, including the following conclusions: (1) swirl acceleration mechanism is the dominant contributor to the plasma acceleration, and self-magnetic, Hall, gas-dynamic, and swirl acceleration mechanisms are in an approximate ratio of 1:10:10:100; (2) the Hall acceleration produced mainly by electron swirl is insensitive to the change of externally applied magnetic field and shows only slight increases when the current is raised; (3) self-magnetic acceleration is normally negligible for all cases, while the gas-dynamic acceleration contribution increases with increasing applied magnetic field strength, discharge current, and mass flow rate.

  20. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  1. A permanent-magnet helicon thruster

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.

    2014-10-01

    Gridded ion thrusters are the classical method for propelling spacecraft to their designed orbital velocities. These thrusters generate electrons with a thermionic cathode and accelerate them with positive grids, creating a plasma. Ions are extracted from the plasma and accelerated with another grid and ejected from the spacecraft to propel it. An external electron source is used to neutralize the ion beam, preventing the spacecraft from charging up negatively. Hall thrusters also accelerate ions electrostatically, but the electrons are held back not by grids but by a magnetic field. A cool electron source is needed here also. Helicon thrusters eject neutral plasma, and the ions are given a kick in an external ``double layer,'' which forms as a sheath in free space. We have miniaturized a helicon thruster by using a permanent magnet over a small discharge tube. The ejected plasma is measured with a retarding-field ion analyzer. At low pressures, the RFID peaks around 27 eV and can be increased by biasing the top plate, thus achieving a reasonable specific impulse.

  2. Development of D+3He Fusion Electric Thrusters and Power Supplies for Space

    NASA Astrophysics Data System (ADS)

    Morse, Thomas M.

    1994-07-01

    Development of D+3He Fusion Electric Thrusters (FET) and Power Supplies (FPS) should occur at a lunar base because of the following: availability of helium-3, a vacuum better than on Earth, low K in shade reachable by radiant cooling, supply of ``high temp'' superconducting ceramic-metals, and a low G environment. The early FET will be much smaller than an Apollo engine, with specific impulse of 10,000-100,000-s. Solar power and low G will aid early development. To counter the effect of low G on humans, centrifuges will be employed for sleeping and resting. Work will be done by telerobotic view control. The FPS will be of comparable size, and will generate power mainly by having replaceable rectennas, resonant to the fusion synchrotron radiation. FPSs are used for house keeping power and initiating superconduction. Spaceships will carry up to ten FETs and two FPSs. In addition to fusion fuel, the FET will inject H or Li low mass propellant into the fusion chamber. Developing an FET would be difficult on Earth. FET spaceships will park between missions in L1, and an FET Bus will fetch humans/supplies from Moon and Earth. Someday FETs, with rocket assist, will lift spaceships from Earth, and make space travel to planets far cheaper, faster, and safer, than at present. Too long a delay due to the space station, or the huge cost of getting into space by current means, will damage the morale of the space program.

  3. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  4. Magnetoplasmadynamic thruster applications

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.

    1976-01-01

    Advance study activities within NASA indicate that electric propulsion will be required to make certain types of potential missions feasible. The large power levels under consideration make magnetoplasmadynamic thrusters a good candidate for these applications since this type of electric thruster is best suited to operation at high power levels. This paper examines the status of the magnetoplasmadynamic thruster and compares it to the ion thruster which also is a candidate. The use of these two types of electric propulsion devices for orbit raising of a self-powered large satellite is examined from a cost standpoint. In addition the use of nuclear electric propulsion is described for use as both a near-earth space tug and for an interplanetary exploration vehicle. These preliminary examinations indicate that the magnetoplasmadynamic thruster is the lowest cost thruster and therefore merits serious consideration for these applications.

  5. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  6. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The space experiments with particle accelerators (SEPAC) instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  7. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon

  8. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back

  9. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  10. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  11. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  12. NASA Marshall Space Flight Center Tri-gas Thruster Performance Characterization

    NASA Technical Reports Server (NTRS)

    Dorado, Vanessa; Grunder, Zachary; Schaefer, Bryce; Sung, Meagan; Pedersen, Kevin

    2013-01-01

    Historically, spacecraft reaction control systems have primarily utilized cold gas thrusters because of their inherent simplicity and reliability. However, cold gas thrusters typically have a low specific impulse. It has been determined that a higher specific impulse can be achieved by passing a monopropellant fluid mixture through a catalyst bed prior to expulsion through the thruster nozzle. This research analyzes the potential efficiency improvements from using tri-gas, a mixture of hydrogen, oxygen, and an inert gas, which in this case is helium. Passing tri-gas through a catalyst causes the hydrogen and oxygen to react and form water vapor, ultimately heating the exiting fluid and generating a higher specific impulse. The goal of this project was to optimize the thruster performance by characterizing the effects of varying several system components including catalyst types, catalyst lengths, and initial catalyst temperatures.

  13. MPD Thruster Performance Analytic Models

    NASA Astrophysics Data System (ADS)

    Gilland, James; Johnston, Geoffrey

    2003-01-01

    Magnetoplasmadynamic (MPD) thrusters are capable of accelerating quasi-neutral plasmas to high exhaust velocities using Megawatts (MW) of electric power. These characteristics make such devices worthy of consideration for demanding, far-term missions such as the human exploration of Mars or beyond. Assessment of MPD thrusters at the system and mission level is often difficult due to their status as ongoing experimental research topics rather than developed thrusters. However, in order to assess MPD thrusters' utility in later missions, some adequate characterization of performance, or more exactly, projected performance, and system level definition are required for use in analyses. The most recent physical models of self-field MPD thrusters have been examined, assessed, and reconfigured for use by systems and mission analysts. The physical models allow for rational projections of thruster performance based on physical parameters that can be measured in the laboratory. The models and their implications for the design of future MPD thrusters are presented.

  14. MPD Thruster Performance Analytic Models

    NASA Technical Reports Server (NTRS)

    Gilland, James; Johnston, Geoffrey

    2007-01-01

    Magnetoplasmadynamic (MPD) thrusters are capable of accelerating quasi-neutral plasmas to high exhaust velocities using Megawatts (MW) of electric power. These characteristics make such devices worthy of consideration for demanding, far-term missions such as the human exploration of Mars or beyond. Assessment of MPD thrusters at the system and mission level is often difficult due to their status as ongoing experimental research topics rather than developed thrusters. However, in order to assess MPD thrusters utility in later missions, some adequate characterization of performance, or more exactly, projected performance, and system level definition are required for use in analyses. The most recent physical models of self-field MPD thrusters have been examined, assessed, and reconfigured for use by systems and mission analysts. The physical models allow for rational projections of thruster performance based on physical parameters that can be measured in the laboratory. The models and their implications for the design of future MPD thrusters are presented.

  15. MPD Thruster Performance Analytic Models

    NASA Technical Reports Server (NTRS)

    Gilland, James; Johnston, Geoffrey

    2003-01-01

    Magnetoplasmadynamic (MPD) thrusters are capable of accelerating quasi-neutral plasmas to high exhaust velocities using Megawatts (MW) of electric power. These characteristics make such devices worthy of consideration for demanding, far-term missions such as the human exploration of Mars or beyond. Assessment of MPD thrusters at the system and mission level is often difficult due to their status as ongoing experimental research topics rather than developed thrusters. However, in order to assess MPD thrusters utility in later missions, some adequate characterization of performance, or more exactly, projected performance, and system level definition are required for use in analyses. The most recent physical models of self-field MPD thrusters have been examined, assessed, and reconfigured for use by systems and mission analysts. The physical models allow for rational projections of thruster performance based on physical parameters that can be measured in the laboratory. The models and their implications for the design of future MPD thrusters are presented.

  16. The interaction of the atmosphere with the space shuttle thruster plume: The NH (A-X) 336-nm emission

    NASA Astrophysics Data System (ADS)

    Viereck, Rodney A.; Murad, Edmond; Knecht, David J.; Pike, Charles P.; Bernstein, Lawrence S.; Elgin, James B.; Broadfoot, A. Lyle

    1996-03-01

    Observations of the optical emissions from the space shuttle's thrusters have been examined. Particular attention has been paid to the interaction of the thruster plume with the atmosphere. Emissions from CN, CH, C2, HNO, and NO2 have been observed near the nozzle of the thruster in the vacuum core region of the plume, but these emissions are the direct result of the combustion process. Other emissions including OI and NH have been observed in the downstream region of the plume, where the plume effluents interact with the atmosphere. The NH emission is one of the most dominant UV/visible wavelength emissions observed in the plumes. This emission was observed to extend several thousand meters from the shuttle, and detailed analysis shows that the total intensity of the emission depends on the ram angle (angle in the shuttle reference frame between the plume effluents and the ramming atmosphere) and altitude, indicating an interaction process with the atmosphere. Data from two observational experiments are presented. The Air Force Maui Optical Site (AMOS) experiment includes ground-based spectral and spatial measurements of the shuttle plumes as the thrusters were fired over the AMOS site on top of Haliakala Volcano on the island of Maui in the mid-Pacific. The GLO experiment was flown in the payload bay of the space shuttle and also includes spectral and spatial measurements of the shuttle plumes. During both of these experiments, the primary reaction control system (PRCS) engines (870 lb (394 kgf) thrust) and Vernier reaction control system (VRCS) engines (25 lb (11 kgf) thrust) were fired at various angles relative to the ram, thus providing a range of collision velocities (4.5-11 km/s) between the thruster plume and the atmosphere. In this report the dependence of the NH emission on ram angle, thruster size, and distance from the shuttle is presented and analyzed using a three-dimensional Monte Carlo simulation of the plume-atmosphere interactions called

  17. Space experiments with particle accelerators

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Roberts, W. T.; Chappell, C. R.; Reasoner, D. L.; Garriott, O. K.; Taylor, W. W. L.

    1984-01-01

    Electron and plasma beams and neutral gas plumes were injected into the space environment by instruuments on Spacelab 1, and various diagnostic measurements including television camera observations were performed. The results yield information on vehicle charging and neutralization, beam-plasma interactions, and ionization enhancement by neutral beam injection.

  18. Development of Electrothermal Pulsed Plasma Thrusters for Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship

    SciTech Connect

    Ishii, Yushuke; Yamamoto, Tsuyoshi; Yamada, Minetsugu; Tahara, Hirokazu

    2008-12-31

    The Project of Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship (PROITERES) was started at Osaka Institute of Technology. In PROITERES, a 10-kg small satellite with electrothermal pulsed plasma thrusters (PPTs), named JOSHO, will be launched in 2010. The main mission is powered flight of small satellite by electric thruster itself. Electrothermal PPTs were studied with both experiments and numerical simulations. An electrothermal PPT with a side-fed propellant feeding mechanism achieved a total impulse of 3.6 Ns with a repetitive 10000-shot operation. An unsteady numerical simulation showed the existence of considerable amount of ablation delaying to the discharge. However, it was also shown that this phenomenon should not be regarded as the 'late time ablation' for electrothermal PPTs.

  19. The MPD thruster program at JPL

    NASA Technical Reports Server (NTRS)

    Barnett, John; Goodfellow, Keith; Polk, James; Pivirotto, Thomas

    1991-01-01

    The main topics covered include: (1) the Space Exploration Initiative (SEI) context; (2) critical issues of MPD Thruster design; and (3) the Magnetoplasmadynamic (MPD) Thruster Program at JPL. Under the section on the SEI context the nuclear electric propulsion system and some electric thruster options are addressed. The critical issues of MPD Thruster development deal with the requirements, status, and approach taken. The following areas are covered with respect to the MPD Thruster Program at JPL: (1) the radiation-cooled MPD thruster; (2) the High-Current Cathode Test Facility; (3) thruster component thermal modeling; and (4) alkali metal propellant studies.

  20. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  1. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  2. Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Randolph, Thomas M.; Franklin, Garth W.; Hruby, Vlad; Spence, Douglas; Demmons, Nathaniel; Roy, Thomas; Ehrbar, Eric; Zwahlen, Jurg; Martin, Roy; Connolly, William

    2008-01-01

    Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.

  3. Modeling the Hall Thruster

    SciTech Connect

    Fisch, N.J.; Fruchtman, A.

    1998-08-01

    The acceleration of the plasma in the Hall thruster to supersonic velocities is examined by the use of a steady state model. Flows that are smooth across the sonic transition plane are found. The possibility of generating flows in which the acceleration across the sonic plane is abrupt, is also studied.

  4. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    NASA Astrophysics Data System (ADS)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  5. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  6. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  7. High-Isp Mode Of Pulsed Laser-Electromagnetic Hybrid Accelerator For Space Propulsion Applications

    SciTech Connect

    Horisawa, Hideyuki; Kishida, Yoshiaki; Funaki, Ikkoh

    2010-10-08

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the mass shot and impulse bit. As results, significantly high specific impulses up to 7,200 sec were obtained at the charge energies of 8.6 J. In addition, typical thrust efficiency varied between 11.8% and 21.3% depending on the charge energy.

  8. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  9. Electron-wall interaction in Hall thrusters

    SciTech Connect

    Raitses, Y.; Staack, D.; Keidar, M.; Fisch, N.J.

    2005-05-15

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates. This result seemingly agrees with predictions of the temperature saturation, which recent Hall thruster models explain as a transition to space-charge saturated regime of the near-wall sheath. However, in the experiment, the maximum saturation temperature exceeds by almost three times the critical value estimated under the assumption of a Maxwellian electron energy distribution function. The channel narrowing, which should also enhance electron-wall collisions, causes unexpectedly larger changes of the plasma potential distribution than does the increase of the electron temperature with the discharge voltage. An enhanced anomalous crossed-field mobility (near wall or Bohm-type) is suggested by a hydrodynamic model as an explanation to the reduced electric field measured inside a narrow channel. We found, however, no experimental evidence of a coupling between the maximum electron temperature and the location of the accelerating voltage drop, which might have been expected due to the SEE-induced near-wall conductivity.

  10. NEXT Ion Thruster Performance Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.

  11. High-Power Electromagnetic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  12. Instabilities in MPD thruster flows: 1. Space charge instabilities in unbounded and inhomogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Wagner, H. P.; Kaeppeler, H. J.; Auweter-Kurtz, M.

    1998-03-01

    For a few years, the study of magnetoplasmadynamic instabilities has received increased attention because they may explain the so-called `onset' phenomena which limit the efficiency and, thus, the use of coaxial plasma accelerators in space propulsion and other applications. A systematic investigation of instabilities in magnetoplasmadynamic flows was initiated at the Institut für Raumfahrtsysteme in 1987. Among other instabilities, a particular one with the characteristics of the space charge instability was found. This instability had until then been known to occur only in finite gas discharge geometries. It will be shown in this paper that, in the presence of gradients of the flow variables, space charge instabilities can also appear in unbounded plasmas. The conditions for their development and growth are determined and discussed.

  13. Accurate design of ICRF antennas for RF plasma thruster acceleration units with TOPICA

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Maggiora, R.; Vecchi, G.; Milanesio, D.; Meneghini, O.

    2007-09-01

    In recent years electromagnetic (RF) plasma generation and acceleration concepts for plasma-based propulsion systems have received growing interest, inasmuch as they can yield continuous thrust as well as highly controllable and wide-ranging exhaust velocities. The acceleration units mostly adopt the Ion Cyclotron Resonance Frequency (ICRF)—a proven technology in fusion experiments for transferring large RF powers into magnetized plasmas, and also used by the VASIMR propulsion system. In this work we propose and demonstrate the use of TOPICA code to design and optimize the ICRF antenna of a typical acceleration stage. To this end, TOPICA was extended to cope with magnetized cylindricaily-symmetric radially-inhomogeneous warm plasmas, which required coding a new module charged with solving Maxwell's equations within the plasma to obtain the relevant Green's function Ỹ(m,kz) in the Fourier domain, i.e. the relation between the transverse magnetic and electric fields at the air-plasma interface. Then, calculating the antenna input impedance—and hence the loading—relies on an integral-equation formulation and subsequent finite-element weighted-residual solution scheme for the self-consistent evaluation of the current density distribution on the conducting bodies and at the air-plasma interface.

  14. Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    1999-01-01

    Experimenters from the fluids, combustion, materials, and life science disciplines all use the microgravity environment of space to enhance their understanding of fundamental physical phenomena caused by disturbances from events such as spacecraft maneuvers, equipment operations, atmospheric drag, and (for manned flights) crew movement. Space conditions reduce gravity but do not eliminate it. To quantify the level of these disturbances, NASA developed the Space Acceleration Measurement System (SAMS) series to collect data characterizing the acceleration environment on the space shuttles. This information is provided to investigators so that they can evaluate how the microgravity environment affects their experiments. Knowledge of the microgravity environment also helps investigators to plan future experiments. The original SAMS system flew 20 missions on the shuttle as well as on the Russian space station Mir. Presently, Lewis is developing SAMS-II for the International Space Station; it will be a distributed system using digital output sensor heads. The latest operational version of SAMS, SAMS-FF, was originally designed for free flyer spacecraft and unmanned areas. SAMS-FF is a flexible, modular system, housed in a lightweight package, and it uses advances in technology to improve performance. The hardware package consists of a control and data acquisition module, three different types of sensors, data storage devices, and ground support equipment interfaces. Three different types of sensors are incorporated to measure both high- and low-frequency accelerations and the roll rate velocity. Small, low-power triaxial sensor heads (TSH's) offer high resolution and selectable bandwidth, and a special low-frequency accelerometer is available for high-resolution, low-frequency applications. A state-of-the-art, triaxial fiberoptic gyroscope that measures extremely low roll rates is housed in a compact package. The versatility of the SAMS-FF system is shown in the three

  15. Achievable space elevators for space transportation and starship acceleration

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome

    1990-01-01

    Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.

  16. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  17. Ray-tracing WKB analysis of Whistler waves in non-uniform magnetic fields applied to space thrusters

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Melazzi, D.; Manente, M.; Pavarin, D.

    2014-02-01

    Radiofrequency magnetized cylindrical plasma sources are proposed for the development of space thrusters, whose thrust efficiency and specific impulse depend on the power coupled into the plasma. At this stage of research, emphasis has been on the absorption of Whistler wave energy by non-uniform plasmas but not much on the role played by the magneto-static confinement field, considered uniform, constant and aligned with the axis of the source. We present RAYWh (RAY-tracing Whistler), a three-dimensional (3D) ray-tracing solver for electromagnetic propagation and power deposition in cylindrical plasma sources for space plasma thrusters, where actual magnetic confinement configurations along with plasma density profiles are included. The propagation and absorption of Whistler waves are investigated by solving the 3D Maxwell-Vlasov model equations by a Wentzel-Kramers-Brillouin (WKB) asymptotic expansion. The reduced set of equations for the wave phase and for the square amplitude of the electric field is solved numerically by means of a modified Runge-Kutta algorithm. Unexpected cut-offs, resonances, radial reflections, mode conversions and power deposition profile of the excited waves are found, when realistic confinement magnetic fields are considered. An analysis of the influence of axial wavenumbers and the axial length of the system on the power deposition is presented.

  18. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  19. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  20. Laser ablation in a running hall effect thruster for space propulsion

    NASA Astrophysics Data System (ADS)

    Balika, L.; Focsa, C.; Gurlui, S.; Pellerin, S.; Pellerin, N.; Pagnon, D.; Dudeck, M.

    2013-07-01

    Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites (more than 120 in orbit to date). Moreover, they can offer a cost-effective solution for interplanetary journey, as proved by the recent ESA SMART-1 mission to the Moon. The main limiting factor of the HETs lifetime is the erosion of the annular channel ceramics walls. In order to provide a better understanding of the energy deposition on the insulated walls, a laser irradiation study has been carried out on a PPS100-ML thruster during its run in the PIVOINE-2G ground test facility (CNRS Orléans, France). Two distinct approaches have been followed: continuous wave fiber laser irradiation (generation of thermal defects) and nanosecond pulsed laser ablation (generation of topological defects). The irradiated zones have been monitored in situ by IR thermography and optical emission spectroscopy and further investigated ex situ by scanning electron microscopy and profilometry.

  1. Causes and Mitigation of Fuel Pilot Operated Valve Pilot Seal Extrusion in Space Shuttle Orbiter Primary RCS Thrusters

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Roth, Tim E.; Saulsberry, Regor L.; Haney, William A.; Kelly, Terence S; Forsyth, Bradley S.

    2004-01-01

    Extrusion of a polytetrafluoroethylene (PTFE) pilot seal located in the Space Shuttle Orbiter Primary Reaction Control Subsystem (PRCS) thruster fuel valve has been implicated in 68 ground and on-orbit fuel valve failures. A rash of six extrusion-related in-flight anomalies over a six-mission span from December 2001 to October 2002 led to heightened activity at various NASA centers, and the formation of a multidisciplinary team to solve the problem. Empirical and theoretical approaches were used. For example, thermomechanical analysis (TMA) and exposure tests showed that some extrusion is produced by thermal cycling; however, a review of thruster service histories did not reveal a strong link between thermal cycling and extrusion. Calculations showed that the amount of observed extrusion often exceeded the amount allowed by thermally-induced stress relief. Failure analysis of failed hardware also revealed the presence of fuel-oxidizer reaction product (FORP) inside the fuel valve pilot seal cavity, and differential scanning calorimetry (DSC) showed that the FORP was intimately associated with the pilot seal material. Component-level exposure tests showed that FORP of similar composition could be produced by adjacent oxidizer valve leakage in the absence of thruster firing. Specific gravity data showed that extruded fuel valve pilot seals were less dense than new pilot seals or oxidizer valve pilot seals, indicating permanent modification of the PTFE occurred during service. It is concluded that some thermally-induced extrusion is unavoidable; however, oxidizer leakage-induced extrusion is mostly avoidable and can be mitigated. Several engineering level mitigation strategies are discussed.

  2. Artificial Neural Network Test Support Development for the Space Shuttle PRCS Thrusters

    NASA Technical Reports Server (NTRS)

    Lehr, Mark E.

    2005-01-01

    A significant anomaly, Fuel Valve Pilot Seal Extrusion, is affecting the Shuttle Primary Reaction Control System (PRCS) Thrusters, and has caused 79 to fail. To help address this problem, a Shuttle PRCS Thruster Process Evaluation Team (TPET) was formed. The White Sands Test Facility (WSTF) and Boeing members of the TPET have identified many discrete valve current trace characteristics that are predictive of the problem. However, these are difficult and time consuming to identify and trend by manual analysis. Based on this exhaustive analysis over months, 22 thrusters previously delivered by the Depot were identified as high risk for flight failures. Although these had only recently been installed, they had to be removed from Shuttles OV103 and OV104 for reprocessing, by directive of the Shuttle Project Office. The resulting impact of the thruster removal, replacement, and valve replacement was significant (months of work and hundreds of thousands of dollars). Much of this could have been saved had the proposed Neural Network (NN) tool described in this paper been in place. In addition to the significant benefits to the Shuttle indicated above, the development and implementation of this type of testing will be the genesis for potential Quality improvements across many areas of WSTF test data analysis and will be shared with other NASA centers. Future tests can be designed to incorporate engineering experience via Artificial Neural Nets (ANN) into depot level acceptance of hardware. Additionally, results were shared with a NASA Engineering and Safety Center (NESC) Super Problem Response Team (SPRT). There was extensive interest voiced among many different personnel from several centers. There are potential spin-offs of this effort that can be directly applied to other data acquisition systems as well as vehicle health management for current and future flight vehicles.

  3. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  4. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, Tatsuzo

    1988-01-01

    The purpose of Space Experiments with Particle Accelerators (SEPAC) on the Atmospheric Laboratory for Applications and Science (ATLAS 1) mission, is to carry out active and interactive experiments on and in the earth's ionosphere, atmosphere, and magnetosphere. The instruments to be used are an electron beam accelerator (EBA), plasma contactor, and associated instruments the purpose of which is to perform diagnostic, monitoring, and general data taking functions. Four major classes of investigations are to be performed by SEPAC. They are: beam plasma physics, beam-atmosphere interactions, the use of modulated electron beams as transmitting antennas, and the use of electron beams for remote sensing of electric and magnetic fields. The first class consists mainly of onboard plasma physics experiments to measure the effects of phenomena in the vicinity of the shuttle. The last three are concerned with remote effects and are supported by other ATLAS 1 investigations as well as by ground-based observations.

  5. Plasma thrusters from Russia

    SciTech Connect

    Lerner, E.J.

    1992-09-01

    A report on the Russian stationary plasma thrusters having plasma accelerated to high velocities by electrical and magnetic forces is described. For specific impulses of 15-20 km/sec, optimal for such applications as satellite station keeping and orbital transfer, a unit supplying 0.05 N from a 2-kW input has a 30-cm-diameter nozzle.

  6. Development of Eddy Current Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay

    2007-01-01

    A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  7. Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Koshti, Ajay

    2006-01-01

    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  8. Miniature Electrostatic Ion Thruster With Magnet

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.

  9. Enhanced Performance of Cylindrical Hall Thrusters

    SciTech Connect

    Y. Raitses, A. Smirnov, and N.J. Fisch

    2007-05-14

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50%–60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma.

  10. Enhanced performance of cylindrical Hall thrusters

    SciTech Connect

    Raitses, Y.; Smirnov, A.; Fisch, N. J.

    2007-05-28

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50%-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma.

  11. The electrodeless Lorentz force thruster experiment

    NASA Astrophysics Data System (ADS)

    Weber, Thomas E.

