Sample records for acceleration time histories

  1. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  2. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and wemore » compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.« less

  3. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  4. Continuous Time in Consistent Histories

    NASA Astrophysics Data System (ADS)

    Savvidou, Konstantina

    1999-12-01

    We discuss the case of histories labelled by a continuous time parameter in the History Projection Operator consistent-histories quantum theory. We describe how the appropriate representation of the history algebra may be chosen by requiring the existence of projection operators that represent propositions about time averages of the energy. We define the action operator for the consistent histories formalism, as the quantum analogue of the classical action functional, for the simple harmonic oscillator case. We show that the action operator is the generator of two types of time transformations that may be related to the two laws of time-evolution of the standard quantum theory: the `state-vector reduction' and the unitary time-evolution. We construct the corresponding classical histories and demonstrate the relevance with the quantum histories; we demonstrate how the requirement of the temporal logic structure of the theory is sufficient for the definition of classical histories. Furthermore, we show the relation of the action operator to the decoherence functional which describes the dynamics of the system. Finally, the discussion is extended to give a preliminary account of quantum field theory in this approach to the consistent histories formalism.

  5. Analysis of real-time head accelerations in collegiate football players.

    PubMed

    Duma, Stefan M; Manoogian, Sarah J; Bussone, William R; Brolinson, P Gunnar; Goforth, Mike W; Donnenwerth, Jesse J; Greenwald, Richard M; Chu, Jeffrey J; Crisco, Joseph J

    2005-01-01

    To measure and analyze head accelerations during American collegiate football practices and games. A newly developed in-helmet 6-accelerometer system that transmits data via radio frequency to a sideline receiver and laptop computer system was implemented. From the data transfer of these accelerometer traces, the sideline staff has real-time data including the head acceleration, the head injury criteria value, the severity index value, and the impact location. Data are presented for instrumented players for the entire 2003 football season, including practices and games. American collegiate football. Thirty-eight players from Virginia Tech's varsity football team. Accelerations and pathomechanics of head impacts. : A total of 3312 impacts were recorded over 35 practices and 10 games for 38 players. The average peak head acceleration, Gadd Severity Index, and Head Injury Criteria were 32 g +/- 25 g, 36 g +/- 91 g, and 26 g +/- 64 g, respectively. One concussive event was observed with a peak acceleration of 81 g, a 267 Gadd Severity Index, and 200 Head Injury Criteria. Because the concussion was not reported until the day after of the event, a retrospective diagnosis based on his history and clinical evaluation suggested a mild concussion. The primary finding of this study is that the helmet-mounted accelerometer system proved effective at collecting thousands of head impact events and providing contemporaneous head impact parameters that can be integrated with existing clinical evaluation techniques.

  6. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Karkhanis, V.; Banerjee, R.; Varshochi, H.; Khan, M.; Lawrie, A. G. W.

    2016-01-01

    From nonlinear models and direct numerical simulations we report on several findings of relevance to the single-mode Rayleigh-Taylor (RT) instability driven by time-varying acceleration histories. The incompressible, direct numerical simulations (DNSs) were performed in two (2D) and three dimensions (3D), and at a range of density ratios of the fluid combinations (characterized by the Atwood number). We investigated several acceleration histories, including acceleration profiles of the general form g (t ) ˜tn , with n ≥0 and acceleration histories reminiscent of the linear electric motor experiments. For the 2D flow, results from numerical simulations compare well with a 2D potential flow model and solutions to a drag-buoyancy model reported as part of this work. When the simulations are extended to three dimensions, bubble and spike growth rates are in agreement with the so-called level 2 and level 3 models of Mikaelian [K. O. Mikaelian, Phys. Rev. E 79, 065303(R) (2009), 10.1103/PhysRevE.79.065303], and with corresponding 3D drag-buoyancy model solutions derived in this article. Our generalization of the RT problem to study variable g (t ) affords us the opportunity to investigate the appropriate scaling for bubble and spike amplitudes under these conditions. We consider two candidates, the displacement Z and width s2, but find the appropriate scaling is dependent on the density ratios between the fluids—at low density ratios, bubble and spike amplitudes are explained by both s2 and Z , while at large density differences the displacement collapses the spike data. Finally, for all the acceleration profiles studied here, spikes enter a free-fall regime at lower Atwood numbers than predicted by all the models.

  7. Relaxation drag history of shock accelerated microparticles

    DOE PAGES

    Bordoloi, Ankur D.; Martinez, Adam A.; Prestridge, Katherine

    2017-06-21

    Experimental measurements of the displacements of shock accelerated microparticles from shortly after shock interaction to the particle relaxation time show time-dependent drag coefficients (more » $$C_{D}$$) that are much higher than those predicted by quasi-steady and unsteady drag models. Nylon particles with mean diameter of $$4~\\unicode[STIX]{x03BC}\\text{m}$$, accelerated by one-dimensional normal shocks (Mach number$$M_{s}=1.2$$, 1.3 and 1.4), have measured$$C_{D}$$values that follow a power-law behaviour. The drag is a function of the time-dependent Knudsen number,$$Kn^{\\ast }=M_{s}/Re_{p}$$, where the particle Reynolds number ($$Re_{p}$$) is calculated using the time-dependent slip velocity. Also, some portion of the drag can be attributed to quasi-steady forces, but the total drag cannot be predicted by current unsteady force models that are based on the Basset–Boussinesq–Oseen equation and pressure drag. The largest contribution to the total drag is the unsteady component ($$C_{D,us}$$) until the particle attains$$Kn^{\\ast }\\approx 0.5{-}1.0$$, then the unsteady contribution decays. The quasi-steady component ($$C_{D,qs}$$) increases almost linearly with$$Kn^{\\ast }$$, intersects the$$C_{D,us}$$at$$Kn^{\\ast }\\approx 2$$and becomes the primary contributor to the drag towards the end of the relaxation zone as$$Re_{p}\\rightarrow 0$$. Finally, there are currently no analytical models that are able to predict the nonlinear behaviour of the shock accelerated particles during the relaxation phase of the flow.« less

  8. Relaxation drag history of shock accelerated microparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordoloi, Ankur D.; Martinez, Adam A.; Prestridge, Katherine

    Experimental measurements of the displacements of shock accelerated microparticles from shortly after shock interaction to the particle relaxation time show time-dependent drag coefficients (more » $$C_{D}$$) that are much higher than those predicted by quasi-steady and unsteady drag models. Nylon particles with mean diameter of $$4~\\unicode[STIX]{x03BC}\\text{m}$$, accelerated by one-dimensional normal shocks (Mach number$$M_{s}=1.2$$, 1.3 and 1.4), have measured$$C_{D}$$values that follow a power-law behaviour. The drag is a function of the time-dependent Knudsen number,$$Kn^{\\ast }=M_{s}/Re_{p}$$, where the particle Reynolds number ($$Re_{p}$$) is calculated using the time-dependent slip velocity. Also, some portion of the drag can be attributed to quasi-steady forces, but the total drag cannot be predicted by current unsteady force models that are based on the Basset–Boussinesq–Oseen equation and pressure drag. The largest contribution to the total drag is the unsteady component ($$C_{D,us}$$) until the particle attains$$Kn^{\\ast }\\approx 0.5{-}1.0$$, then the unsteady contribution decays. The quasi-steady component ($$C_{D,qs}$$) increases almost linearly with$$Kn^{\\ast }$$, intersects the$$C_{D,us}$$at$$Kn^{\\ast }\\approx 2$$and becomes the primary contributor to the drag towards the end of the relaxation zone as$$Re_{p}\\rightarrow 0$$. Finally, there are currently no analytical models that are able to predict the nonlinear behaviour of the shock accelerated particles during the relaxation phase of the flow.« less

  9. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  10. Rayleigh-Taylor mixing with time-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  11. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    PubMed

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion. © 2013 John Wiley & Sons Ltd/CNRS.

  12. Flowering time and seed dormancy control use external coincidence to generate life history strategy.

    PubMed

    Springthorpe, Vicki; Penfield, Steven

    2015-03-31

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features.

  13. The Role of Substorms in Storm-time Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Kamide, Yohsuke

    The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. Acceleration of charged particles is an essential ingredient of both magnetospheric substorms and space storms. In the case of space storms, the ultimate result is a bulk flow of electric charge through the inner magnetosphere, commonly known as the ring current. Syun-Ichi Akasofu and Sydney Chapman, two of the early pioneers in space physics, postulated that the bulk acceleration of particles during storms is rather the additive result of partial acceleration during consecutive substorms. This paradigm has been heavily disputed during recent years. The new case is that substorm acceleration may be sufficient to produce individual high-energy particles that create auroras and possibly harm spacecraft, but it cannot produce the massive acceleration that constitutes a storm. This paper is a critical review of the long-standing issue of the storm-substorm relationship, or—in other words—the capability or necessity of substorms in facilitating or driving the build-up of the storm-time ring current. We mainly address the physical effect itself, i.e. the bulk acceleration of particles, and not the diagnostic of the process, i.e. the Dst index, which is rather often the case. Within the framework of particle acceleration, substorms retain their storm-importance due to the potential of substorm-induced impulsive electric fields in obtaining the massive ion acceleration needed for the storm-time ring current buildup.

  14. Flowering time and seed dormancy control use external coincidence to generate life history strategy

    PubMed Central

    Springthorpe, Vicki; Penfield, Steven

    2015-01-01

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features. DOI: http://dx.doi.org/10.7554/eLife.05557.001 PMID:25824056

  15. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  16. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  17. Relating Time-Dependent Acceleration and Height Using an Elevator

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.

    2015-04-01

    A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time1, a(t), the velocity function and position functions are determined through integration as in v (t ) =∫ a (t ) d t (1) and x (t ) =∫ v (t ) dt. Mobile devices such as smartphones or tablets have accelerometers that capture slowly evolving acceleration with respect to time and can deliver those measurements as a CSV file. A recent example measured the oscillations of the elevator as it starts its motion.2 In the application presented here the mobile device is used to estimate the height of the elevator ride. By estimating the functional form of the acceleration of an elevator ride, it is possible to estimate the height of the ride through Eqs. (1) and (2).

  18. Airy Wave Packets Accelerating in Space-Time

    NASA Astrophysics Data System (ADS)

    Kondakci, H. Esat; Abouraddy, Ayman F.

    2018-04-01

    Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.

  19. Relating Time-Dependent Acceleration and Height Using an Elevator

    ERIC Educational Resources Information Center

    Kinser, Jason M.

    2015-01-01

    A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time, a(t), the velocity function and position functions are determined through integration as in v(t)=? a(t) dt (1) and x(t)=? v(t) dt. Mobile devices such as…

  20. An online input force time history reconstruction algorithm using dynamic principal component analysis

    NASA Astrophysics Data System (ADS)

    Prawin, J.; Rama Mohan Rao, A.

    2018-01-01

    The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.

  1. Delivering Insight The History of the Accelerated Strategic Computing Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larzelere II, A R

    2007-01-03

    The history of the Accelerated Strategic Computing Initiative (ASCI) tells of the development of computational simulation into a third fundamental piece of the scientific method, on a par with theory and experiment. ASCI did not invent the idea, nor was it alone in bringing it to fruition. But ASCI provided the wherewithal - hardware, software, environment, funding, and, most of all, the urgency - that made it happen. On October 1, 2005, the Initiative completed its tenth year of funding. The advances made by ASCI over its first decade are truly incredible. Lawrence Livermore, Los Alamos, and Sandia National Laboratories,more » along with leadership provided by the Department of Energy's Defense Programs Headquarters, fundamentally changed computational simulation and how it is used to enable scientific insight. To do this, astounding advances were made in simulation applications, computing platforms, and user environments. ASCI dramatically changed existing - and forged new - relationships, both among the Laboratories and with outside partners. By its tenth anniversary, despite daunting challenges, ASCI had accomplished all of the major goals set at its beginning. The history of ASCI is about the vision, leadership, endurance, and partnerships that made these advances possible.« less

  2. Time-dependent diffusive acceleration of test particles at shocks

    NASA Astrophysics Data System (ADS)

    Drury, L. O'C.

    1991-07-01

    A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.

  3. Visual reaction times during prolonged angular acceleration parallel the subjective perception of rotation

    NASA Technical Reports Server (NTRS)

    Mattson, D. L.

    1975-01-01

    The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.

  4. The history and future of accelerator radiological protection.

    PubMed

    Thomas, R H

    2001-01-01

    The development of accelerator radiological protection from the mid-1930s, just after the invention of the cyclotron, to the present day is described. Three major themes--physics, personalities and politics--are developed. In the sections describing physics the development of shielding design though measurement, radiation transport calculations, the impact of accelerators on the environment and dosimetry in accelerator radiation fields are described. The discussion is limited to high-energy, high-intensity electron and proton accelerators. The impact of notable personalities on the development of both the basic science and on the accelerator health physics profession itself is described. The important role played by scholars and teachers is discussed. In the final section. which discusses the future of accelerator radiological protection, some emphasis is given to the social and political aspects that must he faced in the years ahead.

  5. A procedure to select ground-motion time histories for deterministic seismic hazard analysis from the Next Generation Attenuation (NGA) database

    NASA Astrophysics Data System (ADS)

    Huang, Duruo; Du, Wenqi; Zhu, Hong

    2017-10-01

    In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of ground-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground-motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are unavailable. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.

  6. Time-dependent shock acceleration of particles. Effect of the time-dependent injection, with application to supernova remnants

    NASA Astrophysics Data System (ADS)

    Petruk, O.; Kopytko, B.

    2016-11-01

    Three approaches are considered to solve the equation which describes the time-dependent diffusive shock acceleration of test particles at the non-relativistic shocks. At first, the solution of Drury for the particle distribution function at the shock is generalized to any relation between the acceleration time-scales upstream and downstream and for the time-dependent injection efficiency. Three alternative solutions for the spatial dependence of the distribution function are derived. Then, the two other approaches to solve the time-dependent equation are presented, one of which does not require the Laplace transform. At the end, our more general solution is discussed, with a particular attention to the time-dependent injection in supernova remnants. It is shown that, comparing to the case with the dominant upstream acceleration time-scale, the maximum momentum of accelerated particles shifts towards the smaller momenta with increase of the downstream acceleration time-scale. The time-dependent injection affects the shape of the particle spectrum. In particular, (I) the power-law index is not solely determined by the shock compression, in contrast to the stationary solution; (II) the larger the injection efficiency during the first decades after the supernova explosion, the harder the particle spectrum around the high-energy cutoff at the later times. This is important, in particular, for interpretation of the radio and gamma-ray observations of supernova remnants, as demonstrated on a number of examples.

  7. Subjective acceleration of time experience in everyday life across adulthood.

    PubMed

    John, Dennis; Lang, Frieder R

    2015-12-01

    Most people believe that time seems to pass more quickly as they age. Building on assumptions of socioemotional selectivity theory, we investigated whether awareness that one's future lifetime is limited is associated with one's experience of time during everyday activities across adulthood in 3 studies. In the first 2 studies (Study 1: N = 608; Study 2: N = 398), participants completed a web-based version of the day reconstruction method. In Study 3 (N = 392) participants took part in a newly developed tomorrow construction method, a web-based experimental method for assessing everyday life plans. Results confirmed that older adults' subjective interpretation of everyday episodes is that these episodes pass more quickly compared with younger adults. The subjective acceleration of time experience in old age was more pronounced during productive activities than during regenerative-consumptive activities. The age differences were partly related to limited time remaining in life. In addition, subjective acceleration of time experience was associated with positive evaluations of everyday activities. Findings suggest that subjective acceleration of time in older adults' daily lives reflects an adaptation to limitations in time remaining in life. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Time-History Data of Maneuvers Performed by an F-86A Airplane During Squadron Operational Training

    NASA Technical Reports Server (NTRS)

    Henderson, Campbell; Thornton, James; Mayo, Alton

    1952-01-01

    Preliminary results of one phase of a control-motion study program are presented in the form of plots of load factor.and angular acceleration against indicated airspeed and of time histories of several measured quantities. The results were obtained from 197 maneuvers performed by an F-86A jet-fighter airplane during normal squadron operational training. Most of the tactical maneuver8 of which the F-86A is capable were performed at pressure altitudes ranging from 0 to 32,000 feet and at indicated airspeeds ranging from 95 to 650 miles per hour.

  9. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need

  10. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  11. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  12. Reaction time in pilots at sustained acceleration of +4.5 G(z).

    PubMed

    Truszczynski, Olaf; Wojtkowiak, Mieczyslaw; Lewkowicz, Rafal; Biernacki, Marcin P; Kowalczuk, Krzysztof

    2013-08-01

    Pilots flying at very high speed are exposed to the effects of prolonged accelerations while changing their flight path. The aim of this research was to assess the impact of sustained accelerations on the visual-motor response times of pilots and the acceleration tolerance level (ATL) as a measure of pilots' endurance to applied +G(z). The study involved 18 young pilots, 23-25 yr of age. The subjects' task was to quickly and accurately respond to the light stimuli presented on a light bar during exposure to acceleration at +4.5 G(z) and until reaching the ATL. Simple response time (SRT) measurements were performed using a visual-motor analysis system throughout the exposures, which allowed the assessment of a pilot's ATL. The pilots' ATL ranged from 270 to 366 s (Mean = 317.7 +/- 26.15 SD). The analysis of the SRT indicated a significant effect of duration of acceleration on the visual response time. The results of the post hoc comparisons showed that SRT increased with longer durations of the same level of +G(z) load and then decreased, reaching values similar to the controls. Exposure to prolonged acceleration of +4.5 G(z) significantly increases SRT. There was no statistically significant difference in SRT between the pilots with "short" and "long" time exposures. A pilot's SRT during a prolonged +4.5 G(z) exposure could be a reliable indicator of pilot G performance in the fast jet. Deterioration of SRT may be used to predict imminent +G(z) endurance limits between pilots with widely varying endurance abilities.

  13. Accelerators (4/5)

    ScienceCinema

    Metral, Elias

    2017-12-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators (5/5)

    ScienceCinema

    None

    2018-05-16

    1a) Introduction and motivation; 1b) History and accelerator types; 2) Transverse beam dynamics; 3a) Longitudinal beam dynamics; 3b) Figure of merit of a synchrotron/collider; 3c) Beam control; 4) Main limiting factors; 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Detecting space-time cancer clusters using residential histories

    NASA Astrophysics Data System (ADS)

    Jacquez, Geoffrey M.; Meliker, Jaymie R.

    2007-04-01

    Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.

  16. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  17. Metabolic acceleration and the evolution of human brain size and life history.

    PubMed

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.

  18. Real-time orthorectification by FPGA-based hardware acceleration

    NASA Astrophysics Data System (ADS)

    Kuo, David; Gordon, Don

    2010-10-01

    Orthorectification that corrects the perspective distortion of remote sensing imagery, providing accurate geolocation and ease of correlation to other images is a valuable first-step in image processing for information extraction. However, the large amount of metadata and the floating-point matrix transformations required to operate on each pixel make this a computation and I/O (Input/Output) intensive process. As result much imagery is either left unprocessed or loses timesensitive value in the long processing cycle. However, the computation on each pixel can be reduced substantially by using computational results of the neighboring pixels and accelerated by special pipelined hardware architecture in one to two orders of magnitude. A specialized coprocessor that is implemented inside an FPGA (Field Programmable Gate Array) chip and surrounded by vendorsupported hardware IP (Intellectual Property) shares the computation workload with CPU through PCI-Express interface. The ultimate speed of one pixel per clock (125 MHz) is achieved by the pipelined systolic array architecture. The optimal partition between software and hardware, the timing profile among image I/O and computation, and the highly automated GUI (Graphical User Interface) that fully exploits this speed increase to maximize overall image production throughput will also be discussed. The software that runs on a workstation with the acceleration hardware orthorectifies 16 Megapixels per second, which is 16 times faster than without the hardware. It turns the production time from months to days. A real-life successful story of an imaging satellite company that adopted such workstations for their orthorectified imagery production will be presented. The potential candidacy of the image processing computation that can be accelerated more efficiently by the same approach will also be analyzed.

  19. Analysis techniques for residual acceleration data

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. Iwan D.; Snyder, Robert S.

    1990-01-01

    Various aspects of residual acceleration data are of interest to low-gravity experimenters. Maximum and mean values and various other statistics can be obtained from data as collected in the time domain. Additional information may be obtained through manipulation of the data. Fourier analysis is discussed as a means of obtaining information about dominant frequency components of a given data window. Transformation of data into different coordinate axes is useful in the analysis of experiments with different orientations and can be achieved by the use of a transformation matrix. Application of such analysis techniques to residual acceleration data provides additional information than what is provided in a time history and increases the effectiveness of post-flight analysis of low-gravity experiments.