    The Electrodeless Lorentz Force (ELF) thruster is a novel type of plasma thruster, which utilizes Rotating Magnetic Field current drive within a diverging magnetic field to form, accelerate, and eject a Field Reversed Configuration plasmoid. The ELF program is a result of a Small Business Technology Transfer grant awarded to MSNW LLC by the Air Force Office of Scientific Research for the research of the revolutionary space propulsion concept represented by ELF. These grants are awarded to small businesses working in collaboration with a university, in this case, the University of Washington. The program was split into two concurrent research efforts; a numerical modeling study undertaken at the UW branch of the Plasma Science and Innovation Center, and an experimental effort taking place at the UW Plasma Dynamics Laboratory with additional support from MSNW (the latter being the subject of this dissertation). It is the aim of this dissertation is to present to the reader the necessary background information needed to understand the operation of the ELF thruster, an overview of the experimental setup, a review of the significant experimental findings, and a discussion regarding the operation and performance of the thruster.

  12. Helical plasma thruster

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR® rocket engine.

  13. Helical plasma thruster

    SciTech Connect

    Beklemishev, A. D.

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  14. NASA GRC High Power Electromagnetic Thruster Program

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Pensil, Eric J.

    2004-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). This paper describes the MPD thruster and the test facility.

  15. Space experiments with particle accelerators. [Spacelab

    NASA Technical Reports Server (NTRS)

    Obayashi, T.

    1981-01-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  16. Ion Thruster Support and Positioning System

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Inventor)

    1998-01-01

    A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.

  17. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  18. Laser-induced breakdown spectroscopy in a running Hall Effect Thruster for space propulsion

    NASA Astrophysics Data System (ADS)

    Balika, L.; Focsa, C.; Gurlui, S.; Pellerin, S.; Pellerin, N.; Pagnon, D.; Dudeck, M.

    2012-08-01

    Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites and for interplanetary missions. The main limiting factor of the HET lifetime is the erosion of the annular channel ceramic walls. Erosion monitoring has been performed in the laboratory using optical emission spectroscopy (OES) measurements and data treatment based on the coronal model and the actinometric hypothesis. This study uses laser ablation of the ceramic wall in a running HET in order to introduce controlled amounts of sputtered material in the thruster plasma. The transient laser-induced breakdown plasma expands orthogonally in a steady-state plasma jet created by the HET discharge. The proposed spectroscopic method involves species from both plasmas (B, Xe, Xe+). The optical emission signal is correlated to the ablated volume (measured by profilometry) leading to the first direct validation of the actinometric hypothesis in this frame and opening the road for calibration of in-flight erosion monitoring based on the OES method.

  19. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  20. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  1. Initial Experiments of a New Permanent Magnet Helicon Thruster

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, Benjamin

    2013-09-01

    A new design for a permanent magnet helicon thruster is presented. Its small plasma volume (~10 cm-3) and low power requirements (<100 W) make it ideal for propelling nanosatellites (<10 kg). The magnetic field reached a maximum of 500 G in the throat of a converging-diverging nozzle and decreased to 0.5 G, the strength of earth's magnetic field, within 50 cm allowing the entire exhaust plume to develop in the vacuum chamber without being affected by the chamber walls. Low gas flow rates (~4 sccm) and high pumping speeds (~10,000 l/s) were used to more closely approximate the conditions of space. A parametric study of the thruster operational parameters was performed to determine its capabilities as both a thruster and as a plasma source for magnetic nozzle experiments. The plasma density, electron temperature, and plasma potential were measured in the plume to characterize the ion acceleration mechanism.

  2. Characteristics of the XHT-100 Low Power Hall Thruster Prototype

    NASA Astrophysics Data System (ADS)

    Andrenucci, M.; Berti, M.; Biagioni, L.; Cesari, U.; Saverdi, M.

    2004-10-01

    Several space applications indicate the possibility to adopt Mini Hall Thrusters, with discharge power in the range 50 to 200 W, among existing electric thruster propulsion technologies, to match mission propulsion requirements. A nominally 100W Hall Effect Thruster prototype (with an alumina acceleration chamber diameter slightly larger than 29 mm) has been recently designed and manufactured by Alta and Centrospazio, with the purpose of performing a wide range parametric exploration of the main engineering and physical aspects relevant to these devices at low power. During 2004 a preliminary experimental characterization has been performed in Alta's IV-4 test facility (in Pisa, Italy), a 2 m dia. 4 m length AISI 316 L vacuum chamber, equipped with a set of 6 tailored cryopumping surfaces with a total pumping speed on Xe in the order of 70000 l/s. Additional tests will be performed at ESA- ESTEC Electric Propulsion Laboratory (in the Netherlands).

  3. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.

    1982-01-01

    Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.

  4. Space-charge limits in linear accelerators

    SciTech Connect

    Wangler, T.P.

    1980-12-01

    This report presents equations that allow an approximate evaluation of the limiting beam current for a large class of radio-frequency linear accelerators, which use quadrupole strong focusing. Included are the Alvarez, the Wideroe, and the radio-frequency quadrupole linacs. The limiting-current formulas are presented for both the longitudinal and the transverse degrees of freedom by assuming that the average space-charge force in the beam bunch arises from a uniformly distributed charge within an azimuthally symmetric three-dimensional ellipsoid. The Mathieu equation is obtained as an approximate, but general, form for the transverse equation of motion. The smooth-approximation method is used to obtain a solution and an expression for the transverse current limit. The form of the current-limit formulas for different linac constraints is discussed.

  5. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.

    1994-01-01

    The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

  6. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  7. Iodine Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  8. The development of reactive fuel grains for pyrophoric relight of in-space hybrid rocket thrusters

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew Wellington

    This study presents and investigates a novel hybrid fuel grain that reacts pyrophorically with gaseous oxidizer to achieve restart of a hybrid rocket motor propulsion system while reducing cost and handling concerns. This reactive fuel grain (RFG) relies on the pyrophoric nature of finely divided metal particles dispersed in a solid dicyclopentadiene (DCPD) binder, which has been shown to encapsulate air-sensitive additives until they are exposed to combustion gases. An RFG is thus effectively inert in open air in the absence of an ignition source, though the particles encapsulated within remain pyrophoric. In practice, this means that an RFG that is ignited in the vacuum of space and then extinguished will expose unoxidized pyrophoric particles, which can be used to generate sufficient heat to relight the propellant when oxidizer is flowed. The experiments outlined in this work aim to develop a suitable pyrophoric material for use in an RFG, demonstrate pyrophoric relight, and characterize performance under conditions relevant to a hybrid rocket thruster. Magnesium, lithium, calcium, and an alloy of titanium, chromium, and manganese (TiCrMn) were investigated to determine suitability of pure metals as RFG additives. Additionally, aluminum hydride (AlH3), lithium aluminum hydride (LiAlH4), lithium borohydride (LiBH4), and magnesium hydride (MgH2) were investigated to determine suitability of metals hydrides as RFG additives or as precursors for pure-metal RFG additives. Pyrophoric metals have been previously investigated as additives for increasing the regression rate of hybrid fuels, but to the author's knowledge, these materials have not been specifically investigated for their ability to ignite a propellant pyrophorically. Commercial research-grade metals were obtained as coarse powders, then ball-milled to attempt to reduce particle size below a critical diameter needed for pyrophoricity. Magnesium hydride was ball-milled and then cycled in a hydride cycling

  9. NASA GRC High Power Electromagnetic Thruster Program

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.; Pencil, Eric J.

    2004-02-01

    Interest in high power electromagnetic propulsion has been revived to support a variety of future space missions, such as platform maneuvering in low earth orbit, cost-effective cargo transport to lunar and Mars bases, asteroid and outer planet sample return, deep space robotic exploration, and piloted missions to Mars and the outer planets. Magnetoplasmadynamic (MPD) thrusters have demonstrated, at the laboratory level, the capacity to process megawatts of electrical power while providing higher thrust densities than current electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of NASA space science and human exploration strategic initiatives, Glenn Research Center is developing and testing pulsed, MW-class MPD thrusters as a prelude to long-duration high power thruster tests. The research effort includes numerical modeling of self-field and applied-field MPD thrusters and experimental testing of quasi-steady MW-class MPD thrusters in a high power pulsed thruster facility. This paper provides an overview of the GRC high power electromagnetic thruster program and the pulsed thruster test facility.

  10. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Vargas, Magda B.

    2013-01-01

    Subscale rocket acoustic data is used to predict acoustic environments for full scale rockets. Over the last several years acoustic data has been collected during horizontal tests of solid rocket motors. Space Launch System (SLS) Scale Model Acoustic Test (SMAT) was designed to evaluate the acoustics of the SLS vehicle including the liquid engines and solid rocket boosters. SMAT is comprised of liquid thrusters scalable to the Space Shuttle Main engines (SSME) and Rocket Assisted Take Off (RATO) motors scalable to the 5-segment Reusable Solid Rocket Motor (RSTMV). Horizontal testing of the liquid thrusters provided an opportunity to collect acoustic data from liquid thrusters to characterize the acoustic environments. Acoustic data was collected during the horizontal firings of a single thruster and a 4-thruster (Quad) configuration. Presentation scope. Discuss the results of the single and 4-thruster acoustic measurements. Compare the measured acoustic levels of the liquid thrusters to the Solid Rocket Test Motor V - Nozzle 2 (SRTMV-N2).

  11. NEXT Propellant Management System Integration With Multiple Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Soulas, George C.; Herman, Daniel A.

    2011-01-01

    As a critical part of the NEXT test validation process, a multiple-string integration test was performed on the NEXT propellant management system and ion thrusters. The objectives of this test were to verify that the PMS is capable of providing stable flow control to multiple thrusters operating over the NEXT system throttling range and to demonstrate to potential users that the NEXT PMS is ready for transition to flight. A test plan was developed for the sub-system integration test for verification of PMS and thruster system performance and functionality requirements. Propellant management system calibrations were checked during the single and multi-thruster testing. The low pressure assembly total flow rates to the thruster(s) were within 1.4 percent of the calibrated support equipment flow rates. The inlet pressures to the main, cathode, and neutralizer ports of Thruster PM1R were measured as the PMS operated in 1-thruster, 2-thruster, and 3-thruster configurations. It was found that the inlet pressures to Thruster PM1R for 2-thruster and 3-thruster operation as well as single thruster operation with the PMS compare very favorably indicating that flow rates to Thruster PM1R were similar in all cases. Characterizations of discharge losses, accelerator grid current, and neutralizer performance were performed as more operating thrusters were added to the PMS. There were no variations in these parameters as thrusters were throttled and single and multiple thruster operations were conducted. The propellant management system power consumption was at a fixed voltage to the DCIU and a fixed thermal throttle temperature of 75 C. The total power consumed by the PMS was 10.0, 17.9, and 25.2 W, respectively, for single, 2-thruster, and 3-thruster operation with the PMS. These sub-system integration tests of the PMS, the DCIU Simulator, and multiple thrusters addressed, in part, the NEXT PMS and propulsion system performance and functionality requirements.

  12. Magnetoplasmadynamic Thruster Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    On May 16, 1991, the NASA Headquarters Propulsion, Power, and Energy Division and the NASA Lewis Research Center Low Thrust Propulsion Branch hosted a workshop attended by key experts in magnetoplasmadynamic (MPD) thrusters and associated sciences. The scope was limited to high power MPD thrusters suitable for major NASA space exploration missions, and its purpose was to initiate the process of increasing the expectations and prospects for MPD research, primarily by increasing the level of cooperation, interaction, and communication between parties within the MPD community.

  13. Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dr. Tom Markusic, a propulsion research engineer at the Marshall Space Flight Center (MSFC), adjusts a diagnostic laser while a pulsed plasma thruster (PPT) fires in a vacuum chamber in the background. NASA/MSFC's Propulsion Research Center (PRC) is presently investigating plasma propulsion for potential use on future nuclear-powered spacecraft missions, such as human exploration of Mars.

  14. A Pulsed Laser-Electromagnetic Hybrid Accelerator For Space Propulsion Application

    SciTech Connect

    Shinohara, Tadaki; Horisawa, Hideyuki; Baba, Msahumi; Tei, Kazuyoku

    2010-05-06

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted, in which laser-ablation plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thruster was evaluated by measuring the mass per shot and impulse bit. As results, significantly high specific impulse ranging from 5,000 approx6,000 sec were obtained at energies of 0.1 and 8.6 J, respectively. In addition, the typical thrust efficiency varied from 17% to 19% depending on the charge energy.

  15. Electron dynamics in Hall thruster

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  16. Electron-wall Interaction in Hall Thrusters

    SciTech Connect

    Y. Raitses; D. Staack; M. Keidar; N.J. Fisch

    2005-02-11

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates.

  17. 20-mN Variable Specific Impulse (Isp) Colloid Thruster

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel

    2015-01-01

    Busek Company, Inc., has designed and manufactured an electrospray emitter capable of generating 20 mN in a compact package (7x7x1.7 in). The thruster consists of nine porous-surface emitters operating in parallel from a common propellant supply. Each emitter is capable of supporting over 70,000 electrospray emission sites with the plume from each emitter being accelerated through a single aperture, eliminating the need for individual emission site alignment to an extraction grid. The total number of emission sites during operation is expected to approach 700,000. This Phase II project optimized and characterized the thruster fabricated during the Phase I effort. Additional porous emitters also were fabricated for full-scale testing. Propellant is supplied to the thruster via existing feed-system and microvalve technology previously developed by Busek, under the NASA Space Technology 7's Disturbance Reduction System (ST7-DRS) mission and via follow-on electric propulsion programs. This project investigated methods for extending thruster life beyond the previously demonstrated 450 hours. The life-extending capabilities will be demonstrated on a subscale version of the thruster.

  18. Acceleration and Focusing of Plasma Flows

    NASA Astrophysics Data System (ADS)

    Griswold, Martin E.

    The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, produce plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel

  19. Magnesium Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  20. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The multipole discharge chamber of an electrostatic ion thruster is discussed. No reductions in discharge losses were obtained, despite repeated demonstration of anode potentials more positive than the bulk of the discharge plasma. The penalty associated with biased anode operation was reduced as the magnetic integral above the biased anodes was increased. The hollow cathode is discussed. The experimental configuration of the Hall current thruster had a uniform field throughout the ion generation and acceleration regions. To obtain reliable ion generation, it was necessary to reduce the magnetic field strength, to the point where excessive electron backflow was required to establish ion acceleration. The theoretical study of ion acceleration with closed electron drift paths resulted in two classes of solutions. One class has the continuous potential variation in the acceleration region that is normally associated with a Hall current accelerator. The other class has an almost discontinuous potential step near the anode end of the acceleration region. This step includes a significant fraction of the total acceleration potential difference.

  1. Computational modeling of Hall thruster channel wall erosion

    NASA Astrophysics Data System (ADS)

    Yim, John Tamin

    Hall thrusters, a type of space electric propulsion, offer high specific impulses attractive for a variety of space missions. As lifetime requirements desired for Hall thruster operations increase, there is a greater need to be able to predict and analyze the wear of the thruster over time. The main mechanism of Hall thruster failure is the erosion of the acceleration channel walls to the point where the magnetic circuit is exposed to the plasma flow. Experimental testing to determine the rate and extent of wall erosion is time consuming and expensive. Thus, capturing the erosion process through computational simulations is a useful means of predicting lifetime for design and analysis purposes. Two models are employed to simulate the erosion process. The first is a hydrodynamic model that is used to describe the plasma flow within the thruster and to calculate the ion fluxes to the thruster channel walls. The second method is a molecular dynamics model that is used to calculate the sputter yields for the wall material based on the incoming ion fluxes. The results of these two methods are used together to simulate the erosion of the channel walls and their evolution over time. Three test cases are analyzed. The hydrodynamic model is used to compare the differences between krypton and xenon propellants in the NASA-173Mv1 Hall thruster. The molecular dynamics model is used to calculate the sputter yields of hexagonal boron nitride due to low-energy xenon ions. Both methods are used to model the erosion of the channel walls of an SPT-100 Hall thruster over a 4000-hour life test. The computational results are compared to available experimental results for all three cases along with additional analysis. This work represents the only known use of a fluid-based plasma model for Hall thruster erosion simulations. It also contains the only use of a molecular dynamics model without additional surface binding energy assumptions for boron nitride sputtering simulations. Results

  2. Advanced ion thruster and electrochemical launcher research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1983-01-01

    The theoretical model of orificed hollow cathode operation predicted experimentally observed cathode performance with reasonable accuracy. The deflection and divergence characteristics of ion beamlets emanating from a two grid optics system as a function of the relative offset of screen and accel grids hole axes were described. Ion currents associated with discharge chamber operation were controlled to improve ion thruster performance markedly. Limitations imposed by basic physical laws on reductions in screen grid hole size and grid spacing for ion optics systems were described. The influence of stray magnetic fields in the vicinity of a neutralizer on the performance of that neutralizer was demonstrated. The ion current density extracted from a thruster was enhanced by injecting electrons into the region between its ion accelerating grids. Theoretical analysis of the electrothermal ramjet concept of launching space bound payloads at high acceleration levels is described. The operation of this system is broken down into two phases. In the light gas gun phase the payload is accelerated to the velocity at which the ramjet phase can commence. Preliminary models of operation are examined and shown to yield overall energy efficiences for a typical Earth escape launch of 60 to 70%. When shock losses are incorporated these efficiencies are still observed to remain at the relatively high values of 40 to 50%.

  3. Ferroelectric plasma thruster for microspacecraft propulsion

    SciTech Connect

    Kemp, Mark A.; Kovaleski, Scott D.

    2006-12-01

    This paper presents a technology in microthruster design: the ferroelectric plasma thruster (FEPT). The FEPT utilizes an applied rf electric field to create plasma on the surface of a ferroelectric dielectric. Acceleration of ions from this plasma provides thrust. Advantages of the FEPT include emission of both electrons and ions leading to self-neutralization, creation of plasma, and acceleration of ions with a single power supply, and application of thrust in a short amount of time. We present the concept of the thruster, operational physics, as well as experimental results demonstrating plasma creation and ion acceleration. These results along with plasma spectroscopy allow us to calculate thruster parameters.

  4. Plasma thruster development: magnetoplasmadynamic propulsion, status, and basic problems. Interim report, October 1984-September 1985

    SciTech Connect

    Buehler, R.D.

    1986-02-01

    This report provides an overview of the present state and the problem areas of magnetoplasmadynamic (MPD) space-propulsion devices and systems potentially suitable for orbit raising and maneuvering of large space structures, i.e., thrust and power levels of presently most-promising steady (or quasisteady pulsed) thruster types, self-field, axial applied-field arcjets, and Hall ion thrusters are reviewed in terms of performance trends, present understanding, uncertainties and ground-testing problems, with the conclusion that there is as yet no reliable basis for choosing one type for final development. Typical efficiency vs. specific-impulse curves for all MPD thrusters show the dominant role of the propellant on the thrust to input power ratio (as for ion engines), and the necessity of achieving relatively high specific impulse values for each propellant for acceptable efficiencies. The specific-impulse (or onset) limit of self-field thrusters using a variety of propellants is discussed, together with predicted trends from several theoretical models. Considering system complexity and development cost as well as performance, the advantages and disadvantages if pulsed (quasisteady) vs. continuous thruster operation and the propellant selection criteria are reviewed. Electrode erosion, especially on cathodes, losses and limits imposed by radiation cooling are emphasized as critical problem areas for larger MPD thrusters. Besides the electrode attachments, the unresolved basis theoretical problems of efficient plasma acceleration and of the midstream flow discharge stability are identified, and proposed approaches towards gaining additional understanding are outlined.

  5. A Microwave Thruster for Spacecraft Propulsion

    SciTech Connect

    Chiravalle, Vincent P

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  6. Accelerating video carving from unallocated space

    NASA Astrophysics Data System (ADS)

    Kalva, Hari; Parikh, Anish; Srinivasan, Avinash

    2013-03-01

    Video carving has become an essential tool in digital forensics. Video carving enables recovery of deleted video files from hard disks. Processing data to extract videos is a computationally intensive task. In this paper we present two methods to accelerate video carving: a method to accelerate fragment extraction, and a method to accelerate combining of these fragments into video segments. Simulation results show that complexity of video fragment extraction can be reduced by as much as 75% with minimal impact on the videos recovered.

  7. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1992-01-01

    The topics are presented in viewgraph form and include the following: in house program elements; performance measurements; applied-field magnetoplasmadynamic (MPD) thruster performance scaling; MPD thruster technology; thermal efficiency scaling; anode fall voltage measurements; anode power deposition studies; MPD thruster plasma modeling; MPD thruster lifetime studies; and MPD thruster performance studies.

  8. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  9. Space experiments with particle accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The SEPAC instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam-particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  10. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Aanesland, A.

    2014-11-01

    We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N2. The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam.

  11. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  12. Proton and heavy ion acceleration facilities for space radiation research.

    PubMed

    Miller, Jack

    2003-06-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space. PMID:12959128

  13. Improvement of Flow Characteristics for an Advanced Plasma Thruster

    SciTech Connect

    Inutake, M.; Hosokawa, Y.; Sato, R.; Ando, A.; Tobari, H.; Hattori, K

    2005-01-15

    A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Until the realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j x B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma is successfully heated by use of an ICRF antenna in the magnetic beach configuration.

  14. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  15. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  16. NASA 30 Cm Ion Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Rawlin, Vincent K.; Kussmaul, Michael T.

    1995-01-01

    A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest and it is an element of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) program established to validate ion propulsion for space flight applications. The thruster has been developed to an engineering model level and it incorporates innovations in design, materials, and fabrication techniques compared to those employed to conventional ion thrusters. The performance of both functional and engineering model thrusters has been assessed including thrust stand measurements, over an input power range of 0.5-2.3 kW. Attributes of the engineering model thruster include an overall mass of 6.4 kg, and an efficiency of 65 percent and thrust of 93 mN at 2.3 kW input power. This paper discusses the design, performance, and lifetime expectations of the functional and engineering model thrusters under development at NASA.

  17. Shuttle RCS primary thruster injector flow visualization

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L.

    1988-01-01

    An image-transmitting fiber-optics scope with a dry gas purge of the optics head has been used to visually evaluate the condition of surplus thrusters in the Space Shuttle's Reaction Control System; it was subsequently applied to flight thrusters. The technique uses water for flow visualization, and obviates thruster disassembly. The innovative use of gas purging of a fiber-optics head allows the unobstructed and distortion-free viewing of the flow streams, and testing has shown the technique to be ideally suited to injector flow assessments following thruster exposure to extensive contamination.

  18. Ultraviolet tomography of kink dynamics in a magnetoplasmadynamic thruster

    NASA Astrophysics Data System (ADS)

    Bonomo, F.; Paganucci, F.; Pomaro, N.

    2005-10-01

    We present the results of a project concerning the ultraviolet (UV) imaging of a plasma for space applications, produced in a magneto-plasmadynamic (MPD) thruster. MPD are a class of high power electric space propulsion devices that accelerate a plasma to high velocities (>10 km/s), by exploiting the Lorentz force between the discharge electrical current and a self induced and externally applied magnetic field. The imaging system has been realized by inserting 3 arrays of UV-enhanced photodiodes (with built-in amplifiers) directly into the plastic structure of the anode. This advanced diagnostic design allows for a detailed tomographic reconstruction of the emissivity spatial structure, both in the axial direction z (corresponding to a wavenumber n) and azimuthal direction (wavenumber m) with high time resolution. A magneto-hydrodynamic (MHD) instability, with mode numbers m=1 and n=1 has been observed, which might affect the performances of the thruster.

  19. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  20. Presentation on a Space Acceleration Measurement System (SAMS)

    NASA Technical Reports Server (NTRS)

    Chase, Theodore L.

    1990-01-01

    The primary objective of the Space Acceleration Measurement Systems (SAMS) project is to provide an acceleration measurement system capable of serving a wide variety of space experiments. The design of the system being developed under this project takes into consideration requirements for experiments located in the middeck, in the orbiter bay, and in Spacelab. In addition to measuring, conditioning, and recording accelerations, the system will be capable of performing complex calculations and interactive control. The main components consist of a remote triaxial optical storage device. In operation, the triaxial sensor head produces output signals in response to acceleration inputs. These signals are preamplified, filtered and converted into digital data which is then transferred to optical memory. The system design is modular, facilitating both software and hardware upgrading as technology advances. Two complete acceleration measurement flight systems will be build and tested under this project.

  1. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  2. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  3. Space Launch System Accelerated Booster Development Cycle

    NASA Technical Reports Server (NTRS)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  4. MPD thruster erosion research

    NASA Astrophysics Data System (ADS)

    King, David Q.; Callas, John L.

    1988-11-01

    The multimegawatt MPD (Magnetoplasma Dynamic) thruster is an electric engine capable of orbital transfer and maneuvering of large payloads driven by a megawatt class space power supply. The MPD thruster is capable of specific impulses from 1,500 to 8,000 s. The high specific impulse means this system can perform missions using much less propellant than chemical systems. A five MW MPD electric system, propellant and payload from one shuttle launch must be replaced by the equivalent of four fully loaded Centaur G' stages. Thus, the savings in propellant and launch costs are very substantial. This report discusses 3 aspects of MPD thruster Physics: (1) A significant operational problem which has limited the useful operation of the device is discussed. This is severe erosion of the insulator at the cathode insulator junction. A technique which appears to solve the problem has been tested, and is described. (2) A preliminary analyses of anode sheath is presented. (3) Analysis of the discharges two dimensional nature is explored for the case where transverse gradients are considered but transverse velocity is assumed to be zero. This situation applies to high aspect ratio devices. The analyses concludes with a formalism that provides a means to qualitatively evaluate Ohmic dissipation from simple measurements of magnetic Hall effect on magnetosonic choking (where thermodynamics is ignored).

  5. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  6. Synergia: an accelerator modeling tool with 3-D space charge

    SciTech Connect

    Amundson, James F.; Spentzouris, P.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab booster accelerator.

  7. Duration test of an annular colloid thruster.

    NASA Technical Reports Server (NTRS)

    Perel, J.; Mahoney, J. F.; Daley, H. L.

    1972-01-01

    An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.