  20. Sheath field dynamics from time-dependent acceleration of laser-generated positrons

    NASA Astrophysics Data System (ADS)

    Kerr, Shaun; Fedosejevs, Robert; Link, Anthony; Williams, Jackson; Park, Jaebum; Chen, Hui

    2017-10-01

    Positrons produced in ultraintense laser-matter interactions are accelerated by the sheath fields established by fast electrons, typically resulting in quasi-monoenergetic beams. Experimental results from OMEGA EP show higher order features developing in the positron spectra when the laser energy exceeds one kilojoule. 2D PIC simulations using the LSP code were performed to give insight into these spectral features. They suggest that for high laser energies multiple, distinct phases of acceleration can occur due to time-dependent sheath field acceleration. The detailed dynamics of positron acceleration will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and funded by LDRD 17-ERD-010.

  1. Rotary acceleration of a subject inhibits choice reaction time to motion in peripheral vision

    NASA Technical Reports Server (NTRS)

    Borkenhagen, J. M.

    1974-01-01

    Twelve pilots were tested in a rotation device with visual simulation, alone and in combination with rotary stimulation, in experiments with variable levels of acceleration and variable viewing angles, in a study of the effect of S's rotary acceleration on the choice reaction time for an accelerating target in peripheral vision. The pilots responded to the direction of the visual motion by moving a hand controller to the right or left. Visual-plus-rotary stimulation required a longer choice reaction time, which was inversely related to the level of acceleration and directly proportional to the viewing angle.

  2. Optimizations of Human Restraint Systems for Short-Period Acceleration

    NASA Technical Reports Server (NTRS)

    Payne, P. R.

    1963-01-01

    A restraint system's main function is to restrain its occupant when his vehicle is subjected to acceleration. If the restraint system is rigid and well-fitting (to eliminate slack) then it will transmit the vehicle acceleration to its occupant without modifying it in any way. Few present-day restraint systems are stiff enough to give this one-to-one transmission characteristic, and depending upon their dynamic characteristics and the nature of the vehicle's acceleration-time history, they will either magnify or attenuate the acceleration. Obviously an optimum restraint system will give maximum attenuation of an input acceleration. In the general case of an arbitrary acceleration input, a computer must be used to determine the optimum dynamic characteristics for the restraint system. Analytical solutions can be obtained for certain simple cases, however, and these cases are considered in this paper, after the concept of dynamic models of the human body is introduced. The paper concludes with a description of an analog computer specially developed for the Air Force to handle completely general mechanical restraint optimization programs of this type, where the acceleration input may be any arbitrary function of time.

  3. Time-to-contact estimation of accelerated stimuli is based on first-order information.

    PubMed

    Benguigui, Nicolas; Ripoll, Hubert; Broderick, Michael P

    2003-12-01

    The goal of this study was to test whether 1st-order information, which does not account for acceleration, is used (a) to estimate the time to contact (TTC) of an accelerated stimulus after the occlusion of a final part of its trajectory and (b) to indirectly intercept an accelerated stimulus with a thrown projectile. Both tasks require the production of an action on the basis of predictive information acquired before the arrival of the stimulus at the target and allow the experimenter to make quantitative predictions about the participants' use (or nonuse) of 1st-order information. The results show that participants do not use information about acceleration and that they commit errors that rely quantitatively on 1st-order information even when acceleration is psychophysically detectable. In the indirect interceptive task, action is planned about 200 ms before the initiation of the movement, at which time the 1st-order TTC attains a critical value. ((c) 2003 APA, all rights reserved)

  4. History without time: Buffon's natural history as a nonmathematical physique.

    PubMed

    Hoquet, Thierry

    2010-03-01

    While "natural history" is practically synonymous with the name of Buffon, the term itself has been otherwise overlooked by historians of science. This essay attempts to address this omission by investigating the meanings of "physique," "natural philosophy," and "history," among other terms, with the purpose of understanding Buffon's actual objectives. It also shows that Buffon never claimed to be a Newtonian and should not be considered as such; the goal is to provide a historical analysis that resituates Buffon's thought within his own era. This is done, primarily, by eschewing the often-studied question of time in Buffon. Instead, this study examines the nontemporal meanings of the word "history" within the naturalist's theory and method. The title of his Natural History is examined both as an indicator of the kind of science that Buffon was hoping to achieve and as a source of great misinterpretation among his peers. Unlike Buffon, many of his contemporaries actually envisioned the study of nature from a Baconian perspective where history was restricted to the mere collection of facts and where philosophy, which was the implicit and ultimate goal of studying nature, was seen, at least for the present, as unrealizable. Buffon confronts this tendency insofar as his Histoire naturelle claims to be the real physique that, along with describing nature, also sought to identify general laws and provide clear insight into what true knowledge of nature is or should be. According to Buffon, history (both natural and civil) is not analogous to mathematics; it is a nonmathematical method whose scope encompasses both nature and society. This methodological stance gives rise to the "physicization" of certain moral concepts--a gesture that was interpreted by his contemporaries as Epicurean and atheist. In addition, Buffon reduces a number of metaphysically tainted historical concepts (e.g., antediluvian monuments) to objects of physical analysis, thereby confronting the very

  5. Effects of angular acceleration on man - Choice reaction time using visual and rotary motion information

    NASA Technical Reports Server (NTRS)

    Clark, B.; Stewart, J. D.

    1974-01-01

    This experiment was concerned with the effects of rotary acceleration on choice reaction time (RTc) to the motion of a luminous line on a cathode-ray tube. Specifically, it compared the (RTc) to rotary acceleration alone, visual acceleration alone, and simultaneous, double stimulation by both rotary and visual acceleration. Thirteen airline pilots were rotated about an earth-vertical axis in a precision rotation device while they observed a vertical line. The stimuli were 7 rotary and visual accelerations which were matched for rise time. The pilot responded as quickly as possible by displacing a vertical controller to the right or left. The results showed a decreasing (RTc) with increasing acceleration for all conditions, while the (RTc) to rotary motion alone was substantially longer than for all other conditions. The (RTc) to the double stimulation was significantly longer than that for visual acceleration alone.

  6. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  7. Accelerant-related burns and drug abuse: Challenging combination.

    PubMed

    Leung, Leslie T F; Papp, Anthony

    2018-05-01

    Accelerants are flammable substances that may cause explosion when added to existing fires. The relationships between drug abuse and accelerant-related burns are not well elucidated in the literature. Of these burns, a portion is related to drug manufacturing, which have been shown to be associated with increased burn complications. 1) To evaluate the demographics and clinical outcomes of accelerant-related burns in a Provincial Burn Centre. 2) To compare the clinical outcomes with a control group of non-accelerant related burns. 3) To analyze a subgroup of patients with history of drug abuse and drug manufacturing. Retrospective case control study. Patient data associated with accelerant-related burns from 2009 to 2014 were obtained from the British Columbia Burn Registry. These patients were compared with a control group of non-accelerant related burns. Clinical outcomes that were evaluated include inhalational injury, ICU length of stay, ventilator support, surgeries needed, and burn complications. Chi-square test was used to evaluate categorical data and Student's t-test was used to evaluate mean quantitative data with the p value set at 0.05. A logistic regression model was used to evaluate factors affecting burn complications. Accelerant-related burns represented 28.2% of all burn admissions (N=532) from 2009 to 2014. The accelerant group had higher percentage of patients with history of drug abuse and was associated with higher TBSA burns, ventilator support, ICU stay and pneumonia rates compared to the non-accelerant group. Within the accelerant group, there was no difference in clinical outcomes amongst people with or without history of drug abuse. Four cases were associated with methamphetamine manufacturing, all of which underwent ICU stay and ventilator support. Accelerant-related burns cause significant burden to the burn center. A significant proportion of these patients have history of drug abuse. Copyright © 2017 Elsevier Ltd and ISBI. All rights

  8. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less

  9. Time to tenure in Spanish universities: an event history analysis.

    PubMed

    Sanz-Menéndez, Luis; Cruz-Castro, Laura; Alva, Kenedy

    2013-01-01

    Understanding how institutional incentives and mechanisms for assigning recognition shape access to a permanent job is important. This study, based on data from questionnaire survey responses and publications of 1,257 university science, biomedical and engineering faculty in Spain, attempts to understand the timing of getting a permanent position and the relevant factors that account for this transition, in the context of dilemmas between mobility and permanence faced by organizations. Using event history analysis, the paper looks at the time to promotion and the effects of some relevant covariates associated to academic performance, social embeddedness and mobility. We find that research productivity contributes to career acceleration, but that other variables are also significantly associated to a faster transition. Factors associated to the social elements of academic life also play a role in reducing the time from PhD graduation to tenure. However, mobility significantly increases the duration of the non-tenure stage. In contrast with previous findings, the role of sex is minor. The variations in the length of time to promotion across different scientific domains is confirmed, with faster career advancement for those in the Engineering and Technological Sciences compared with academics in the Biological and Biomedical Sciences. Results show clear effects of seniority, and rewards to loyalty, in addition to some measurements of performance and quality of the university granting the PhD, as key elements speeding up career advancement. Findings suggest the existence of a system based on granting early permanent jobs to those that combine social embeddedness and team integration with some good credentials regarding past and potential future performance, rather than high levels of mobility.

  10. Time to Tenure in Spanish Universities: An Event History Analysis

    PubMed Central

    Sanz-Menéndez, Luis; Cruz-Castro, Laura; Alva, Kenedy

    2013-01-01

    Understanding how institutional incentives and mechanisms for assigning recognition shape access to a permanent job is important. This study, based on data from questionnaire survey responses and publications of 1,257 university science, biomedical and engineering faculty in Spain, attempts to understand the timing of getting a permanent position and the relevant factors that account for this transition, in the context of dilemmas between mobility and permanence faced by organizations. Using event history analysis, the paper looks at the time to promotion and the effects of some relevant covariates associated to academic performance, social embeddedness and mobility. We find that research productivity contributes to career acceleration, but that other variables are also significantly associated to a faster transition. Factors associated to the social elements of academic life also play a role in reducing the time from PhD graduation to tenure. However, mobility significantly increases the duration of the non-tenure stage. In contrast with previous findings, the role of sex is minor. The variations in the length of time to promotion across different scientific domains is confirmed, with faster career advancement for those in the Engineering and Technological Sciences compared with academics in the Biological and Biomedical Sciences. Results show clear effects of seniority, and rewards to loyalty, in addition to some measurements of performance and quality of the university granting the PhD, as key elements speeding up career advancement. Findings suggest the existence of a system based on granting early permanent jobs to those that combine social embeddedness and team integration with some good credentials regarding past and potential future performance, rather than high levels of mobility. PMID:24116199

  11. No Time To Kill: Entrainment and Accelerating Courseware Development.

    ERIC Educational Resources Information Center

    Millington, Paula Crnkovich

    This paper examines the concept of time in multimedia, World Wide Web-based courseware development. The biological concept of entrainment (the alignment of rhythms within and between systems) to accelerate courseware development is explored. The discussion begins with the foundational concepts of entrainment from biological systems and social…

  12. Sled Towing Acutely Decreases Acceleration Sprint Time.

    PubMed

    Wong, Megan A; Dobbs, Ian J; Watkins, Casey M; Barillas, Saldiam R; Lin, Anne; Archer, David C; Lockie, Robert G; Coburn, Jared W; Brown, Lee E

    2017-11-01

    Wong, MA, Dobbs, IJ, Watkins, C, Barillas, SR, Lin, A, Archer, DC, Lockie, RG, Coburn, JW, and Brown, LE. Sled towing acutely decreases acceleration sprint time. J Strength Cond Res 31(11): 3046-3051, 2017-Sled towing is a common form of overload training in sports to develop muscular strength for sprinting. This type of training leads to acute and chronic outcomes. Acute training potentially leads to postactivation potentiation (PAP), which is when subsequent muscle performance is enhanced after a preload stimulus. The purpose of this study was to determine differences between rest intervals after sled towing on acute sprint speed. Twenty healthy recreationally trained men (age = 22.3 ± 2.4 years, height = 176.95 ± 5.46 cm, mass = 83.19 ± 11.31 kg) who were currently active in a field sport twice a week for the last 6 months volunteered to participate. A maximal 30-meter (m) baseline (BL) body mass (BM) sprint was performed (with splits at 5, 10, 20, and 30 m) followed by 5 visits where participants sprinted 30 m towing a sled at 30% BM then rested for 2, 4, 6, 8, or 12 minutes. They were instructed to stand still during rest times. After the rest interval, they performed a maximal 30-m post-test BM sprint. Analysis of variance (ANOVA) revealed that post sled tow BM sprint times (4.47 ± 0.21 seconds) were less than BL times (4.55 ± 0.18 seconds) on an individualized rest interval basis. A follow-up 2 × 4 ANOVA showed that this decrease occurred only in the acceleration phase over the first 5 m (BL = 1.13 ± 0.08 seconds vs. Best = 1.08 ± 0.08 seconds), which may be the result of PAP and the complex relationship between fatigue and potentiation relative to the intensity of the sled tow and the rest interval. Therefore, coaches should test their athletes on an individual basis to determine optimal rest time after a 30-m 30% BM sled tow to enhance acute sprint speed.

  13. Application of wavelet multi-resolution analysis for correction of seismic acceleration records

    NASA Astrophysics Data System (ADS)

    Ansari, Anooshiravan; Noorzad, Assadollah; Zare, Mehdi

    2007-12-01

    During an earthquake, many stations record the ground motion, but only a few of them could be corrected using conventional high-pass and low-pass filtering methods and the others were identified as highly contaminated by noise and as a result useless. There are two major problems associated with these noisy records. First, since the signal to noise ratio (S/N) is low, it is not possible to discriminate between the original signal and noise either in the frequency domain or in the time domain. Consequently, it is not possible to cancel out noise using conventional filtering methods. The second problem is the non-stationary characteristics of the noise. In other words, in many cases the characteristics of the noise are varied over time and in these situations, it is not possible to apply frequency domain correction schemes. When correcting acceleration signals contaminated with high-level non-stationary noise, there is an important question whether it is possible to estimate the state of the noise in different bands of time and frequency. Wavelet multi-resolution analysis decomposes a signal into different time-frequency components, and besides introducing a suitable criterion for identification of the noise among each component, also provides the required mathematical tool for correction of highly noisy acceleration records. In this paper, the characteristics of the wavelet de-noising procedures are examined through the correction of selected real and synthetic acceleration time histories. It is concluded that this method provides a very flexible and efficient tool for the correction of very noisy and non-stationary records of ground acceleration. In addition, a two-step correction scheme is proposed for long period correction of the acceleration records. This method has the advantage of stable results in displacement time history and response spectrum.

  14. Kuss Middle School: Expanding Time to Accelerate School Improvement

    ERIC Educational Resources Information Center

    Massachusetts 2020, 2012

    2012-01-01

    In 2004, Kuss Middle School became the first school declared "Chronically Underperforming" by the state of Massachusetts. But by 2010, Kuss had transformed itself into a model for schools around the country seeking a comprehensive turnaround strategy. Kuss is using increased learning time as the primary catalyst to accelerate learning,…

  15. The methodology study of time accelerated irradiation of elastomers

    NASA Astrophysics Data System (ADS)

    Ito, Masayuki

    2005-07-01

    The article studied the methods how to shorten the irradiation time by increasing dose rate without changing the relationship between dose versus properties of degraded samples. The samples used were nine kinds of EPDM which have different compounding formula. The different dose of Co-γ ray was exposed to the samples. The maximum dose was 2 MGy. The reference condition to be compared with two short time test conditions is irradiation of 0.33 kGy/h at room temperature. Two methods shown below were studied as the time-accelerate irradiation conditions.

  16. Fermilab History and Archives Project | Home

    Science.gov Websites

    Fermilab History and Archives Project Fermilab History and Archives Project Fermi National Accelerator Laboratory Home About the Archives History & Archives Online Request Contact Us Site Index SEARCH the site: History & Archives Project Fermilab History and Archives Project The History of

  17. Pion-decay radiation and two-phase acceleration in the June 3, 1982 solar flare

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Dermer, C. D.; Murphy, R. J.

    1986-01-01

    The June 3, 1982 flare is unique in the wealth of observed neutron, gamma-ray and energetic-particle emission that it produced. Using calculations of high-energy emissions to fit the various time-dependent gamma-ray fluxes, a self-consistent interaction model for the June 3 flare is constructed in which the observed fluxes are produced by two distinct particle populations with different acceleration and interaction time histories as well as different but time-independent energy spectra. The two populations are associated with first- and second-phase particle acceleration, respectively.

  18. Cosmic Times: Astronomy History and Science for the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  19. Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration

    NASA Technical Reports Server (NTRS)

    Hamerman, J. A.

    1979-01-01

    This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.

  20. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvoda, T.; Stovicek, P., E-mail: stovicek@kmlinux.fjfi.cvut.cz

    2011-10-15

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found.more » - Highlights: > A nonrelativistic quantum charged particle on a plane. > A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. > The quantum averaging method applied to a time-dependent system. > A resonance of the AB flux with the cyclotron frequency. > An acceleration with linearly increasing energy; a formula for the acceleration rate.« less

  1. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1976-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. One technique, the pseudodata method, solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The method is fully illustrated for a fourth-order stability-axis small-motion model with three lateral handling-quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

  2. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  3. Real time spectrometer for thermal neutrons from radiotherapic accelerators

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bartesaghi, G.; Bolognini, D.; Conti, V.; Mascagna, V.; Prest, M.; Scazzi, S.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Bevilacqua, R.; Giannini, G.; Totaro, P.; Vallazza, E.

    2007-10-01

    Radiotherapy accelerators can produce high energy photon beams for deep tumour treatments. Photons with energies greater than 8 MeV produce neutrons via photoproduction. The PHONES (PHOto NEutron Source) project is developing a neutron moderator to use the photoproduced neutrons for BNCT (Boron Neutron Capture Therapy) in hospital environments. In this framework we are developing a real time spectrometer for thermal neutrons exploiting the bunch structure of the beam. Since the beam is produced by a linear accelerator, in fact, particles are sent to the patient in bunches with a rate of 150-300 Hz depending on the beam type and energy. The neutron spectrum is usually measured with integrating detectors such as bubble dosimeters or TLDs, which integrate over a time interval and an energy one. We are developing a scintillator detector to measure the neutron spectrum in real time in the interval between bunches, that is in the thermal region. The signals from the scintillator are discriminated and sampled by a dedicated clock in a Cyclone II FPGA by Altera, thus obtaining the neutron time of flight spectrum. The exploited physical process in ordinary plastic scintillators is neutron capture by H with a subsequent γ emission. The measured TOF spectrum has been compared with a BF 3 counter one. A dedicated simulation with MCNP is being developed to extract the energy spectrum from the TOF one. The paper will present the results of the prototype measurements and the status of the simulation.

  4. Accelerated approval of oncology products: the food and drug administration experience.

    PubMed

    Johnson, John R; Ning, Yang-Min; Farrell, Ann; Justice, Robert; Keegan, Patricia; Pazdur, Richard

    2011-04-20

    We reviewed the regulatory history of the accelerated approval process and the US Food and Drug Administration (FDA) experience with accelerated approval of oncology products from its initiation in December 11, 1992, to July 1, 2010. The accelerated approval regulations allowed accelerated approval of products to treat serious or life-threatening diseases based on surrogate endpoints that are reasonably likely to predict clinical benefit. Failure to complete postapproval trials to confirm clinical benefit with due diligence could result in removal of the accelerated approval indication from the market. From December 11, 1992, to July 1, 2010, the FDA granted accelerated approval to 35 oncology products for 47 new indications. Clinical benefit was confirmed in postapproval trials for 26 of the 47 new indications, resulting in conversion to regular approval. The median time between accelerated approval and regular approval of oncology products was 3.9 years (range = 0.8-12.6 years) and the mean time was 4.7 years, representing a substantial time savings in terms of earlier availability of drugs to cancer patients. Three new indications did not show clinical benefit when confirmatory postapproval trials were completed and were subsequently removed from the market or had restricted distribution plans implemented. Confirmatory trials were not completed for 14 new indications. The five longest intervals from receipt of accelerated approval to July 1, 2010, without completion of trials to confirm clinical benefit were 10.5, 6.4, 5.5, 5.5, and 4.7 years. The five longest intervals between accelerated approval and successful conversion to regular approval were 12.6, 9.7, 8.1, 7.5, and 7.4 years. Trials to confirm clinical benefit should be part of the drug development plan and should be in progress at the time of an application seeking accelerated approval to prevent an ineffective drug from remaining on the market for an unacceptable time.