  8. Magnetized plasma flows and magnetoplasmadynamic thrusters

    SciTech Connect

    Andreussi, T.; Pegoraro, F.

    2010-06-15

    An axisymmetric magnetohydrodynamics (MHD) model of the acceleration channel of an applied-field magnetoplasmadynamic thruster is presented. A set of general relationships between the flow features and the thruster performance is obtained. The boundary conditions and the flow regime, which depends on the Alfven Mach number, are shown to provide the ideal limits of steady state thruster operation. In the present analysis, a Hamiltonian formulation of the MHD plasma flow model is adopted. This formulation makes it possible to cast the model equations in a variational form, which is then solved by using a finite element numerical algorithm.

  9. Magnetized plasma flows and magnetoplasmadynamic thrusters

    NASA Astrophysics Data System (ADS)

    Andreussi, T.; Pegoraro, F.

    2010-06-01

    An axisymmetric magnetohydrodynamics (MHD) model of the acceleration channel of an applied-field magnetoplasmadynamic thruster is presented. A set of general relationships between the flow features and the thruster performance is obtained. The boundary conditions and the flow regime, which depends on the Alfvén Mach number, are shown to provide the ideal limits of steady state thruster operation. In the present analysis, a Hamiltonian formulation of the MHD plasma flow model is adopted. This formulation makes it possible to cast the model equations in a variational form, which is then solved by using a finite element numerical algorithm.

  10. Stationary plasma thruster evaluation in Russia

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    A team of electric propulsion specialists from U.S. government laboratories experimentally evaluated the performance of a 1.35-kW Stationary Plasma Thruster (SPT) at the Scientific Research Institute of Thermal Processes in Moscow and at 'Fakel' Enterprise in Kaliningrad, Russia. The evaluation was performed using a combination of U.S. and Russian instrumentation and indicated that the actual performance of the thruster appears to be close to the claimed performance. The claimed performance was a specific impulse of 16,000 m/s, an overall efficiency of 50 percent, and an input power of 1.35 kW, and is superior to the performance of western electric thrusters at this specific impulse. The unique performance capabilities of the stationary plasma thruster, along with claims that more than fifty of the 660-W thrusters have been flown in space on Russian spacecraft, attracted the interest of western spacecraft propulsion specialists. A two-phase program was initiated to evaluate the stationary plasma thruster performance and technology. The first phase of this program, to experimentally evaluate the performance of the thruster with U.S. instrumentation in Russia, is described in this report. The second phase objective is to determine the suitability of the stationary plasma thruster technology for use on western spacecraft. This will be accomplished by bringing stationary plasma thrusters to the U.S. for quantification of thruster erosion rates, measurements of the performance variation as a function of long-duration operation, quantification of the exhaust beam divergence angle, and determination of the non-propellant efflux from the thruster. These issues require quantification in order to maximize the probability for user application of the SPT technology and significantly increase the propulsion capabilities of U.S. spacecraft.

  11. Space acceleration measurement system triaxial sensor head error budget

    NASA Astrophysics Data System (ADS)

    Thomas, John E.; Peters, Rex B.; Finley, Brian D.

    1992-01-01

    The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here.

  12. Recent work on an RF ion thruster

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Nakanishi, S.

    1981-01-01

    An experimental investigation of an rf ion thruster using an immersed coupler in an argon discharge is reported. The conical coil, used to couple rf power into the discharge, is placed inside the discharge vessel. The discharge was self-sustained by 100-150 MHz rf power at low environmental pressures. The ion extraction was accomplished by conventional accelerated grid optics from an unoptimized 8 cm diameter ion thruster.

  13. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  14. Space experiments with particle accelerators (SEPAC): Description of instrumentation

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

    1987-01-01

    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

  15. NEXT Thruster Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Sovey, James S.

    2007-01-01

    Component testing is a critical part of thruster life validation activities under NASA s Evolutionary Xenon Thruster (NEXT) project testing. The high voltage propellant isolators were selected for design verification testing. Even though they are based on a heritage design, design changes were made because the isolators will be operated under different environmental conditions including temperature, voltage, and pressure. The life test of two NEXT isolators was therefore initiated and has accumulated more than 10,000 hr of operation. Measurements to date indicate only a negligibly small increase in leakage current. The cathode heaters were also selected for verification testing. The technology to fabricate these heaters, developed for the International Space Station plasma contactor hollow cathode assembly, was transferred to Aerojet for the fabrication of the NEXT prototype model ion thrusters. Testing the contractor-fabricated heaters is necessary to validate fabrication processes for high reliability heaters. This paper documents the status of the propellant isolator and cathode heater tests.

  16. Electrodeless Experimental Thruster

    SciTech Connect

    Brainerd, Jerome J.; Reisz, Al

    2009-03-16

    An electrodeless experimental electric thruster has been built and tested at the NASA Marshall Space Flight Center (MSFC). The plasma is formed by Electron-Cyclotron Resonance (ECR) absorption of RF waves (microwaves). The RF source operates in the 1 to 2 kW range. The plasma is overdense and is confined radially by an applied axial dc magnetic field. The field is shaped by a strong magnetic mirror on the upstream end and a magnetic nozzle on the downstream end. Argon is used as the propellant. The velocity profile in the exhaust plume has been measured with Laser Induced Fluorescence (LIF). An unusual bimodal velocity profile has been measured.

  17. Pulsed Plasma Thruster Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The continuing emphasis on reducing costs and downsizing spacecraft is forcing increased emphasis on reducing the subsystem mass and integration costs. For many commercial, scientific, and Department of Defense space missions, onboard propulsion is either the predominant spacecraft mass or it limits the spacecraft lifetime. Electromagnetic-pulsed-plasma thrusters (PPT's) offer the combined benefits of extremely low average electric power requirements (1 to 150 W), high specific impulse (approx. 1000 sec), and system simplicity derived from the use of an inert solid propellant. Potential applications range from orbit insertion and maintenance of small satellites to attitude control for large geostationary communications satellites.

  18. Cathode-less gridded ion thrusters for small satellites

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane; Rafalskyi, Dmytro

    2015-09-01

    We present here a new gridded ion thruster, called Neptune, that operates with only one Radio Frequency (RF) power source for ionization, ion acceleration and beam neutralization in addition to solid iodine as propellant. Thus significant simplifications, over excising gridded thrusters, might allow downscaling to satellites as small as 6 kg. The combined acceleration and neutralization is achieved by applying an RF voltage to the grid system via a blocking capacitor. As for similar RF capacitive systems, a self-bias is formed such that ions are continuously accelerated while electrons are emitted in brief instants within the RF sheath collapse. Moreover, the RF nature of the acceleration system leads to a higher space charge limited current extracted across the grids compared to classical DC operated systems. Measurements of the ion and electron energy distribution functions in the plasma plume show that in addition to the directed beam of ions, the electrons are also anisotropic resulting in a flowing plasma, rather than a beam of positive ions. Experimental characterization of this RF accelerated plume is detailed. This work received financial state aid managed by the ANR as part of the program ``Investissements d'avenir'' under the reference ANR-11-IDEX-0003-02 (Project MINIATURE).

  19. Plasma propulsion for space applications

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon

    2000-04-01

    The various mechanisms for plasma acceleration employed in electric propulsion of space vehicles will be described. Special attention will be given to the Hall thruster. Electric propulsion utilizes electric and magnetic fields to accelerate a propellant to a much higher velocity than chemical propulsion does, and, as a result, the required propellant mass is reduced. Because of limitations on electric power density, electric thrusters will be low thrust engines compared with chemical rockets. The large jet velocity and small thrust of electric thrusters make them most suitable for space applications such as station keeping of GEO communication satellites, low orbit drag compensation, orbit raising and interplanetary missions. The acceleration in the thruster is either thermal, electrostatic or electromagnetic. The arcjet is an electrothermal device in which the propellant is heated by an electric arc and accelerated while passing through a supersonic nozzle to a relatively low velocity. In the Pulsed Plasma Thruster a solid propellant is accelerated by a magnetic field pressure in a way that is similar in principle to pulsed acceleration of plasmas in other, very different devices, such as the railgun or the plasma opening switch. Magnetoplasmadynamic thrusters also employ magnetic field pressure for the acceleration but with a reasonable efficiency at high power only. In an ion thruster ions are extracted from a plasma through a double grid structure. Ion thrusters provide a high jet velocity but the thrust density is low due to space-charge limitations. The Hall thruster, which in recent years has enjoyed impressive progress, employs a quasi-neutral plasma, and therefore is not subject to a space-charge limit on the current. An applied radial magnetic field impedes the mobility of the electrons so that the applied potential drops across a large region inside the plasma. Methods for separately controlling the profiles of the electric and the magnetic fields will

  20. Kinetic Analysis of Pasma Transport in a Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Martinez-Sanchez, M.

    2002-01-01

    Peculiarities of the plasma transport and oscillation phenomena in the Xe-gas discharge of the SPT and TAL Hall effect thruster were subject of many theoretical-numerical and experimental studies [1-4]. Despite this fact, the origin of a so-called anomalous transport is not understood to this date. As a result, in the theoretical and numerical models [5-6] researches assume ad-hoc cross-field diffusion coefficients, which may differ by several times from the classical Bohm result. To study the transport phenomenon we develop a specialized kinetic model. Our model is 2-dimensional in space (for axial and azimuthal directions), but 3-dimensional in velocity. A similar geometry was adopted in references [1,3]. However, we try to push the simulation to the realistic scale (several centimeters), while keeping the minimum spatial resolution on the order of the local Debye length. New transport results will be compared to the results from the 2D3V axisymmetrical model [6], which is a further development of the fully kinetic model for plasma and neutral gas [5]. The PIC [7] code is applied to the realistic SPT thruster geometry. We add new elementary plasma-chemistry reaction and modify boundary conditions to capture self-consistent dynamics of high ionization states of xenon atoms. It is hoped that the numerical results will provide a better understanding of the anomalous transport in a Hall effect thruster due to the collective modes, and shed light on the nature of the experimentally observed high-frequency oscillations. [1] M.Hirakawa and Y.Arakawa, Particle simulation of plasma phenomena in Hall thrusters, IEPC-95-164 technical paper, 1995. [2] V. I. Baranov et al, "New Conceptions of Oscillation Mechanisms in the Accelerator with Closed Drift of Electrons". IEPC-95-44, 24thInternational Electric Propulsion Conference, Moscow, 1995. [3] M.Hirakawa, Electron transport mechanism in a Hall thruster, IEPC-97-021 technical paper, 1997. [4] N.B.Meerzan, W.A.Hargus, M

  1. Performance of the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Hovan, Scot A.

    1993-01-01

    A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest, and is being proposed for use on the USAF/TRW Space Surveillance, Tracking and Autonomous Repositioning (SSTAR) platform to validate ion propulsion. The thruster incorporates innovations in design, materials, and fabrication techniques compared to those employed in conventional ion thrusters. Specific development efforts include thruster design optimizations, component life testing and validation, vibration testing, and performance characterizations. Under this test program, the ion thruster will be brought to engineering model development status. This paper discusses the performance and power throttling test data for the NASA 30 cm diameter xenon ion thruster over an input power envelope of 0.7 to 4.9 kW, and corresponding thruster lifetime expectations.

  2. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    Inert gases are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. The multipole discharge chamber investigated was shown capable of low discharge chamber losses and flat ion beam profiles with a minimum of optimization. Minimum discharge losses were 200 to 250 eV/ion for xenon and 300 to 350 eV/ion for argon, while flatness parameters in the plane of the accelerator grid were 0.85 to 0.95. The design used employs low magnetic field strengths, which permits the use of sheet-metal parts. The corner problem of the discharge chamber was resolved with recessed corner anodes, which approximately equalized both the magnetic field above the anodes and the electron currents to these anodes. Argon hollow cathodes were investigated at currents up to about 5 amperes using internal thermionic emitters. Cathode chamber diameter optimized in the 1.0 to 2.5 cm range, while orifices diameter optimized in the 0.5 to 5 mm range. The use of a bias voltage for the internal emitter extended the operating range and facilitated starting. The masses of 15 and 30 cm flight type thrusters were estimated at about 4.2 and 10.8 kg.

  3. Insights on Physics of closed drift plasma thrusters by using externally driven and very fast current interruptions

    NASA Astrophysics Data System (ADS)

    Bouchoule, André

    2002-10-01

    Closed electron drift plasma thrusters, also known as Hall Thrusters or SPT (Stationary Plasma Thrusters) are magnetized discharges where the ion acceleration is provided in the plasma itself by the magnetic barrier restricting electron transport. After their developments and their demonstrations on satellites for orbit control these thrusters appear as very attractive ones in the space technology market. Simultaneously, significant research programs are developed in order to improve the knowledge on the complex physics involved in such devices and to improve simultaneously 2D or 3D simulation codes. Such a program involving academic research teams , agencies and industry is developed in France, in the frame of a coordinated program. GDR N° . The experimental research was achieved on diagnostic equipped thrusters, similar to industrial ones. These thrusters are operated in the national research facility PIVOINE , installed in Orléans. The discharge of Hall thrusters is well known as sensitive to fluctuations or oscillations in the few tens kHz range and the physical phenomena connected to these regimes have been widely investigated. Externally driven current interruptions, with very fast ON-OFF transitions (0.15 µs), have been shown as a convenient way for obtaining new data on thrusters physics, in connection with time resolved diagnostics like OES, LIF, electron Hall current probe and RFA. Experimental results evidence some details on excitation / ionization (single and multiply charged Xe ions) phenomena and lead to new inputs on electron transport phenomena in the magnetized discharge channel. New experimental insights on microinstabilities will be also be discussed in relation with simulations developed by using PIC codes.

  4. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser

  5. Second Magnetoplasmadynamic Thruster Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The meeting focused on progress made in establishing performance and lifetime expectations of magnetoplasmadynamic (MPD) thrusters as functions of power, propellant, and design; models for the plasma flow and electrode components; viability and transportability of quasi-steady thruster testing; engineering requirements for high power, long life thrusters; and facilities and their requirements for performance and life testing.

  6. Electromagnetic thrusters for spacecraft prime propulsion

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; King, D. Q.

    1984-01-01

    The benefits of electromagnetic propulsion systems for the next generation of US spacecraft are discussed. Attention is given to magnetoplasmadynamic (MPD) and arc jet thrusters, which form a subset of a larger group of electromagnetic propulsion systems including pulsed plasma thrusters, Hall accelerators, and electromagnetic launchers. Mission/system study results acquired over the last twenty years suggest that for future prime propulsion applications high-power self-field MPD thrusters and low-power arc jets have the greatest potential of all electromagnetic thruster systems. Some of the benefits they are expected to provide include major reductions in required launch mass compared to chemical propulsion systems (particularly in geostationary orbit transfer) and lower life-cycle costs (almost 50 percent less). Detailed schematic drawings are provided which describe some possible configurations for the various systems.

  7. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  8. Effect of Anode Dielectric Coating on Hall Thruster Operation

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch; V. Semenov

    2003-10-20

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode.

  9. Microgravity Acceleration Environment of the International Space Station (panel)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Foster, William M.; Schafer, Craig P.

    2001-01-01

    This paper examines the microgravity environment provided to the early science experiments by the International Space Station vehicle which is under construction. The microgravity environment will be compared with predicted levels for this stage of assembly. Included are initial analyses of the environment and preliminary identification of some sources of accelerations. Features of the operations of the accelerometer instruments, the data processing system, and data dissemination to users are also described.

  10. Effect of a Second, Parallel Capacitor on the Performance of a Pulse Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Balla, Joseph V.

    2010-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and is then discharged through an inductive coil that couples energy into the propellant, ionizing and accelerating it to produce thrust. A model that employs a set of circuit equations (as illustrated in Fig. 1a) coupled to a one-dimensional momentum equation has been previously used by Lovberg and Dailey [1] and Polzin et al. [2-4] to model the plasma acceleration process in pulsed inductive thrusters. In this paper an extra capacitor, inductor, and resistor are added to the system in the manner illustrated in the schematic shown in Fig. 1b. If the second capacitor has a smaller value than the initially charged capacitor, it can serve to increase the current rise rate through the inductive coil. Increasing the current rise rate should serve to better ionize the propellant. The equation of motion is solved to find the effect of an increased current rise rate on the acceleration process. We examine the tradeoffs between enhancing the breakdown process (increasing current rise rate) and altering the plasma acceleration process. These results provide insight into the performance of modified circuits in an inductive thruster, revealing how this design permutation can affect an inductive thruster's performance.

  11. Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Jankovsky, Robert S.

    2002-01-01

    NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration.

  12. Human Outer Solar System Exploration via Q-Thruster Technology

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  13. Titanium Optics for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.; Rawlin, Vincent K.

    1999-01-01

    Ion thruster total impulse capability is limited, in part, by accelerator grid sputter erosion. A development effort was initiated to identify a material with a lower accelerator grid volumetric sputter erosion rate than molybdenum, but that could utilize the present NSTAR thruster grid design and fabrication techniques to keep development costs low, and perform as well as molybdenum optics. After comparing the sputter erosion rates of several atomic materials to that of molybdenum at accelerator voltages, titanium was found to offer a 45% reduction in volumetric erosion rates. To ensure that screen grid sputter erosion rates are not higher at discharge chamber potentials, titanium and molybdenum sputter erosion rates were measured at these potentials. Preliminary results showed only a slightly higher volumetric erosion rate for titanium, so that screen grid erosion is insignificant. A number of material, thermal, and mechanical properties were also examined to identify any fabrication, launch environment, and thruster operation issues. Several titanium grid sets were successfully fabricated. A titanium grid set was mounted onto an NSTAR 30 cm engineering model ion thruster and tested to determine optics performance. The titanium optics operated successfully over the entire NSTAR power range of 0.5 to 2.3 kW. Differences in impingement-limited perveances and electron backstreaming limits were found to be due to a larger cold gap for the titanium optics. Discharge losses for titanium grids were lower than those for molybdenum, likely due to a slightly larger titanium screen grid open area fraction. Radial distributions of beam current density with titanium optics were very similar to those with molybdenum optics at all power levels. Temporal electron backstreaming limit measurements showed that titanium optics achieved thermal equilibrium faster than molybdenum optics.

  14. The PEGASES gridded ion-ion thruster physics, performance and predictions

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane; Rafalskyi, Dmytro; Bredin, Jerome; Grondein, Pascaline; Oudini, Noureddine; Chabert, Pascal

    2013-09-01

    The PEGASES (Plasma propulsion with Electronegative gases) thruster is a gridded ion thruster that accelerates alternately positively and negatively charged ions to provide thrust. Over the last years various prototypes have been tested, adequate diagnostics have been developed and analytical models and simulations are made to better understand and control the physics involved. The plasma density in the region of the ion-ion plasma predicts that the performance of the PEGASES thruster can be comparable to existing thrusters on the market. We have recently provided the first experimental proof-of-concept, accelerating alternately positive and negative ions from an ion-ion plasma within a 10 kHz cycle. Here we present the state of the art in the PEGASES development and discuss the various physics involved and its possible future in space. This work is funded by EADS Astrium, ANR (Agence nationale de la recherche) under contract ANR-11-BS09-040 and FP7 under contract PIIF-GA-2012-326054.

  15. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  16. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  17. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1978-01-01

    Inert gas thrusters have continued to be of interest for space propulsion applications. Xenon is of interest in that its physical characteristics are well suited to propulsion. High atomic weight and low tankage fraction were major factors in this choice. If a large amount of propellant was required, so that cryogenic storage was practical, argon is a more economical alternative. Argon was also the preferred propellant for ground applications of thruster technology, such as sputter etching and deposition. Additional magnetic field measurements are reported. These measurements should be of use in magnetic field design. The diffusion of electrons through the magnetic field above multipole anodes was studied in detail. The data were consistent with Bohm diffusion across a magnetic field. The theory based on Bohm diffusion was simple and easily used for diffusion calculations. Limited startup data were obtained for multipole discharge chambers. These data were obtained with refractory cathodes, but should be useful in predicting the upper limits for starting with hollow cathodes.

  18. A multiple-cathode, high-power, rectangular ion thruster discharge chamber of increasing thruster lifetime

    NASA Astrophysics Data System (ADS)

    Rovey, Joshua Lucas

    Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ˜30,000 hours (˜3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years. Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55. One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime. Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects

  19. Design and Preliminary Testing Plan of Electronegative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    Electronegative ion thrusters are a new iteration of existing gridded ion thruster technology differentiated by their ability to produce and accelerate both positive and negative ions. The primary motivations for electronegative ion thruster development include the elimination of lifetime-limiting cathodes from a thruster system and the ability to generate appreciable thrust through the acceleration of both positive or negative-charged ions. Proof-of-concept testing of the PEGASES (Plasma Propulsion with Electronegative GASES) thruster demonstrated the production of positively and negatively-charged ions (argon and sulfur hexafluoride, respectively) in an RF discharge and the subsequent acceleration of each charge species through the application of a time-varying electric field to a pair of metallic grids similar to those found in gridded ion thrusters. Leveraging the knowledge gained through experiments with the PEGASES I and II prototypes, the MINT (Marshall's Ion-ioN Thruster) is being developed to provide a platform for additional electronegative thruster proof-of-concept validation testing including direct thrust measurements. The design criteria used in designing the MINT are outlined and the planned tests that will be used to characterize the performance of the prototype are described.

  20. Scaling Laws of Lissajous Helicon Plasma Accelerator toward Electric Propulsion in Space

    NASA Astrophysics Data System (ADS)

    Funaki, Ikkou; Matsuoka, T.; Nakamura, T.; Yokoi, K.; Nishida, H.; Shamrai, K. P.; Tanikawa, T.; Hada, T.; Shinohara, S.

    2010-11-01

    Scaling law of Lissajous Helicon Plasma Accelerator(LHPA) is derived and tested via PIC simulations with code VORPAL. In the LHPA, rotating transverse electric field in external longitudinal uniform magnetic field drives azimuthal current via ExB drift then thrust is produced due to Lorentz force. An 1D analytical model is developed which includes field penetration and ExB current estimation based on trajectory analysis. Scaling law of thrust as a function of parameters of RF drive frequency, applied RF voltage, plasma density, size of the thruster will be shown.

  1. Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E; Soulas, George C.; Patterson, Michael J.

    2000-01-01

    The success of the NASA Deep Space I spacecraft has demonstrated that ion propulsion is a viable option for deep space science missions. More aggressive missions such as Comet Nuclear Sample Return and Europa lander will require higher power, higher propellant throughput and longer thruster lifetime than the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) engine. Presented here are thruster plume and discharge plasma measurements of an NSTAR-type thruster operated from 0.5 kW to 5 kW. From Faraday plume sweeps, beam divergence was determined. From Langmuir probe plume measurements on centerline, low energy ion production on axis due to charge-exchange and direct ionization was assessed. Additionally, plume plasma potential measurements made on axis were used to determine the upper energy limits at which ions created on centerline could be radially accelerated. Wall probes flush-mounted to the thruster discharge chamber anode were used to assess plasma conditions. Langmuir probe measurements at the wall indicated significant differences in the electron temperature in the cylindrical and conical sections of the discharge chamber.

  2. Electrodeless Plasma Thruster Design Characteristics and Performances

    NASA Astrophysics Data System (ADS)

    Emsellem, G.

    2004-10-01

    The Elwing company has designed and modelled an electrode-less plasma thruster. This new concept has been designed to overcome fundamental limitations of existing solutions such as Hall Effect Thrusters and Gridded Ion Thrusters. In order to solve reliability and lifetime concerns as well as erosion and contamination problems known on these devices, Elwing's thruster has no component immersed in the discharge and does not require any neutralizer. Furthermore, as the function of ionization and acceleration are distinct, this new thruster concept is suitable for flexible operations as it can be fully throttled in both specific impulse and thrust while remaining at high efficiency above 50%. This design also introduces efficient non-mechanical thrust vectoring capability. Many features of the basic concept are discussed to show how this concept can be tailored to various operating conditions for power varying from 200W to 50kW. The thruster operations have been simulated and scaling laws established. The most significant performance achieved by this design is a thrust density in the range of 10N/m2 to more than 500 N/m2 which increases with available power. Obtained performances range from 5.9mN/4200s at 200W, an efficiency of 61%, up to 2.79N/3350s at 50kW with an efficiency of 91%.

  3. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  4. Ram accelerator direct launch system for space cargo

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new method of efficiently accelerating relatively large masses (up to several metric tons) to velocities of 0.6 km/sec up to 12 km/sec using chemical energy has been developed. The vehicle travels through a tube filled with a premixed gaseous fuel and oxidizer mixture. There is no propellant on-board the vehicle. The tube acts as the outer cowling of a ram jet and the energy release process travels with the vehicle. The ballistic efficiency remains high up to extremely high velocities and the acceleration can be maintained at a nearly constant level. Five modes of ram accelerator operation have been investigated; these modes differ primarily in the method of chemical heat release and the operational velocity range, and include two subsonic combustion modes (one of which involves thermally choke a combustion behind the vehicle) and three detonation drive modes. These modes of propulsion are capable of efficient acceleration in the range of 0.6-12 km/sec, although aerodynamic heating becomes severe above about 8 km/sec. Experiments carried out to date at the University of Washington up to 2 km/sec have established proof of principle of the ram accelerator concept and have shown close agreement between predicted and measured performance. A launch system capable of delivering two metric tons into low earth orbit was selected for the purposes of the present study. The preliminary analysis indicates that the overall dimensions of a restricted acceleration (less than approx. 1000 g) launch facility would require a tube 1 m in diameter, with an overall length of approximately 4 km. As in any direct launch scheme, a small on-board rocket is required to circularize the otherwise highly elliptical orbit which intersects the Earth. Various orbital insertion scenarios have been explored for the case of a 9 km/sec ram accelerator launch. These include direct insertion through a single circularization maneuver (i.e., on rocket burn), insertion involving two burns, and a

  5. Helicon Plasma Injection into an IEC Thruster

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Ulmen, Ben; Krishnamurthy, Akshata; Keutelian, Paul; Chen, George

    2012-10-01

    Helicon plasma injection into an Inertial Electrostatic Confinement (IEC) thruster stage is under experimental study. Helicons are RF plasma sources using helicon waves, or low frequency whistler waves. Such inductively coupled plasmas (ICPs) produce plasma of higher density than other field-free ICPs. Permanent magnet helicon sources have been proposed for plasma generation to provide a high downstream plasma density of about 1018 m-3 for argon [1]. The IEC stage then provides plasma acceleration. An IEC plasma is produced as a dc glow discharge, giving a ``star'' or a ``jet'' mode (current mode of interest) on chamber pressure. To decouple the chamber pressure and the IEC cathode grid accelerating voltage, the plasma generation and plasma acceleration stages are decoupled by helicon plasma injection. Normally a symmetric cathode grid produces the star mode at lower pressures while a slightly higher pressure gives the jet mode. In this experiment an asymmetric cathode grid is used in the IEC to produce a plasma jet at pressures as low as 1.0 mTorr. This mode can be used as an advanced electric propulsion system where thrust and specific impulse are decoupled, providing variable specific impulse that enables complicated orbital maneuvers and challenging space missions. [4pt] [1] F. F. Chen and H. Torreblanca, ``Large-area helicon plasma source with permanent magnets,'' Phys. Plasmas, 2007.

  6. Laser-heated rocket thruster

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1977-01-01

    A space vehicle application using 5,000-kw input laser power was conceptually evaluated. A detailed design evaluation of a 10-kw experimental thruster including plasma size, chamber size, cooling, and performance analyses, was performed for 50 psia chamber pressure and using hydrogen as a propellant. The 10-kw hardware fabricated included a water cooled chamber, an uncooled copper chamber, an injector, igniters, and a thrust stand. A 10-kw optical train was designed.

  7. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  8. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  9. Technology development and demonstration of a low thrust resistojet thruster

    NASA Technical Reports Server (NTRS)

    Pfeifer, G. R.

    1972-01-01

    Three thrusters were fabricated to definitized thruster drawings using new rhenium vapor deposition technology. Two of the thrusters were operated using ammonia as propellant and one was operated using hydrogen propellant for performance determination. All demonstrated consistent operational specific impulse performance while demonstrating thermal performance better than the development units from which they evolved. Two of the thrusters were subjected to environmental structural testing including vibration, acceleration and shock loading to specifications. Both of the thrusters subjected to the environmental tests passed all required tests. The third, spare, thruster was introduced into the life test portion of the program. Two thrusters were then subjected to a life cycling test program under typical spacecraft operating power levels. During the life test sequence, the hydrogen thruster accrued 720 operating life test cycles, more than 370 on-off cycles and 365 hours of powered up time. The ammonia accrued approximately 380 on-off cycles and 392.2 on time hours of operation during the 720 cycling hour test. Both thrusters completed the scheduled operational life test in reasonably good condition, structurally integral and capable of indefinite further operation.

  10. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  11. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  12. Application of the NEXT Ion Thruster Lifetime Assessment to Thruster Throttling

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Herman, Daniel A.

    2010-01-01

    Ion thrusters are low thrust, high specific impulse devices with typical operational lifetimes of 10,000 to 30,000 hr over a range of throttling conditions. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest input power throttling point. This paper will provide a brief review the previous life assessment predictions for various throttling conditions. A further assessment will be presented examining the anticipated accelerator grid hole wall erosion and related electron backstreaming limit. The continued assessment of the NEXT ion thruster indicates that the first failure mode across the throttling range is expected to be in excess of 36,000 hr of operation from charge exchange induced groove erosion. It is at this duration that the groove is predicted to penetrate the accelerator grid possibly resulting in structural failure. Based on these lifetime and mission assessments, a throttling approach is presented for the Long Duration Test to demonstrate NEXT thruster lifetime and validate modeling.

  13. A Novel Electric Thruster Based on IEC Plasma Jet Technology

    SciTech Connect

    Miley, George H.; Momota, H.; Stubbers, R.

    2004-07-01

    A novel plasma jet thruster, based on Inertial Electrostatic Confinement (IEC) technology, is described for orbit transfer operations. While electronically driven, it represents a fore summer of a future fusion powered unit. The IEC thruster employs a spherical configuration, wherein ions are generated and accelerated towards the center of a spherical vacuum chamber where a high-density central core region accelerated ions into an intense quasi-neutral ion jet. Compared to other high-power plasma thrusters, the IEC offers advantages in design simplicity and minimum propellant leakage, plus a high power-to-weight ratio. (authors)

  14. Second Magnetoplasmadynamic Thruster Workshop

    SciTech Connect

    Not Available

    1992-01-01

    The meeting focused on progress made in establishing performance and lifetime expectations of magnetoplasmadynamic (MPD) thrusters as functions of power, propellant, and design; models for the plasma flow and electrode components; viability and transportability of quasi-steady thruster testing; engineering requirements for high power, long life thrusters; and facilities and their requirements for performance and life testing. Separate abstracts have been prepared for articles from this report.

  15. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Inhouse magnetoplasmadynamic (MPD) thruster technology is discussed. The study focussed on steady state thrusters at powers of less than 1 MW. Performance measurement and diagnostics technologies were developed for high power thrusters. Also developed was a MPD computer code. The stated goals of the program are to establish: performance and life limitation; influence of applied fields; propellant effects; and scaling laws. The presentation is mostly through graphs and charts.

  16. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2015-01-01

    Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.

  17. Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2015-07-01

    A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion space-system that enables the usage of magnetohydrodynamic (MHD) principles for accelerating a plasma flow towards high speed exhaust velocities. It can produce an high specific impulse, making it suitable for long duration interplanetary space missions. In this paper numerical results obtained with a new code, which is being developed at C-MAST (Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD thruster are presented. The numerical model is based on the macroscopic MHD equations for compressible and electrically resistive flow and is able to predict the two most important thrust mechanisms that are associated with this kind of propulsion system, namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of very high temperatures that could occur during the operation of the MPD, it also includes a real gas model for argon.

  18. Conducting Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  19. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1985-01-01

    A series of experiments conducted on a ring cusp magnetic field ion thruster; in which the anode, cathode and discharge chamber backplate were moved relative to the magnetic cusp; are described. Optimum locations for the anode, cathode and backplate which yield the lowest energy cost per plasma ion and highest extracted ion fraction are identified. The results are discussed in terms of simple physical models. The results of preliminary experiments into the operation of hollow cathodes on nitrogen and xenon over a large pressure range (0.1 to 100 Torr) are presented. They show that the cathode discharge transfers from the cathode insert to the exterior edge of the orifice plate as the interelectrode pressure is increased. Experimental evidence showing that a new ion extractor grid concept can be used to stabilize the plasma sheath at the screen grid is presented. This concept, identified by the term constrained sheath optics, is shown to hold ion beamlet divergence and impingement characteristics to stable values as the beamlet current and the net and total accelerating voltages are changed. The current status of a study of beamlet vectoring induced by displacing the accelerator and/or decelerator grids of a three grid ion extraction system relative to the screen grid is discussed.

  20. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  1. Status of the NEXT Ion Thruster Long-Duration Test After 10,100 hr and 207 kg Demonstrated

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 21, 2007, the thruster has accumulated 10,100 hr of operation at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. The thruster has processed 207 kg of xenon and demonstrated a total impulse of 8.5 106 N-s; the highest total impulse ever demonstrated by an ion thruster in the history of space propulsion. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Overall ion thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. Lifetime-limiting component erosion rates have been consistent with the NEXT service life assessment, which predicts the earliest failure sometime after 750 kg of xenon propellant throughput; well beyond the mission-derived lifetime requirement. The NEXT wear test data confirm that the erosion of the discharge keeper orifice, enlarging of nominal-current-density accelerator grid aperture cusps, and the decrease in cold grid-gap observed during the NSTAR Extended Life Test have been mitigated. This paper presents the status of the NEXT LDT to date.

  2. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  3. Comparison of Computed and Measured Performance of a Pulsed Inductive Thruster Operating on Argon Propellant

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.

    2012-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled

  4. Some Considerations on the Pulsed Electromagnetic Acceleration of Plasma

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Markusic, T. E.; Cassibry, J. T.; Sommers, J. C.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    In applying pulsed electromagnetic acceleration of plasma to space propulsion (known as pulsed plasma thrusters in the community), the mode of acceleration used has been mostly in the collisionless or near-collisionless regime. The preparation of the initial plasma is given scant attention. Collisional regime of accelerating the plasma, however, have been encountered in a variety of plasma accelerating devices. Both of these modes of acceleration are reviewed in a companion paper. In this paper, we discuss the considerations governing the controlled introduction and preparation of the initial plasma, so that the collisional mode of accelerating the plasma may be suitably enhanced.

  5. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  6. A laser spectroscopic study on Xe{sup +} ion transport phenomena in the ExB discharge of a Hall effect thruster

    SciTech Connect

    Mazouffre, S.; Gawron, D.; Kulaev, V.; Luna, J. Perez; Sadeghi, N.

    2008-03-19

    The Velocity Distribution Function (VDF) of metastable Xe{sup +} ions was measured along the channel axis of the 5 kW-class PPS registered X000 Hall effect thruster by means of Laser Induced Fluorescence spectroscopy at 834.72 nm for various voltages, magnetic fields and mass flow rates. Axial velocity and dispersion profiles are compared to on-axis profiles obtained with the 1.5 kW-class PPS100 thruster. Outcomes of the comparison are threefold. (i) The broadening of the FDV across the region of strong magnetic field is a general feature for Hall thrusters. It originates in the overlap between ionization and acceleration layers. The velocity dispersion increases with the discharge voltage; it reaches up to 200 eV in unit of kinetic energy at 700 V. (ii) Most of the acceleration potential ({approx_equal}70%) is localized outside the thruster channel whatever the thruster size and operating conditions. The electric field moves upstream when the applied voltage is ramped up; in other words the fraction of potential inside the channel increases with the voltage; (iii) A non negligible amount of very slow and very fast (kinetic energy higher than the applied potential) Xe{sup +} ions are always observed. Such ions may find their origin in space and temporal oscillations of the electric field as suggested by numerical simulations carried out with a hybrid model.

  7. Increasing the Life of a Xenon-Ion Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard

    2007-01-01

    A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.

  8. Cusped magnetic field mercury ion thruster. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.

    1976-01-01

    The importance of a uniform current density profile in the exhaust beam of an electrostatic ion thruster is discussed in terms of thrust level and accelerator system lifetime. A residence time approach is used to explain the nonuniform beam current density profile of the divergent magnetic field thruster. Mathematical expressions are derived which relate the thruster discharge power loss, propellant utilization, and double to single ion density ratio to the geometry and plasma properties of the discharge chamber. These relationships are applied to a cylindrical discharge chamber model of the thruster. Experimental results are presented for a wide range of the discharge chamber length. The thruster designed for this investigation was operated with a cusped magnetic field as well as a divergent field geometry, and the cusped field geometry is shown to be superior from the standpoint of beam profile uniformity, performance, and double ion population.

  9. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  10. Multi-Thruster Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    An electric propulsion machine includes an ion thruster having a discharge chamber housing a large surface area anode. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, at least a second thruster may be disposed radially offset from the ion thruster.

  11. MPD thruster operation with inductively stored energy

    NASA Technical Reports Server (NTRS)

    Clark, K. E.; Von Jaskowsky, W. F.; Wolff, M.; Budd, D. W.

    1979-01-01

    Magnetoplasmadynamic (MPD) thrusters with 10-cm and 2.5-cm long thoriated tungsten cathodes have been operated with both inductive and capacitive energy sources at currents up to 8 kA. Voltage-current characteristics and magnetic field measurements show that over most of the operating range, the inductively driven thruster acts as a continuously varying quasi-steady accelerator at the same current. However, at values of a specified parameter near the onset condition for voltage fluctuations and electrode and insulator erosion, the voltage for the inductively driven thruster is higher than its quasi-steady counterpart. This higher voltage occurs because the equilibration time constant of the MPD discharge, is too large to allow the terminal voltage to attain a quasi-steady value as the inductively driven current decreases.

  12. Geometrical Scaling of Hall Thruster Particle Model

    SciTech Connect

    Taccogna, Francesco; Longo, Savino; Capitelli, Mario; Schneider, Ralf

    2005-05-16

    Non-Maxwellian behaviour and plasma-wall interaction are key processes in the physics of Hall thrusters. For this purpose, a 2D{l_brace}r,z{r_brace}-3V axisymmetric fully kinetic Particle-in-Cell/Monte Carlo Collision (PIC-MCC) model of the acceleration channel including the process of secondary electron emission (SEE) from the dielectric walls has been developed. In order to make the simulation possible with regard to the computational time, a reduction of the thruster dimension was done. This was derived from a new physics-based scaling law. This model has demonstrated its outstanding capability in improving the physics insight into the processes in Stationary Plasma Thruster (SPT) and in reproducing accurately well experimental data.

  13. An 8-cm ion thruster characterization

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Hancock, D. J.; Dulgeroff, C. R.; Williamson, W. S.

    1987-01-01

    The performance of the Ion Auxiliary Propulsion System (IAPS) thruster was increased to thrust T = 32 mN, specific impulse I sub sp = 4062 s, and thrust-to-power ratio T/P = 33 mN/kW. This performance was obtained by increasing the discharge power, accelerating voltage, propellant flow rate, and chamber magnetic field. Adding a plenum and main vaporizer for propellant distribution was the only major change required in the thruster. The modified thruster characterization is presented. A cathode magnet assembly did not improve performance. A simplified power processing unit was designed and evaluated. This unit decreased the parts count of the IAPS power processing unit by a factor of ten.

  14. Evaluation of a steady state MPD thruster test facility

    SciTech Connect

    Reed, C.B.; Carlson, L.W.; Herman, H.; Doss, E.D.; Kilgore, O.

    1985-01-01

    The successful development of multimegawatt MPD thrusters depends, to a great extent, on testing them under steady state high altitude space conditions. Steady state testing is required to provide thermal characteristics, life cycle, erosion, and other essential data. the major technical obstacle for ground testing of MPD thrusters in a space simulation facility is the inability of state-of-the-art vacuum systems to handle the tremendous pumping speeds required for multimegawatt MPD thrusters. This is true for other types of electric propulsion devices as well. This paper discusses the results of the first phase of an evaluation of steady state MPD thruster test facilities. The first phase addresses the conceptual design of vacuum systems required to support multimegawatt MPD thruster testing. Three advanced pumping system concepts were evaluated and are presented here.

  15. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  16. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  17. Ultraviolet tomography of kink dynamics in a magnetoplasmadynamic thruster

    NASA Astrophysics Data System (ADS)

    Bonomo, F.; Franz, P.; Spizzo, G.; Marrelli, L.; Martin, P.; Paganucci, F.; Rossetti, P.; Signori, M.; Andrenucci, M.; Pomaro, N.

    2005-09-01

    In this paper the results of a project concerning the ultraviolet (UV) imaging of a plasma for space applications, produced in a magneto-plasmadynamic (MPD) thruster, are presented. MPD are a class of high-power electric space propulsion devices that accelerate a plasma to high velocities (>10km/s), by exploiting the Lorentz force. This force arises from the interaction between the discharge electrical current and a self induced and externally applied magnetic field. The imaging system has been realized by inserting three arrays of UV-enhanced photodiodes directly into the plastic structure of the anode. The amplifiers are miniaturized and built into the detector. This advanced diagnostic design allows for a detailed tomographic reconstruction of the emissivity spatial structure, both in the axial direction z (corresponding to a wave number n) and azimuthal direction (wave number m) with high time resolution. A magneto-hydrodynamic instability, with mode numbers m =1 and n =1 has been observed, which might affect the performances of the thruster.

  18. Ultraviolet tomography of kink dynamics in a magnetoplasmadynamic thruster

    SciTech Connect

    Bonomo, F.; Franz, P.; Spizzo, G.; Marrelli, L.; Martin, P.; Paganucci, F.; Rossetti, P.; Signori, M.; Andrenucci, M.; Pomaro, N.

    2005-09-15

    In this paper the results of a project concerning the ultraviolet (UV) imaging of a plasma for space applications, produced in a magneto-plasmadynamic (MPD) thruster, are presented. MPD are a class of high-power electric space propulsion devices that accelerate a plasma to high velocities (>10 km/s), by exploiting the Lorentz force. This force arises from the interaction between the discharge electrical current and a self induced and externally applied magnetic field. The imaging system has been realized by inserting three arrays of UV-enhanced photodiodes directly into the plastic structure of the anode. The amplifiers are miniaturized and built into the detector. This advanced diagnostic design allows for a detailed tomographic reconstruction of the emissivity spatial structure, both in the axial direction z (corresponding to a wave number n) and azimuthal direction (wave number m) with high time resolution. A magneto-hydrodynamic instability, with mode numbers m=1 and n=1 has been observed, which might affect the performances of the thruster.

  19. Increasing Extracted Beam Current Density in Ion Thrusters through Plasma Potential Modification

    NASA Astrophysics Data System (ADS)

    Arthur, Neil; Foster, John

    2015-09-01

    A gridded ion thruster's maximum extractable beam current is determined by the space charge limit. The classical formulation does not take into account finite ion drift into the acceleration gap. It can be shown that extractable beam current can be increased beyond the conventional Child-Langmuir law if the ions enter the gap at a finite drift speed. In this work, ion drift in a 10 cm thruster is varied by adjusting the plasma potential relative to the potential at the extraction plane. Internal plasma potential variations are achieved using a novel approach involving biasing the magnetic cusps. Ion flow variations are assessed using simulated beam extraction in conjunction with a retarding potential analyzer. Ion beam current density changes at a given total beam voltage in full beam extraction tests are characterized as a function of induced ion drift velocity as well.

  20. Performance and optimization of a derated ion thruster for auxiliary propulsion

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Foster, John E.

    1991-01-01

    The characteristics and implications of use of a derated ion thruster for north-south stationkeeping (NSSK) propulsion are discussed. A derated thruster is a 30 cm diameter primary propulsion ion thruster operated at highly throttled conditions appropriate to NSSK functions. The performance characteristics of a 30 cm ion thruster are presented, emphasizing throttled operation at low specific impulse and high thrust-to-power ratio. Performance data and component erosion are compared to other NSSK ion thrusters. Operations benefits derived from the performance advantages of the derated approach are examined assuming an INTELSAt 7-type spacecraft. Minimum ground test facility pumping capabilities required to maintain facility enhanced accelerator grid erosion at acceptable levels in a lifetest are quantified as a function of thruster operating condition. Approaches to reducing the derated thruster mass and volume are also discussed.

  1. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    SciTech Connect

    Cannat, F. E-mail: felix.cannat@gmail.com; Lafleur, T.; Jarrige, J.; Elias, P.-Q.; Packan, D.; Chabert, P.

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  2. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    NASA Astrophysics Data System (ADS)

    Cannat, F.; Lafleur, T.; Jarrige, J.; Chabert, P.; Elias, P.-Q.; Packan, D.

    2015-05-01

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  3. Performance documentation of the engineering model 30-cm diameter thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Rawlin, V. K.

    1976-01-01

    The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented.

  4. Gimballing Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim; Bossard, John

    2010-01-01

    A gimballing spacecraft reaction-control-system thruster was developed that consists of a small hydrogen/oxygen-burning rocket engine integrated with a Canfield joint. (Named after its inventor, a Canfield joint is a special gimbal mount that is strong and stable yet allows a wide range of motion.) One especially notable aspect of the design of this thruster is integration, into both the stationary legs and the moving arms of the Canfield joint, of the passages through which the hydrogen and oxygen flow to the engine. The thruster was assembled and subjected to tests in which the engine was successfully fired both with and without motion in the Canfield joint.

  5. Preliminary investigation of power flow and electrode phenomena in a multi-megawatt coaxial plasma thruster

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Henins, Ivars; Mayo, Robert; Scheuer, Jay; Wurden, Glen

    1992-01-01

    The present report on preliminary results of theoretical and experimental investigations of power flow in a large, unoptimized, multimegawatt coaxial thruster evaluates the significance of these data for the development of efficient, megawatt-class magnetoplasmadynamic (MPD) thrusters. The good agreement obtained between thruster operational performance and model predictions suggests that ideal MHD processes, including those of a magnetic nozzle, play an important role in coaxial plasma thruster dynamics at power levels relevant to advanced space propulsion. An optimized magnetic nozzle design would aid the development of efficient, multimegawatt MPD thrusters.

  6. Preliminary investigation of power flow and electrode phenomena in a multi-megawatt coaxial plasma thruster

    SciTech Connect

    Schoenberg, K.F.; Gerwin, R.A.; Henins, I.; Mayo, R.; Scheuer, J.; Wurden, G. North Carolina State University, Raleigh )

    1992-07-01

    The present report on preliminary results of theoretical and experimental investigations of power flow in a large, unoptimized, multimegawatt coaxial thruster evaluates the significance of these data for the development of efficient, megawatt-class magnetoplasmadynamic (MPD) thrusters. The good agreement obtained between thruster operational performance and model predictions suggests that ideal MHD processes, including those of a magnetic nozzle, play an important role in coaxial plasma thruster dynamics at power levels relevant to advanced space propulsion. An optimized magnetic nozzle design would aid the development of efficient, multimegawatt MPD thrusters. 10 refs.

  7. Pulsed Plasma Thruster (PPT) Technology: Earth Observing-1 PPT Operational and Advanced Components Being Developed

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.; Arrington, Lynn A.; Frus, John; Hoskins, W. Andrew; Burton, Rodney

    2003-01-01

    In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.

  8. Operation of the J-series thruster using inert gas

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1982-01-01

    Electron bombardment ion thrusters using inert gases are candidates for large space systems. The J-Series 30 cm diameter thruster, designed for operation up to 3 k-W with mercury, is at a state of technology readiness. The characteristics of operation with xenon, krypton, and argon propellants in a J-Series thruster with that obtained with mercury are compared. The performance of the discharge chamber, ion optics, and neutralizer and the overall efficiency as functions of input power and specific impulse and thruster lifetime were evaluated. As expected, the discharge chamber performance with inert gases decreased with decreasing atomic mass. Aspects of the J-Series thruster design which would require modification to provide operation at high power with insert gases were identified.

  9. Astronaut Richards initiates thruster firing during SPIFEX operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    At the commander's station on the Space Shuttle Discovery's forward flight deck, astronaut Richard N. Richards, mission commander, initiates a thruster firing of the spacecraft during operations with the Shuttle Plume Impingement Flight Experiment (SPIFEX).

  10. High vacuum facility for hydrazine thruster testing

    NASA Technical Reports Server (NTRS)

    Neary, Patrick F.

    1990-01-01

    An ongoing modification is described of a large vacuum chamber to accommodate the ignition of an arcjet hydrazine thruster while maintaining a vacuum level of 1 x 10(exp -5) torr or less. The vacuum facility consists of a 20 ft stainless steel vacuum tank with an internal LN2 shroud, four 35 in. cryopumps and an 8 in. turbopump. To maintain a vacuum level of 1 x 10(exp -5) torr or less, 900 sq ft of liquid helium (LHe) shroud surface was installed to maintain the vacuum level and pumping requirements. A vacuum level of 1 x 10(exp -5) torr or less will allow the hydrazine thrust to exit the thruster nozzle and radiate into a space type environment so that the plume flow field can be analyzed and compared to the analytical model density distribution profile. Some other arcjet thruster characteristics measured are the electromagnetic interference (EMI) and exhaust contamination. This data is used to evaluate if the arcjet thruster with its high specific impulse in comparison to current chemical propulsion thruster can be used for the next generation of communication satellites.

  11. Fluid physics phenomena of resistojet thrusters

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J. (Principal Investigator)

    1996-01-01

    This final report includes a list of publications and part of an M.S. thesis titled 'Analyses in Theoretical and Experimental Fluid Flow', by Tony G. Howell. The thesis discusses analyses of momentum and heat transfer occurring in a laminar boundary layer of a non-Newtonian power-law fluid, and experiments completed in a simulated space thruster's plume for prediction comparison.

  12. A concept of ferroelectric microparticle propulsion thruster

    SciTech Connect

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-02-25

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches {approx}9x10{sup -4} N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster.

  13. Improved Hall type thruster

    NASA Astrophysics Data System (ADS)

    Wetch, Joseph R.; See-pok Wong, Britt, Edward J.; McCracken, Kevin J.; Lin, Raymond; Petrosov, Valeri; Koroteev, Anatoli

    1995-01-01

    An improved design of the Hall type stationary plasma thruster has been tested in 1994. The test results are presented. The test measures performance, EMI and beam divergence of two models of thrusters from the Russian Keldysh Scientific-Research Institute of Thermal Processes. The first of these engines, T-100 produces 80 mN thruster with power of 1.35 kWe. The other thruster, T-160 is larger and produces 280 nM thrust with 4.5 kWe. Endurance testing of the T-100 for 2000 hours was completed at NIITP. Post operation wear measurements indicate that the insulator life expectency will exceed the 8000 hour design life objective. Improved efficiencies of 48 to 52% were measured for the T-100 and 58-62% (with elevated tank pressure) for the T-160 at specific impulse Isp of 1600 seconds and 2000 seconds respectively.

  14. Magnetoplasmadynamic thruster development

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Vondra, R. J.

    1982-01-01

    Current research on self-field MPD thrusters presents the possibility of developing high power/low cost electric propulsion. The interest generated in this propulsion concept within both NASA and the U.S. Air Force has led to a coordinated interagency effort, and the recent completion of several test sites are expected to speed thruster concept development. Efficiencies approaching 40% at 2200 sec have been experimentally demonstrated. Among the characteristics recommending development of MPD thrusters are high thrust density and power handling capability, simplicity, and a wide dynamic range of thrust and specific impulse. MPD thrusters can, moreover, operate either continuously, at high available power levels, or in a pulsed mode, to match lower power levels.