  5. GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Umemura, Masayuki

    2017-04-01

    The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.

  6. Detection time for global and regional sea level trends and accelerations

    NASA Astrophysics Data System (ADS)

    Jordà, G.

    2014-10-01

    Many studies analyze trends on sea level data with the underlying purpose of finding indications of a long-term change that could be interpreted as the signature of anthropogenic climate change. The identification of a long-term trend is a signal-to-noise problem where the natural variability (the "noise") can mask the long-term trend (the "signal"). The signal-to-noise ratio depends on the magnitude of the long-term trend, on the magnitude of the natural variability, and on the length of the record, as the climate noise is larger when averaged over short time scales and becomes smaller over longer averaging periods. In this paper, we evaluate the time required to detect centennial sea level linear trends and accelerations at global and regional scales. Using model results and tide gauge observations, we find that the averaged detection time for a centennial linear trend is 87.9, 76.0, 59.3, 40.3, and 25.2 years for trends of 0.5, 1.0, 2.0, 5.0, and 10.0 mm/yr, respectively. However, in regions with large decadal variations like the Gulf Stream or the Circumpolar current, these values can increase up to a 50%. The spatial pattern of the detection time for sea level accelerations is almost identical. The main difference is that the length of the records has to be about 40-60 years longer to detect an acceleration than to detect a linear trend leading to an equivalent change after 100 years. Finally, we have used a new sea level reconstruction, which provides a more accurate representation of interannual variability for the last century in order to estimate the detection time for global mean sea level trends and accelerations. Our results suggest that the signature of natural variability in a 30 year global mean sea level record would be less than 1 mm/yr. Therefore, at least 2.2 mm/yr of the recent sea level trend estimated by altimetry cannot be attributed to natural multidecadal variability. This article was corrected on 19 NOV 2014. See the end of the full text

  7. Geometric integration for particle accelerators

    NASA Astrophysics Data System (ADS)

    Forest, Étienne

    2006-05-01

    This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  8. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  9. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  10. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity

  11. Entrenched time delays versus accelerating opinion dynamics: are advanced democracies inherently unstable?

    NASA Astrophysics Data System (ADS)

    Gros, Claudius

    2017-11-01

    Modern societies face the challenge that the time scale of opinion formation is continuously accelerating in contrast to the time scale of political decision making. With the latter remaining of the order of the election cycle we examine here the case that the political state of a society is determined by the continuously evolving values of the electorate. Given this assumption we show that the time lags inherent in the election cycle will inevitable lead to political instabilities for advanced democracies characterized both by an accelerating pace of opinion dynamics and by high sensibilities (political correctness) to deviations from mainstream values. Our result is based on the observation that dynamical systems become generically unstable whenever time delays become comparable to the time it takes to adapt to the steady state. The time needed to recover from external shocks grows in addition dramatically close to the transition. Our estimates for the order of magnitude of the involved time scales indicate that socio-political instabilities may develop once the aggregate time scale for the evolution of the political values of the electorate falls below 7-15 months.

  12. Estimated cause of extreme acceleration records at the KiK-net IWTH25 station during the 2008 Iwate-Miyagi Nairiku earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Ohmachi, Tatsuo; Inoue, Shusaku; Mizuno, Ken-Ichi; Yamada, Masato

    During the 2008 Iwate-Miyagi Nairiku earthquake in Japan (MJ =7.2), extremely high accelerations were recorded at the KiK-net IWTH25 (Ichinoseki-nishi) station. The peak acceleration in the vertical component of the surface record was about 4 g where g is acceleration due to gravity, and the upward acceleration in the surface record was much larger than the downward acceleration. Some researchers have suggested that the ground surface was tossed into the air like a body on a trampoline. However, additional features found in the surface record suggest rocking motion accompanied with downward impact of the station with the ground. For example, there are many vertical peaks that can be found to occur at the same time as the horizontal peaks. After obtaining information about the station, in-situ investigations, shake-table experiments, and numerical simulations were conducted to determine the fundamental characteristics of the rocking motion and to reproduce the acceleration time histories of the surface record by using the bore-hole record at a depth of 260 m as the input motion. Prior to the numerical simulation, the wave velocities of subsurface layers were evaluated from Fourier spectra of both records, which showed that the velocities were reduced considerably during the main shock. A 2-D FEM code capable of handling separation and impact between the elements was used for the numerical simulation. Simulation results are shown in Figs. 17 and 18 indicating the impact between the IWTH25 station and the ground at around 4 sec when the acceleration in the vertical direction was about 4 g. Three kinds of acceleration time histories are shown with fairly good agreement between the simulated and observed time histories, suggesting the influence of the station is included in the record. It is also indicated that the vertical acceleration at the free surface without the influence of the IWTH25 station is about 1.6 g.

  13. Spark ignition timing control system for internal combustion engine with feature of suppression of jerking during engine acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomisawa, N.

    1989-07-04

    This patent describes a spark ignition timing control system for an internal combustion engine, it comprises: sensor means monitoring preselected parameters for producing a sensor signal; first means for deriving a spark ignition timing on the basis of data contained in the sensor signal; second means for detecting an engine acceleration demand for producing an accelerating condition indicative signal; and third means, responsive to the accelerating condition indicative signal, for modifying the spark ignition timing derived by the first means after expiration of a first predetermined period of time of occurence of the accelerating condition indicative signal, in such amore » manner that the spark ignition timing is advanced and retarded for suppressing cycle-to-cycle fluctuation of engine speed and for smoothly increasing engine speed.« less

  14. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  15. Characteristics of Four SPE Classes According to Onset Timing and Proton Acceleration Patterns

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon

    2015-04-01

    In our previous work (Kim et al., 2015), we suggested a new classification scheme, which categorizes the SPEs into four groups based on association with flare or CME inferred from onset timings as well as proton acceleration patterns using multienergy observations. In this study, we have tried to find whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 pfu) even if the associated flare and CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. For the former, the sites are very low ( ~1 Rs) and close to the western limb, while the latter has a relatively higher (mean=6.05 Rs) and wider acceleration sites. (ii) When the proton acceleration starts from the higher energy, a SPE tends to be a relatively weak event (< 1000 pfu), in spite of its associated CME is relatively stronger than previous group. (iii) The SPEs categorized by the simultaneous proton acceleration in whole energy range within 10 minutes, tend to show the weakest proton flux (mean=327 pfu) in spite of strong related eruptions. Their acceleration heights are very close to the locations of type II radio bursts. Based on those results, we suggest that the different characteristics of the four groups are mainly due to the different mechanisms governing the acceleration pattern and interval, and different condition such as the acceleration location.

  16. Seed after-ripening and dormancy determine adult life history independently of germination timing.

    PubMed

    de Casas, Rafael Rubio; Kovach, Katherine; Dittmar, Emily; Barua, Deepak; Barco, Brenden; Donohue, Kathleen

    2012-05-01

    • Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. • We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. • Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. • In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    NASA Astrophysics Data System (ADS)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC

  18. Shock Spectrum Calculation from Acceleration Time Histories

    DTIC Science & Technology

    1980-09-01

    CLASSIFICATIONe OF THIS PAGE (Uh-e DOg ~ 9--t)____________________ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPRT NU9911ACCUIISIO6 NO .3ASCCSPICHT’S...SCE. Oakland CA NAVSCOLCECOFF C35 Port Hueneme. CA,. CO, Code C44A Porn Hueneme. CA NAVSEASYSCOM Code 05M13 (Newhouse) Wash DC; Code 6212, Wash DC

  19. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1978-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. The pseudodata method solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The algebraic equations to be solved are bilinear, at worst. The disadvantages are reduced generality and no assurance that the resulting model will be airplane like in detail. The method is fully illustrated for a fourth-order stability-axis small motion model with three lateral handling quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

  20. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation.

    PubMed

    Whitmore, G A; Schenkelberg, F

    1997-01-01

    Engineering degradation tests allow industry to assess the potential life span of long-life products that do not fail readily under accelerated conditions in life tests. A general statistical model is presented here for performance degradation of an item of equipment. The degradation process in the model is taken to be a Wiener diffusion process with a time scale transformation. The model incorporates Arrhenius extrapolation for high stress testing. The lifetime of an item is defined as the time until performance deteriorates to a specified failure threshold. The model can be used to predict the lifetime of an item or the extent of degradation of an item at a specified future time. Inference methods for the model parameters, based on accelerated degradation test data, are presented. The model and inference methods are illustrated with a case application involving self-regulating heating cables. The paper also discusses a number of practical issues encountered in applications.

  1. Impact of Interstellar Vehicle Acceleration and Cruise Velocity on Total Mission Mass and Trip Time

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2006-01-01

    Far-term interstellar missions, like their near-term solar system exploration counterparts, seek to minimize overall mission trip time and transportation system mass. Trip time is especially important in interstellar missions because of the enormous distances between stars and the finite limit of the speed of light (c). In this paper, we investigate the impact of vehicle acceleration and maximum or cruise velocity (Vcruise) on the total mission trip time. We also consider the impact that acceleration has on the transportation system mass (M) and power (P) (e.g., acceleration approx. power/mass and mass approx. power), as well as the impact that the cruise velocity has on the vehicle mass (e.g., the total mission change in velocity ((Delta)V) approx. Vcruise). For example, a Matter-Antimatter Annihilation Rocket's wet mass (Mwet) with propellant (Mp) will be a function of the dry mass of the vehicle (Mdry) and (Delta)V through the Rocket Equation. Similarly, a laser-driven LightSail's sail mass and laser power and mass will be a function of acceleration, Vcruise, and power-beaming distance (because of the need to focus the laser beam over interstellar distances).

  2. Accelerating universe with time variation of G and Λ

    NASA Astrophysics Data System (ADS)

    Darabi, F.

    2012-03-01

    We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach's cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach's cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρ˜ a -4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.

  3. Time Recovery for a Complex Process Using Accelerated Dynamics.

    PubMed

    Paz, S Alexis; Leiva, Ezequiel P M

    2015-04-14

    The hyperdynamics method (HD) developed by Voter (J. Chem. Phys. 1996, 106, 4665) sets the theoretical basis to construct an accelerated simulation scheme that holds the time scale information. Since HD is based on transition state theory, pseudoequilibrium conditions (PEC) must be satisfied before any system in a trapped state may be accelerated. As the system evolves, many trapped states may appear, and the PEC must be assumed in each one to accelerate the escape. However, since the system evolution is a priori unknown, the PEC cannot be permanently assumed to be true. Furthermore, the different parameters of the bias function used may need drastic recalibration during this evolution. To overcome these problems, we present a general scheme to switch between HD and conventional molecular dynamics (MD) in an automatic fashion during the simulation. To decide when HD should start and finish, criteria based on the energetic properties of the system are introduced. On the other hand, a very simple bias function is proposed, leading to a straightforward on-the-fly set up of the required parameters. A way to measure the quality of the simulation is suggested. The efficiency of the present hybrid HD-MD method is tested for a two-dimensional model potential and for the coalescence process of two nanoparticles. In spite of the important complexity of the latter system (165 degrees of freedoms), some relevant mechanistic properties were recovered within the present method.

  4. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework.

    PubMed

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  5. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework

    NASA Astrophysics Data System (ADS)

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  6. Gravitationally influenced particle creation models and late-time cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Pan, Supriya; Kumar Pal, Barun; Pramanik, Souvik

    In this work, we focus on the gravitationally influenced adiabatic particle creation process, a mechanism that does not need any dark energy or modified gravity models to explain the current accelerating phase of the universe. Introducing some particle creation models that generalize some previous models in the literature, we constrain the cosmological scenarios using the latest compilation of the Type Ia Supernovae data only, the first indicator of the accelerating universe. Aside from the observational constraints on the models, we examine the models using two model independent diagnoses, namely the cosmography and Om. Further, we establish the general conditions to test the thermodynamic viabilities of any particle creation model. Our analysis shows that at late-time, the models have close resemblance to that of the ΛCDM cosmology, and the models always satisfy the generalized second law of thermodynamics under certain conditions.

  7. An internally consistent gamma ray burst time history phenomenology

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1985-01-01

    A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations.

  8. Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, N.; Yang, L.; Gao, F.

    2017-02-27

    A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly differentmore » time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.« less

  9. Conceptual design of a pulsed-power accelerator optimized for megajoule-class 1-TPa dynamic-material-physics experiments

    DOE PAGES

    Stygar, William A.; Reisman, David B.; Stoltzfus, Brian S.; ...

    2016-07-07

    In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load;more » hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.« less

  10. User's manual for THPLOT, A FORTRAN 77 Computer program for time history plotting

    NASA Technical Reports Server (NTRS)

    Murray, J. E.

    1982-01-01

    A general purpose FORTRAN 77 computer program (THPLOT) for plotting time histories using Calcomp pen plotters is described. The program is designed to read a time history data file and to generate time history plots for selected time intervals and/or selected data channels. The capabilities of the program are described. The card input required to define the plotting operation is described and examples of card input and the resulting plotted output are given. The examples are followed by a description of the printed output, including both normal output and error messages. Lastly, implementation of the program is described. A complete listing of the program with reference maps produced by the CDC FTN 5.0 compiler is included.

  11. Pharmacological Interventions for Acceleration of the Onset Time of Rocuronium: A Meta-Analysis

    PubMed Central

    Dong, Jing; Gao, Lingqi; Lu, Wenqing; Xu, Zifeng; Zheng, Jijian

    2014-01-01

    Background Rocuronium is an acceptable alternative when succinylcholine is contraindicated for facilitating the endotracheal intubation. However, the onset time of rocuronium for good intubation condition is still slower than that condition of succinylcholine. This study systematically investigated the most efficacious pharmacological interventions for accelerating the onset time of rocuronium. Methods Medline, Embase, Cochrane Library databases, www.clinicaltrials.gov, and hand searching from the reference lists of identified papers were searched for randomized controlled trials comparing drug interventions with placebo or another drug to shorten the onset time of rocuronium. Statistical analyses were performed using RevMan5.2 and ADDIS 1.16.5 softwares. Mean differences (MDs) with their 95% confidence intervals (95% CIs) were used to analyze the effects of drug interventions on the onset time of rocuronium. Results 43 randomized controlled trials with 2,465 patients were analyzed. The average onset time of rocuronium was 102.4±24.9 s. Priming with rocuronium [Mean difference (MD) −21.0 s, 95% confidence interval (95% CI) (−27.6 to −14.3 s)], pretreatment with ephedrine [−22.3 s (−29.1 to −15.5 s)], pretreatment with magnesium sulphate [−28.2 s (−50.9 to −5.6 s)] were all effective in reducing the onset time of rocuronium. Statistical testing of indirect comparisons showed that rocuronium priming, pretreatment with ephedrine, and pretreatment with magnesium sulphate had the similar efficacy. Conclusion Rocuronium priming, pretreatment with ephedrine, and pretreatment with magnesium sulphate were all effective in accelerating the onset time of rocuronium, and furthermore their efficacies were similar. Considering the convenience and efficacy, priming with rocuronium is recommended for accelerating the onset time of rocuronium. However, more strict clinical trials are still needed to reach a more solid conclusion due to the large heterogeneities

  12. Pharmacological interventions for acceleration of the onset time of rocuronium: a meta-analysis.

    PubMed

    Dong, Jing; Gao, Lingqi; Lu, Wenqing; Xu, Zifeng; Zheng, Jijian

    2014-01-01

    Rocuronium is an acceptable alternative when succinylcholine is contraindicated for facilitating the endotracheal intubation. However, the onset time of rocuronium for good intubation condition is still slower than that condition of succinylcholine. This study systematically investigated the most efficacious pharmacological interventions for accelerating the onset time of rocuronium. Medline, Embase, Cochrane Library databases, www.clinicaltrials.gov, and hand searching from the reference lists of identified papers were searched for randomized controlled trials comparing drug interventions with placebo or another drug to shorten the onset time of rocuronium. Statistical analyses were performed using RevMan5.2 and ADDIS 1.16.5 softwares. Mean differences (MDs) with their 95% confidence intervals (95% CIs) were used to analyze the effects of drug interventions on the onset time of rocuronium. 43 randomized controlled trials with 2,465 patients were analyzed. The average onset time of rocuronium was 102.4±24.9 s. Priming with rocuronium [Mean difference (MD) -21.0 s, 95% confidence interval (95% CI) (-27.6 to -14.3 s)], pretreatment with ephedrine [-22.3 s (-29.1 to -15.5 s)], pretreatment with magnesium sulphate [-28.2 s (-50.9 to -5.6 s)] were all effective in reducing the onset time of rocuronium. Statistical testing of indirect comparisons showed that rocuronium priming, pretreatment with ephedrine, and pretreatment with magnesium sulphate had the similar efficacy. Rocuronium priming, pretreatment with ephedrine, and pretreatment with magnesium sulphate were all effective in accelerating the onset time of rocuronium, and furthermore their efficacies were similar. Considering the convenience and efficacy, priming with rocuronium is recommended for accelerating the onset time of rocuronium. However, more strict clinical trials are still needed to reach a more solid conclusion due to the large heterogeneities exist among different studies.

  13. Cosmological history in York time: inflation and perturbations

    NASA Astrophysics Data System (ADS)

    Roser, Philipp; Valentini, Antony

    2017-02-01

    The constant mean extrinsic curvature on a spacelike slice may constitute a physically preferred time coordinate, `York time'. One line of enquiry to probe this idea is to understand processes in our cosmological history in terms of York time. Following a review of the theoretical motivations, we focus on slow-roll inflation and the freezing and Hubble re-entry of cosmological perturbations. While the physics is, of course, observationally equivalent, we show how the mathematical account of these processes is distinct from the conventional account in terms of standard cosmological or conformal time. We also consider the cosmological York-timeline more broadly and contrast it with the conventional cosmological timeline.

  14. Physicochemical stability and biological activity of Withania somnifera extract under real-time and accelerated storage conditions.

    PubMed

    Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2010-03-01

    Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.

  15. Goodwin accelerator model revisited with fixed time delays

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akio; Merlone, Ugo; Szidarovszky, Ferenc

    2018-05-01

    Dynamics of Goodwin's accelerator business cycle model is reconsidered. The model is characterized by a nonlinear accelerator and an investment time delay. The role of the nonlinearity for the birth of persistent oscillations is fully discussed in the existing literature. On the other hand, not much of the role of the delay has yet been revealed. The purpose of this paper is to show that the delay really matters. In the original framework of Goodwin [6], it is first demonstrated that there is a threshold value of the delay: limit cycles arise for smaller values than the threshold and so do sawtooth oscillations for larger values. In the extended framework in which a consumption or saving delay, in addition to the investment delay, is introduced, three main results are demonstrated under assumption of the identical length of investment and consumption delays. The dynamics with consumption delay is basically the same as that of the single delay model. Second, in the case of saving delay, the steady state can coexist with the stable and unstable limit cycles in the stable case. Third, in the unstable case, there is an interval of delay in which the limit cycle or the sawtooth oscillation emerges depending on the choice of the constant initial function.

  16. Teaching the History of Tracking Time with Technology

    ERIC Educational Resources Information Center

    Fitz, Margaret

    2016-01-01

    This article focuses on the mathematical value of teaching angles through the use of sundials in the classroom. The history of sundials and the mathematics embedded within them is discussed in detail. In addition, practical applications of angles are included, along with interactive practice telling time with the angles created on sundials. Time…

  17. Stochastic first passage time accelerated with CUDA

    NASA Astrophysics Data System (ADS)

    Pierro, Vincenzo; Troiano, Luigi; Mejuto, Elena; Filatrella, Giovanni

    2018-05-01

    The numerical integration of stochastic trajectories to estimate the time to pass a threshold is an interesting physical quantity, for instance in Josephson junctions and atomic force microscopy, where the full trajectory is not accessible. We propose an algorithm suitable for efficient implementation on graphical processing unit in CUDA environment. The proposed approach for well balanced loads achieves almost perfect scaling with the number of available threads and processors, and allows an acceleration of about 400× with a GPU GTX980 respect to standard multicore CPU. This method allows with off the shell GPU to challenge problems that are otherwise prohibitive, as thermal activation in slowly tilted potentials. In particular, we demonstrate that it is possible to simulate the switching currents distributions of Josephson junctions in the timescale of actual experiments.