  15. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Lapointe, Michael R.; Mantenieks, Maris A.

    1991-01-01

    MPD thrusters have demonstrated between 2000 and 7000 sec specific impulse at efficiencies approaching 40 percent, and have been operated continuously at power levels over 500 kW. These demonstrated capabilities, combined with the simplicity and robustness of the thruster, make them attractive candidates for application to both unmanned and manned orbit raising, lunar, and planetary missions. This work reviews the present status of MPD thruster research, including developments in the measured performance levels and electrode erosion rates, and theoretical studies of the thruster dynamics. Significant progress has been made in establishing empirical scaling laws, performance and lifetime limitations, and in the development of numerical codes to simulate the flowfield and the electrode processes.

  16. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Mantenieks, Maris A.; Lapointe, Michael R.

    1991-01-01

    MPD (MagnetoPlasmaDynamic) thrusters demonstrated between 2000 and 7000 seconds specific impulse at efficiencies approaching 40 percent, and were operated continuously at power levels over 500 kW. These demonstrated capabilities, combined with the simplicity and robustness of the thruster, make them attractive candidates for application to both unmanned and manned orbit raising, lunar, and planetary missions. To date, however, only a limited number of thruster configurations, propellants, and operating conditions were studied. The present status of MPD research is reviewed, including developments in the measured performance levels and electrode erosion rates. Theoretical studies of the thruster dynamics are also described. Significant progress was made in establishing empirical scaling laws, performance and lifetime limitations and in the development of numerical codes to simulate the flow field and electrode processes.

  17. Inductive energy storage for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; Jones, R. M.

    1979-01-01

    The high thrust density of the self-field magnetoplasmadynamic (MPD) thruster makes it a promising candidate for many advanced space missions. The high power requirements of this thruster lead to its operation in a pulsed mode from an energy storage device. The system characteristics of an inductive energy storage circuit with a solar array power from 25 kwe to 400 kwe are considered, by solving the circuit equations for the inductor charge and discharge phases. Using simple analytic models of the circuit components, the total system efficiency and inductance are determined as functions of the array output power and circuit resistance. The total system efficiency increases with array power and is acceptable only for low values of circuit resistance, indicating that superconducting circuitry may be desirable. The optimum charge-discharge cycle changes fundamentally as the circuit resistance is decreased through a critical value dependent on the thruster operating characteristics.

  18. Experimental studies of an ECR plasma thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    The Electron Cyclotron Resonance (ECR) thruster is a proposed electrodeless space electric propulsion device with interesting and little understood physics. A laboratory ECR thruster was run in a vacuum tank at pressures in the 10 exp -5 torr range using 2.12 GHz microwave beam and Ar gas propellant. Movable diagnostic probes (a Faraday cup and a gridded energy analyzer) measured plasma characteristics as propellant gas flow rate and input microwave power level were varied. Ion energy and flux data were used to calculate I(sp), propulsive efficiency, and thrust. The ion flux profiles show an unexpected depression on the thruster axis for low tank pressures that disappears as the tank pressure increases. Ion energies decrease as the flow rate and pressure increase, but the microwave power level affects the energy only negligibly. The calculated propulsion parameters demonstrate that the efficiency of the laboratory device is low, and that tank pressure greatly changes the performance.

  19. Ion thruster design and analysis

    NASA Technical Reports Server (NTRS)

    Kami, S.; Schnelker, D. E.

    1976-01-01

    Questions concerning the mechanical design of a thruster are considered, taking into account differences in the design of an 8-cm and a 30-cm model. The components of a thruster include the thruster shell assembly, the ion extraction electrode assembly, the cathode isolator vaporizer assembly, the neutralizer isolator vaporizer assembly, ground screen and mask, and the main isolator vaporizer assembly. Attention is given to the materials used in thruster fabrication, the advanced manufacturing methods used, details of thruster performance, an evaluation of thruster life, structural and thermal design considerations, and questions of reliability and quality assurance.

  20. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  1. Mode Transitions in Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  2. Rail accelerators for space transportation: An experimental investigation

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. L.

    1986-01-01

    An experimental program was conducted at the Lewis Research Center with the objective of investigating the technical feasibility of rail accelerators for propulsion applications. Single-stage, plasma driven rail accelerators of small (4 by 6 mm) and medium (12.5 by 12.5 mm) bores were tested at peak accelerating currents of 50 to 450 kA. Streak-camera photography was used to provide a qualitative description of plasma armature acceleration. The effects of plasma blowby and varying bore pressure on the behavior of plasma armatures were studied.

  3. 43. Bow thruster room. Bow thruster engine not used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Bow thruster room. Bow thruster engine not used for powering hydraulics to boom as in some other tenders in same class. - U.S. Coast Guard Cutter BRAMBLE, Waterfront at Lincoln Avenue, Port Huron, St. Clair County, MI

  4. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  5. Galium Electromagnetic (GEM) Thruster Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2005-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagnetic pump. At a designated time, a pulsed discharge (approx. 10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx. 500 J), second-stage pulse which provides the primary electromagnetic (j x B) acceleration.

  6. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  7. Thrust Stand Measurements of a Conical Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2013-01-01

    Inductive Pulsed Plasma Thrusters (iPPT) spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current Propellant is accelerated and expelled at a high exhaust velocity (O(10 -- 100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. A conical coil geometry may offer higher propellant utilization efficiency over that of a at inductive coil, however an increase in propellant utilization may be met with a decrease in axial electromagnetic acceleration, and in turn, a decrease in the total axially-directed kinetic energy imparted to the propellant.

  8. Design and Performance Estimates of an Ablative Gallium Electromagnetic Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.

    2012-01-01

    The present study details the high-power condensable propellant research being conducted at NASA Glenn Research Center. The gallium electromagnetic thruster is an ablative coaxial accelerator designed to operate at arc discharge currents in the range of 10-25 kA. The thruster is driven by a four-parallel line pulse forming network capable of producing a 250 microsec pulse with a 60 kA amplitude. A torsional-type thrust stand is used to measure the impulse of a coaxial GEM thruster. Tests are conducted in a vacuum chamber 1.5 m in diameter and 4.5 m long with a background pressure of 2 microtorr. Electromagnetic scaling calculations predict a thruster efficiency of 50% at a specific impulse of 2800 seconds.

  9. Electromagnetic effects in an applied-field magnetoplasmadynamic thruster

    SciTech Connect

    Arakawa, Y.; Sasoh, A. Tohoku University, Sendai, )

    1992-02-01

    Experimental and analytical studies have been conducted on the performance and thrust production mechanisms of an applied-field magnetoplasmadynamic thruster. The thruster was able to run with a high-thruster performance due to large electromagnetic effects related to the applied magnetic field. Using hydrogen, helium, and argon as the propellant, over 20 percent thrust efficiency was obtained over a wide specific impulse range from 1000 to 7000 s at input power levels between 2.2 and 15.9 kW. From the measurements of performance characteristics and current densities in the acceleration region, and by a theoretical analysis, it is found that the thruster operation is characterized by a parameter, B-squared/m (B: applied magnetic field strength, m: propellant mass flow rate). 9 refs.

  10. A multiple thruster array for 30-cm thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Mantenieks, M. A.

    1975-01-01

    The 3.0-m diameter chamber of the 7.6-m diameter by 21.4-m long vacuum tank at NASA LeRC was modified to permit testing of an array of up to six 30-cm thrusters with a variety of laboratory and thermal vacuum bread-board power systems. A primary objective of the Multiple Thruster Array (MTA) program is to assess the impact of multiple thruster operation on individual thruster and power processor requirements. The areas of thruster startup, steady-state operation, throttling, high voltage recycle, thrust vectoring, and shutdown are of special concern. The results of initial tests are reported.

  11. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  12. The physics, performance and predictions of the PEGASES ion-ion thruster

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane

    2014-10-01

    Electric propulsion (EP) is now used systematically in space applications (due to the fuel and lifetime economy) to the extent that EP is now recognized as the next generation space technology. The uses of EP systems have though been limited to attitude control of GEO-stationary satellites and scientific missions. Now, the community envisages the use of EP for a variety of other applications as well; such as orbit transfer maneuvers, satellites in low altitudes, space debris removal, cube-sat control, challenging scientific missions close to and far from earth etc. For this we need a platform of EP systems providing much more variety in performance than what classical Hall and Gridded thrusters can provide alone. PEGASES is a gridded thruster that can be an alternative for some new applications in space, in particular for space debris removal. Unlike classical ion thrusters, here positive and negative ions are alternately accelerated to produce thrust. In this presentation we will look at the fundamental aspects of PEGASES. The emphasis will be put on our current understanding, obtained via analytical models, PIC simulations and experimental measurements, of the alternate extraction and acceleration process. We show that at low grid bias frequencies (10 s of kHz), the system can be described as a sequence of negative and positive ions accelerated as packets within a classical DC mode. Here secondary electrons created in the downstream chamber play an important role in the beam space charge compensation. At higher frequencies (100 s of kHz) the transit time of the ions in the grid gap becomes comparable to the bias period, leading to an ``AC acceleration mode.'' Here the beam is fully space charge compensated and the ion energy and current are functions of the applied frequency and waveform. A generalization of the Child-Langmuir space charge limited law is developed for pulsed voltages and allows evaluating the optimal parameter space and performance of PEGASES

  13. Magnetohydrodynamic MACH Code Used to Simulate Magnetoplasmadynamic Thrusters

    NASA Technical Reports Server (NTRS)

    Mikellides, Pavlos G.; LaPointe, Michael R.

    2002-01-01

    The On-Board Propulsion program at the NASA Glenn Research Center is utilizing a state of-the-art numerical simulation to model the performance of high-power electromagnetic plasma thrusters. Such thrusters are envisioned for use in lunar and Mars cargo transport, piloted interplanetary expeditions, and deep-space robotic exploration of the solar system. The experimental portion of this program is described in reference 1. This article describes the numerical modeling program used to guide the experimental research. The synergistic use of numerical simulations and experimental research has spurred the rapid advancement of high-power thruster technologies for a variety of bold new NASA missions. From its inception as a U.S. Department of Defense code in the mid-1980's, the Multiblock Arbitrary Coordinate Hydromagnetic (MACH) simulation tool has been used by the plasma physics community to model a diverse range of plasma problems--including plasma opening switches, inertial confinement fusion concepts, compact toroid formation and acceleration, z-pinch implosion physics, laser-target interactions, and a variety of plasma thrusters. The MACH2 code used at Glenn is a time-dependent, two-dimensional, axisymmetric, multimaterial code with a multiblock structure. MACH3, a more recent three-dimensional version of the code, is currently undergoing beta tests. The MACH computational mesh moves in an arbitrary Lagrangian-Eulerian (ALE) fashion that allows the simulation of diffusive-dominated and dispersive-dominated problems, and the mesh can be refined via a variety of adaptive schemes to capture regions of varying characteristic scale. The mass continuity and momentum equations model a compressible viscous fluid, and three energy equations are used to simulate nonthermal equilibrium between electrons, ions, and the radiation field. Magnetic fields are modeled by an induction equation that includes resistive diffusion, the Hall effect, and a thermal source for magnetic

  14. Magnetoplasmadynamic thruster erosion research

    NASA Technical Reports Server (NTRS)

    King, D. Q.

    1985-01-01

    Magnetoplasmadynamic thruster (MPdT) lifetime at sustained multimagawatt power levels is unknown but will be governed by plasma erosion of thruster surfaces. Before the thruster can be developed for an orbital propulsion application the physics of the erosion mechanisms must be studied. The following key questions that must be resolved to understand erosion are addressed: (1) what are the erosion mechanisms on the anode, cathode, and insulator and what are the quantitative rates for each; (2) what governs the cathode heat balance at high current density and magawatt power levels; (3) what governs the anode heat balance; and (4) how does the cathode work function change with time, and what effect does this have on erosion. The approach aims at developing an understanding of the erosion of the electrode and insulator surfaces by conducting experiments on a steady-state, scaled-down MPD device, and by analysis of key processes.

  15. Krypton Ion Thruster Performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4 to 5.5 kW. The data presented are compared and contrasted to the data obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust to power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order of magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  16. Krypton ion thruster performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J., Jr.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4-5.5 kW. The data are presented, and compared and contrasted to those obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust-to-power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order-of-magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  17. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  18. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V

  19. Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2003-01-01

    The imposition of a magnetic field has been proposed as a means of reducing the electron backstreaming problem in ion thrusters. Electron backstreaming refers to the backflow of electrons into the ion thruster. Backstreaming electrons are accelerated by the large potential difference that exists between the ion-thruster acceleration electrodes, which otherwise accelerates positive ions out of the engine to develop thrust. The energetic beam formed by the backstreaming electrons can damage the discharge cathode, as well as other discharge surfaces upstream of the acceleration electrodes. The electron-backstreaming condition occurs when the center potential of the ion accelerator grid is no longer sufficiently negative to prevent electron diffusion back into the ion thruster. This typically occurs over extended periods of operation as accelerator-grid apertures enlarge due to erosion. As a result, ion thrusters are required to operate at increasingly negative accelerator-grid voltages in order to prevent electron backstreaming. These larger negative voltages give rise to higher accelerator grid erosion rates, which in turn accelerates aperture enlargement. Electron backstreaming due to accelerator-gridhole enlargement has been identified as a failure mechanism that will limit ionthruster service lifetime. The proposed method would make it possible to not only reduce the electron backstreaming current at and below the backstreaming voltage limit, but also reduce the backstreaming voltage limit itself. This reduction in the voltage at which electron backstreaming occurs provides operating margin and thereby reduces the magnitude of negative voltage that must be placed on the accelerator grid. Such a reduction reduces accelerator- grid erosion rates. The basic idea behind the proposed method is to impose a spatially uniform magnetic field downstream of the accelerator electrode that is oriented transverse to the thruster axis. The magnetic field must be sufficiently

  20. Global model of an iodine gridded plasma thruster

    NASA Astrophysics Data System (ADS)

    Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.

    2016-03-01

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.

  1. Ion thruster system (8-cm) cyclic endurance test

    NASA Technical Reports Server (NTRS)

    Dulgeroff, C. R.; Beattie, J. R.; Poeschel, R. L.; Hyman, J., Jr.

    1984-01-01

    This report describes the qualification test of an Engineering-Model 5-mN-thrust 8-cm-diameter mercury ion thruster which is representative of the Ion Auxiliary Propulsion System (IAPS) thrusters. Two of these thrusters are scheduled for future flight test. The cyclic endurance test described herein was a ground-based test performed in a vacuum facility with a liquid-nitrogen-cooled cryo-surface and a frozen mercury target. The Power Electronics Unit, Beam Shield, Gimal, and Propellant Tank that were used with the thruster in the endurance test are also similar to those of the IAPS. The IAPS thruster that will undergo the longest beam-on-time during the actual space test will be subjected to 7,055 hours of beam-on-time and 2,557 cycles during the flight test. The endurance test was successfully concluded when the mercury in the IAPS Propellant Tank was consumed. At that time, 8,471 hours of beam-on-time and 599 cycles had been accumulated. Subsequent post-test-evaluation operations were performed (without breaking vacuum) which extended the test values to 652 cycles and 9,489 hours of beam-on-time. The Power Electronic Unit (PEU) and thruster were in the same vacuum chamber throughout the test. The PEU accumulated 10,268 hr of test time with high voltage applied to the operating thruster or dummy load.

  2. Assessment of Spectroscopic, Real-time Ion Thruster Grid Erosion-rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2000-01-01

    The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.

  3. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  4. High Power MPD Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Propulsion requirements for large platform orbit raising, cargo and piloted planetary missions, and robotic deep space exploration have rekindled interest in the development and deployment of high power electromagnetic thrusters. Magnetoplasmadynamic (MPD) thrusters can effectively process megawatts of power over a broad range of specific impulse values to meet these diverse in-space propulsion requirements. As NASA's lead center for electric propulsion, the Glenn Research Center has established an MW-class pulsed thruster test facility and is refurbishing a high-power steady-state facility to design, build, and test efficient gas-fed MPD thrusters. A complimentary numerical modeling effort based on the robust MACH2 code provides a well-balanced program of numerical analysis and experimental validation leading to improved high power MPD thruster performance. This paper reviews the current and planned experimental facilities and numerical modeling capabilities at the Glenn Research Center and outlines program plans for the development of new, efficient high power MPD thrusters.

  5. Inert gas ion thruster development

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.

  6. Cross-field diffusion in Hall thrusters and other plasma thrusters

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.

    2012-10-01

    Understanding and quantifying electron transport perpendicular to the magnetic field is a challenge in many low temperature plasma applications. Hall effect thrusters (HETs) provide an excellent example of cross-field transport. The HET is a very successful concept that can be considered both as a gridless ion source and an electromagnetic thruster. In HETs, the electric field E accelerating the ions is a consequence of the Lorentz force due to an external magnetic field B acting on the ExB Hall electron current. An essential aspect of HETs is that the ExB drift is closed, i.e. is in the azimuthal direction of a cylindrical channel. In the first part of this presentation we will discuss the physics of cross-field electron transport in HETs, and the current understanding (or non-understanding) of the possible role of turbulence and wall collisions on cross-field diffusion. We will also briefly comment on alternative designs of ion sources based on the same principles as the conventional HET (Anode Layer Thruster, Diverging Cusp Field Thrusters, End-Hall ion sources). In a second part of the presentation we show that the Lorentz force acting on diamagnetic currents (associated with the ∇PexB term in the electron momentum equation) can also provide thrust. This is the case for example in helicon thrusters where the plasma expands in a magnetic nozzle. We will report and discuss recent work on helicon thrusters and other devices where the diamagnetic current is dominant (with some examples where the ∇PexB current is not closed and is directed toward a wall!).

  7. Exact spacecraft detumbling and reorientation maneuvers with gimbaled thrusters and reaction wheels

    NASA Technical Reports Server (NTRS)

    Dwyer, T. A. W., III; Batten, A. L.

    1985-01-01

    The equations of rotational motion for a spacecraft equipped with external jets and internal reaction wheels are shown to be feedback-equivalent to those of a linear system in attitude parameter space. Reorientation maneuvers are thereby formulated as linear optimal control problems with least mean square acceleration in attitude parameter space, solved in closed form and implementable either with internal or external torque commands, the choice depending on power and throttling requirements. For prior detumbling, an alternative solution with least mean square torque by angular momentum feedback is also given, that is implementable with gimbaled pairs of thrusters at constant throttle. Such a detumbling maneuver may then be followed by an acceleration-commanded rest-to-rest maneuver by means of the reaction wheels.

  8. Chaotic waves in Hall thruster plasma

    SciTech Connect

    Peradzynski, Zbigniew; Barral, S.; Kurzyna, J.; Makowski, K.; Dudeck, M.

    2006-01-15

    The set of hyperbolic equations of the fluid model describing the acceleration of plasma in a Hall thruster is analyzed. The characteristic feature of the flow is the existence of a trapped characteristic; i.e. there exists a characteristic line, which never intersects the boundary of the flow region in the thruster. To study the propagation of short wave perturbations, the approach of geometrical optics (like WKB) can be applied. This can be done in a linear as well as in a nonlinear version. The nonlinear version describes the waves of small but finite amplitude. As a result of such an approach one obtains so called transport equation, which are governing the wave amplitude. Due to the existence of trapped characteristics this transport equation appears to have chaotic (turbulent) solutions in both, linear and nonlinear versions.

  9. Anisotropy of shock-accelerated ion distributions in interplanetary space

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.

    1989-01-01

    The discrepancy between theory and observation is discussed with regard to the ability of interplanetary shock waves to accelerate a small percentage of the thermal ion population. The major point of departure rests with the spatial dependence of the energetic particle intensity and anisotropy in the region upstream of interplanetary shocks. It is argued that the discrepancy is due to the presence of solar flare particles forming an additional seed population which alters the upstream boundary condition of the energetic population. The resulting anisotropy of the energetic particle distribution several scale lengths upstream of the shock is proportional to the ratio of the streaming of the shock-accelerated population to the density of the solar flare population. This theory is then compared with the results of observed upstream anisotropy and measured particle intensities and anisotropies.

  10. Unsupervised classification of Space Acceleration Measurement System (SAMS) data using ART2-A

    NASA Technical Reports Server (NTRS)

    Smith, A. D.; Sinha, A.

    1999-01-01

    The Space Acceleration Measurement System (SAMS) has been developed by NASA to monitor the microgravity acceleration environment aboard the space shuttle. The amount of data collected by a SAMS unit during a shuttle mission is in the several gigabytes range. Adaptive Resonance Theory 2-A (ART2-A), an unsupervised neural network, has been used to cluster these data and to develop cause and effect relationships among disturbances and the acceleration environment. Using input patterns formed on the basis of power spectral densities (psd), data collected from two missions, STS-050 and STS-057, have been clustered.

  11. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  12. Measurement and Data Distribution for Microgravity Accelerations on the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    1999-01-01

    Two accelerometer systems will be available on the International Space Station to support microgravity payloads with information about the quasi-steady and vibratory acceleration environment of the research facilities. The Microgravity Acceleration Measurement System will record contributions to the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. The Space Acceleration Measurement System-II will measure vibratory disturbances on-board due to vehicle, crew, and equipment disturbances. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, NASA's Principal Investigator Microgravity Services project has initiated a plan through which the data from these instruments will be distributed to researchers in a timely and meaningful fashion. Beyond the obvious benefit of correlation between accelerations and the scientific phenomena being studied, such information is also useful for hardware developers who can gain qualitative and quantitative feedback about their facility acceleration output to station.

  13. Performance of a Low-Power Cylindrical Hall Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Raitses, Yevgeny; Smirnov, Artem; Fisch, Nathaniel J.

    2007-01-01

    Recent mission studies have shown that a Hall thruster which operates at relatively constant thrust efficiency (45-55%) over a broad power range (300W - 3kW) is enabling for deep space science missions when compared with slate-of-the-art ion thrusters. While conventional (annular) Hall thrusters can operate at high thrust efficiency at kW power levels, it is difficult to construct one that operates over a broad power envelope down to 0 (100 W) while maintaining relatively high efficiency. In this note we report the measured performance (I(sub sp), thrust and efficiency) of a cylindrical Hall thruster operating at 0 (100 W) input power.

  14. Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Haught, Megan

    2014-01-01

    This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy makes them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.

  15. Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Haught, Megan; Duncan, Gary

    2014-01-01

    This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy and similar design make them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.

  16. Experiments and analysis of a compact electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Asmussen, Jes; Whitehair, Stan

    1988-01-01

    The description and experimental performance of a compact microwave electrothermal thruster (MET) are presented. This thruster uses a coaxial applicator to couple microwave power into a high pressure discharge. Unlike earlier experiments, it uses no fused quartz in the discharge chamber or the nozzle. This allows high temperatures in the discharge chamber without quartz erosion and melting, thereby improving thruster performance and lifetime. The thruster design is compact, enhancing its potential as a space engine. Experimental tests using nitrogen and helium propellants with input powers levels of 200 W to 1.5 kW are presented. Experimental results, which produce energy efficiencies of 20 to 60 percent and specific impulse of 250 to 450 sec, compare favorably to previous experimental MET performance.

  17. Throttling Impacts on Hall Thruster Performance, Erosion, and Qualification for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; DeHoyos, Amado

    2007-01-01

    With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.

  18. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  19. Bibliography of electrothermal thruster technology, 1984

    SciTech Connect

    Sovey, J.S.; Hardy, T.L.; Englehart, M.

    1986-03-01

    Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters.

  20. A bibliography of electrothermal thruster technology, 1984

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Hardy, T. L.; Englehart, M.

    1986-01-01

    Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters.

  1. Acceleration of energetic particles. [in collisionless shock waves in interstellar space

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Webb, G. M.

    1985-01-01

    Acceleration of some particles from the background plasma to highly superthermal energies is a common feature of collisionless shocks in interplanetary space. The complete in situ measurements of bulk flows, thermal plasma, electromagnetic waves and energetic particles available for interplanetary shocks both suggest and test the models of shock acceleration in the solar system and the rest of the universe. This tutorial will review the present state of shock acceleration theory. Scatter-free acceleration by grad B drift in the plasma electric field E = -V x B/c, and diffusive acceleration resulting from scattering by Alfven waves in the plasma on both sides of the shock are discussed. The diffusive theory in simple steady state gives power-law spectra, but also shows the effects of time-dependent shocks and injection rates, escape and other losses, the self-consistent Alfven wave spectra, and plasma flow fields affected by diffusive energetic particle acceleration.

  2. Deformed phase space Kaluza-Klein cosmology and late time acceleration

    NASA Astrophysics Data System (ADS)

    Sabido, M.; Yee-Romero, C.

    2016-06-01

    The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.

  3. The MPD thruster development program

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; Pawlik, E. V.

    1979-01-01

    Recent research results have inferred that the self-field magnetoplasmadynamic (MPD) thruster can attain efficiency and specific impulse levels which are competitive with ion thrusters. Based on these results, a program was initiated at JPL to develop this thruster for application on future spacecraft. Preliminary mission analyses have shown that the high thrust density MPD arcjet is advantageous for high power missions, such as a short trip time earth orbit transfer vehicle or a nuclear powered outer planet explorer. Direct thrust stand verification of the inferred performance levels used in these analyses is planned for a facility being assembled at Princeton University. A parallel effort at JPL is considering various thruster system configurations, energy storage concepts and propellant control techniques. In addition, a one pulse per second thruster test facility is planned at JPL to be used for thruster optimization studies including erosion and lifetime measurements.