  18. Distribution in energies and acceleration times in DSA, and their effect on the cut-off

    NASA Astrophysics Data System (ADS)

    Brooks, A.; Protheroe, R. J.

    2001-08-01

    We have conducted Monte Carlo simulations of diffusive shock acceleration (DSA) to determine the distribution of times since injection taken to reach energy E > E0. This distribution of acceleration times for the case of momentum dependent diffusion is compared with that given by Drury and Forman (1983) based on extrapolation of the exact result (Toptygin 1980) for the case of the diffusion coefficient being independent of momentum. As a result of this distribution we find, as suggested by Drury et al. (1999), that Monte Carlo simulations result in smoother cut-offs and pile-ups in spectra of accelerated particles than expected from simple "box model" treatments of shock acceleration (e.g., Protheroe and Stanev 1999, Drury et al. 1999). This is particularly so for the case synchrotron pile-ups, which we find are replaced by a small bump at an energy about a factor of 2 below the expected cut-off, followed by a smooth cut-off with particles extending to energies well beyond the expected cut-off energy.

  19. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  20. Celebration Time: Black History Month

    ERIC Educational Resources Information Center

    Pinkney, Andrea Davis

    2008-01-01

    Nowadays, more students, teachers, and librarians are aware of African-American History Month and try to give it greater attention. However, the author questions herself if people do really "celebrate" African-American History Month or is it just something folks feel obligated to do, so they "celebrate" by displaying a collection of books about…

  1. Electron acceleration behind a wavy dipolarization front

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Nakamura, Rumi; Zhang, Tielong

    2018-02-01

    In this paper, with the in-situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes we report a wavy dipolarization front (DF) event, where the DF has different magnetic structures and electron distributions at different y positions in the Geocentric Solar Magnetospheric (GSM) coordinates. At y ˜2.1RE (RE is the radius of Earth), the DF has a relatively simple structure, which is similar to that of a conventional DF. At y ˜3.0RE, the DF is revealed to have a multiple DF structure, where the plasma exhibits a vortex flow. Such a wavy DF could be the results of the interchange instability. The different structure of such a wavy DF at different sites has a great effect on electron acceleration. Fermi acceleration can occur at the site of the DF with a simple or multiple DF structure, while betatron acceleration as a local process has the contribution to energetic electrons only at the site of the DF with a simple structure.

  2. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  3. GPU-accelerated phase extraction algorithm for interferograms: a real-time application

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqiang; Wu, Yongqian; Liu, Fengwei

    2016-11-01

    Optical testing, having the merits of non-destruction and high sensitivity, provides a vital guideline for optical manufacturing. But the testing process is often computationally intensive and expensive, usually up to a few seconds, which is sufferable for dynamic testing. In this paper, a GPU-accelerated phase extraction algorithm is proposed, which is based on the advanced iterative algorithm. The accelerated algorithm can extract the right phase-distribution from thirteen 1024x1024 fringe patterns with arbitrary phase shifts in 233 milliseconds on average using NVIDIA Quadro 4000 graphic card, which achieved a 12.7x speedup ratio than the same algorithm executed on CPU and 6.6x speedup ratio than that on Matlab using DWANING W5801 workstation. The performance improvement can fulfill the demand of computational accuracy and real-time application.

  4. Adding fling effects to processed ground‐motion time histories

    USGS Publications Warehouse

    Kamai, Ronnie; Abrahamson, Norman A.; Graves, Robert

    2014-01-01

    Fling is the engineering term for the effects of the permanent tectonic offset, caused by a rupturing fault in the recorded ground motions near the fault. It is expressed by a one‐sided pulse in ground velocity and a nonzero final displacement at the end of shaking. Standard processing of earthquake time histories removes some of the fling effects that may be required for engineering applications. A method to parameterize the fling‐step time history and to superimpose it onto traditionally processed time histories has been developed by Abrahamson (2002). In this paper, we first present an update to the Abrahamson (2002) fling‐step models, in which the fling step is parameterized as a single cycle of a sine wave. Parametric models are presented for the sine‐wave amplitude (Dsite) and period (Tf). The expressions for Dsite and Tf are derived from an extensive set of finite‐fault simulations conducted on the Southern California Earthquake Center broadband platform (see Data and Resources). The simulations were run with the Graves and Pitarka (2010) hybrid simulation method and included strike‐slip and reverse scenarios for magnitudes of 6.0–8.2 and dips of 30 through 90. Next, an improved approach for developing design ground motions with fling effects is presented, which deals with the problem of double‐counting intermediate period components that were not removed by the standard ground‐motion processing. Finally, the results are validated against a set of 84 empirical recordings containing fling.

  5. Effect of prolonged bedrest and plus Gz acceleration on peripheral visual response time

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Peripheral visual response time changes during +G sub z acceleration following fourteen days of bedrest are considered as well as what effect prolonged bedrest has upon this response. Eighteen test lights, placed 10 deg are apart along the horizontal meridian of the subject's field of view, were presented in a random sequence. The subject was instructed to press a button as soon as a light appeared. Response time testing occurred periodically during bedrest and continuously during centrifugation testing. The results indicate that: (1) mean response time is significantly longer to stimuli imaged in the far periphery than to stimuli imaged closer to the line of sight; (2) mean response time at each stimulus position tends to be longer at plateau g than during the preacceleration baseline period; (3) mean response time tends to lengthen as the g level is increased; (4) peripheral visual response time during +G sub x acceleration at 2, 3.2, and 3.8 g was not a reliable advanced indicator that blackout was going to occur; and (5) the subject's field of view collapsed rapidly just before blackout. Bedrest data showed that the distribution of response times to stimuli imaged across the subject's horizontal retinal meridian remained remarkably constant from day to day during both the bedrest and recovery periods.

  6. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  7. Planning for an Accelerated School. A Two Day Workshop (Stanford, California, November 17-18, 1988). Illinois Network of Accelerated Schools.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of School Improvement Services.

    The thesis of this conference report is that acceleration is a much more effective method than remediation for bringing at-risk children into the educational mainstream at an early age. The papers summarized in the report provide a background on the history, politics, and demography of at-risk students and suggest applications of acceleration to…

  8. The Gift of Time: Today's Academic Acceleration Case Study Voices of Experience

    ERIC Educational Resources Information Center

    Scheibel, Susan Riley

    2010-01-01

    The purpose of this qualitative case study was to examine today's academic acceleration from the lived experience and perspectives of two young adults whose education was shortened, thereby allowing them the gift of time. Through personal interviews, parent interviews, and physical artifacts, the researcher gained a complex, holistic understanding…

  9. PROBING DYNAMICS OF ELECTRON ACCELERATION WITH RADIO AND X-RAY SPECTROSCOPY, IMAGING, AND TIMING IN THE 2002 APRIL 11 SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.

    Based on detailed analysis of radio and X-ray observations of a flare on 2002 April 11 augmented by realistic three-dimensional modeling, we have identified a radio emission component produced directly at the flare acceleration region. This acceleration region radio component has distinctly different (1) spectrum, (2) light curves, (3) spatial location, and, thus, (4) physical parameters from those of the separately identified trapped or precipitating electron components. To derive evolution of physical parameters of the radio sources we apply forward fitting of the radio spectrum time sequence with the gyrosynchrotron source function with five to six free parameters. At themore » stage when the contribution from the acceleration region dominates the radio spectrum, the X-ray- and radio-derived electron energy spectral indices agree well with each other. During this time the maximum energy of the accelerated electron spectrum displays a monotonic increase with time from {approx}300 keV to {approx}2 MeV over roughly one minute duration indicative of an acceleration process in the form of growth of the power-law tail; the fast electron residence time in the acceleration region is about 2-4 s, which is much longer than the time of flight and so requires a strong diffusion mode there to inhibit free-streaming propagation. The acceleration region has a relatively strong magnetic field, B {approx} 120 G, and a low thermal density, n{sub e} {approx}< 2 Multiplication-Sign 10{sup 9} cm{sup -3}. These acceleration region properties are consistent with a stochastic acceleration mechanism.« less

  10. Accelerating Time Integration for the Shallow Water Equations on the Sphere Using GPUs

    DOE PAGES

    Archibald, R.; Evans, K. J.; Salinger, A.

    2015-06-01

    The push towards larger and larger computational platforms has made it possible for climate simulations to resolve climate dynamics across multiple spatial and temporal scales. This direction in climate simulation has created a strong need to develop scalable timestepping methods capable of accelerating throughput on high performance computing. This study details the recent advances in the implementation of implicit time stepping of the spectral element dynamical core within the United States Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) on graphical processing units (GPU) based machines. We demonstrate how solvers in the Trilinos project are interfaced with ACMEmore » and GPU kernels to increase computational speed of the residual calculations in the implicit time stepping method for the atmosphere dynamics. We demonstrate the optimization gains and data structure reorganization that facilitates the performance improvements.« less

  11. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan

    2016-04-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. The "A" in IMAP refers to acceleration of energetic particles. With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the species and spectral coverage as well as unprecedented temporal resolution to associate emerging suprathermal tails with interplanetary structures and discover underlying physical acceleration processes. These key measurements will provide what has been a critical missing piece of suprathermal seed particles in our understanding of particle acceleration to high

  12. On Quantizing Ride Comfort and Allowable Accelerations

    DTIC Science & Technology

    1976-07-01

    UnImited and approved for Public release. ,.Io. 7 D5Xt4WX.AX..JL.1.X.1LJ -’a~ft IF I.,, I. ’W No 1 -0.U /cM Report) MAR 3 19M0 III. SUPPLEMENTARY NOTES...vehicle’s habitability for a given tive. This is for three main reasons: acceleration-time history. These indices are: Mankind is very variable, and even an...though the limits may not be entirely "correct" in an absolute sense,.e ~utIY* review the l~steryof an analogousawL I Hey~ f .,B 7 -tisom e To better

  13. Timing of recent accelerations of Pine Island Glacier, Antarctica

    USGS Publications Warehouse

    Joughin, I.; Rignot, E.; Rosanova, C.E.; Lucchitta, B.K.; Bohlander, J.

    2003-01-01

    We have used Interferometric Synthetic Aperture Radar (InSAR) data and sequential Landsat imagery to identify and temporally constrain two acceleration events on Pine Island Glacier (PIG). These two events are separated by a period of at least seven years (1987 - 1994). The change in discharge between two flux gates indicates that the majority of the increase in discharge associated with the second acceleration originates well inland (>80 km) from the grounding line. An analysis indicates that changes in driving stress consistent with observed thinning rates are sufficient in magnitude to explain much of the acceleration.

  14. Retrieving rupture history using waveform inversions in time sequence

    NASA Astrophysics Data System (ADS)

    Yi, L.; Xu, C.; Zhang, X.

    2017-12-01

    The rupture history of large earthquakes is generally regenerated using the waveform inversion through utilizing seismological waveform records. In the waveform inversion, based on the superposition principle, the rupture process is linearly parameterized. After discretizing the fault plane into sub-faults, the local source time function of each sub-fault is usually parameterized using the multi-time window method, e.g., mutual overlapped triangular functions. Then the forward waveform of each sub-fault is synthesized through convoluting the source time function with its Green function. According to the superposition principle, these forward waveforms generated from the fault plane are summarized in the recorded waveforms after aligning the arrival times. Then the slip history is retrieved using the waveform inversion method after the superposing of all forward waveforms for each correspond seismological waveform records. Apart from the isolation of these forward waveforms generated from each sub-fault, we also realize that these waveforms are gradually and sequentially superimposed in the recorded waveforms. Thus we proposed a idea that the rupture model is possibly detachable in sequent rupture times. According to the constrained waveform length method emphasized in our previous work, the length of inverted waveforms used in the waveform inversion is objectively constrained by the rupture velocity and rise time. And one essential prior condition is the predetermined fault plane that limits the duration of rupture time, which means the waveform inversion is restricted in a pre-set rupture duration time. Therefore, we proposed a strategy to inverse the rupture process sequentially using the progressively shift rupture times as the rupture front expanding in the fault plane. And we have designed a simulation inversion to test the feasibility of the method. Our test result shows the prospect of this idea that requiring furthermore investigation.

  15. Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazloom, M.

    2008-07-08

    The idea of safe room has been developed for decreasing the earthquake casualties in masonry buildings. The information obtained from the previous ground motions occurring in seismic zones expresses the lack of enough safety of these buildings against earthquakes. For this reason, an attempt has been made to create some safe areas inside the existing masonry buildings, which are called safe rooms. The practical method for making these safe areas is to install some prefabricated steel frames in some parts of the existing structure. These frames do not carry any service loads before an earthquake. However, if a devastating earthquakemore » happens and the load bearing walls of the building are destroyed, some parts of the floors, which are in the safe areas, will fall on the roof of the installed frames and the occupants who have sheltered there will survive. This paper presents the performance of these frames located in a destroying three storey masonry building with favorable conclusions. In fact, the experimental pushover diagram of the safe room located at the ground-floor level of this building is compared with the analytical results and it is concluded that pushover analysis is a good method for seismic performance evaluation of safe rooms. For time history analysis the 1940 El Centro, the 2003 Bam, and the 1990 Manjil earthquake records with the maximum peak accelerations of 0.35g were utilized. Also the design spectrum of Iranian Standard No. 2800-05 for the ground kind 2 is used for response spectrum analysis. The results of time history, response spectrum and pushover analyses show that the strength and displacement capacity of the steel frames are adequate to accommodate the distortions generated by seismic loads and aftershocks properly.« less

  16. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and

  17. A School-Wide Effort for Learning History via a Time Capsule

    ERIC Educational Resources Information Center

    Rowell, C. Glennon; Hickey, M. Gail; Gecsei, Kendall; Klein, Stacy

    2007-01-01

    In this article, the authors describe how a time capsule project helped students at Ridgedale Elementary School in Knoxville, Tennessee understand the nature of events and the relationships of events in a segment of history. The time capsule preparation motivated students to hypothesize about important events and significant artifacts of their…

  18. Particle drag history in a subcritical post-shock flow - data analysis method and uncertainty

    NASA Astrophysics Data System (ADS)

    Ding, Liuyang; Bordoloi, Ankur; Adrian, Ronald; Prestridge, Kathy; Arizona State University Team; Los Alamos National Laboratory Team

    2017-11-01

    A novel data analysis method for measuring particle drag in an 8-pulse particle tracking velocimetry-accelerometry (PTVA) experiment is described. We represented the particle drag history, CD(t) , using polynomials up to the third order. An analytical model for continuous particle position history was derived by integrating an equation relating CD(t) with particle velocity and acceleration. The coefficients of CD(t) were then calculated by fitting the position history model to eight measured particle locations in the sense of least squares. A preliminary test with experimental data showed that the new method yielded physically more reasonable particle velocity and acceleration history compared to conventionally adopted polynomial fitting. To fully assess and optimize the performance of the new method, we performed a PTVA simulation by assuming a ground truth of particle motion based on an ensemble of experimental data. The results indicated a significant reduction in the RMS error of CD. We also found that for particle locating noise between 0.1 and 3 pixels, a range encountered in our experiment, the lowest RMS error was achieved by using the quadratic CD(t) model. Furthermore, we will also discuss the optimization of the pulse timing configuration.

  19. Seventy Five Years of Particle Accelerators

    ScienceCinema

    Sessler, Andy

    2017-12-09

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  20. Large-Scale Calculations for Material Sciences Using Accelerators to Improve Time- and Energy-to-Solution

    DOE PAGES

    Eisenbach, Markus

    2017-01-01

    A major impediment to deploying next-generation high-performance computational systems is the required electrical power, often measured in units of megawatts. The solution to this problem is driving the introduction of novel machine architectures, such as those employing many-core processors and specialized accelerators. In this article, we describe the use of a hybrid accelerated architecture to achieve both reduced time to solution and the associated reduction in the electrical cost for a state-of-the-art materials science computation.

  1. 3D graphics hardware accelerator programming methods for real-time visualization systems

    NASA Astrophysics Data System (ADS)

    Souetov, Andrew E.

    2001-02-01

    The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.

  2. 3D graphics hardware accelerator programming methods for real-time visualization systems

    NASA Astrophysics Data System (ADS)

    Souetov, Andrew E.

    2000-02-01

    The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.

  3. Acceleration and Propagation of Anomalous Cosmic Rays and Near-Relativistic Electrons in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2017-12-01

    Voyager 1/2 LECP observations at the termination shock (TS) crossings established that energetic ions (40keV-1MeV) appeared to be locally accelerated "termination shock particles", and since then have exhibited remarkably steady and similar intensities at both spacecraft throughout the heliosheath (HS). On the other hand, the anomalous cosmic rays (ACRs, 4-80 MeV total energy H, He, and O ions) increased more or less steadily across the shock and then gradually peaked years later. All the time in the HS, the ACRs at each spacecraft exhibited a striking "common spectrum", i.e., closely similar intensity histories when ordered by total energy. Near-relativistic electrons (30 keV-1 MeV) exhibited seemingly mutually inconsistent behavior while the two Voyagers transited the shock and HS, with the VGR2 electrons peaking at the shock, but later disappearing for a year (in 2010) and then slowly recovering, as opposed to the less variable VGR1 electrons whose remarkably smooth time history (2008-2012) was very similar to the VGR1 ACRs. Consequently, shock acceleration seems to be operating locally at the TS along with another spatially distributed acceleration/transport mechanism within the HS. The "reservoir" equation (Roelof, AIP Conf. Proc., 1500, 174-179 and 180-184, 2012) offers quantitative explanations for many of these apparently disparate observations. Meso-scale gradients and curvatures in the magnetic field produce transverse transport of energetic particles and (in direct consequence) "transverse compressive" acceleration that relates the fractional rate of momentum d(lnp)/dt=-(1/3)div(Vperp) to the divergence of the component of the plasma velocity transverse to the magnetic field. However, this acceleration rate must compete with the extinction rate of singly-charged ions due to charge exchange with the cold interstellar neutral H-atoms that permeate the HS. The agreement of the Voyager 1/2 LECP observations with the acceleration/extinction processes has

  4. Compaction of basin sediments as a function of time-temperature history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmoker, J.W.; Gautier, D.L.

    1989-03-01

    Processes that affect burial diagenesis are dependent on time-temperature history (thermal maturity). Therefore, the porosity loss of sedimentary rocks during burial may often be better treated as a function of time-temperature history than of depth. Loss of porosity in the subsurface for sandstones, carbonates, and shales can be represented by a power function /phi/ = A(M)/sup B/, where /phi/ is porosity, A and B are constants for a given sedimentary rock population of homogeneous properties, and M is a measure of thermal maturity such as vitrinite reflectance (R/sub 0/) or Lopatin's time-temperature index (TTI). Regression lines of carbonate porosity andmore » of sandstone porosity upon thermal maturity form an envelope whose axis is approximated by /phi/ = 7.5(R/sub 0/)/sup /minus/1.18/ or, equivalently, by /phi/ = 30(TTI)/sup /minus/0.33/. These equations are preliminary generic relations of use for the regional modeling of both carbonate and sandstone compaction in sedimentary basins. The dependence of porosity upon time-temperature history incorporates the hypothesis that porosity-reducing processes operate continuously in sedimentary basins and, consequently, that compaction of basin sediments continues as long as porosity exists. Calculations indicate that subsidence due to loss of porosity through time (with depth held constant) can produce a second-stage passively formed basin in which many hundreds of meters of sediments can accumulate and which conforms with the structure of the original underlying basin. Such sediment accumulation results from the thermal maturation of thick sequences of sedimentary rocks rather than from global sea level change or tectonic subsidence.« less

  5. From Mystics to Modern Times: A History of Craniotomy & Religion.

    PubMed

    Newman, W Christopher; Chivukula, Srinivas; Grandhi, Ramesh

    2016-08-01

    Neurosurgical treatment of diseases dates back to prehistoric times and the trephination of skulls for various maladies. Throughout the evolution of trephination, surgery and religion have been intertwined to varying degrees, a relationship that has caused both stagnation and progress. From its mystical origins in prehistoric times to its scientific progress in ancient Egypt and its resurgence as a well-validated surgical technique in modern times, trephination has been a reflection of the cultural and religious times. Herein we present a brief history of trephination as it relates religion, culture, and the evolution of neurosurgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Improved receiver arrays and optimized parallel imaging accelerations applied to time-resolved 3D fluoroscopically tracked peripheral runoff CE-MRA.