  4. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  5. Modeling of particle dynamics in a thruster

    SciTech Connect

    Chernyshev, T. V. Chikhachev, A. S.; Shramov, A. N.

    2011-12-15

    Numerical solutions to the equations describing the process of ion acceleration in a Hall current plasma accelerator (thruster) are studied. The system itself represents a three-component plasma: neutral atoms, free electrons, and singly-ionized atoms. The ions in the acceleration tract move without collisions, i.e., the length of the free path of ions is larger than that of the acceleration tract, while electrons move in a diffusion mode across the magnetic field. It is shown that in case the Poisson equation for an electric field is used the set of dynamic equations does not have an acoustic peculiarity that appears when solving a quasineutral set when the velocity of the ion flow and the ion-acoustic velocity coincide.

  6. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  7. Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.

  8. Fundamental difference between the two Hall thruster variants

    NASA Astrophysics Data System (ADS)

    Choueiri, E. Y.

    2001-11-01

    The fundamental difference between the two variants of Hall thrusters, the stationary plasma thruster (SPT) and the thruster with anode layer (TAL), is illustrated quantitatively using an analytical model that accounts for the effects of secondary electron emission (SEE) from the walls. The model includes a prescription for the quenching of the temperature of the electrons on their way to the anode which results from the enhanced electron energy losses to the wall that occur at, and upstream of, an axial location where the wall potential reverses from electron attracting to electron repellent. For the higher SEE coefficient of an insulator wall (compared to that of a metallic one) this sign reversal occurs at a lower electron temperature and is shown to lead to a more extended acceleration region due to the resulting relaxation of the potential gradient required to balance the electron pressure gradient. By replacing the boron nitride walls (SPT) of an idealized Hall thruster with stainless steel (TAL), the acceleration zone is shown analytically to collapse to a region near the anode having an extent that is about eight times smaller than that for the SPT. The results are used to construct a detailed phenomenological picture of the fundamental difference between the two Hall thruster variants.

  9. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.

  10. Numerical Simulation of Ion Thruster Plume Backflow for Spacecraft Contamination Assessment.

    NASA Astrophysics Data System (ADS)

    Samanta Roy, Robie I.

    1995-01-01

    A study is presented of the induced environment produced by an ion thruster, and its interactions with spacecraft. Axisymmetric and fully three-dimensional physical and numerical models of an ion thruster plume are developed and utilized to understand the physical processes involved, as well as to make useful predictions of spacecraft contamination. Components included in the model are primary beam ions, neutral propellant efflux, slow propellant ions created mainly by charge-exchange (CEX) collisions, non-propellant efflux (NPE) such as sputtered molybdenum grid metal, and neutralizing electrons. Primary focus is on the creation and transport of both the CEX propellant ions created from the beam ions and neutral propellant, and charged NPE from the thruster plume into the backflow region. The numerical model utilizes the hybrid plasma particle-in-cell (PIC) method, and the fully three-dimensional implementation is designed for multi -computer environments. Computational results of the CEX ion density and flow angles show good qualitative and quantitative agreement with experimental data. It is shown that the CEX ions created in the beam accelerate outwards and form two distinct energy populations, one with a significant backstreaming component. The effect of the background tank pressure in ground experiments, and the accelerator grid impingement current is examined. The backflow contamination from NASA's current 30 cm xenon ion thruster is investigated over the operating envelope of the thruster, and predictions for space operation are made. Scaling relationships for the backflow previously identified are confirmed. Issues regarding the electron temperature in the plume are explored, and it is shown that backflow contamination increases with electron temperature. Fully three-dimensional results with up to 17.5 million particles are presented. It is shown that the spacecraft geometry plays a strong role in the expansion of the CEX plasma. The contamination from the

  11. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after

  12. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after groove penetration.

  13. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Eskridge, R.; Martin, Adam; Lee, Michael; Smith, James; Koelfgen, Syri

    2003-01-01

    This viewgraph presentation describes the overall Plasma Thruster Experiment (PTX), it's purpose and design, compact toroid propulsion, advantages and requirements of a plasmoid thruster, the projected efficiency, theta-pinch formation, a simulation of the PTX Coil/Bank Circuit using SPICE, the test firing of the PTX Capacitor Bank, PTX diagnostics, the excluded flux array, thruster simulations using MOQUI, and future work on the PTX.

  14. Colloid micro-Newton thruster development for the ST7-DRS and LISA missions

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Gamero-Castano, Manuel; Hruby, Vlad; Spence, Doug; Demmons, Nate; McCormick, Ryan; Roy, Tom

    2005-01-01

    We present recent progress and development of the Busek Colloid Micro-Newton Thruster (CMNT) for the Space Technology 7 Disturbance Reduction System (ST7-DRS) and Laser Interferometer Space Antenna (LISA) Missions.

  15. NSTAR Ion Thrusters and Power Processors

    NASA Technical Reports Server (NTRS)

    Bond, T. A.; Christensen, J. A.

    1999-01-01

    The purpose of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) project is to validate ion propulsion technology for use on future NASA deep space missions. This program, which was initiated in September 1995, focused on the development of two sets of flight quality ion thrusters, power processors, and controllers that provided the same performance as engineering model hardware and also met the dynamic and environmental requirements of the Deep Space 1 Project. One of the flight sets was used for primary propulsion for the Deep Space 1 spacecraft which was launched in October 1998.

  16. Thruster sealing system and apparatus

    NASA Technical Reports Server (NTRS)

    Svejkovsky, Paul A. (Inventor)

    1992-01-01

    A thruster nozzle sealing system and apparatus is provided for protection of spacecraft thruster motors. The system includes a sealing plug, a sealing plug insertion tool, an outer cover, an outer cover attachment, and a ferry flight attachment. The sealing plug prevents moisture from entering the thruster engine so as to prevent valve failure. The attachments are interchangeably connectable with the sealing plug. The ferry flight attachment is used during air transportation of the spacecraft, and the outer cover attachment is used during storage and service of the spacecraft. The outer cover provides protection to the thruster nozzle from mechanical damage.

  17. Thruster sealing system and apparatus

    NASA Astrophysics Data System (ADS)

    Svejkovsky, Paul A.

    1992-11-01

    A thruster nozzle sealing system and apparatus is provided for protection of spacecraft thruster motors. The system includes a sealing plug, a sealing plug insertion tool, an outer cover, an outer cover attachment, and a ferry flight attachment. The sealing plug prevents moisture from entering the thruster engine so as to prevent valve failure. The attachments are interchangeably connectable with the sealing plug. The ferry flight attachment is used during air transportation of the spacecraft, and the outer cover attachment is used during storage and service of the spacecraft. The outer cover provides protection to the thruster nozzle from mechanical damage.

  18. Multimegawatt MPD thruster design considerations

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Parkes, James E.; Mantenieks, Maris A.

    1992-01-01

    Performance and lifetime requirements for multimegawatt magnetoplasmadynamic (MPD) thrusters were used to establish a baseline 2.5 MW thruster design. The chamber surface power deposition resulting from current conduction, plasma and surface radiation, and conduction from the hot plasma was then evaluated to establish the feasibility of thruster operation. It was determined that state of the art lithium heat pipes were adequate to cool the anode electrode, and that the liquid hydrogen propellant could be used to cool the applied field magnet, cathode, and backplate. Unresolved issues having an impact of thruster design are discussed to help focus future research.

  19. Probe Studies of a Hall Thruster at Low Voltages

    NASA Astrophysics Data System (ADS)

    Ross, Jerry L.

    Internal and external probe studies were performed on a Hall thruster operating at low discharge voltages. At nominal magnet current levels ionization and acceleration regions were found to have shifted downstream axially outside the exit plane. Reducing the magnet current partially reversed the situation by inducing a fractional axial upstream shift in both regions.

  20. Accelerating molecular property calculations with nonorthonormal Krylov space methods.

    PubMed

    Furche, Filipp; Krull, Brandon T; Nguyen, Brian D; Kwon, Jake

    2016-05-01

    We formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved. PMID:27155623

  1. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    NASA Astrophysics Data System (ADS)

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake

    2016-05-01

    We formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.

  2. Green Liquid Monopropellant Thruster

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.

    2015-01-01

    Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.

  3. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  4. Pulsed Plasma Thruster Contamination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas

    1996-01-01

    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.

  5. Design and development of the Army KE ASAT ACS thruster

    NASA Astrophysics Data System (ADS)

    Craddock, Jeff; Janeski, Bruce

    1993-06-01

    Increasingly ambitious missions for advanced kinetic energy (KE) weapons have necessitated the development of a lightweight storable-propellant attitude control system (ACS) thruster capable of very fast response and long duration firings. This paper summarizes the results of a ACS thruster design and development test effort, performed for the U.S. Army Space and Strategic Defense Command (USASSDC) on the KE Anti Satellite (KE ASAT) weapon system program. Design approaches used to achieve long-duration continuous firing with a composite combustion chamber are detailed. This design effort culminated in a 6.7 lbf. thruster assembly weighing less than 0.2 pounds, approximately one-sixth that of a conventional satellite ACS thruster. Results of tests of flightweight engines with nitrogen tetroxide and monomethyl hydrazine hypergolic propellants are included. The test series culminated in what is believed to be the industry's longest continuous firing of a composite combustion chamber. This thruster will be integrated into the KE ASAT kinetic vehicle for its first free-flight hover test in early FY94. The demonstrated fast response, high pulse performance, and long-duration capabilities of this engine suggest that this thruster can significantly increase the capability of other spacecraft.

  6. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE PAGESBeta

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake

    2016-05-03

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  7. The Simpsons program 6-D phase space tracking with acceleration

    NASA Astrophysics Data System (ADS)

    Machida, S.

    1993-12-01

    A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.

  8. Cosmic-Ray Accelerators in Milky Way studied with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2012-05-04

    High-energy gamma-ray astrophysics is now situated at a confluence of particle physics, plasma physics and traditional astrophysics. Fermi Gamma-ray Space Telescope (FGST) and upgraded Imaging Atmospheric Cherenkov Telescopes (IACTs) have been invigorating this interdisciplinary area of research. Among many new developments, I focus on two types of cosmic accelerators in the Milky-Way galaxy (pulsar, pulsar wind nebula, and supernova remnants) and explain discoveries related to cosmic-ray acceleration.

  9. ECR-GDM Thruster for Fusion Propulsion

    SciTech Connect

    Brainerd, Jerome J.; Reisz, Al

    2009-03-16

    The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

  10. A collisionless plasma thruster plume expansion model

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo

    2015-06-01

    A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.

  11. Energy storage systems for MPD thrusters

    SciTech Connect

    Gabriel, S.B.

    1981-01-01

    Because of its high thrust density, the magnetoplasmadynamic (MPD) thruster is a promising candidate for many advanced space missions. Its high power requirements lead to operation in a pulsed mode using an intermediate energy storage device. The characteristics of a system consisting of a solar array, energy storage capacitor, and MPD thruster are studied for array powers in the range 25-375 kw. Assuming simple analytic models for the circuit components, the circuit charge and discharge equations are solved numerically, resulting in the system efficiency and capacitance. The system efficiency is inversely proportional to array power and decreases with circuit resistance. Alternative methods of energy storage such as a pulse forming network and a homopolar generator, are presented, and an overall comparison between all of the methods is given.

  12. Fundamental Experiments on Glycerin Propellant Laser Thruster

    SciTech Connect

    Nakano, Masakatsu; Fujita, Kazuhisa; Uchida, Shigeaki; Bato, Masafumi; Niino, Masayuki

    2004-03-30

    Impulse generation experiments of a liquid propellant laser thruster were conducted using glycerin propellants in the energy range of 60 mJ {approx} 60 J. Momentum coupling coefficients and specific impulses were obtained from momentum impulse and propellant mass measurements. The maximum specific impulse was 18 s at the laser beam energy of 55 J. Experimental data were scaled in terms of the laser beam energy and the diameter of the glycerin droplet to extrapolate laser thruster performance. The results indicate that the diameter of the glycerin droplet must be less than 0.24 mm in these experiments to achieve specific impulse more than 1,000 s that will be required to compete with other space propulsion systems.

  13. ECR-GDM Thruster for Fusion Propulsion

    NASA Astrophysics Data System (ADS)

    Brainerd, Jerome J.; Reisz, Al

    2009-03-01

    The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

  14. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space

    DOEpatents

    Schach Von Wittenau, Alexis E.

    2003-01-01

    A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.

  15. In-Space Propulsion Solar Electric Propulsion Technology Overview

    NASA Astrophysics Data System (ADS)

    Dankanich, John W.

    2006-12-01

    NASA’s In-space Propulsion Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The solar electric propulsion technology area has been investing in NASA’s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk and cost of NASA planetary science missions. Current status and expected capabilities of the solar electric propulsion technologies will be discussed.

  16. Effects of rectilinear acceleration, optokinetic and caloric stimuli in space

    NASA Technical Reports Server (NTRS)

    Vonbaumgarten, R.

    1981-01-01

    The set of experiments comprising the Spacelab 1ES201 package designed to investigate the human vestibular system and equilibratory function in weightlessness are described. The specific objectives of the experiments include: (1) the determination of the threshold of perception of linear oscillatory motion; (2) measurement of physiological and subjective responses to supra threshold, linear and angular motion stimuli; (3) study of the postural adjustments, eye movements, and illusions of attitude and motion evoked by optokinetic stimuli, (i.e., moving visual patterns) in order to assess visual/vestibular interactions; (4) examination of the effect of thermal stimulations of the vestibular apparatus to determine if the eye movements elicited by the 'caloric test' are used by a density gradient in the semicircular canal; and (5) investigation of the pathogenesis of space motion sickness by recording signs and symptoms during the course of vestibular stimulation and, specifically, when the test subject is exposed to sustained, linear oscillatory motion.

  17. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  18. 4.5-kW Hall Effect Thruster Evaluated

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.

  19. Electrodynamics of hyperbolically accelerated charges V. The field of a charge in the Rindler space and the Milne space

    NASA Astrophysics Data System (ADS)

    Eriksen, E.; Grøn, Ø.

    2004-09-01

    We describe the electromagnetic field of a uniformly accelerated charge in its co-moving Rindler frame. It is shown that the electrical field lines coincide with the trajectories of photons. The self force of a charged particle at rest in Rindler space, and the increase of its weight due to its charge, is calculated. The general case of an accelerated charge in Rindler space is also considered. It is shown that the electrical field inside a uniformly charged spherical shell can be used as a measure of it 4-acceleration. A result that has earlier been deduced in a different way by Fugmann and Kretzschmar is confirmed, namely that the intensity of radiation from a point charge instantaneously at rest in an accelerated frame is proportional to the square of the relative acceleration of the charge and the observer. In particular it is shown that a freely falling charge in Rindler space radiates in accordance with Larmor's formula. In this case the radiation energy is taken from the Schott energy. The energy of the electromagnetic field is analysed from the point of view of the Hirayama-separation, which generalizes the Teitelboim-separation to non-inertial frames, of the field in a bound part and an unbound part. A detailed account, with reference to the Rindler frame, of the field energy and particle energy is given for the case of a charge entering and leaving a region with hyperbolic motion. We also consider the electromagnetic field of a uniformly accelerated charge with reference to the Milne frame, which covers a different part of spacetime than the Rindler frame. The radiating part of the electromagnetic field is found in the Milne sector of spacetime.

  20. Space Experiments with Particle Accelerators: SEPAC - SEPAC program for First Spacelab Mission

    NASA Astrophysics Data System (ADS)

    Obayashi, T.

    The Space Shuttle/Spacelab Mission Space Experiment with Particle Accelerators (SEPAC) will carry out interactive experiments on, and in, the earth ionosphere and magnetosphere, and comprises an electron beam accelerator, MPD arcjet, and associated diagnostic equipment. The mission Payload Specialist will be responsible for (1) manual control of scientific instruments, (2) monitoring of experiment displays, (3) restructuring of experiment sequence by means of display system keyboard, (4) safety and emergency operations, and (5) voice communications. Attention is given to the configurational and sequential organization of the SEPAC experiments.

  1. Plasma dynamics in a helicon thruster

    NASA Astrophysics Data System (ADS)

    Ahedo, E.

    2013-03-01

    Internal and external plasma dynamics in a helicon thruster are discussed through several theoretical models. Main plasma processes inside the helicon source are: wave energy absorption, gas ionization, magnetic confinement, Hall current formation, and subsonic plasma flow. The processes taking place in the external divergent magnetic nozzle are: axial supersonic acceleration, radial rarefaction, Hall current evolution, thrust increment, and downstream detachment. The possible formation of a current-free double layer (CFDL) is discussed too. Emphasis is put in aspects affecting the propulsive capabilities of the device, such as specific impulse and thrust efficiency.

  2. Stability of magneto-dynamic thrusters flows

    NASA Astrophysics Data System (ADS)

    Chanty, J. M. G.

    1993-07-01

    The author proposes an explanation for the existence of instabilities inside magnetoplasmadynamic accelerator based on a resistive one-fluid magnetohydrodynamic model. An eigenmode analysis of the linearized differential operator indicates that the solutions of the one-dimensional model of a magnetodynamic thruster are unstable. An asymptotic analysis for small wavelengths shows that backward propagating acoustic waves grow as they move towards the exit when the flow is supersonic. Their amplitude becomes infinitely large when the local Mach number is equal to one. This singularity is a possible explanation for the sudden onset of the unstable regime observed experimentally.

  3. Segmented electrode hall thruster with reduced plume

    DOEpatents

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  4. Measurement of sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Mirtich, M. J.

    1975-01-01

    A technique has been developed which uses spectral transmittance of samples exposed to thruster efflux to determine and characterize the effect of the efflux on spacecraft surfaces and optical devices. An investigation of facility backsputter revealed that efflux samples must be protected (e.g., by small shield boxes) from materials from tank walls and targets. The composition of the sputter efflux deposited on the samples was mostly molybdenum with trace amounts of tantalum, iron and/or mercury. The efflux from a 5-cm diameter thruster was deposited on samples located in the plane of the accelerator grid; the 8-cm diameter thruster efflux results showed that the location of ion beam sputtering and efflux deposition equilibrium occurred at 57 deg with respect to the thruster axis; and the 30-cm diameter thruster had an ion beam erosion-efflux deposition equilibrium at 45 deg.

  5. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  6. Discharge Hollow Cathode and Extraction Grid Analysis for the MiXI Ion Thruster

    NASA Technical Reports Server (NTRS)

    Wirz, Richard; Sullivan, Regina; Przybylowski, JoHanna; Silva, Mike

    2006-01-01

    Miniature ion thrusters are well-suited future space missions such as Terrestrial Planet Finder - Interferometer (TPF-I), where high efficiency thrusters using non-contaminating noble gas propellant are desirable. Transient dynamic and orbital analyses have shown that the low-noise, continuous thrust of the Miniature Xenon Ion (MiXI) thruster is desirable for TPF-I formation rotation maneuvers when compared with other thruster options [1], [2]. The 3cm diameter MiXI thruster, Figure 1, was originally designed using experimental methods and is capable of high Isp (> 3,000 sec), propellant efficiency > 80%, and thrust from <0.1 mN to >1.5 mN [3]. The MiXI thruster must demonstrate high levels of thrust resolution and a low minimum impulse bit to ensure it meets the precision formation flying needs of missions such as TPF-I. A novel concept for controlling the ion extraction voltages yields the necessary thrust characteristics for the MiXI thruster. Experiments verify these techniques and two dimensional computational models show that such techniques should have minimal effect on the lifetime of the thruster. During this effort, the MiXI thruster incorporates, for the first time, flight like hollow cathodes for both the discharge chamber and beam neutralization.

  7. Numerical modeling of Hall thruster

    SciTech Connect

    Chable, S.; Rogier, F.

    2005-05-16

    A stationary plasma thruster is numerically studied using different levels. An one dimensional modeling is first analyzed and compared with experimental results. A simplified model of oscillations thruster is proposed and used to control the amplitude of oscillations. A two dimensional numerical method is discussed and applied to the computation of the flow in the exhaust.

  8. Electron Transport in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  9. PT-1 Plasmoid Thruster Capable of Multi-Mode Operation

    NASA Technical Reports Server (NTRS)

    Miller, Robert; Rose, Frank; Eskridge, Richard; Martin, Adam; Alam, Mohammed

    2008-01-01

    This slide presentation reviews the concept of a Plasmoid Thruster that is capable of operating in several different modes. A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust. The Drive and Bias circuits, the gas distribution, the pre-ionization stage, and the operation sequence are detailed. The advantages of the Plasmoid thruster and the research and technology required for development of this form of propulsion is reviewed.

  10. Extraction of Magnetoplasmadynamic Thruster Design Guidelines through Optimization

    NASA Astrophysics Data System (ADS)

    Nakane, Masakatsu; Hayashi, Takuya; Ishikawa, Yoshio; Funaki, Ikkoh; Toki, Kyoichiro

    One of the chief drawbacks of MPD thrusters is their low thrust efficiency. This paper presents a numerical optimization of the thruster nozzle and of the distribution of the self-induced magnetic field that occurs in the nozzle, with the goal of developing nozzle design guidelines. This model accounts for the pressure gradient and the Lorentz force, and optimization was performed using a genetic algorithm. The results showed that (1) large improvements in performance can be obtained in a model representing a thruster of practical size; (2) optimal location of the nozzle throat was at 15 [%] - 30 [%] of nozzle length downstream of the inlet and the throat is an essential feature of the nozzle; and (3) the profile of the upstream portion of the nozzle (where most of the acceleration of the plasma occurs) is little affected by up-scaling of nozzle size.

  11. Scaling relationships for mercury and gaseous propellant ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.; Kaufman, H. R.

    1978-01-01

    A model describing the doubly charged ion densities in argon and xenon ion thrusters is presented. Doubly charged ions are shown to be produced in significant numbers from both the neutral and singly ionized states. Doubly-to-singly charged ion density ratios calculated using this model are compared to experimental values of this ratio measured in the 15 cm multipole thruster using both propellants. Agreement between theory and experiment is shown to be good. Using this doubly charged ion model, and a similar one obtained previously for mercury, together with the constant neutral loss rate theory, Child's current density law and accelerator grid fabrication limitations, a set of scaling relationships are developed. These relationships show the propellant utilizations, thrust densities and discharge power levels that can be expected as thruster diameter and/or specific impulse are increased and doubly charged ion densities are held at acceptably low values.

  12. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  13. Status of the NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test After 30,352 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 30,352 hr of operation and processed 490 kg of xenon throughput--surpassing the NSTAR Extended Life Test hours demonstrated and more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  14. New Performance and Reliability Results of the Thales HEMP Thruster

    NASA Astrophysics Data System (ADS)

    Kornfeld, G.; Koch, N.; Harmann, H.

    2004-10-01

    Electric Propulsion (EP), attracts in the last years an increasing interest for all types of space applications as for instance the north/south station-keeping and orbit transfer of commercial GEO-stationary satellites, the drag compensation for LEO- and MEO- satellites and constellations and navigation for scientific interplanetary missions. Reasons for that, as summarised in [1], are: - The propellant mass savings compared with chemical thrusters in the order of more than 90%. - The increasing availability of sufficient electric power on board of satellites (today >10 kW). - The demonstrated in orbit performance and life over more than 10 years of various thruster types (Hall effect thrusters, ion thrusters, arc jets). A new concept of a High Efficiency Multi-stage Plasma (HEMP) thruster to be used for satellite and space probe orbit control and navigation has recently been developed by THALES Electron Devices GmbH in Ulm. In the framework of a 3 year feasibility study sponsored by the German Space Agency DLR the HEMP thruster concept has been successfully realised. Not only its feasibility but very promising unique features have been verified by direct thrust measurements performed at ONERA, Palaiseau, in March 2003 and at University of Gießen in July 2003. Aside the clear advantage of a plasma confinement, which eliminates discharge chamber wall erosion, the HEMP thruster has shown performance characteristics already comparable to those of state-of-the-art grid and Hall-effect thrusters which are being developed for more than 40 years. At the test in the large vacuum chamber at the University of Gießen, the HEMP thruster model DM6 demonstrated for instance a maximum thrust of 139 mN, corresponding to an electric propulsion world record thrust density of 36mN/cm2 at a specific impulse of 3230 s and a total efficiency of 40% at the same operating point. Furthermore, the thermal efficiency (conversion from electric power into kinetic beam power) reached a unique

  15. Measurement and Characterization of the Acceleration Environment on Board the Space Station

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R. (Editor)

    1990-01-01

    This workshop provides a comprehensive overview of the work and status of each of these areas to provide a basis for establishing a systematic approach to the challenge of avoiding these difficulties during the Space Station era of materials experimentation. The discussions were arranged in the order of: the scientific understanding of the requirements for a micro-gravity environment, a history of acceleration measurements on spacecraft, the state of accelerometer technology, and the current understanding of the predicted Space Station environment.

  16. Double ion production in mercury thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Peters, R. R.

    1976-01-01

    The development of a model which predicts doubly charged ion density is discussed. The accuracy of the model is shown to be good for two different thruster sizes and a total of 11 different cases. The model indicates that in most cases more than 80% of the doubly charged ions are produced from singly charged ions. This result can be used to develop a much simpler model which, along with correlations of the average plasma properties, can be used to determine the doubly charged ion density in ion thrusters with acceptable accuracy. Two different techniques which can be used to reduce the doubly charged ion density while maintaining good thruster operation, are identified as a result of an examination of the simple model. First, the electron density can be reduced and the thruster size then increased to maintain the same propellant utilization. Second, at a fixed thruster size, the plasma density, temperature and energy can be reduced and then to maintain a constant propellant utilization the open area of the grids to neutral propellant loss can be reduced through the use of a small hole accelerator grid.

  17. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  18. Space radiation accelerator experiments - The role of neutrons and light ions

    NASA Astrophysics Data System (ADS)

    Norbury, John W.; Slaba, Tony C.