    PubMed

    Weavers, Paul T; Borisch, Eric A; Hulshizer, Tom C; Rossman, Phillip J; Young, Phillip M; Johnson, Casey P; McKay, Jessica; Cline, Christopher C; Riederer, Stephen J

    2016-04-01

    Three-station stepping-table time-resolved 3D contrast-enhanced magnetic resonance angiography has conflicting demands in the need to limit acquisition time in proximal stations to match the speed of the advancing contrast bolus and in the distal-most station to avoid venous contamination while still providing clinically useful spatial resolution. This work describes improved receiver coil arrays which address this issue by allowing increased acceleration factors, providing increased spatial resolution per unit time. Receiver coil arrays were constructed for each station (pelvis, thigh, calf) and then integrated into a 48-element array for three-station peripheral CE-MRA. Coil element sizes and array configurations for these three stations were designed to improve SENSE-type parallel imaging taking advantage of an increase in coil count for all stations versus the previous 32 channel capability. At each station either acceleration apportionment or optimal CAIPIRINHA selection was used to choose the optimum acceleration parameters for each subject. Results were evaluated in both single- and multi-station studies. Single-station studies showed that SENSE acceleration in the thigh station could be readily increased from R=8 to R=10, allowing reduction of the frame time from 2.5 to 2.1 s to better image the typically rapidly advancing bolus at this station. Similarly, the improved coil array for the calf station permitted acceleration increase from R=8 to R=12, providing a 4.0 vs. 5.2 s frame time. Results in three-station studies suggest an improved ability to track the contrast bolus in peripheral CE-MRA. Modified receiver coil arrays and individualized parameter optimization have been used to provide improved acceleration at all stations in multi-station peripheral CE-MRA and provide high spatial resolution with frame times as short as 2.1 s. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Timing and Characteristics of Cumulative Evidence Available on Novel Therapeutic Agents Receiving Food and Drug Administration Accelerated Approval.

    PubMed

    Naci, Huseyin; Wouters, Olivier J; Gupta, Radhika; Ioannidis, John P A

    2017-06-01

    Policy Points: Randomized trials-the gold standard of evaluating effectiveness-constitute a small minority of existing evidence on agents given accelerated approval. One-third of randomized trials are in therapeutic areas outside of FDA approval and less than half evaluate the therapeutic benefits of these agents but use them instead as common backbone treatments. Agents receiving accelerated approval are often tested concurrently in several therapeutic areas. For most agents, no substantial time lag is apparent between the average start dates of randomized trials evaluating their effectiveness and those using them as part of background therapies. There appears to be a tendency for therapeutic agents receiving accelerated approval to quickly become an integral component of standard treatment, despite potential shortcomings in their evidence base. Therapeutic agents treating serious conditions are eligible for Food and Drug Administration (FDA) accelerated approval. The clinical evidence accrued on agents receiving accelerated approval has not been systematically evaluated. Our objective was to assess the timing and characteristics of available studies. We first identified clinical studies of novel therapeutic agents receiving accelerated approval. We then (1) categorized those studies as randomized or nonrandomized, (2) explored whether they evaluated the FDA-approved indications, and (3) documented the available treatment comparisons. We also meta-analyzed the difference in start times between randomized studies that (1) did or did not evaluate approved indications and (2) were or were not designed to evaluate the agent's effectiveness. In total, 37 novel therapeutic agents received accelerated approval between 2000 and 2013. Our search of ClinicalTrials.gov identified 7,757 studies, which included 1,258,315 participants. Only one-third of identified studies were randomized controlled trials. Of 1,631 randomized trials with advanced recruitment status, 906 were

  8. Simple cosmological model with inflation and late times acceleration

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander

    2018-03-01

    In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.

  9. An Experiment in "Less Time": A Study of Students Accelerated to Junior Status

    ERIC Educational Resources Information Center

    Litwin, James L.; And Others

    1975-01-01

    As the result of a time-shortened degree experiment, 31 end-of-year freshmen were accelerated to junior status. The students showed high academic performance and few social problems, but questions of personal identity remained problematic. The best single predictor of academic success in the junior year was the freshman grade point average.…

  10. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    PubMed

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-07-01

    In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.

  12. Statistics of particle time-temperature histories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (themore » 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties alter s particle

  13. Acceleration characteristics of human ocular accommodation.

    PubMed

    Bharadwaj, Shrikant R; Schor, Clifton M

    2005-01-01

    Position and velocity of accommodation are known to increase with stimulus magnitude, however, little is known about acceleration properties. We investigated three acceleration properties: peak acceleration, time-to-peak acceleration and total duration of acceleration to step changes in defocus. Peak velocity and total duration of acceleration increased with response magnitude. Peak acceleration and time-to-peak acceleration remained independent of response magnitude. Independent first-order and second-order dynamic components of accommodation demonstrate that neural control of accommodation has an initial open-loop component that is independent of response magnitude and a closed-loop component that increases with response magnitude.

  14. Time: The Biggest Pattern in Natural History Research

    NASA Astrophysics Data System (ADS)

    Gontier, Nathalie

    2016-10-01

    We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology's notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space-time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a "sense" of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.

  15. The Adaptive Basis of Psychosocial Acceleration: Comment on beyond Mental Health, Life History Strategies Articles

    ERIC Educational Resources Information Center

    Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J.

    2012-01-01

    Four of the articles published in this special section of "Developmental Psychology" build on and refine psychosocial acceleration theory. In this short commentary, we discuss some of the adaptive assumptions of psychosocial acceleration theory that have not received much attention. Psychosocial acceleration theory relies on the behavior of…

  16. Accelerations in Flight

    NASA Technical Reports Server (NTRS)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  17. Seismic-hazard maps and time histories for the commonwealth of Kentucky.

    DOT National Transportation Integrated Search

    2008-06-01

    The ground-motion hazard maps and time histories for three earthquake scenarios, expected earthquakes, probable earthquakes, and maximum credible earthquakes on the free surface in hard rock (shear-wave velocity >1,500 m/s), were derived using the de...

  18. Discrete Space-Time: History and Recent Developments

    NASA Astrophysics Data System (ADS)

    Crouse, David

    2017-01-01

    Discussed in this work is the long history and debate of whether space and time are discrete or continuous. Starting from Zeno of Elea and progressing to Heisenberg and others, the issues with discrete space are discussed, including: Lorentz contraction (time dilation) of the ostensibly smallest spatial (temporal) interval, maintaining isotropy, violations of causality, and conservation of energy and momentum. It is shown that there are solutions to all these issues, such that discrete space is a viable model, yet the solution require strict non-absolute space (i.e., Mach's principle) and a re-analysis of the concept of measurement and the foundations of special relativity. In developing these solutions, the long forgotten but important debate between Albert Einstein and Henri Bergson concerning time will be discussed. Also discussed is the resolution to the Weyl tile argument against discrete space; however, the solution involves a modified version of the typical distance formula. One example effect of discrete space is then discussed, namely how it necessarily imposes order upon Wheeler's quantum foam, changing the foam into a gravity crystal and yielding crystalline properties of bandgaps, Brilluoin zones and negative inertial mass for astronomical bodies.

  19. Time histories of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber airplane during abrupt pitching maneuvers at approximately 20,000 feet

    NASA Technical Reports Server (NTRS)

    Wiener, Bernard; Harris, Agnes E

    1950-01-01

    Time histories are presented of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber during abrupt pitching maneuvers at a pressure altitude of approximately 20,000 feet. The normal and pitching accelerations measured varied from -0.90b to 3.41g and from -0.73 to 0.80 radian per second per second (sic), respectively, with a Mach number variation of from 0.40 to o.75. The maximum horizontal-tail load measured was 17,250 pounds down. The maximum elevator load was 1900 pounds up. The stabilizer twisted a maximum of 0.76 degrees leading edge down at the tip. The greatest fuselage deflection at the tail was about 1.7 inches down.

  20. Pulsed power accelerator for material physics experiments

    DOE PAGES

    Reisman, D.  B.; Stoltzfus, B.  S.; Stygar, W.  A.; ...

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered tomore » the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.« less

  1. Dynamic response of a poroelastic half-space to accelerating or decelerating trains

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Boström, Anders

    2013-05-01

    The dynamic response of a fully saturated poroelastic half-space due to accelerating or decelerating trains is investigated by a semi-analytical method. The ground is modeled as a saturated poroelastic half-space and Biot's theory is applied to characterize the soil medium, taking the coupling effects between the soil skeleton and the pore fluid into account. A detailed track system is considered incorporating rails, sleepers and embankment, which are modeled as Euler-Bernoulli beams, an anisotropic Kirchhoff plate, and an elastic layer, respectively. The acceleration or deceleration of the train is simulated by properly choosing the time history of the train speed using Fourier transforms combined with Fresnel integrals in the transformed domain. The time domain results are obtained by the fast Fourier transform (FFT). It is found that the deceleration of moving trains can cause a significant increase to the ground vibrations as well as the excess pore water pressure responses at the train speed 200 km/h. Furthermore, the single-phase elastic soil model would underestimate the vertical displacement responses caused by both the accelerating and decelerating trains at the speed 200 km/h.

  2. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  3. Development of a residual acceleration data reduction and dissemination plan

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1992-01-01

    A major obstacle in evaluating the residual acceleration environment in an orbiting space laboratory is the amount of data collected during a given mission: gigabytes of data will be available as SAMS units begin to fly regularly. Investigators taking advantage of the reduced gravity conditions of space should not be overwhelmed by the accelerometer data which describe these conditions. We are therefore developing a data reduction and analysis plan that will allow principal investigators of low-g experiments to create experiment-specific residual acceleration data bases for post-flight analysis. The basic aspects of the plan can also be used to characterize the acceleration environment of earth orbiting laboratories. Our development of the reduction plan is based on the following program of research: the identification of experiment sensitivities by order of magnitude estimates and numerical modelling; evaluation of various signal processing techniques appropriate for the reduction, supplementation, and dissemination of residual acceleration data; and testing and implementation of the plan on existing acceleration data bases. The orientation of the residual acceleration vector with respect to some set of coordinate axes is important for experiments with known directional sensitivity. Orientation information can be obtained from the evaluation of direction cosines. Fourier analysis is commonly used to transform time history data into the frequency domain. Common spectral representations are the amplitude spectrum which gives the average of the components of the time series at each frequency and the power spectral density which indicates the power or energy present in the series per unit frequency interval. The data reduction and analysis scheme developed involves a two tiered structure to: (1) identify experiment characteristics and mission events that can be used to limit the amount of accelerator data an investigator should be interested in; and (2) process the

  4. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.

    1987-01-01

    Eye movements and subjective detection of acceleration were measured on human experimental subjects during vestibular sled acceleration during the D1 Spacelab Mission. Methods and results are reported on the time to detection of small acceleration steps, the threshold for detection of linear acceleration, perceived motion path, and CLOAT. A consistently shorter time to detection of small acceleration steps is found. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth.

  5. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  6. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  7. Dynamics of body time, social time and life history at adolescence.

    PubMed

    Worthman, Carol M; Trang, Kathy

    2018-02-21

    Recent opposing trends towards earlier physical maturation and later social maturation present a conundrum of apparent biological-social mismatch. Here we use life history analysis from evolutionary ecology to identify forces that drive these shifts. Together with findings in developmental science, our life history analysis indicates that adolescence is a distinctive period for biological embedding of culture. Ethnographic evidence shows that mass education is a novel feature of the globalizing cultural configurations of adolescence, which are driven by transformations in labour, livelihood and lifestyle. Evaluation of the life history trade-offs and sociocultural ecologies that are experienced by adolescents may offer a practical basis for enhancing their development.

  8. Dynamics of body time, social time and life history at adolescence

    NASA Astrophysics Data System (ADS)

    Worthman, Carol M.; Trang, Kathy

    2018-02-01

    Recent opposing trends towards earlier physical maturation and later social maturation present a conundrum of apparent biological-social mismatch. Here we use life history analysis from evolutionary ecology to identify forces that drive these shifts. Together with findings in developmental science, our life history analysis indicates that adolescence is a distinctive period for biological embedding of culture. Ethnographic evidence shows that mass education is a novel feature of the globalizing cultural configurations of adolescence, which are driven by transformations in labour, livelihood and lifestyle. Evaluation of the life history trade-offs and sociocultural ecologies that are experienced by adolescents may offer a practical basis for enhancing their development.

  9. Generation time, life history and the substitution rate of neutral mutations.

    PubMed

    Lehtonen, Jussi; Lanfear, Robert

    2014-11-01

    Our understanding of molecular evolution is hampered by a lack of quantitative predictions about how life-history (LH) traits should correlate with substitution rates. Comparative studies have shown that neutral substitution rates vary substantially between species, and evidence shows that much of this diversity is associated with variation in LH traits. However, while these studies often agree, some unexplained and contradictory results have emerged. Explaining these results is difficult without a clear theoretical understanding of the problem. In this study, we derive predictions for the relationships between LH traits and substitution rates in iteroparous species by using demographic theory to relate commonly measured life-history traits to genetic generation time, and by implication to neutral substitution rates. This provides some surprisingly simple explanations for otherwise confusing patterns, such as the association between fecundity and substitution rates. The same framework can be applied to more complex life histories if full life-tables are available. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Real-time dose computation: GPU-accelerated source modeling and superposition/convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques, Robert; Wong, John; Taylor, Russell

    . Pinnacle{sup 3} times were 8.3 and 94 s, respectively, on an AMD (Sunnyvale, CA) Opteron 254 (two cores, 2.8 GHz). Conclusions: The authors have completed a comprehensive, GPU-accelerated dose engine in order to provide a substantial performance gain over CPU based implementations. Real-time dose computation is feasible with the accuracy levels of the superposition/convolution algorithm.« less

  11. Used planet: a global history.

    PubMed

    Ellis, Erle C; Kaplan, Jed O; Fuller, Dorian Q; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H

    2013-05-14

    Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human-environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects.

  12. Used planet: A global history

    PubMed Central

    Ellis, Erle C.; Kaplan, Jed O.; Fuller, Dorian Q.; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H.

    2013-01-01

    Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human–environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects. PMID:23630271

  13. Feasibility of through-time spiral generalized autocalibrating partial parallel acquisition for low latency accelerated real-time MRI of speech.

    PubMed

    Lingala, Sajan Goud; Zhu, Yinghua; Lim, Yongwan; Toutios, Asterios; Ji, Yunhua; Lo, Wei-Ching; Seiberlich, Nicole; Narayanan, Shrikanth; Nayak, Krishna S

    2017-12-01

    To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm 2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  15. Force-Time Characteristics and Running Velocity of Male Sprinters During the Acceleration Phase of Sprinting.

    ERIC Educational Resources Information Center

    Mero, Antti

    1988-01-01

    Investigation of the force-time characteristics of eight male sprinters during the acceleration phase of the sprint start suggested that the braking and propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start. (Author/CB)

  16. Examining the cosmic acceleration with the latest Union2 supernova data

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Wu, Puxun; Yu, Hongwei

    2011-01-01

    In this Letter, by reconstructing the Om diagnostic and the deceleration parameter q from the latest Union2 Type Ia Supernova sample with and without the systematic error along with the baryon acoustic oscillation (BAO) and the cosmic microwave background (CMB), we study the cosmic expanding history, using the Chevallier-Polarski-Linder (CPL) parametrization. We obtain that Union2+BAO favor an expansion with a decreasing of the acceleration at z<0.3. However, once the CMB data is added in the analysis, the cosmic acceleration is found to be still increasing, indicating a tension between low redshift data and high redshift. In order to reduce this tension significantly, two different methods are considered and thus two different subsamples of Union2 are selected. We then find that two different subsamples+BAO+CMB give completely different results on the cosmic expanding history when the systematic error is ignored, with one suggesting a decreasing cosmic acceleration, the other just the opposite, although both of them alone with BAO support that the cosmic acceleration is slowing down. However, once the systematic error is considered, two different subsamples of Union2 along with BAO and CMB all favor an increasing of the present cosmic acceleration. Therefore a clear-cut answer on whether the cosmic acceleration is slowing down calls for more consistent data and more reliable methods to analyze them.

  17. Score Estimating Equations from Embedded Likelihood Functions under Accelerated Failure Time Model

    PubMed Central

    NING, JING; QIN, JING; SHEN, YU

    2014-01-01

    SUMMARY The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples. PMID:25663727

  18. Pressure fluctuation caused by moderate acceleration

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito

    2017-11-01

    Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  19. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  20. How Constant Momentum Acceleration Decouples Energy and Space Focusing in Distance-of-Flight and Time-of-Flight Mass Spectrometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Elise; Gundlach-Graham, Alexander W.; Enke, Chris

    2013-05-01

    Time-of-flight (TOF) and distance-of-flight (DOF) mass spectrometers require means for focusing ions at the detector(s) because of initial dispersions of position and energy at the time of their acceleration. Time-of-flight mass spectrometers ordinarily employ constant energy acceleration (CEA), which creates a space-focus plane at which the initial spatial dispersion is corrected. In contrast, constant-momentum acceleration (CMA), in conjunction with an ion mirror, provides focus of the initial energy dispersion at the energy focus time for ions of all m/z at their respective positions along the flight path. With CEA, the initial energy dispersion is not simultaneously correctable as its effectmore » on ion velocity is convoluted with that of the spatial dispersion. The initial spatial dispersion with CMA remains unchanged throughout the field-free region of the flight path, so spatial dispersion can be reduced before acceleration. Improved focus is possible when each dispersion can be addressed independently. With minor modification, a TOF mass spectrometer can be operated in CMA mode by treating the TOF detector as though it were a single element in the array of detectors that would be used in a DOF mass spectrometer. Significant improvement in mass resolution is thereby achieved, albeit over a narrow range of m/z values. In this paper, experimental and theoretical results are presented that illustrate the energy-focusing capabilities of both DOF and TOF mass spectrometry.« less

  1. Convergence Acceleration for Multistage Time-Stepping Schemes

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli L.; Rossow, C-C; Vasta, V. N.

    2006-01-01

    The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7 x 10(exp 6) and 100.0 x 10(exp 6). Results are also obtained for a transonic wing flow. For both 2-D and 3-D problems, the computational time of a well-tuned standard RK scheme is reduced at least a factor of four.

  2. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  3. On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman

    2016-04-01

    The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for

  4. A simplified method for calculating temperature time histories in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.

    1976-01-01

    Average temperature time history calculations of the test media and tunnel walls for cryogenic wind tunnels have been developed. Results are in general agreement with limited preliminary experimental measurements obtained in a 13.5-inch pilot cryogenic wind tunnel.

  5. The Effects of Art History-Enriched Art Therapy on Anxiety, Time on Task, and Art Product Quality.

    ERIC Educational Resources Information Center

    Miller, Carol L.

    1993-01-01

    Investigated effects of art history enrichment of art therapy task on anxiety, time on task, and art product quality among 13 chronic adult psychiatric day hospital patients. Results indicated art history enrichment task reduced anxiety and increased time on task. Art organization level tended toward significant increase compared with control…

  6. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  7. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  8. Dental development and life history in living African and Asian apes.

    PubMed

    Kelley, Jay; Schwartz, Gary T

    2010-01-19

    Life-history inference is an important aim of paleoprimatology, but life histories cannot be discerned directly from the fossil record. Among extant primates, the timing of many life-history attributes is correlated with the age at emergence of the first permanent molar (M1), which can therefore serve as a means to directly compare the life histories of fossil and extant species. To date, M1 emergence ages exist for only a small fraction of extant primate species and consist primarily of data from captive individuals, which may show accelerated dental eruption compared with free-living individuals. Data on M1 emergence ages in wild great apes exist for only a single chimpanzee individual, with data for gorillas and orangutans being anecdotal. This paucity of information limits our ability to make life-history inferences using the M1 emergence ages of extinct ape and hominin species. Here we report reliable ages at M1 emergence for the orangutan, Pongo pygmaeus (4.6 y), and the gorilla, Gorilla gorilla (3.8 y), obtained from the dental histology of wild-shot individuals in museum collections. These ages and the one reported age at M1 emergence in a free-living chimpanzee of approximately 4.0 y are highly concordant with the comparative life histories of these great apes. They are also consistent with the average age at M1 emergence in relation to the timing of life-history events in modern humans, thus confirming the utility of M1 emergence ages for life-history inference and providing a basis for making reliable life-history inferences for extinct apes and hominins.