    2014-10-01

    The importance of neutrons and light ions is considered when astronauts spend considerable time in thickly shielded regions of a spacecraft. This may be relevant for space missions both in and beyond low Earth orbit (LEO). In addition to heavy ion experiments at accelerators, it is suggested that an increased emphasis on experiments with lighter ions may be useful in reducing biological uncertainties.

  19. Inductive Pulsed Plasma Thruster Development and Testing at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2013-01-01

    THE inductive pulsed plasma thruster (IPPT) is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. In the present work, we present a summary of the IPPT research and development conducted at NASA's Marshall Space Flight Center (MSFC). As a higher-power, still relatively low readiness level system, there are many issues associated with the eventual deployment and use of the IPPT as a primary propulsion system on spacecraft that remain to be addressed. The present program aimed to fabricate and test hardware to explore how these issues could be addressed. The following specific areas were addressed within the program and will be discussed within this paper. a) Conical theta-pinch IPPT geometry thruster configuration. b) Repetition-rate multi-kW thruster pulsing. c) Long-lifetime pulsed gas valve. d) Fast pulsed gas valve driver and controller. e) High-voltage, repetitive capacitor charging power processing unit. During the course of testing, a number of specific tests were conducted, including several that, to our knowledge, have either never been previously conducted (such as multi-KW repetition-rate operation) or have not been performed since the early 1990s (direct IPPT thrust measurements).2 Conical theta-pinch IPPT thrust stand measurements are presented in Fig. 1 while various time-integrated and time

  20. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    PubMed

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters. PMID:23278009

  1. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki; Togo, Hiroyoshi; Kuninaka, Hitoshi

    2012-12-15

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  2. Transverse space charge effect calculation in the Synergia accelerator modeling toolkit

    SciTech Connect

    Okonechnikov, Konstantin; Amundson, James; Macridin, Alexandru; /Fermilab

    2009-09-01

    This paper describes a transverse space charge effect calculation algorithm, developed in the context of accelerator modeling toolkit Synergia. The introduction to the space charge problem and the Synergia modeling toolkit short description are given. The developed algorithm is explained and the implementation is described in detail. As a result of this work a new space charge solver was developed and integrated into the Synergia toolkit. The solver showed correct results in comparison to existing Synergia solvers and delivered better performance in the regime where it is applicable.

  3. Grid Erosion Modeling of the NEXT Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Ernhoff, Jerold W.; Boyd, Iain D.; Soulas, George (Technical Monitor)

    2003-01-01

    Results from several different computational studies of the NEXT ion thruster optics are presented. A study of the effect of beam voltage on accelerator grid aperture wall erosion shows a non-monotonic, complex behavior. Comparison to experimental performance data indicates improvements in simulation of the accelerator grid current, as well as very good agreement with other quantities. Also examined is the effect of ion optics choice on the thruster life, showing that TAG optics provide better margin against electron backstreaming than NSTAR optics. The model is used to predict the change in performance with increasing accelerator grid voltage, showing that although the current collected on the accel grid downstream face increases, the erosion rate decreases. A study is presented for varying doubly-ionized Xenon current fraction. The results show that performance data is not extremely sensitive to the current fraction.

  4. The Berkeley accelerator space effects facility (BASE) - A newmission for the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, M.A.

    2005-09-06

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R&D in accelerator technology and a test facility for the National Security Space (NSS) community (the U.S. Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the Cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator and Space Effects (BASE) facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 AMeV ''cocktail'' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades.

  5. Invited article: advanced drag-free concepts for future space-based interferometers: acceleration noise performance.

    PubMed

    Gerardi, D; Allen, G; Conklin, J W; Sun, K-X; DeBra, D; Buchman, S; Gath, P; Fichter, W; Byer, R L; Johann, U

    2014-01-01

    Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the "low-frequency" region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA. PMID:24517738

  6. Recent activities in the development of the MOA thruster

    NASA Astrophysics Data System (ADS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2008-07-01

    More than 60 years after the later Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfvén waves to accelerate ionised matter for propulsive purposes, is MOA-magnetic field oscillating amplified thruster. Alfvén waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfvén waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in flight, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13 116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests-that are further described in this paper-have been conducted successfully and underline the feasibility of the concept. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an "afterburner system" for nuclear thermal propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space

  7. Reasonable structure for the discharge type plasma source. [In Pulsed Plasma Thruster

    SciTech Connect

    An, S.M.

    1987-01-01

    Experiments conducted with a magnetoplasma thruster in which plasma production and acceleration were treated separately indicate that different plasma source geometries have the most direct effect on energy conversion efficiency. An analysis of cup and tube type constraining structures shows the cup type to incur the greatest losses. It is noted that a parallel rail-type open structure such as that employed by the Chinese MDT-2A thruster leads to substantial discharge process dispersion. It is emphasized that the type and performance characteristics of a plasma source have a critical influence on thruster behavior. 5 references.

  8. A north-south stationkeeping ion thruster system for ATS-F.

    NASA Technical Reports Server (NTRS)

    Worlock, R.; James, E.; Ramsey, W.; Trump, G.; Gant, G.; Jan, L.; Bartlett, R.

    1972-01-01

    An ion thruster system is being developed for the ATS-F satellite to demonstrate the application of ion thruster technology to the synchronous satellite north-south stationkeeping mission. The cesium bombardment ion thruster develops one millipound thrust at 2600 seconds specific impulse and provides thrust vectoring by accelerator electrode displacement. The propellant system is sized for two years operation at 25 percent duty cycle. Power conditioning circuitry is based on transistor inverters switching at 10 kHz. Thirteen command channels allow flexibility in operation; 12 telemetry channels provide information on system performance. Input power is less than 150 watts.

  9. Ion velocity and plasma potential measurements of a cylindrical cusped field thruster

    SciTech Connect

    MacDonald, N. A.; Young, C. V.; Cappelli, M. A.; Hargus, W. A. Jr.

    2012-05-01

    Measurements of the most probable time-averaged axial ion velocities and plasma potential within the acceleration channel and in the plume of a straight-channeled cylindrical cusped field thruster operating on xenon are presented. Ion velocities for the thruster are derived from laser-induced fluorescence measurements of the 5d[4]{sub 7/2}-6p[3]{sub 5/2} xenon ion excited state transition centered at {lambda}=834.72nm. Plasma potential measurements are made using a floating emissive probe with a thoriated-tungsten filament. The thruster is operated in a power matched condition with 300 V applied anode potential for comparison to previous krypton plasma potential measurements, and a low power condition with 150 V applied anode potential. Correlations are seen between the plasma potential drop outside of the thruster and kinetic energy contours of the accelerating ions.

  10. Propellant injection for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Jones, R. M.

    1979-01-01

    The propellant gas for a pulsed self-field MPD thruster must be supplied by a valve which will necessarily be separated from the thruster injectors by some ullage volume. A model and experimental data are presented showing the effect of the ullage volume on the propellant pulse shape, along with a discussion of the proper location for the propellant flow choke point(s). Prospective MPD pulse valves are surveyed and the performance of two solenoid valves, one with a pulse length less than 2 milliseconds, is included. Pulse shape data is presented for a thruster specially modified to reduce the ullage volume.

  11. Thrust Stand Measurements of a Conical Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2012-01-01

    Inductive Pulsed Plasma Thrusters (iPPT) are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10 .. 100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. A conical coil geometry may o er higher propellant utilization efficiency over that of a at inductive coil, however an increase in propellant utilization may be met with a decrease in axial electromagnetic acceleration, and in turn, a decrease in the total axially-directed kinetic energy imparted to the propellant.

  12. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  13. Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Lau, Matthew

    2011-01-01

    The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.

  14. Exact spacecraft maneuvers with jerk-free transition from thrusters to momentum wheels

    NASA Technical Reports Server (NTRS)

    Dwyer, T. A. W., III; Batten, A. L.

    1985-01-01

    A combined detumbling maneuver with constant but vectored external thrusters is presently followed, as in Dwyer and Batten (1985) by an exact reorientation that employs internal momentum transfer. Unlike the Dwyer and Batten technique, however, the proposed reorientation maneuver is of such a trajectory that spacecraft angular acceleration is preserved during the transition from thrusters to reaction wheels. This prevents jerk-driven excitation of unmodeled elastic modes.

  15. Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David Y.; Goebel, Dan M.

    2006-01-01

    This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.

  16. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-05-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through {˜ }{O}(N^{1.6}) and {˜ }{O}(N) , respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  17. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  18. Acceleration of color computer-generated hologram from RGB-D images using color space conversion

    NASA Astrophysics Data System (ADS)

    Hiyama, Daisuke; Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2015-04-01

    We report acceleration of color computer-generated holograms (CGHs) from three dimensional (3D) scenes that are expressed as RGB and depth (D) images. These images are captured by a depth camera and depth buffer of 3D graphics library. RGB and depth images preserve color and depth information of 3D scene, respectively. Then we can regard them as two-dimensional (2D) section images along the depth direction. In general, convolution-based diffraction such as the angular spectrum method is used in calculating CGHs from the 2D section images. However, it takes enormous amount of time because of multiple diffraction calculations. In this paper, we first describe 'band-limited double-step Fresnel diffraction (BL-DSF)' which can accelerate the diffraction calculation than convolution-based diffraction. Next, we describe acceleration of color CGH using color space conversion. Color CGHs are generally calculated on RGB color space; however, we need to perform the same calculations for each color component repeatedly, so that computational cost of color CGH calculation is three times as that of monochrome CGH calculation. Instead, we use YCbCr color space because the 2D section images on YCbCr color space can be down-sampled without deterioration of the image quality.

  19. Progress on the PT-1 Prototype Plasmoid Thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H.; Martin, Adam K.

    2007-01-01

    The design and construction of a plasmoid thruster prototype is described. This thruster operates by expelling inductively formed plasmoids at high velocities. These plasmoids are field reversed configuration plasmas which are formed by reversing a magnetic flux frozen in an ionized gas inside a theta-pinch coil. The pinch coil is a unique multi-turn, multi-lead design chosen for optimization of inductance and field uniformity. A table-top bread-board demonstrator has been built at MSFC, and will be delivered to Radiance Technologies Inc. for further testing at the Auburn Space Power Institute.

  20. Evaluation of externally heated pulsed MPD thruster cathodes

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.

    1993-12-01

    Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.

  1. Evaluation of externally heated pulsed MPD thruster cathodes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.

    1993-01-01

    Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.

  2. Hubble Space Telescope Program on STS-95 Supported by Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    2000-01-01

    John Glenn's historic return to space was a primary focus of the STS 95 space shuttle mission; however, the 83 science payloads aboard were the focus of the flight activities. One of the payloads, the Hubble Space Telescope Orbital System Test (HOST), was flown in the cargo bay by the NASA Goddard Space Flight Center. It served as a space flight test of upgrade components for the telescope before they are installed in the shuttle for the next Hubble Space Telescope servicing mission. One of the upgrade components is a cryogenic cooling system for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The cooling is required for low noise in the receiver's sensitive electronic instrumentation. Originally, a passive system using dry ice cooled NICMOS, but the ice leaked away and must be replaced. The active cryogenic cooler can provide the cold temperatures required for the NICMOS, but there was a concern that it would create vibrations that would affect the fine pointing accuracy of the Hubble platform.

  3. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  4. Hall thruster with grooved walls

    SciTech Connect

    Li Hong; Ning Zhongxi; Yu Daren

    2013-02-28

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings help to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.

  5. Derated ion thruster design issues

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1991-01-01

    Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.

  6. Thruster momentum transfer studies and magnetoplasmadynamic (MPD) thruster use in materials/surface modification

    NASA Astrophysics Data System (ADS)

    Thompson, E.; Collins, W. E.; Burger, A.; George, M. A.; Conner, J. D.

    1995-08-01

    This research project involves the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project will seek to characterize the system for use in materials processing and characterization. Crystals grown at Fisk University for use with solid state detectors will be studied. Surface modification on ZnCdTe, CdTe, and ZnTe will be studied using AFM, XPS and SAES. In addition to the surface modification studies, design work on a momentum transfer measurement device has been completed. The design and limitations of the device will be presented.

  7. Thruster momentum transfer studies and magnetoplasmadynamic (MPD) thruster use in materials/surface modification

    NASA Technical Reports Server (NTRS)

    Thompson, E.; Collins, W. E.; Burger, A.; George, M. A.; Conner, J. D.

    1995-01-01

    This research project involves the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project will seek to characterize the system for use in materials processing and characterization. Crystals grown at Fisk University for use with solid state detectors will be studied. Surface modification on ZnCdTe, CdTe, and ZnTe will be studied using AFM, XPS and SAES. In addition to the surface modification studies, design work on a momentum transfer measurement device has been completed. The design and limitations of the device will be presented.

  8. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  9. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  10. The solar photon thruster as a terrestrial pole sitter.

    PubMed

    Matloff, Gregory L

    2004-05-01

    Geosynchronous satellites are invisible at high latitudes. A pole-sitting spacecraft would have communication, climate-studies, and near-polar Earth observation applications. We present a pole-sitter based on the solar photon thruster (SPT), a two-sail variant of the solar sail using a large curved collector sail (always normal to the Sun) to direct sunlight against a much smaller thruster. Thrust decreases slower for an SPT than for a conventional sail arrangement as the angle between sunlight and the collector normal increases. An SPT pole-sitter is offset from the terrestrial pole so that a component of Earth gravity balances the solar radiation-pressure component pushing the SPT off station. The component of gravitational attraction of the Earth pulling the spacecraft towards Earth is also balanced by a solar radiation-pressure component. Results are presented for 80-100% collector/thruster reflectivities. For a spacecraft areal mass thickness of 0.002 kg/m(2), collector and thruster reflectivities of 0.9, the SPT can be situated above latitude 45 degrees at a distance of approximately 60 Earth radii. An SPT pole sitter would be affected by lunar perturbation, which can be compensated for by an on-board rocket thruster producing 2 x 10(-6) g acceleration, a second SPT thruster sail thrusting against the influence of the Moon, or by directing a microwave beam against the spacecraft. Since an SPT pole sitter is in a position rather than an orbit, the effect of terrestrial gravitation limits the size and design of the payload package, which limits terrestrial target resolution. PMID:15220163

  11. Development of and flight results from the Space Acceleration Measurement System (SAMS)

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.; Baugher, Charles R.

    1992-01-01

    Described here is the development of and the flight results from the Space Acceleration Measurement System (SAMS) flight units used in the Orbiter middeck, Spacelab module, and the Orbitercargo bay. The SAMS units are general purpose microgravity accelerometers designed to support a variety of science experiments with microgravity acceleration measurements. A total of six flight units have been fabricated; four for use in the Orbiter middeck and Spacelab module, and two for use in the Orbiter cargo bay. The design of the units is briefly described. The initial two flights of SAMS units on STS-40 (June 1991) and STS-43 (August 1991) resulted in 371 megabytes and 2.6 gigabytes of data respectively. Analytical techniques developed to examine this quantity of acceleration data are described and sample plots of analyzed data are illustrated. Future missions for the SAMS units are listed.

  12. A linear accelerator in the space: The beam experiment aboard rocket

    SciTech Connect

    O'Shea, P.G.; Butler, T.A.; Lynch, M.T.; McKenna, K.F.; Pongratz, M.B.

    1990-01-01

    On July 13, 1989 the BEAM experiment Aboard Rocket (BEAR) linear accelerator was successfully launched and operated in space. The flight demonstrated that a neutral hydrogen beam could be successfully propagated in an exoatmospheric environment. The accelerator, which was the result of an extensive collaboration between Los Alamos National Laboratory and industrial partners, was designed to produce a 10 mA (equivalent), 1 MeV neutral hydrogen beam in 50 {mu}s pulses at 5 Hz. The major components were a 30 keV H{sup {minus}} injector a 1 MeV radio frequency quadrupole, two 425 Mhz RF amplifiers, a gas cell neutralizer, beam optics, vacuum system and controls. The design was strongly constrained by the need for a lightweight rugged system that would survive the rigors of launch and operate autonomously. Following the flight the accelerator was recovered and operated again on the laboratory. 6 figs., 2 tabs.

  13. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    SciTech Connect

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  14. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    Energy Science and Technology Software Center (ESTSC)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas.more » At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.« less

  15. Laboratory-Model Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.

    2008-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field

  16. Nonequilibrium diagnostics of plasma thrusters

    SciTech Connect

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  17. Measuring the spacecraft and environmental interactions of the 8-cm mercury ion thrusters on the P80-1 mission

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1981-01-01

    The subject interface measurements are described for the Ion Auxiliary Propulsion System (IAPS) flight test of two 8-cm thrusters. The diagnostic devices and the effects to be measured include: 1) quartz crystal microbalances to detect nonvolatile deposition due to thruster operation; 2) warm and cold solar cell monitors for nonvolatile and volatile (mercury) deposition; 3) retarding potential ion collectors to characterize the low energy thruster ionic efflux; and 4) a probe to measure the spacecraft potential and thruster generated electron currents to biased spacecraft surfaces. The diagnostics will also assess space environmental interactions of the spacecraft and thrusters. The diagnostic data will characterize mercury thruster interfaces and provide data useful for future applications.

  18. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  19. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  20. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  1. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  2. Magnetically-conformed, Variable Area Discharge Chamber for Hall Thruster, and Method

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R. (Inventor)

    2013-01-01

    The invention is a Hall thruster that incorporates a discharge chamber having a variable area channel including an ionization zone, a transition region, and an acceleration zone. The variable area channel is wider through the acceleration zone than through the ionization zone. An anode is located in a vicinity of the ionization zone and a cathode is located in a vicinity of the acceleration zone. The Hall thruster includes a magnetic circuit which is capable of forming a local magnetic field having a curvature within the transition region of the variable area channel whereby the transition region conforms to the curvature of the local magnetic field. The Hall thruster optimizes the ionization and acceleration efficiencies by the combined effects of the variable area channel and magnetic conformity.

  3. Scaling and Systems Considerations in Pulsed Inductive Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Performance scaling in pulsed inductive thrusters is discussed in the context of previous experimental studies and modeling results. Two processes, propellant ionization and acceleration, are interconnected where overall thruster performance and operation are concerned, but they are separated here to gain physical insight into each process and arrive at quantitative criteria that should be met to address or mitigate inherent inductive thruster difficulties. The effects of preionization in lowering the discharge energy requirements relative to a case where no preionization is employed, and in influencing the location of the initial current sheet, are described. The relevant performance scaling parameters for the acceleration stage are reviewed, emphasizing their physical importance and the numerical values required for efficient acceleration. The scaling parameters are then related to the design of the pulsed power train providing current to the acceleration stage. The impact of various choices in pulsed power train and circuit topology selection are reviewed, paying special attention to how these choices mitigate or exacerbate switching, lifetime, and power consumption issues.

  4. Operational Characteristics of a Low-Energy FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Rose, M. Frank; Miller, Robert

    2008-01-01

    Data from a 100 J per pulse electrodeless accelerator employing pulsed RF-preionization are presented to gain insight into the accelerator's operating characteristics. The data suggest that the propellant distribution is highly unoptimized, with most of the gas inaccessible to the discharge and the remainder mostly concentrated at the inner radius of the coil. The pulsed RF-preionization discharge produces a visible plasma, but like the gas distribution it mostly appears concentrated at the inner radius of the thruster. Magnetic field probes in the discharge point to a current sheet that is not magnetically impermeable. These data also exhibit signs of nonrepeatability, and time-integrated discharge photography shows signs of spatial nonuniformity in both the radial and azimuthal directions. Terminal voltage measurements on the two capacitor banks of the thruster do not exhibit the asymmetric nature (in time) typically associated with an efficient pulsed plasma accelerator. Based on the experimental evidence, the poor performance of the thruster is thought to be due to insufficient preionization, which at these low discharge energy levels severely limits the ability of the main current pulse to couple with and effectively accelerate the propellant.

  5. Experimental and theoretical studies of cylindrical Hall thrusters

    SciTech Connect

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-05-15

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation.

  6. Phase-space dynamics of ionization injection in plasma-based accelerators.

    PubMed

    Xu, X L; Hua, J F; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Joshi, C; Mori, W B

    2014-01-24

    The evolution of beam phase space in ionization injection into plasma wakefields is studied using theory and particle-in-cell simulations. The injection process involves both longitudinal and transverse phase mixing, leading initially to a rapid emittance growth followed by oscillation, decay, and a slow growth to saturation. An analytic theory for this evolution is presented and verified through particle-in-cell simulations. This theory includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces, and it also shows how ultralow emittance beams can be produced using ionization injection methods. PMID:24484147

  7. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  8. Video-Bubbles Act as an Accelerator on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Bubbles in a flask of water act as an accelerometer in space. In this video, Pettit demonstrates bubbles moving in a direction opposite to the residual g-vector. The demonstration shows scientists that they may need to consider the direction of the residual accelerations as influenced by the orientation of the ISS for future experiments.

  9. Direct Drive Hall Thruster System Development

    NASA Technical Reports Server (NTRS)

    Hoskins, W. Andrew; Homiak, Daniel; Cassady, R. Joseph; Kerslake, Tom; Peterson, Todd; Ferguson, Dale; Snyder, Dave; Mikellides, Ioannis; Jongeward, Gary; Schneider, Todd

    2003-01-01

    The sta:us of development of a Direct Drive Ha!! Thruster System is presented. 13 the first part. a s:udy of the impacts to spacecraft systems and mass benefits of a direct-drive architecture is reviewed. The study initially examines four cases of SPT-100 and BPT-4000 Hall thrusters used for north-south station keeping on an EXPRESS-like geosynchronous spacecraft and for primary propulsion for a Deep Space- 1 based science spacecraft. The study is also extended the impact of direct drive on orbit raising for higher power geosynchronous spacecraft and on other deep space missions as a function of power and delta velocity. The major system considerations for accommodating a direct drive Hall thruster are discussed, including array regulation, system grounding, distribution of power to the spacecraft bus, and interactions between current-voltage characteristics for the arrays and thrusters. The mass benefit analysis shows that, for the initial cases, up to 42 kg of dry mass savings is attributable directly to changes in the propulsion hardware. When projected mass impacts of operating the arrays and the electric power system at 300V are included, up to 63 kg is saved for the four initial cases. Adoption of high voltage lithium ion battery technology is projected to further improve these savings. Orbit raising of higher powered geosynchronous spacecraft, is the mission for which direct drive provides the most benefit, allowing higher efficiency electric orbit raising to be accomplished in a limited period of time, as well as nearly eliminating significant power processing heat rejection mass. The total increase in useful payload to orbit ranges up to 278 kg for a 25 kW spacecraft, launched from an Atlas IIA. For deep space missions, direct drive is found to be most applicable to higher power missions with delta velocities up to several km/s , typical of several Discovery-class missions. In the second part, the status of development of direct drive propulsion power

  10. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  11. Development of a direct evaporation bismuth Hall thruster

    NASA Astrophysics Data System (ADS)

    Massey, Dean Richard

    diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.

  12. Real-Time Data from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The objective of the Orbital Acceleration Research Experiment (OARE) is to measure, with high accuracy, the low-frequency, low-magnitude acceleration levels onboard the space shuttle. The shuttle experiences acceleration from atmospheric drag, gravity gradient forces, shuttle rotations, crew activities, water/waste dumps, and shuttle attitude thrusters. The OARE instrument has successfully flown on five past shuttle missions and is scheduled for five upcoming microgravity science missions. The data collected by OARE will be utilized by microgravity scientists to better predict and analyze the influence and effects of the shuttle's on-orbit microgravity environment on experiments in materials, combustion, and fluids research.

  13. Reach performance while wearing the Space Shuttle launch and entry suit during exposure to launch accelerations

    NASA Technical Reports Server (NTRS)

    Bagian, James P.; Greenisen, Michael C.; Schafer, Lauren E.; Probe, John D.; Krutz, Robert W., Jr.

    1993-01-01

    Crewmen aboard the Space Shuttle are subjected to accelerations during ascent (the powered flight phase of launch) which range up to +3 G(sub x). Despite having 33 missions and nine years experience, not to mention all the time spent in development prior to the first flight, no truly quantitative reach study wearing actual crew equipment, using actual Shuttle seats and restraints has ever been done. What little information exists on reach performance while under acceleration has been derived primarily from subjective comments gathered retrospectively from Shuttle flight crews during their post mission debrief. This lack of reach performance data has resulted in uncertainty regarding emergency procedures that can realistically be performed during and actual Shuttle ascent versus what is practiced in the ground-fixed and motion-based Shuttle Simulators. With the introduction on STS-26 of the current Shuttle escape system, the question of reach performance under launch accelerations was once again raised. The escape system's requirement that each crewman wear a Launch/Entry Suit (LES), parachute harness, and parachute were all anticipated to contribute to a further degradation of reach performance during Shuttle ascent accelerations. In order to answer the reach performance question in a quantitative way, a photogrammetric method was chosen so that the actual reach values and associated envelopes could be captured. This would allow quantitative assessment of potential task performance impact and identify areas where changes to our Shuttle ascent emergency procedures might be required. Also, such a set of reach values would be valid for any similar acceleration profile using the same crew equipment. Potential Space Station applications of this data include predicting reach performance during Assured Crew Return Vehicle (ACRV) operations.

  14. Phenomenon of onset in magnetoplasmadynamic thrusters

    SciTech Connect

    Subramaniam, V.V.