  9. Dental development and life history in living African and Asian apes

    PubMed Central

    Kelley, Jay; Schwartz, Gary T.

    2009-01-01

    Life-history inference is an important aim of paleoprimatology, but life histories cannot be discerned directly from the fossil record. Among extant primates, the timing of many life-history attributes is correlated with the age at emergence of the first permanent molar (M1), which can therefore serve as a means to directly compare the life histories of fossil and extant species. To date, M1 emergence ages exist for only a small fraction of extant primate species and consist primarily of data from captive individuals, which may show accelerated dental eruption compared with free-living individuals. Data on M1 emergence ages in wild great apes exist for only a single chimpanzee individual, with data for gorillas and orangutans being anecdotal. This paucity of information limits our ability to make life-history inferences using the M1 emergence ages of extinct ape and hominin species. Here we report reliable ages at M1 emergence for the orangutan, Pongo pygmaeus (4.6 y), and the gorilla, Gorilla gorilla (3.8 y), obtained from the dental histology of wild-shot individuals in museum collections. These ages and the one reported age at M1 emergence in a free-living chimpanzee of approximately 4.0 y are highly concordant with the comparative life histories of these great apes. They are also consistent with the average age at M1 emergence in relation to the timing of life-history events in modern humans, thus confirming the utility of M1 emergence ages for life-history inference and providing a basis for making reliable life-history inferences for extinct apes and hominins. PMID:20080537

  10. Experimental studies with two novel silicon detectors for the development of time-of-flight spectrometry of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Würl, M.; Reinhardt, S.; Rosenfeld, A.; Petasecca, M.; Lerch, M.; Tran, L.; Karsch, S.; Assmann, W.; Schreiber, J.; Parodi, K.

    2017-01-01

    Laser-accelerated proton beams exhibit remarkably different beam characteristics as compared to conventionally accelerated ion beams. About 105 to 107 particles per MeV and msr are accelerated quasi-instantaneously within about 1 ps. The resulting energy spectrum typically shows an exponentially decaying distribution. Our planned approach to determine the energy spectrum of the particles generated in each pulse is to exploit the time-of-flight (TOF) difference of protons with different kinetic energies at 1 m distance from the laser-target interaction. This requires fast and sensitive detectors. We therefore tested two prototype silicon detectors, developed at the Centre for Medical Radiation Physics at the University of Wollongong with a current amplifier, regarding their suitability for TOF-spectrometry in terms of sensitivity and timing properties. For the latter, we illuminated the detectors with short laser pulses, measured the signal current and compared it to the signal of a fast photodiode. The comparison revealed that the timing properties of both prototypes are not yet sufficient for our purpose. In contrast, our results regarding the detectors’ sensitivity are promising. The lowest detectable proton flux at 10 MeV was found to be 25 protons per ns on the detector. With this sensitivity and with a smaller pixelation of the detectors, the timing properties can be improved for new prototypes, making them potential candidates for TOF-spectrometry of laser-accelerated particle beams.

  11. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    PubMed

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  12. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  13. Estimating degradation in real time and accelerated stability tests with random lot-to-lot variation: a simulation study.

    PubMed

    Magari, Robert T

    2002-03-01

    The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002

  14. MUSIDH, multiple use of simulated demographic histories, a novel method to reduce computation time in microsimulation models of infectious diseases.

    PubMed

    Fischer, E A J; De Vlas, S J; Richardus, J H; Habbema, J D F

    2008-09-01

    Microsimulation of infectious diseases requires simulation of many life histories of interacting individuals. In particular, relatively rare infections such as leprosy need to be studied in very large populations. Computation time increases disproportionally with the size of the simulated population. We present a novel method, MUSIDH, an acronym for multiple use of simulated demographic histories, to reduce computation time. Demographic history refers to the processes of birth, death and all other demographic events that should be unrelated to the natural course of an infection, thus non-fatal infections. MUSIDH attaches a fixed number of infection histories to each demographic history, and these infection histories interact as if being the infection history of separate individuals. With two examples, mumps and leprosy, we show that the method can give a factor 50 reduction in computation time at the cost of a small loss in precision. The largest reductions are obtained for rare infections with complex demographic histories.

  15. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  16. History of hadrontherapy

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo

    2015-06-01

    Hadrontherapy is today an established modality in cancer radiation therapy. Based on the superior ballistic and radiobiological properties of accelerated ions, this discipline experienced a remarkable growth in the last 20 years. This paper reviews the history of hadrontherapy, from the early days to the most recent developments. In particular, the evolution of proton and carbon ion therapy is presented together with a glance at future solutions such as single-room facilities.

  17. Determination of the needed power of an electric motor on the basis of acceleration time of the electric car

    NASA Astrophysics Data System (ADS)

    Sapundzhiev, M.; Evtimov, I.; Ivanov, R.

    2017-10-01

    The paper presents an upgraded methodology for determination of the electric motor power considering the time for acceleration. The influence of the speed factor of electric motor on the value of needed power at same acceleration time is studied. Some calculations on the basis of real vehicle were made. The numeric and graphical results are given. They show a decrease of needed power with the increase of the speed factor of motor, because the high speed factor allows the use of a larger range of the characteristic with the maximum power of the motor. An experimental verification of methodology was done.

  18. GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Du, Zhihui; Chung, Shin Kee; Hooper, Shaun; Blair, David; Wen, Linqing

    2012-12-01

    We present a graphics processing unit (GPU)-accelerated time-domain low-latency algorithm to search for gravitational waves (GWs) from coalescing binaries of compact objects based on the summed parallel infinite impulse response (SPIIR) filtering technique. The aim is to facilitate fast detection of GWs with a minimum delay to allow prompt electromagnetic follow-up observations. To maximize the GPU acceleration, we apply an efficient batched parallel computing model that significantly reduces the number of synchronizations in SPIIR and optimizes the usage of the memory and hardware resource. Our code is tested on the CUDA ‘Fermi’ architecture in a GTX 480 graphics card and its performance is compared with a single core of Intel Core i7 920 (2.67 GHz). A 58-fold speedup is achieved while giving results in close agreement with the CPU implementation. Our result indicates that it is possible to conduct a full search for GWs from compact binary coalescence in real time with only one desktop computer equipped with a Fermi GPU card for the initial LIGO detectors which in the past required more than 100 CPUs.

  19. Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators

    NASA Astrophysics Data System (ADS)

    Sclocco, A.; van Leeuwen, J.; Bal, H. E.; van Nieuwpoort, R. V.

    2016-01-01

    Dedispersion, the removal of deleterious smearing of impulsive signals by the interstellar matter, is one of the most intensive processing steps in any radio survey for pulsars and fast transients. We here present a study of the parallelization of this algorithm on many-core accelerators, including GPUs from AMD and NVIDIA, and the Intel Xeon Phi. We find that dedispersion is inherently memory-bound. Even in a perfect scenario, hardware limitations keep the arithmetic intensity low, thus limiting performance. We next exploit auto-tuning to adapt dedispersion to different accelerators, observations, and even telescopes. We demonstrate that the optimal settings differ between observational setups, and that auto-tuning significantly improves performance. This impacts time-domain surveys from Apertif to SKA.

  20. Universe without dark energy: Cosmic acceleration from dark matter-baryon interactions

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha; Khoury, Justin; Wang, Junpu

    2017-06-01

    Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy), or a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein gravity. In this paper we present a third possibility, using only dark matter (DM) and ordinary matter. The mechanism relies on the coupling between dark matter and ordinary matter through an effective metric. Dark matter couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating cosmology up to the present time. Ordinary matter couples to an effective metric that depends also on the DM density, in such a way that it experiences late-time acceleration. Linear density perturbations are stable and propagate with arbitrarily small sound speed, at least in the case of "pressure" coupling. Assuming a simple parametrization of the effective metric, we show that our model can successfully match a set of basic cosmological observables, including luminosity distance, baryon acoustic oscillation measurements, angular-diameter distance to last scattering, etc. For the growth history of density perturbations, we find an intriguing connection between the growth factor and the Hubble constant. To get a growth history similar to the Λ CDM prediction, our model predicts a higher H0, closer to the value preferred by direct estimates. On the flip side, we tend to overpredict the growth of structures whenever H0 is comparable to the Planck preferred value. The model also tends to predict larger redshift-space distortions at low redshift than Λ CDM .

  1. Apparent cosmic acceleration from Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dam, Lawrence H.; Heinesen, Asta; Wiltshire, David L.

    2017-11-01

    Parameters that quantify the acceleration of cosmic expansion are conventionally determined within the standard Friedmann-Lemaître-Robertson-Walker (FLRW) model, which fixes spatial curvature to be homogeneous. Generic averages of Einstein's equations in inhomogeneous cosmology lead to models with non-rigidly evolving average spatial curvature, and different parametrizations of apparent cosmic acceleration. The timescape cosmology is a viable example of such a model without dark energy. Using the largest available supernova data set, the JLA catalogue, we find that the timescape model fits the luminosity distance-redshift data with a likelihood that is statistically indistinguishable from the standard spatially flat Λ cold dark matter cosmology by Bayesian comparison. In the timescape case cosmic acceleration is non-zero but has a marginal amplitude, with best-fitting apparent deceleration parameter, q_{0}=-0.043^{+0.004}_{-0.000}. Systematic issues regarding standardization of supernova light curves are analysed. Cuts of data at the statistical homogeneity scale affect light-curve parameter fits independent of cosmology. A cosmological model dependence of empirical changes to the mean colour parameter is also found. Irrespective of which model ultimately fits better, we argue that as a competitive model with a non-FLRW expansion history, the timescape model may prove a useful diagnostic tool for disentangling selection effects and astrophysical systematics from the underlying expansion history.

  2. Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun

    2014-01-01

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  3. Time-dependent models for blazar emission with the second-order Fermi acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101–232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range ofmore » Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 10{sup 38} erg s{sup –1}, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.« less

  4. Accelerating Child Survival and Development in Dark Times.

    ERIC Educational Resources Information Center

    Grant, James P.

    Measures were proposed that would enable UNICEF, in association with others and despite prevailing difficult economic circumstances, to more effectively bring well-being and hope to hundreds of millions of children. Specific proposals were designed to help most countries accelerate child survival and development. Most particularly, it was…

  5. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  6. Manual for Getdata Version 3.1: a FORTRAN Utility Program for Time History Data

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.

    1987-01-01

    This report documents version 3.1 of the GetData computer program. GetData is a utility program for manipulating files of time history data, i.e., data giving the values of parameters as functions of time. The most fundamental capability of GetData is extracting selected signals and time segments from an input file and writing the selected data to an output file. Other capabilities include converting file formats, merging data from several input files, time skewing, interpolating to common output times, and generating calculated output signals as functions of the input signals. This report also documents the interface standards for the subroutines used by GetData to read and write the time history files. All interface to the data files is through these subroutines, keeping the main body of GetData independent of the precise details of the file formats. Different file formats can be supported by changes restricted to these subroutines. Other computer programs conforming to the interface standards can call the same subroutines to read and write files in compatible formats.

  7. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    NASA Astrophysics Data System (ADS)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  8. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  10. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  11. Time history solution program, L225 (TEV126). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Kroll, R. I.; Tornallyay, A.; Clemmons, R. E.

    1979-01-01

    Volume 1 of a two volume document is presented. The usage of the convolution program L225 (TEV 126) is described. The program calculates the time response of a linear system by convoluting the impulsive response function with the time-dependent excitation function. The convolution is performed as a multiplication in the frequency domain. Fast Fourier transform techniques are used to transform the product back into the time domain to obtain response time histories. A brief description of the analysis used is presented.

  12. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    NASA Astrophysics Data System (ADS)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  13. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta).

    PubMed

    Nakov, Teofil; Beaulieu, Jeremy M; Alverson, Andrew J

    2018-04-06

    Patterns of species richness are commonly linked to life history strategies. In diatoms, an exceptionally diverse lineage of photosynthetic heterokonts important for global photosynthesis and burial of atmospheric carbon, lineages with different locomotory and reproductive traits differ dramatically in species richness, but any potential association between life history strategy and diversification has not been tested in a phylogenetic framework. We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms - the most inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive inventory of first-last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected species richness, diversification and its variation through time and across lineages. Diversification rates varied with life history traits. Although anisogamous lineages diversified faster than oogamous ones, this increase was restricted to a nested clade with active motility in the vegetative cells. We propose that the evolution of motility in vegetative cells, following an earlier transition from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat complexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety of novel habitats. Together, these contributed to a species radiation that gave rise to the majority of present-day diatom diversity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards

    NASA Astrophysics Data System (ADS)

    Batistić, Benjamin; Robnik, Marko

    2011-09-01

    We study aspects of the Fermi acceleration (the unbounded growth of the energy) in a certain class of time-dependent 2D billiards. Specifically, we look at the conformally breathing billiards (periodic oscillation of the boundary which preserves the shape of the billiard at all times), which are fully chaotic as static (frozen) billiards, and we show that for large velocities around v0 and for not too long times, we observe just normal diffusion of the velocity as a function of the physical (continuous) time, around v0. However, the diffusion is not homogeneous, as the diffusion constant D depends on v0 as a power law D∝1/v30. Taking this into account, we show that to the leading order the average velocity v(n) as a function of the number of collisions n obeys a power law v∝n1/6 thus, the Fermi acceleration exponent is β = 1/6, which is in excellent agreement with the numerical calculations of the fully chaotic oval billiard, the Sinai billiard and the cardioid billiard. The error of the velocity estimates is of the order 1/v2. Thus, the higher the velocity, the better our analytic approximation. Moreover, we derive the underlying universal equation of the velocity dynamics of the time-dependent conformally breathing billiards, correct up to and including the order 1/v in the regime of the large velocity of the particle v. This universal equation does not depend on the dynamical properties of the system (integrability, ergodicity, chaoticity). We present the results of the numerical simulations for three billiards in complete agreement with the theory. We believe that this is a first step towards theoretical understanding of the power law growth and the Fermi acceleration exponents in 2D billiards, although our theory is so far specialized to the conformally breathing fully chaotic billiards.

  15. Late-Time Evolution of Broad-Bandwidth, Laser-Imposed Nonuniformities in Accelerated Foils

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Boehly, T. R.; Bradley, D. K.; Knauer, J. P.; Meyerhofer, D. D.; Oron, D.; Srebro, Y.; Shvarts, D.

    1998-11-01

    The late-time evolution of broad-bandwidth nonuniformities is studied in planar-foil experiments on the OMEGA laser system. Five beams with ~600-μm-diam uniform region accelerate 20-μm-thick CH foils at an average intensity of 2×10^14\\:W/cm^2 in a 3-ns square pulse. Growth of perturbations seeded by irradiation nonuniformities was observed using time-gated, pinhole photographs of ~1.2-keV x rays from a backlighter. At late times collective saturation is observed at levels similar to Haan's prediction.(S. W. Haan, Phys. Rev. A 39), 5812 (1989). The maximum of the nonuniformity spectrum moves toward longer wavelength in time as expected. Target images taken at different times show the formation of bubbles and spikes from initial elongated ``wormy'' structures. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  16. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  17. Influence of the ambient acceleration field upon acute acceleration tolerance in chickens

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Spangler, W. L.; Rhode, E. A.; Burton, R. R.

    1979-01-01

    The paper measured the acceleration tolerance of domestic fowl (Rhode Island Red cocks), acutely exposed to a 6 Gz field, as the time over which a normal heart rate can be maintained. This period of circulatory adjustment ends abruptly with pronounced bradycardia. For chickens which previously have been physiologically adapted to 2.5 -G field, the acute acceleration tolerance is greatly increased. The influence of the ambient acceleration field on the adjustment of the circulatory system appears to be a general phenomenon.

  18. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  19. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  20. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema

    Sessler, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-12-09

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  1. Development and Use of Mark Sense Record Cards for Recording Medical Data on Pilots Subjected to Acceleration Stress

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Havill, C. Dewey

    1962-01-01

    A TIME-HONORED system of recording medical histories and the data obtained on physical and laboratory examination has been that of writing the information on record sheets that go into a folder for each patient. In order to have information which would be more readily retrieved, 'a program was initiated in 1952 by the U. S. Naval School of Aviation Medicine in connection with their "Care of the Flyer" study to place this information on machine record cards. In 1958, a machine record card method was developed for recording medical data in connection with the astronaut selection program. Machine record cards were also developed by the Aero Medical Laboratory, Wright-Patterson AFB, Ohio, and the Aviation Medical Acceleration Laboratory, Naval Air Development Center, Johnsville, Pennsylvania, for use in connection with a variety of tests including acceleration stress.1 Therefore, a variety of systems resulted in which data of a medical nature could easily be recalled. During the NASA, Ames Research Center centrifuge studies/'S the pilot subjects were interviewed after each centrifuge run, or series of runs, and subjective information was recorded in a log book by the usual history taking methods referred to above. After the methods Were reviewed, it' was recognized that a card system would be very useful in recording data from our pilots after they had been exposed to acceleration stress. Since the acceleration stress cards already developed did not meet our requirements, it was decided a different card was needed.

  2. SuperB Progress Report for Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagini, M.E.; Boni, R.; Boscolo, M.

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around themore » world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and

  3. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  4. A 181 GOPS AKAZE Accelerator Employing Discrete-Time Cellular Neural Networks for Real-Time Feature Extraction.

    PubMed

    Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun

    2015-09-04

    This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures.

  5. Extracting concrete thermal characteristics from temperature time history of RC column exposed to standard fire.

    PubMed

    Kim, Jung J; Youm, Kwang-Soo; Reda Taha, Mahmoud M

    2014-01-01

    A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.

  6. Extracting Concrete Thermal Characteristics from Temperature Time History of RC Column Exposed to Standard Fire

    PubMed Central

    2014-01-01

    A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment. PMID:25180197

  7. Instability of multi-layer fluid configurations in the presence of time-dependent accelerations in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.; Roh, Michael

    1991-01-01

    The increasing number of research opportunities in a microgravity environment will benefit not only fundamental studies in fluid dynamics, but also technological applications such as those involving materials processing. In particular, fluid configurations which involve fluid-fluid interfaces would occur in a variety of experimental investigations. This work investigates the stability of a configuration involving fluid-fluid interfaces in the presence of a time-dependent forcing. Both periodic (g-jitter) and nonperiodic accelerations are considered. The fluid configuration is multilayered, and infinite in extent. The analysis is linear and inviscid, and the acceleration vector is oriented perpendicular to each interface. A Floquet analysis is employed in the case of the periodic forcing. In the problem of nonperiodic forcing, the resulting system of equations are integrated in time. Specific nondimensional parameters appear in each problem. The configuration behavior is investigated for a range of parameter values.

  8. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  9. Evaluation of the Xeon phi processor as a technology for the acceleration of real-time control in high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah; Vick, Andy; Schnetler, Hermine

    2014-08-01

    We present wavefront reconstruction acceleration of high-order AO systems using an Intel Xeon Phi processor. The Xeon Phi is a coprocessor providing many integrated cores and designed for accelerating compute intensive, numerical codes. Unlike other accelerator technologies, it allows virtually unchanged C/C++ to be recompiled to run on the Xeon Phi, giving the potential of making development, upgrade and maintenance faster and less complex. We benchmark the Xeon Phi in the context of AO real-time control by running a matrix vector multiply (MVM) algorithm. We investigate variability in execution time and demonstrate a substantial speed-up in loop frequency. We examine the integration of a Xeon Phi into an existing RTC system and show that performance improvements can be achieved with limited development effort.

  10. Universality of accelerating change

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  11. American History Time Lines. Grades 4-8. Big, Reproducible, Easy-To-Use.

    ERIC Educational Resources Information Center

    Buckley, Susan Washburn

    This resource is designed to enhance learning about topics in United States history. The reproducible time lines are easy to use and is designed to encourage students to research other dates and events of the era under study. Suggestions are given for classroom use. The introduction has instructional subjects, such as: "12 Great Ways To Use…

  12. Accelerated construction

    DOT National Transportation Integrated Search

    2004-01-01

    Accelerated Construction Technology Transfer (ACTT) is a strategic process that uses various innovative techniques, strategies, and technologies to minimize actual construction time, while enhancing quality and safety on today's large, complex multip...

  13. Nanoseismic sources made in the laboratory: source kinematics and time history

    NASA Astrophysics Data System (ADS)

    McLaskey, G.; Glaser, S. D.