    1986-01-01

    The performance of magnetoplasmadynamic (MPD) thrusters has been severely limited by onset. This destructive onset phenomenon refers to the abrupt increase in voltage oscillations accompanied by severe electrode erosion which occurs at a critical value of the current for a given mass flow rate. This research is aimed at explaining and quantifying onset. The steady, one-dimensional, self-field flow in the MPD thruster is first analyzed for frozen flow, equilibrium flow, and nonequilibrium flow. This quasi one-dimensional theory explains the behavior of efficiency and predicts a new mechanisms for the onset phenomenon. This model predicts that smoothly accelerating supersonic flow can exist only below a critical current level because of increasing back-EMF. This limit is interpreted as onset and correlates with the experimentally observed J/sup 2//m onset parameter. In order to quantify electrode erosion rates, the electrode-adjacent boundary layer is analyzed using the results of the quasi one-dimensional theory. The free-stream boundary conditions for the steady boundary-layer flow analysis are obtained from the results of the quasi one-dimensional theory.

  15. The NASA Phoenix 2007 Mars Lander Thruster Calibration Estimator: Design and Validation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Kruizinga, Gerhard L.; Portock, Brian

    2008-01-01

    The NASA Phoenix 2007 Mars Lander mission, launched in August 2007 on its mission to land near the north pole of Mars in May 2008, had a driving need for entry-corridor delivery precision, which parlayed into stringent requirements on deep space navigation accuracy. This, in turn, necessitated in-cruise calibration of the three-axis thrust force vectors produced by each of the vehicle's four reactioncontrol system (RCS) thrusters during frequent daily low-catalyst-bed-temperature firings done to maintain the 3-axis attitude deadbands. A novel recursive sigmapoint consider-covariance filter was designed, validated and ultimately utilized extensively during flight operations, to estimate the RCS force vectors, per individual thruster. The estimate was achieved through ground-based processing of Deep Space Network (DSN) and telemetered gyroscope data from the spacecraft's inertial measurement unit (IMU), using a novel sigma-point consider filter (SPCF) formulation. During early-cruise active calibration, the spacecraft was flown in attitudes chosen, using this filter, to maximize observability of all thruster axes, to an extent constrained by vehicle thermal and communication considerations. The design of the Phoenix thruster calibration filter, and its validation through processing of archived Mars Odyssey thruster calibration radiometric data, and simulated sets of data, are discussed in this paper. The paper concludes with the formulation of the thruster calibration campaign and a summary of the thruster calibration campaign results. The SPCF algorithm is summarized in the Appendix.

  16. Power Reduction of the Air-Breathing Hall-Effect Thruster

    NASA Astrophysics Data System (ADS)

    Kim, Sungrae

    Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.

  17. Effects of Segmented Electrode in Hall Current Plasma Thrusters

    SciTech Connect

    Y. Raitses; M. Keidar; D. Staack; N.J. Fisch

    2001-12-03

    Segmented electrodes with a low secondary electron emission are shown to alter significantly plasma flow in the ceramic channel of the Hall thruster. The location of the axial acceleration region relative to the magnetic field can be moved. The radial potential distribution can also be altered near the channel walls. A hydrodynamic model shows that these effects are consistent with a lower secondary electron emission of the segmented electrode as compared to ceramic channel walls.

  18. The effects of magnetic nozzle configurations on plasma thrusters

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1989-01-01

    Plasma thrusters have been operated at power levels from 10kW to 0.1MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations will be studied without applied fields and with applied magnetic nozzle fields. Unique computational studies will utilize existing codes which accurately include transport processes. Unique diagnostic studies will support the experimental studies to generate new data. Both computation and diagnostics will be combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

  19. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  20. The effects of magnetic nozzle configurations on plasma thrusters

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1990-01-01

    Plasma thrusters have been operated at power levels from 10 kw to 0.1 MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research effort is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations were studied without applied fields and with applied magnetic nozzle fields. Unique computational studies utilize existing codes which accurately include transport processes. Unique diagnostic studies supported the experimental studies to generate new data. Both computation and diagnostics were combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

  1. Dual-throat thruster thermal model

    NASA Technical Reports Server (NTRS)

    Ewen, R. L.; Obrien, C. J.; Matthews, L. W.

    1986-01-01

    The dual-throat engine is one of the dual nozzle engine concepts studied for advanced space transportation applications. It provides a thrust change and an in-flight area ratio change through the use of two concentric combustors with their throats arranged in series. Test results are presented for a dual throat thruster burning gaseous oxygen and hydrogen at primary (inner) chamber pressures from 380 to 680 psia. Heat flux profiles were obtained from calorimetric cooling channels in the inner nozzle, outer or secondary chamber and the tip of the inner nozzle. Data were obtained for two nozzle spacings over a chamber pressure ratio (secondary/primary) range of 0.45 to 0.83 with both chambers firing (Mode I). Fluxes near the end of the inner nozzle were significantly higher than in Mode II when only the inner chamber was fired, due to the flow separation and recirculation caused by the back pressure imposed by the secondary chamber. As the pressure ratio increased, these heat fluxes increased and the region of high heat flux relative to Mode II extended farther upstream. The use of the gaseous hydrogen bleed flow in the secondary chamber to control heat fluxes in the primary plume attachment region was investigated in Mode II testing. A thermal model of a dual throat thruster was developed and upgraded using the experimental data.

  2. Development of Microplasma Thruster

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Ono, Kouichi

    This paper proposes an electrothermal microplasma thruster using azimuthally symmetric microwave-excited plasmas, which consists of a microplasma source and a micronozzle. The microplasma source is made of a 10 mm long dielectric chamber of 2 mm in inner diameter covered with an electrically grounded metal, which produces high temperature plasmas at around atmospheric pressure. The micronozzle has a throat of 0.2 mm in diameter, which converts high thermal energy of plasmas into directional kinetic energy to produce the axial thrust. First, we have developed a numerical model for Ar microplasmas and micronozzle flows to estimate the thruster performance. The model consists of three modules: a volume-averaged global model, an electromagnetic model for microplasma sources, and a fluid model for micronozzle flows. Numerical results indicate that the microwave power absorbed in plasmas increases with microwave frequency f and relative permittivityɛd of the dielectric chamber, to achieve the plasma density in the range 1014-1016 cm-3. A certain combination of the frequency and permittivity significantly increases the power absorption. The micronozzle flow was found to be very lossy because of high viscosity in thick boundary layers, implying that shortening the nozzle length with increasing half-cone angles suppresses the effect of viscous loss and thus enhances the thrust performance. A thrust of 2.5-3.5 mN and a specific impulse of 130-180 s were obtained for a given microwave power range (Pt <10 W), which is applicable to a station-keeping maneuver for microspacecraft less than 10 kg. Moreover, we have developed a microwave-excited microplasma source, which has a dielectric chamber of 10 mm length and 1.5 mm in inner diameter, where off-the-shelf mullite (ɛd ≈ 6) and zirconia (ɛd ≈ 12-25) tubes are employed. Experiments were performed at f = 2 and 4 GHz, Pt < 10 W, an Ar flow rate of 50 sccm, and a microplasma pressure of 10 kPa, where optical emission

  3. Power Electronics Development for the SPT-100 Thruster

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-01-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  4. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  5. Quick Look Report of Acceleration Measurements on Mir Space Station During Mir-16

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Rogers, Melissa J. B.

    1995-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with microgravity acceleration measurements. In the past, SAMS was flown exclusively on the NASA Orbiters. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit installed on the Mir space station. On 25 August 1994, the SAMS unit was launched on a Russia Progress vehicle to the Mir space station. The SAMS unit will support science experiments from the U.S. and Russia in a manner similar to the Orbiter missions by measuring the microgravity environments during the experiment operations. In October 1994, the SAMS unit recorded data on Mir for over fifty-three hours in seven different time periods to survey possible locations for future experiments. This report presents a quick look at the data and the microgravity environment during the time periods in which SAMS data were acquired. The Mir acceleration data were examined to ascertain gross attributes of the data. This report does not present an exhaustive examination of all possible activities due to the short time available to prepare this quick look report and due to the absence of complete timeline information during the SAMS recording time periods. Appendices A, B and C provide plots of the SAMS data for an overview of the microgravity environment at the times that data were recorded. Appendix D describes the procedures to access SAMS data by file transfer protocol (ftp) utilizing the internet. Appendix E contains a user comment sheet.

  6. Characterization of 8-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.

    1984-01-01

    Development of 8 cm ion thruster technology which was conducted in support of the Ion Auxiliary Propulsion System (IAPS) flight contract (Contract NAS3-21055) is discussed. The work included characterization of thruster performance, stability, and control; a study of the effects of cathode aging; environmental qualification testing; and cyclic lifetesting of especially critical thruster components.

  7. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing

    SciTech Connect

    Gamezo, Vadim N.; Oran, Elaine S.; Ogawa, Takanobu

    2008-10-15

    We study flame acceleration and deflagration-to-detonation transition (DDT) in obstructed channels using 2D reactive Navier-Stokes numerical simulations. The energy release rate for the stoichiometric hydrogen-air mixture is modeled by one-step Arrhenius kinetics. Computations performed for channels with symmetrical and staggered obstacle configurations show two main effects of obstacle spacing S. First, more obstacles per unit length create more perturbations that increase the flame surface area more quickly, and therefore the flame speed grows faster. Second, DDT occurs more easily when the obstacle spacing is large enough for Mach stems to form between obstacles. These two effects are responsible for three different regimes of flame acceleration and DDT observed in simulations: (1) Detonation is ignited when a Mach stem formed by the diffracting shock reflecting from the side wall collides with an obstacle, (2) Mach stems do not form, and the detonation is not ignited, and (3) Mach stems do not form, but the leading shock becomes strong enough to ignite a detonation by direct collision with the top of an obstacle. Regime 3 is observed for small S and involves multiple isolated detonations that appear between obstacles and play a key role in final stages of flame and shock acceleration. For Regime 1 and staggered obstacle configurations, we observe resonance phenomena that significantly reduce the DDT time when S/2 is comparable to the channel width. Effects of imposed symmetry and stochasticity on DDT phenomena are also considered. (author)

  8. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    SciTech Connect

    Fubiani, Gwenael J.

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  9. Pulsed inductive thruster performance data base for megawatt-class engine applications

    NASA Astrophysics Data System (ADS)

    Dailey, Charles L.; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse (Isp) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds Isp with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix.

  10. A 2000-Hour Durability Test of a 5-Centimeter Diameter Mercury Bombardment Ion Thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.; Finke, R. G.

    1972-01-01

    A 2000-hour durability test of a modified Hughes SIT-5 (Structurally Integrated Thruster, 5 cm) was conducted at the Lewis Research Center. The thruster operated with a translating screen thrust vector grid locked in position for 10 deg beam deflection. The test was essentially continuous except for seven stoppages of beam current. The neutralizer keeper voltage and thruster floating potential increased slightly with time. Performance profiles and maps of thruster characteristics were obtained at 453 and 2023 hours into the test. Overall efficiency was nearly constant at 31 - 32 percent, and operating characteristics were similar at both points in the test. A post-shutdown inspection showed negligible erosion damage to the accelerator and cathode baffle. Some erosion was found in the aperture of the neutralizer cathode.

  11. Experimental investigation of high-frequency drifting perturbations in Hall thrusters

    SciTech Connect

    Lazurenko, A.; Vial, V.; Prioul, M.; Bouchoule, A.

    2005-01-01

    High-frequency instabilities (1-10 MHz) in a Hall thruster were studied with the use of six antennas installed in the external ceramic wall of the accelerating channel of the thruster. Azimuthal modes m{>=}1 were evidenced in more or less complex shape of the antenna signal, propagating with azimuthal velocity close to the drift velocity in crossed electric and magnetic fields. These instabilities have the highest level at the exit part of the thruster. They were shown to correlate with low-frequency (10-30 kHz) oscillations of the discharge current. Information on axial electric field variation is derived from the instabilities properties. The instabilities were characterized as a function of thruster operating parameters--discharge voltage and magnetic field.

  12. Laser Induced Fluorescence Measurements of Ion Velocity in Magnetic Cusped Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    MacDonald, Natalia; Cappelli, Mark; Hargus, William, Jr.

    2012-10-01

    Cusped Field Thrusters (CFTs) are magnetized plasma accelerators that use strong cusps to shape the magnetic field and hence the electrostatic potential. The cusped magnetic field lines meter the electron transport to the anode and reduce the energetic ion flux towards the dielectric channel walls, thereby reducing the effects of erosion. This work presents time averaged laser induced fluorescence velocity measurements of the ions in the plumes of three CFT variants. These include the Cylindrical Hall Thruster (CHT), Cylindrical Cusped Field Thruster (CCFT), and Diverging Cusped Field Thruster (DCFT). Results indicate that magnetic cusps form equipotential surfaces, and that the majority of ion acceleration occurs outside of the thruster channels.

  13. iSat Surface Charging and Thruster Plume Interactions Analysis

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Willis, E. M.; Minow, J. I.

    2016-01-01

    Characterizing the electromagnetic interaction of a satellite in low Earth, high inclination orbit with the space plasma environment and identifying viable charging mitigation strategies is a critical mission design task. High inclination orbits expose the vehicle to auroral charging environments that can potentially charge surfaces to kilovolt potentials and electric thruster propulsion systems will interact with the ambient plasma environment throughout the orbit. NASA is designing the Iodine Satellite (iSAT) cubesat mission to demonstrate operations of an iodine electric thruster system. The spacecraft will be deployed as a secondary payload from a launch vehicle which has not yet been identified so the program must plan for the worst case environments over a range of orbital inclinations. We will first present results from a NASA and Air Force Charging Analyzer Program (Nascap) -2k surface charging calculation used to evaluate the effects of auroral charging on the spacecraft and to provide the charging levels at other locations in orbit for a thruster plume interaction analysis for the iSAT mission. We will then discuss results from the thruster interactions analysis using the Electric Propulsion Interactions Code (EPIC) with inputs from Nascap-2k. The results of these analyses are being used by the iSAT program to better understand how their spacecraft will interact with the space plasma environment in the range of environments that could be encountered when the final mission orbit is selected.

  14. Stationary Plasma Thruster Plume Characteristics

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Manzella, David H.

    1994-01-01

    Stationary Plasma Thrusters (SPT's) are being investigated for application to a variety of near-term missions. This paper presents the results of a preliminary study of the thruster plume characteristics which are needed to assess spacecraft integration requirements. Langmuir probes, planar probes, Faraday cups, and a retarding potential analyzer were used to measure plume properties. For the design operating voltage of 300 V the centerline electron density was found to decrease from approximately 1.8 x 10 exp 17 cubic meters at a distance of 0.3 m to 1.8 X 10 exp 14 cubic meters at a distance of 4 m from the thruster. The electron temperature over the same region was between 1.7 and 3.5 eV. Ion current density measurements showed that the plume was sharply peaked, dropping by a factor of 2.6 within 22 degrees of centerline. The ion energy 4 m from the thruster and 15 degrees off-centerline was approximately 270 V. The thruster cathode flow rate and facility pressure were found to strongly affect the plume properties. In addition to the plume measurements, the data from the various probe types were used to assess the impact of probe design criteria

  15. Mercury ion thruster research, 1978

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1978-01-01

    The effects of 8 cm thruster main and neutralizer cathode operating conditions on cathode orifice plate temperatures were studied. The effects of cathode operating conditions on insert temperature profiles and keeper voltages are presented for three different types of inserts. The bulk of the emission current is generally observed to come from the downstream end of the insert rather than from the cathode orifice plate. Results of a test in which the screen grid plasma sheath of a thruster was probed as the beam current was varied are shown. Grid performance obtained with a grid machined from glass ceramic is discussed. The effects of copper and nitrogen impurities on the sputtering rates of thruster materials are measured experimentally and a model describing the rate of nitrogen chemisorption on materials in either the beam or the discharge chamber is presented. The results of optimization of a radial field thruster design are presented. Performance of this device is shown to be comparable to that of a divergent field thruster and efficient operation with the screen grid biased to floating potential, where its susceptibility to sputter erosion damage is reduced, is demonstrated.

  16. Azimuthal Spoke Propagation in Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.

  17. Development and experimental characterization of a wall-less Hall thruster

    NASA Astrophysics Data System (ADS)

    Mazouffre, S.; Tsikata, S.; Vaudolon, J.

    2014-12-01

    An alternative Hall thruster architecture that shifts the ionization and acceleration regions outside the plasma chamber is demonstrated. This unconventional design is here termed a "wall-less Hall thruster," as the bulk of the magnetized discharge is no longer limited by solid boundaries. A 200 W prototype with permanent magnets has been developed and characterized. Experimental results concerning the thruster operation, discharge oscillations, electric field distribution, and ionization zone characteristics are presented and discussed. Our first experiments show that the cross-field discharge can be moved outside the cavity without drastically disturbing the ion production and acceleration mechanisms. This design offers the benefit of reduced plasma-wall interaction and lower wall losses, while also greatly facilitating diagnostic access to the entire discharge ionization and acceleration regions.

  18. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  19. Holographic Solar Photon Thrusters

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  20. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Inert gases, particularly argon and xenon, are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. Hollow cathode data were obtained for a wide range of operating conditions. Some test conditions gave plasma coupling voltages at or below the sputtering threshold, hence should permit long operating lifetimes. All observations of hollow cathode operation were consistent with a single theory of operation, in which a significant amount of the total electron emission is from localized areas within the orifice. This mode of emission is also supported by scanning electron microscope photographs that indicate local temperatures at or near the melting temperature of the tungsten tip. Experimental hollow cathode performance was correlated for two orifice diameters, three inert gas propellants, and a range of flow rates for each propellant. The basic theory for the production of doubly ionized argon and xenon was completed. Experimental measurements of the doubly ionized fraction agree with theory within about plus or minus 20 percent. High voltage isolators were studied for the propellant feed line. The breakdown voltage per segment ranged from 300 to over 500 V with argon.

  1. An Acceleration Measurement Capability on International Space Station Supporting Microgravity Science Payloads

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1997-01-01

    The conditions present in low-earth-orbit have enabled various scientific investigations to be conducted. A fundamental reason that space is a useful environment for science is the presence of a decreased effect of gravity while in orbital free-fall. Science investigations are conducted to study phenomena occurring as a result of reductions in buoyancy forces and phenomena enabled as a result of the apparent lack of gravity. The science community requires knowledge of the environment in which their experiments are being conducted. A general purpose measurement system was developed in the 1980's to supply scientific investigators with data of the residual acceleration environment. The Space Acceleration Measurement System, or SAMS, has flown aboard the NASA shuttle fleet over fourteen times, successfully acquiring acceleration measurement data in support of microgravity science experiments. As NASA continues its development of the International Space Station and its associated research payloads, it once again becomes necessary to address the requirement to measure the residual acceleration in support of the planned scientific investigations. As a follow-on to the SAMS project, SAMS-2 was initiated to investigate the requirements and develop the measurement system to support the microgravity science payloads aboard the International Space Station. The characteristics of the payload complement to be supported by SAMS-2 and the different capabilities provided by the station requires a fresh look at the design implementation of a general purpose measurement system. Not only is there a requirement for measurements in support of numerous, potentially simultaneous experiments, but this support is required to be provided for at least ten years of on-orbit operation as compared to a ten to fourteen day mission on shuttle. These differences in fundamental requirements result in the design configuration of the space station-based SAMS-2 being significantly different than that

  2. Prediction of force and acceleration control spectra for Space Shuttle orbiter sidewall-mounted payloads

    NASA Technical Reports Server (NTRS)

    Hipol, Philip J.

    1990-01-01

    The development of force and acceleration control spectra for vibration testing of Space Shuttle (STS) orbiter sidewall-mounted payloads requiresreliable estimates of the sidewall apparent weight and free (i.e. unloaded) vibration during lift-off. The feasibility of analytically predicting these quantities has been investigated through the development and analysis of a finite element model of the STS cargo bay. Analytical predictions of the sidewall apparent weight were compared with apparent weight measurements made on OV-101, and analytical predictions of the sidewall free vibration response during lift-off were compared with flight measurements obtained from STS-3 and STS-4. These analysis suggest that the cargo bay finite element model has potential application for the estimation of force and acceleration control spectra for STS sidewall-mounted payloads.

  3. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  4. Hot-Fire Testing of a 1N AF-M315E Thruster

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  5. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  6. Stationary Plasma Thruster Ion Velocity Distribution

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    A nonintrusive velocity diagnostic based on laser induced fluorescence of the 5d4F(5/2)-6p4D(5/2) singly ionized xenon transition was used to interrogate the exhaust of a 1.5 kW Stationary Plasma Thruster (SPT). A detailed map of plume velocity vectors was obtained using a simplified, cost-effective, nonintrusive, semiconductor laser based scheme. Circumferential velocities on the order of 250 m/s were measured which implied induced momentum torques of approximately 5 x 10(exp -2) N-cm. Axial and radial velocities were evaluated one mm downstream of the cathode at several locations across the width of the annular acceleration channel. Radial velocities varied linearly with radial distance. A maximum radial velocity of 7500 m/s was measured 8 mm from the center of the channel. Axial velocities as large as 16,500 m/s were measured.

  7. Helicon plasma thruster discharge model

    SciTech Connect

    Lafleur, T.

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  8. Helicon plasma thruster discharge model

    NASA Astrophysics Data System (ADS)

    Lafleur, T.

    2014-04-01

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  9. Design of an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance

  10. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that

  11. NEXT Ion Thruster Thermal Model

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.

  12. Kink instability in applied-field magneto-plasma-dynamic thrusters.

    PubMed

    Zuin, M; Cavazzana, R; Martines, E; Serianni, G; Antoni, V; Bagatin, M; Andrenucci, M; Paganucci, F; Rossetti, P

    2004-06-01

    Measurements of magnetic and electrostatic fluctuations in an applied field magneto-plasma-dynamic thruster have shown that a m/n=1/1 kink mode becomes unstable whenever the Kruskal-Shafranov limit is violated. A positive correlation is established between the kink and performance degradation at high current, which has until now prevented the use of this kind of thruster in space missions. PMID:15245232

  13. PARALLEL 3-D SPACE CHARGE CALCULATIONS IN THE UNIFIED ACCELERATOR LIBRARY.

    SciTech Connect

    D'IMPERIO, N.L.; LUCCIO, A.U.; MALITSKY, N.

    2006-06-26

    The paper presents the integration of the SIMBAD space charge module in the UAL framework. SIMBAD is a Particle-in-Cell (PIC) code. Its 3-D Parallel approach features an optimized load balancing scheme based on a genetic algorithm. The UAL framework enhances the SIMBAD standalone version with the interactive ROOT-based analysis environment and an open catalog of accelerator algorithms. The composite package addresses complex high intensity beam dynamics and has been developed as part of the FAIR SIS 100 project.

  14. Turbulent Magnetohydrodynamic Acceleration Processes: Theory SSX Experiments and Connections to Space and Astrophysics

    SciTech Connect

    W Matthaeus; M Brown

    2006-07-15

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end ofthe project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  15. Vibration isolation technology: Sensitivity of selected classes of space experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Zhang, Y. Q.; Adebiyi, Adebimpe

    1989-01-01

    Progress performed on each task is described. Order of magnitude analyses related to liquid zone sensitivity and thermo-capillary flow sensitivity are covered. Progress with numerical models of the sensitivity of isothermal liquid zones is described. Progress towards a numerical model of coupled buoyancy-driven and thermo-capillary convection experiments is also described. Interaction with NASA personnel is covered. Results to date are summarized and they are discussed in terms of the predicted space station acceleration environment. Work planned for the second year is also discussed.

  16. A Reconsideration of Electrostatically Accelerated and Confined Nuclear Fusion for Space Applications

    NASA Astrophysics Data System (ADS)

    MacLeod, C.; Gow, K. S.

    Most present-day research into Nuclear Fusion concentrates on high-temperature plasmas combined with Inertial or Magnetic Confinement. However, there exists another body of less well-known work based on Electrostatic Acceleration and Confinement. The most thoroughly researched of these devices is known as the Farnsworth Fusor. This paper reviews the technique and then argues that, with development, similar technologies would be particularly suited to space-borne applications, due to their safety, simplicity and light weight. The paper then goes on to suggest several possible directions for new research into such devices which might result in a working machine.

  17. Design of a cusped field thruster for drag-free flight

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  18. Pulsed plasma thruster contamination studies

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; Jones, R. M.

    1979-01-01

    The exhaust plume of the one millipound pulsed plasma thruster has a measurable backflow upstream of the nozzle exit plane which may deposit on and degrade the performance of exposed spacecraft surfaces. High speed photographs and Faraday cup measurements suggest that this backflow is predominantly an electrically neutral, relatively low energy vapor. Articulated collimator quartz crystal microbalance measurements of this backflow were made for a thruster with a radically modified nozzle and a flat plate backflow shield, to determine the backflow sensitivity to nozzle design changes. The results are compared with the original nozzle backflow and show a measurable reduction in the backflow directly upstream of the shield.

  19. Effects of ionization distribution on plasma beam focusing characteristics in Hall thrusters

    SciTech Connect

    Ning Zhongxi; Liu Hui; Yu Daren; Zhou Zhongxiang

    2011-11-28

    The relationship between ionization distribution and divergence of plasma beam in a Hall thruster is investigated using spectrum and probe methods. Experimental results indicate that the shift of ionization region towards the exit of channel causes the reduction of accelerating field and the enhancement of electron thermal pressure effect, which result in further deviation of equipotential lines to magnetic field lines and further increase in divergence of plasma beam. It is, therefore, suggested that to put the ionization region deep inside the channel and separate it from the acceleration region at the design, and development stage is helpful to improve the plasma beam focusing characteristics of a Hall thruster.

  20. Comparison of 2-D and 3-D models of grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    Numerical results of particle-in-cell/Monte Carlo calculations of accelerator grid erosion in an ion thruster are presented. Specifically, it is shown that a three-dimensional model is required to account for the experimentally observed pitting of the accelerator grid between grid apertures. Some comparisons with earlier two-dimensional, axisymmetric model are made, and it is shown that, for identical operating conditions of the thruster, the wear-through time in the three-dimensional model is about two to three times higher than that obtained previously with the two-dimensional model, namely on the order of 10,000 hours for sample calculation.