    2009-12-01

    When studying seismic signals in the field, the analysis of source mechanisms is always obscured by propagation effects such as scattering and reflections due to the inhomogeneous nature of the earth. To get around this complication, we measure seismic waves (wavelengths from 2 mm to 300 mm) in laboratory-sized specimens of extremely homogeneous isotropic materials. We are able to study the focal mechanism and time history of nanoseismic sources produced by fracture, impact, and sliding friction, roughly six orders of magnitude smaller and more rapid than typical earthquakes. Using very sensitive broadband conical piezoelectric sensors, we are able to measure surface normal displacements down to a few pm (10^-12 m) in amplitude. Thick plate specimens of homogeneous materials such as glass, steel, gypsum, and polymethylmethacrylate (PMMA) are used as propagation media in the experiments. Recorded signals are in excellent agreement with theoretically determined Green’s functions obtained from a generalized ray theory code for an infinite plate geometry. Extremely precise estimates of the source time history are made via full waveform inversion from the displacement time histories recorded by an array of at least ten sensors. Each channel is sampled at a rate of 5 MHz. The system is absolutely calibrated using the normal impact of a tiny (~1 mm) ball on the surface of the specimen. The ball impact induces a force pulse into the specimen a few ms in duration. The amplitude, duration, and shape of the force pulse were found to be well approximated by Hertzian-derived impact theory, while the total change in momentum of the ball is independently measured from its incoming and rebound velocities. Another calibration source, the sudden fracture of a thin-walled glass capillary tube laid on its side and loaded against the surface of the specimen produces a similar point force, this time with a source function very nearly a step in time with rise time of less than 500 ns

  14. Land management in the Anthropocene: Is history still relevant?

    USGS Publications Warehouse

    Safford, Hugh D.; Betancourt, Julio L.; Hayward, Gregory D.; Wiens, John A.; Regan, Claudia M.

    2008-01-01

    Ecological restoration, conservation, and land management are often based on comparisons with reference sites or time periods, which are assumed to represent “natural” or “properly functioning” conditions. Such reference conditions can provide a vision of the conservation or management goal and a means to measure progress toward that vision. Although historical ecology has been used successfully to guide resource management in many parts of the world, the continuing relevance of history is now being questioned. Some scientists doubt that lessons from the past can inform management in what may be a dramatically different future, given profound climate change, accelerated land use, and an onslaught of plant and animal invasions.

  15. Aggrecan Mutations in Nonfamilial Short Stature and Short Stature Without Accelerated Skeletal Maturation.

    PubMed

    Tatsi, Christina; Gkourogianni, Alexandra; Mohnike, Klaus; DeArment, Diana; Witchel, Selma; Andrade, Anenisia C; Markello, Thomas C; Baron, Jeffrey; Nilsson, Ola; Jee, Youn Hee

    2017-08-01

    Aggrecan, a proteoglycan, is an important component of cartilage extracellular matrix, including that of the growth plate. Heterozygous mutations in ACAN , the gene encoding aggrecan, cause autosomal dominant short stature, accelerated skeletal maturation, and joint disease. The inheritance pattern and the presence of bone age equal to or greater than chronological age have been consistent features, serving as diagnostic clues. From family 1, a 6-year-old boy presented with short stature [height standard deviation score (SDS), -1.75] and bone age advanced by 3 years. There was no family history of short stature (height SDS: father, -0.76; mother, 0.7). Exome sequencing followed by Sanger sequencing identified a de novo novel heterozygous frameshift mutation in ACAN (c.6404delC: p.A2135Dfs). From family 2, a 12-year-old boy was evaluated for short stature (height SDS, -3.9). His bone age at the time of genetic evaluation was approximately 1 year less than his chronological age. Family history was consistent with an autosomal dominant inheritance of short stature, with several affected members also showing early-onset osteoarthritis. Exome sequencing, confirmed by Sanger sequencing, identified a novel nonsense mutation in ACAN (c.4852C>T: p.Q1618X), which cosegregated with the phenotype. In conclusion, patients with ACAN mutations may present with nonfamilial short stature and with bone age less than chronological age. These findings expand the known phenotypic spectrum of heterozygous ACAN mutations and indicate that this diagnosis should be considered in children without a family history of short stature and in children without accelerated skeletal maturation.

  16. Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda

    NASA Astrophysics Data System (ADS)

    Bauer, F. U.; Glasmacher, U. A.; Ring, U.; Schumann, A.; Nagudi, B.

    2010-10-01

    The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U-Th-Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time-temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.

  17. The History and Timing of Depression Onset as Predictors of Young-Adult Self-Esteem

    PubMed Central

    Lloyd, Donald A.; Ueno, Koji

    2010-01-01

    Depression often emerges early in the lifecourse and is consistently shown to be associated with poor self-esteem. The three main objectives of the current study are to (1) evaluate the association between a history major depression and self-esteem in young adulthood; (2) assess the relationship between timing of depression onset and young adult self-esteem; and (3) help rule out the alternative interpretation that the relationship between major depression and self-esteem is due to state dependence bias stemming from recent depressive symptoms and stressful life events. To address these objectives we use data from a two-wave panel study based on a community sample of young adults in Miami-Dade County, Florida (n = 1,197). Results indicated a history of major depression during sensitive periods of social development is associated with negative changes in self-esteem over a two-year period during the transition to young adulthood. Among those with a history of depression, earlier onset was more problematic than later onset for young adult self-esteem, although the difference disappeared once the level of self-esteem two years prior was controlled. The linkages between the history and timing of depression onset with self-esteem were observed net of recent depressive symptoms and stressful life events, and thus robust to an alternative interpretation of state dependence. The findings support the argument that major depression, especially if it develops earlier during child-adolescent development, has negative consequences for one’s self-esteem. PMID:21860585

  18. How has our knowledge of dinosaur diversity through geologic time changed through research history?

    PubMed Central

    2018-01-01

    Assessments of dinosaur macroevolution at any given time can be biased by the historical publication record. Recent studies have analysed patterns in dinosaur diversity that are based on secular variations in the numbers of published taxa. Many of these have employed a range of approaches that account for changes in the shape of the taxonomic abundance curve, which are largely dependent on databases compiled from the primary published literature. However, how these ‘corrected’ diversity patterns are influenced by the history of publication remains largely unknown. Here, we investigate the influence of publication history between 1991 and 2015 on our understanding of dinosaur evolution using raw diversity estimates and shareholder quorum subsampling for the three major subgroups: Ornithischia, Sauropodomorpha, and Theropoda. We find that, while sampling generally improves through time, there remain periods and regions in dinosaur evolutionary history where diversity estimates are highly volatile (e.g. the latest Jurassic of Europe, the mid-Cretaceous of North America, and the Late Cretaceous of South America). Our results show that historical changes in database compilation can often substantially influence our interpretations of dinosaur diversity. ‘Global’ estimates of diversity based on the fossil record are often also based on incomplete, and distinct regional signals, each subject to their own sampling history. Changes in the record of taxon abundance distribution, either through discovery of new taxa or addition of existing taxa to improve sampling evenness, are important in improving the reliability of our interpretations of dinosaur diversity. Furthermore, the number of occurrences and newly identified dinosaurs is still rapidly increasing through time, suggesting that it is entirely possible for much of what we know about dinosaurs at the present to change within the next 20 years. PMID:29479504

  19. How has our knowledge of dinosaur diversity through geologic time changed through research history?

    PubMed

    Tennant, Jonathan P; Chiarenza, Alfio Alessandro; Baron, Matthew

    2018-01-01

    Assessments of dinosaur macroevolution at any given time can be biased by the historical publication record. Recent studies have analysed patterns in dinosaur diversity that are based on secular variations in the numbers of published taxa. Many of these have employed a range of approaches that account for changes in the shape of the taxonomic abundance curve, which are largely dependent on databases compiled from the primary published literature. However, how these 'corrected' diversity patterns are influenced by the history of publication remains largely unknown. Here, we investigate the influence of publication history between 1991 and 2015 on our understanding of dinosaur evolution using raw diversity estimates and shareholder quorum subsampling for the three major subgroups: Ornithischia, Sauropodomorpha, and Theropoda. We find that, while sampling generally improves through time, there remain periods and regions in dinosaur evolutionary history where diversity estimates are highly volatile (e.g. the latest Jurassic of Europe, the mid-Cretaceous of North America, and the Late Cretaceous of South America). Our results show that historical changes in database compilation can often substantially influence our interpretations of dinosaur diversity. 'Global' estimates of diversity based on the fossil record are often also based on incomplete, and distinct regional signals, each subject to their own sampling history. Changes in the record of taxon abundance distribution, either through discovery of new taxa or addition of existing taxa to improve sampling evenness, are important in improving the reliability of our interpretations of dinosaur diversity. Furthermore, the number of occurrences and newly identified dinosaurs is still rapidly increasing through time, suggesting that it is entirely possible for much of what we know about dinosaurs at the present to change within the next 20 years.

  20. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography.

    PubMed

    Zhang, Tao; Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y; Alley, Marcus T; Lustig, Michael; Pauly, John M; Vasanawala, Shreyas S

    2015-10-01

    Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children. With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children.

  1. The Timing of Infant Food Introduction in Families With a History of Atopy.

    PubMed

    McKean, Michelle; Caughey, Aaron B; Leong, Russell E; Wong, Angela; Cabana, Michael D

    2015-07-01

    To describe the timing of introduction and type of food introduced to infants with a family history of atopy. We conducted a secondary analysis of foods introduced each month to an interventional birth cohort of 149 infants at risk for atopy. Seven percent of infants received solid food prior to 4 months of age; 13% after 6 months of age. Hyperallergenic foods were introduced on average in the following order: wheat (8.7 months); eggs (11.2 months); soy (13.0 months); fish (13.4 months); peanut (20.2 months); tree nuts (21.8 months); and other seafood (21.8 months). Asian race (odds ratio 3.94; 95% CI 1.14-13.58) and maternal history of food allergy (odds ratio 3.86; 95% CI 1.29-11.56) were associated with late food introduction. Variation in timing of food introduction may reflect cultural preferences and/or previous experience with food allergy, as well as the ambiguous state of current recommendations. © The Author(s) 2015.

  2. A bridge between unified cosmic history by f( R)-gravity and BIonic system

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Capozziello, Salvatore; Setare, Mohammad Reza

    2016-04-01

    Recently, the cosmological deceleration-acceleration transition redshift in f( R) gravity has been considered in order to address consistently the problem of cosmic evolution. It is possible to show that the deceleration parameter changes sign at a given redshift according to observational data. Furthermore, a f( R) gravity cosmological model can be constructed in brane-antibrane system starting from the very early universe and accounting for the cosmological redshift at all phases of cosmic history, from inflation to late time acceleration. Here we propose a f( R) model where transition redshifts correspond to inflation-deceleration and deceleration-late time acceleration transitions starting froma BIon system. At the point where the universe was born, due to the transition of k black fundamental strings to the BIon configuration, the redshift is approximately infinity and decreases with reducing temperature (z˜ T2). The BIon is a configuration in flat space of a universe-brane and a parallel anti-universe-brane connected by a wormhole. This wormhole is a channel for flowing energy from extra dimensions into our universe, occurring at inflation and decreasing with redshift as z˜ T^{4+1/7}. Dynamics consists with the fact that the wormhole misses its energy and vanishes as soon as inflation ends and deceleration begins. Approaching two universe branes together, a tachyon is originated, it grows up and causes the formation of a wormhole. We show that, in the framework of f( R) gravity, the cosmological redshift depends on the tachyonic potential and has a significant decrease at deceleration-late time acceleration transition point (z˜ T^{2/3}). As soon as today acceleration approaches, the redshift tends to zero and the cosmological model reduces to the standard Λ CDM cosmology.

  3. The Treatment of Geological Time & the History of Life on Earth in High School Biology Textbooks

    ERIC Educational Resources Information Center

    Summers, Gerald; Decker, Todd; Barrow, Lloyd

    2007-01-01

    In spite of the importance of geological time in evolutionary biology, misconceptions about historical events in the history of life on Earth are common. Glenn (1990) has documented a decline from 1960 to 1989 in the amount of space devoted to the history of life in high school earth science textbooks, but we are aware of no similar study in…

  4. Primate enamel evinces long period biological timing and regulation of life history.

    PubMed

    Bromage, Timothy G; Hogg, Russell T; Lacruz, Rodrigo S; Hou, Chen

    2012-07-21

    The factor(s) regulating the combination of traits that define the overall life history matrix of mammalian species, comprising attributes such as brain and body weight, age at sexual maturity, lifespan and others, remains a complete mystery. The principal objectives of the present research are (1) to provide evidence for a key variable effecting life history integration and (2) to provide a model for how one would go about investigating the metabolic mechanisms responsible for this rhythm. We suggest here that a biological rhythm with a period greater than the circadian rhythm is responsible for observed variation in primate life history. Evidence for this rhythm derives from studies of tooth enamel formation. Enamel contains an enigmatic periodicity in its microstructure called the striae of Retzius, which develops at species specific intervals in units of whole days. We refer to this enamel rhythm as the repeat interval (RI). For primates, we identify statistically significant relationships between RI and all common life history traits. Importantly, RI also correlates with basal and specific metabolic rates. With the exception of estrous cyclicity, all relationships share a dependence upon body mass. This dependence on body mass informs us that some aspect of metabolism is responsible for periodic energy allocations at RI timescales, regulating cell proliferation rates and growth, thus controlling the pace, patterning, and co-variation of life history traits. Estrous cyclicity relates to the long period rhythm in a body mass-independent manner. The mass-dependency and -independency of life history relationships with RI periodicity align with hypothalamic-mediated neurosecretory anterior and posterior pituitary outputs. We term this period the Havers-Halberg Oscillation (HHO), in reference to Clopton Havers, a 17th Century hard tissue anatomist, and Franz Halberg, a long-time explorer of long-period rhythms. We propose a mathematical model that may help elucidate

  5. Timing of seasonal migration in mule deer: effects of climate, plant phenology, and life-history characteristics

    USGS Publications Warehouse

    Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Beck M.; Conner, Mary M.; Klaver, Robert W.; Bowyer, R. Terry

    2011-01-01

    Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, allowed us to document patterns of migration during 11 years that encompassed a wide array of environmental conditions. We used two new techniques to properly account for interval-censored data and disentangle effects of broad-scale climate, local weather patterns, and plant phenology on seasonal patterns of migration, while incorporating effects of individual life-history characteristics. Timing of autumn migration varied substantially among individual deer, but was associated with the severity of winter weather, and in particular, snow depth and cold temperatures. Migratory responses to winter weather, however, were affected by age, nutritional condition, and summer residency of individual females. Old females and those in good nutritional condition risked encountering severe weather by delaying autumn migration, and were thus risk-prone with respect to the potential loss of foraging opportunities in deep snow compared with young females and those in poor nutritional condition. Females that summered on the west side of the crest of the Sierra Nevada delayed autumn migration relative to east-side females, which supports the influence of the local environment on timing of migration. In contrast, timing of spring migration was unrelated to individual life-history characteristics, was nearly twice as synchronous as autumn migration, differed among years, was related to the southern oscillation index, and was influenced by absolute snow depth and advancing phenology of plants

  6. Time representations in social science.

    PubMed

    Schulz, Yvan

    2012-12-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged "acceleration" of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them.

  7. Global Acceleration of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Lara, Alejandro; Lepping, Ronald; Kaiser, Michael; Berdichevsky, Daniel; St. Cyr, O. Chris; Lazarus, Al

    1999-01-01

    Using the observed relation between speeds of coronal mass ejections (CMEs) near the Sun and in the solar wind, we estimate a global acceleration acting on the CMEs. Our study quantifies the qualitative results of Gosling [1997] and numerical simulations that CMEs at 1 AU with speeds closer to the solar wind. We found a linear relation between the global acceleration and the initial speed of the CMEs and the absolute value of the acceleration is similar to the slow solar wind acceleration. Our study naturally divides CMEs into fast and slow ones, the dividing line being the solar wind speed. Our results have important implications to space weather prediction models which need to incorporate this effect in estimating the CME arrival time at 1 AU. We show that the arrival times of CMEs at 1 AU are drastically different from the zero acceleration case.

  8. Oxygen acceleration in magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Liang, Haoming; Lapenta, Giovanni; Walker, Raymond J.; Schriver, David; El-Alaoui, Mostafa; Berchem, Jean

    2017-01-01

    Motivated by the observed high concentration of oxygen ions in the magnetotail during enhanced geomagnetic activity, we investigated the oxygen acceleration in magnetotail reconnection by using 2.5-D implicit particle-in-cell simulations. We found that lobe oxygen ions can enter the downstream outflow region, i.e., the outflow region downstream of the dipolarization fronts (DFs) or the reconnection jet fronts. Without entering the reconnection exhaust, they are accelerated by the Hall electric field. They can populate the downstream outflow region before the DFs arrive there. This acceleration is in addition to acceleration in the exhaust by the Hall and reconnection electric fields. Oxygen ions in the preexisting current sheet are reflected by the propagating DF creating a reflected beam with a hook shape in phase space. This feature can be applied to deduce a history of the DF speed. However, it is difficult to observe for protons because their typical thermal velocity in the plasma sheet is comparable those of the DF and the reflection speed. The oxygen ions from the lobes and the preexisting current sheet form multiple beams in the distribution function in front of the DF. By comparing oxygen concentrations of 50%, 5%, and 0% with the same current sheet thickness, we found that the DF thickness is proportional to the oxygen concentration in the preexisting current sheet. All the simulation results can be used to compare with the observations from the Magnetospheric Multiscale mission.

  9. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2017-12-09

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  10. The Particle Accelerator Simulation Code PyORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less

  11. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  12. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  13. Wormholes record species history in space and time.

    PubMed

    Hedges, S Blair

    2013-02-23

    Genetic and fossil data often lack the spatial and temporal precision for tracing the recent biogeographic history of species. Data with finer resolution are needed for studying distributional changes during modern human history. Here, I show that printed wormholes in rare books and artwork are trace fossils of wood-boring species with unusually accurate locations and dates. Analyses of wormholes printed in western Europe since the fifteenth century document the detailed biogeographic history of two putative species of invasive wood-boring beetles. Their distributions now overlap broadly, as an outcome of twentieth century globalization. However, the wormhole record revealed, unexpectedly, that their original ranges were contiguous and formed a stable line across central Europe, apparently a result of competition. Extension of the wormhole record, globally, will probably reveal other species and evolutionary insights. These data also provide evidence for historians in determining the place of origin or movement of a woodblock, book, document or art print.

  14. Accelerated approval of oncology products: a decade of experience.

    PubMed

    Dagher, Ramzi; Johnson, John; Williams, Grant; Keegan, Patricia; Pazdur, Richard

    2004-10-20

    We review the regulatory history of the accelerated approval process and summarize the U.S. Food and Drug Administration experience with accelerated approvals in oncology. The accelerated approval regulations, promulgated in 1992, allow approval of drugs for serious or life-threatening diseases on the basis of a surrogate endpoint that is reasonably likely to predict clinical benefit, such as survival or symptom benefit, pending completion of studies designed to confirm clinical benefit, referred to as phase 4 commitments, which are required to be conducted with due diligence. From 1992 to 2004, 22 applications involving anticancer drugs or biologics were approved. Of these 22 applications, accelerated approval was granted to 15 on the basis of findings from studies without an active comparator (i.e., single-arm studies or studies comparing two dose levels) and to the remaining seven on the basis of one or more randomized studies. Of the 22 approved applications, six (i.e., applications for dexrazoxane, irinotecan, capecitabine, docetaxel, imatinib mesylate, and oxaliplatin) have had one or more indications converted to regular approval. This review reports information that was presented at an Oncologic Drugs Advisory Committee meeting held in March 2003; it also presents a discussion of accelerated approval study designs, the study populations evaluated in the accelerated approval and confirmatory settings, and the integration of accelerated approval into a comprehensive drug development plan.

  15. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography

    PubMed Central

    Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y.; Alley, Marcus T.; Lustig, Michael; Pauly, John M.; Vasanawala, Shreyas S.

    2015-01-01

    Background Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. Objective To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography method for depicting abdominal arterial anatomy in young children. Materials and methods With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast enhanced MR angiography studies. An radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Results Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9–5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Conclusion Free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries for pediatric contrast enhanced MR angiography. PMID:26040509

  16. The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.

    2017-03-01

    In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.

  17. A history of nursing: a history of caring?

    PubMed

    Maggs, C

    1996-03-01

    The history of nursing is, itself, a fit subject for research. It is unclear what would constitute history in this case, its time frame or its methodology. It is also the case that the purpose of history needs exploration, since it can meet many goals, including the goal of professionalization. This paper explores these issues in some detail, using examples from the literature in the history of nursing. It explores historical inquiry and purpose and the problems of sources. The paper also addresses the relationship between the history of nursing and nursing theory and questions whether existing historical scholarship is integrated with or is outwith mainstream nursing theory. The paper questions the relevance of the history of nursing and suggests that the history of caring may offer one way through history to nursing theory.

  18. A Time Sequence-Oriented Concept Map Approach to Developing Educational Computer Games for History Courses

    ERIC Educational Resources Information Center

    Chu, Hui-Chun; Yang, Kai-Hsiang; Chen, Jing-Hong

    2015-01-01

    Concept maps have been recognized as an effective tool for students to organize their knowledge; however, in history courses, it is important for students to learn and organize historical events according to the time of their occurrence. Therefore, in this study, a time sequence-oriented concept map approach is proposed for developing a game-based…

  19. The fifth force: A personal history

    NASA Astrophysics Data System (ADS)

    Fischbach, Ephraim

    2015-12-01

    On January 6, 1986, a paper written by our group appeared in Physical Review Letters entitled "Reanalysis of the Eötvös Experiment". In that Letter we reanalyzed a well-known 1922 paper by Eötvös, Pekár, and Fekete (EPF) which compared the accelerations of samples of different composition to the Earth. Our surprising conclusion was that "Although the Eötvös experiment has been universally interpreted as having given null results, we find in fact that this is not the case". Two days later a front page story appeared in the New York Times under the headline "Hints of 5th Force in Universe Challenge Galileo's Findings", and so was born the concept of a "fifth force". In this personal history I review the pre-history which motivated our paper, and discuss details of our reanalysis of the EPF paper that have not been presented previously. Our work led to illuminating correspondence with Robert Dicke and Richard Feynman which are presented here for the first time. I also discuss an interesting meeting with T.D. Lee, one of whose papers with C.N. Yang provided part of the theoretical motivation for our work. Although there is almost no support from the many experiments motivated by the EPF data for a fifth force with properties similar to those that we hypothesized in our original paper, interest in the EPF experiment continues for reasons I outline in the Epilogue.

  20. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

    PubMed Central

    Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2016-01-01

    We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724

  1. Volcanic crystals as time capsules of eruption history.

    PubMed

    Ubide, Teresa; Kamber, Balz S

    2018-01-23

    Crystals formed prior to a volcanic event can provide evidence of processes leading to and timing of eruptions. Clinopyroxene is common in basaltic to intermediate volcanoes, however, its ability as a recorder of pre-eruptive histories has remained comparatively underexplored. Here we show that novel high-resolution trace element images of clinopyroxene track eruption triggers and timescales at Mount Etna (Sicily, Italy). Chromium (Cr) distribution in clinopyroxene from 1974 to 2014 eruptions reveals punctuated episodes of intrusion of primitive magma at depth. Magma mixing efficiently triggered volcanism (success rate up to 90%), within only 2 weeks of arrival of mafic intrusions. Clinopyroxene zonations distinguish between injections of mafic magma and regular recharges with more evolved magma, which often fail to tip the system to erupt. High Cr zonations can therefore be used to reconstruct past eruptions and inform responses to geophysical signals of volcano unrest, potentially offering an additional approach to volcano hazard monitoring.

  2. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  3. Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Cid, Antonella; Leon, Genly; Leyva, Yoelsy

    2016-02-01

    In this paper we investigate the evolution of a Jordan-Brans-Dicke scalar field, Φ, with a power-law potential in the presence of a second scalar field, phi, with an exponential potential, in both the Jordan and the Einstein frames. We present the relation of our model with the induced gravity model with power-law potential and the integrability of this kind of models is discussed when the quintessence field phi is massless, and has a small velocity. The fact that for some fine-tuned values of the parameters we may get some integrable cosmological models, makes our choice of potentials very interesting. We prove that in Jordan-Brans-Dicke theory, the de Sitter solution is not a natural attractor. Instead, we show that the attractor in the Jordan frame corresponds to an ``intermediate accelerated'' solution of the form a(t) simeq eα1 tp1, as t → ∞ where α1 > 0 and 0 < p1 < 1, for a wide range of parameters. Furthermore, when we work in the Einstein frame we get that the attractor is also an ``intermediate accelerated'' solution of the form fraktur a(fraktur t) simeq eα2 fraktur tp2 as fraktur t → ∞ where α2 > 0 and 0time attractor is linked with the exact solution found for the induced gravity model. In this example the ``intermediate accelerated'' solution does not exist, and the attractor solution has an asymptotic de Sitter-like evolution law for the

  4. Competing explanations for cosmic acceleration or why is the expansion of the universe accelerating?

    NASA Astrophysics Data System (ADS)

    Ishak, Mustapha

    2012-06-01

    For more than a decade, a number of cosmological observations have been indicating that the expansion of the universe is accelerating. Cosmic acceleration and the questions associated with it have become one of the most challenging and puzzling problems in cosmology and physics. Cosmic acceleration can be caused by (i) a repulsive dark energy pervading the universe, (ii) an extension to General Relativity that takes effect at cosmological scales of distance, or (iii) the acceleration may be an apparent effect due to the fact that the expansion rate of space-time is uneven from one region to another in the universe. I will review the basics of these possibilities and provide some recent results including ours on these questions.

  5. The Past Is All before Us: The History of Education in Hard Times

    ERIC Educational Resources Information Center

    Jones, Ken

    2012-01-01

    In this article, the author explores these questions--from what position, with what focus, and through what methods can a history be produced that is sensible of the conflicts and passions of its own time, and that can illuminate those of the past?--estimating that the books under review in several ways invite such a demanding reading. Gary…

  6. Improved ETA-II accelerator performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, A C; Boyd, J K; Chen, Y J

    1999-03-22

    Improvements have been made in the performance of the ETA-II accelerator that allow a nominal 2 kA, 6 MeV beam to be focused to a spot size less that 1 mm in diameter. The improvements include reducing the energy sweep to less than +/- 0.5 & over 40 ns of the pulse using a real time energy diagnostic and improving the magnetic tune of the accelerator to reduce the emittance to 8 cm-mrad. Finally, an automated tuning system (MAESTRO) was run to minimize the time dependent centroid motion (corkscrew) by adjusting the steering dipoles over the focusing solenoids. The corkscrewmore » motion was reduced to less than +/- 0.5 mm at the output of the accelerator.« less

  7. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  8. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  9. Finite element analysis of history-dependent damage in time-dependent fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswamy, P.; Brust, F.W.; Ghadiali, N.D.

    1993-11-01

    The demands for structural systems to perform reliably under both severe and changing operating conditions continue to increase. Under these conditions time-dependent straining and history-dependent damage become extremely important. This work focuses on studying creep crack growth using finite element (FE) analysis. Two important issues, namely, (1) the use of history-dependent constitutive laws, and (2) the use of various fracture parameters in predicting creep crack growth, have both been addressed in this work. The constitutive model used here is the one developed by Murakami and Ohno and is based on the concept of a creep hardening surface. An implicit FEmore » algorithm for this model was first developed and verified for simple geometries and loading configurations. The numerical methodology developed here has been used to model stationary and growing cracks in CT specimens. Various fracture parameters such as the C[sub 1], C[sup *], T[sup *], J were used to compare the numerical predictions with experimental results available in the literature. A comparison of the values of these parameters as a function of time has been made for both stationary and growing cracks. The merit of using each of these parameters has also been discussed.« less

  10. HEART Pathway Accelerated Diagnostic Protocol Implementation: Prospective Pre-Post Interrupted Time Series Design and Methods.

    PubMed

    Mahler, Simon A; Burke, Gregory L; Duncan, Pamela W; Case, Larry D; Herrington, David M; Riley, Robert F; Wells, Brian J; Hiestand, Brian C; Miller, Chadwick D

    2016-01-22

    Most patients presenting to US Emergency Departments (ED) with chest pain are hospitalized for comprehensive testing. These evaluations cost the US health system >$10 billion annually, but have a diagnostic yield for acute coronary syndrome (ACS) of <10%. The history/ECG/age/risk factors/troponin (HEART) Pathway is an accelerated diagnostic protocol (ADP), designed to improve care for patients with acute chest pain by identifying patients for early ED discharge. Prior efficacy studies demonstrate that the HEART Pathway safely reduces cardiac testing, while maintaining an acceptably low adverse event rate. The purpose of this study is to determine the effectiveness of HEART Pathway ADP implementation within a health system. This controlled before-after study will accrue adult patients with acute chest pain, but without ST-segment elevation myocardial infarction on electrocardiogram for two years and is expected to include approximately 10,000 patients. Outcomes measures include hospitalization rate, objective cardiac testing rates (stress testing and angiography), length of stay, and rates of recurrent cardiac care for participants. In pilot data, the HEART Pathway decreased hospitalizations by 21%, decreased hospital length (median of 12 hour reduction), without increasing adverse events or recurrent care. At the writing of this paper, data has been collected on >5000 patient encounters. The HEART Pathway has been fully integrated into health system electronic medical records, providing real-time decision support to our providers. We hypothesize that the HEART Pathway will safely reduce healthcare utilization. This study could provide a model for delivering high-value care to the 8-10 million US ED patients with acute chest pain each year. Clinicaltrials.gov NCT02056964; https://clinicaltrials.gov/ct2/show/NCT02056964 (Archived by WebCite at http://www.webcitation.org/6ccajsgyu).

  11. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  12. A history of meniscal surgery: from ancient times to the twenty-first century.

    PubMed

    Di Matteo, B; Moran, C J; Tarabella, V; Viganò, A; Tomba, P; Marcacci, M; Verdonk, R

    2016-05-01

    The science and surgery of the meniscus have evolved significantly over time. Surgeons and scientists always enjoy looking forward to novel therapies. However, as part of the ongoing effort at optimizing interventions and outcomes, it may also be useful to reflect on important milestones from the past. The aim of the present manuscript was to explore the history of meniscal surgery across the ages, from ancient times to the twenty-first century. Herein, some of the investigations of the pioneers in orthopaedics are described, to underline how their work has influenced the management of the injured meniscus in modern times. Level of evidence V.

  13. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponentsmore » of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)« less

  14. An Adiabatic Phase-Matching Accelerator

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  15. An Adiabatic Phase-Matching Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  16. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  17. Artificial seismic acceleration

    USGS Publications Warehouse

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  18. The trade-off between maturation and growth during accelerated development in frogs.

    PubMed

    Mueller, Casey A; Augustine, Starrlight; Kooijman, Sebastiaan A L M; Kearney, Michael R; Seymour, Roger S

    2012-09-01

    Developmental energetics are crucial to a species' life history and ecology but are poorly understood from a mechanistic perspective. Traditional energy and mass budgeting does not distinguish between costs of growth and maturation, making it difficult to account for accelerated development. We apply a metabolic theory that uniquely considers maturation costs (Dynamic Energy Budget theory, DEB) to interpret empirical data on the energetics of accelerated development in amphibians. We measured energy use until metamorphosis in two related frogs, Crinia georgiana and Pseudophryne bibronii. Mass and energy content of fresh ova were comparable between the species. However, development to metamorphosis was 1.7 times faster in C. georgiana while P. bibronii produced nine times the dry biomass at metamorphosis and had lower mass-specific oxygen requirements. DEB theory explained these patterns through differences in ontogenetic energy allocation to maturation. P. bibronii partitioned energy in the same (constant) way throughout development whereas C. georgiana increased the fraction of energy allocated to maturation over growth between hatching and the onset of feeding. DEB parameter estimation for additional, direct-developing taxa suggests that a change in energy allocation during development may result from a selective pressure to increase development rate, and not as a result of development mode. Published by Elsevier Inc.

  19. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  20. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data

    PubMed Central

    Jewett, Ethan M.; Steinrücken, Matthias; Song, Yun S.

    2016-01-01

    Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright–Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. PMID:27550904

  1. Power spectrum entropy of acceleration time-series during movement as an indicator of smoothness of movement.

    PubMed

    Kojima, Motonaga; Obuchi, Shuichi; Mizuno, Kousuke; Henmi, Osamu; Ikeda, Noriaki

    2008-06-01

    We propose a novel indicator for smoothness of movement, i.e., the power spectrum entropy of the acceleration time-series, and compare it with conventional indices of smoothness. For this purpose, nineteen healthy adults (21.3+/-2.5 years old) performed the task of raising and lowering a beaker between the level of the umbilicus and eye level under the two following conditions: one with the beaker containing water and the other with the beaker containing a weight of the same mass as the water. Moving the beaker up and down when it contained water required extra control to prevent the water from being spilled. This means that movement was not as smooth as when the beaker contained a weight. Under these two conditions, entropy was measured along with a traditional indicator of smoothness of movement, the jerk index. The entropy could distinguish just as well as the jerk index (p<0.01) between when water was used and when the weight was used. The entropy correlated highly with the jerk index, with Spearman's rho at 0.88 (p<0.01). These results showed that the entropy derived from the spectrum of the acceleration time-series during movement is useful as an indicator of the smoothness of that movement.

  2. Figuring the Acceleration of the Simple Pendulum

    ERIC Educational Resources Information Center

    Lieberherr, Martin

    2011-01-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time. The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal. But sentences like "the acceleration is always directed towards the…

  3. Personal History of Nucleon Polarization Experiments

    DOE R&D Accomplishments Database

    Chamberlain, O.

    1984-09-01

    The history of nucleon scattering experiments is reviewed, starting with the observation of large proton polarizations in scattering from light elements such as carbon, and ending with the acceleration of polarized proton beams in high-energy synchrotrons. Special mention is made about significant contributions made by C.L. Oxley, L. Wolfenstein, R.D. Tripp, T. Ypsilantis, A. Abragam, M. Borghini, T. Niinikoski, Froissart, Stora, A.D. Krisch, and L.G. Ratner.

  4. Early stress, parental motivation, and reproductive decision-making: applications of life history theory to parental behavior.

    PubMed

    Cabeza de Baca, Tomás; Ellis, Bruce J

    2017-06-01

    This review focuses on the impact of parental behavior on child development, as interpreted from an evolutionary-developmental perspective. We employ psychosocial acceleration theory to reinterpret the effects of variation in parental investment and involvement on child development, arguing that these effects have been structured by natural selection to match the developing child to current and expected future environments. Over time, an individual's development, physiology, and behavior are organized in a coordinated manner (as instantiated in 'life history strategies') that facilitates survival and reproductive success under different conditions. We review evidence to suggest that parental behavior (1) is strategic and contingent on environmental opportunities and constraints and (2) influences child life history strategies across behavioral, cognitive, and physiological domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Accelerated second-degree nursing students: predictors of graduation and NCLEX-RN first-time pass rates.

    PubMed

    Penprase, Barbara B; Harris, Margaret A

    2013-01-01

    It is important to understand and identify factors that affect students' academic performance before entry into a nursing program and as they progress through the program. The authors discuss a study, and its outcomes, that assessed accelerated second-degree nursing students' prenursing and core nursing grades that served to predict their success at completing the nursing program and passing NCLEX-RN on first attempt. Strategies were identified to help at-risk students to be successful in the program and with first-time passage of NCLEX-RN.

  6. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  7. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    PubMed

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.

  8. Land Management in the Anthropocene: Is History Still Relevant?

    NASA Astrophysics Data System (ADS)

    Safford, Hugh D.; Betancourt, Julio L.; Hayward, Gregory D.; Wiens, John A.; Regan, Claudia M.

    2008-09-01

    Incorporating Historical Ecology and Climate Change Into Land Management; Lansdowne, Virginia, 22-25 April 2008; Ecological restoration, conservation, and land management are often based on comparisons with reference sites or time periods, which are assumed to represent ``natural'' or ``properly functioning'' conditions. Such reference conditions can provide a vision of the conservation or management goal and a means to measure progress toward that vision. Although historical ecology has been used successfully to guide resource management in many parts of the world, the continuing relevance of history is now being questioned. Some scientists doubt that lessons from the past can inform management in what may be a dramatically different future, given profound climate change, accelerated land use, and an onslaught of plant and animal invasions.

  9. tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables.

    PubMed

    M Sultan, Mohammad; Pande, Vijay S

    2017-06-13

    Metadynamics is a powerful enhanced molecular dynamics sampling method that accelerates simulations by adding history-dependent multidimensional Gaussians along selective collective variables (CVs). In practice, choosing a small number of slow CVs remains challenging due to the inherent high dimensionality of biophysical systems. Here we show that time-structure based independent component analysis (tICA), a recent advance in Markov state model literature, can be used to identify a set of variationally optimal slow coordinates for use as CVs for Metadynamics. We show that linear and nonlinear tICA-Metadynamics can complement existing MD studies by explicitly sampling the system's slowest modes and can even drive transitions along the slowest modes even when no such transitions are observed in unbiased simulations.

  10. Parallels in History.

    ERIC Educational Resources Information Center

    Mugleston, William F.

    2000-01-01

    Believes that by focusing on the recurrent situations and problems, or parallels, throughout history, students will understand the relevance of history to their own times and lives. Provides suggestions for parallels in history that may be introduced within lectures or as a means to class discussions. (CMK)

  11. Diffusive Shock Acceleration and Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  12. Acceleration of yoghurt fermentation time by yeast extract and partial characterisation of the active components.

    PubMed

    Smith, Esti-Andrine; Myburgh, Jacobus; Osthoff, Gernot; de Wit, Maryna

    2014-11-01

    Water soluble autolysate of yeast, usually utilised for microbial growth support, was used as additive in yoghurt fermentation. The yeast extract (YE) resulted in a decrease of fermentation time by 21% to reach a pH of 4·6. However, the YE resulted in unacceptable flavour and taste. By size exclusion chromatography, a fraction of the YE was obtained that could account for the observed 21% decrease in fermentation time. The fraction contained molecules of low molecular weight, consisting of minerals, free amino acids and peptides. The acceleration of the yoghurt fermentation was ascribed to the short peptides in the fraction. It is proposed that the application of this extract in industrial yoghurt manufacture would result in savings for both the industry and the consumer.

  13. The History and Timing of Depression Onset as Predictors of Young Adult Self-Esteem

    ERIC Educational Resources Information Center

    Gayman, Mathew D.; Lloyd, Donald A.; Ueno, Koji

    2011-01-01

    Depression often emerges early in the lifecourse and is consistently shown to be associated with poor self-esteem. The 3 main objectives of the current study are to (1) evaluate the association between a history major depression and self-esteem in young adulthood, (2) assess the relationship between timing of depression onset and young adult…

  14. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters

    USGS Publications Warehouse

    Liu, P.; Archuleta, R.J.; Hartzell, S.H.

    2006-01-01

    We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (< ∼1 Hz) in a 3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results

  15. AP American History and the History Major: Keeping Body and Soul Together.

    ERIC Educational Resources Information Center

    Holbo, Paul S.

    For college-level American History, in the high school advanced placement (AP) program and on university campuses, these are the best of times and the worst of times. For the American History AP program, the early 1970's were difficult times, with the examinations under attack as elitist and irrelevant to contemporary problems. The program…

  16. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data.

    PubMed

    Jewett, Ethan M; Steinrücken, Matthias; Song, Yun S

    2016-11-01

    Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright-Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. A Graphics Processing Unit Accelerated Motion Correction Algorithm and Modular System for Real-time fMRI

    PubMed Central

    Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R. Todd; Papademetris, Xenophon

    2013-01-01

    Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project (www.bioimagesuite.org). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences. PMID:23319241

  18. A graphics processing unit accelerated motion correction algorithm and modular system for real-time fMRI.

    PubMed

    Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R Todd; Papademetris, Xenophon

    2013-07-01

    Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project ( www.bioimagesuite.org ). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.

  19. Time-resolved energy spectrum measurement of a linear induction accelerator with the magnetic analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Xiao-Guo; Yang, Guo-Jun; Chen, Si-Fu; Zhang, Zhuo; Wei, Tao; Li, Jin

    2015-01-01

    We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.

  20. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain.

    PubMed

    Hurst, Martin D; Rood, Dylan H; Ellis, Michael A; Anderson, Robert S; Dornbusch, Uwe

    2016-11-22

    Rising sea levels and increased storminess are expected to accelerate the erosion of soft-cliff coastlines, threatening coastal infrastructure and livelihoods. To develop predictive models of future coastal change we need fundamentally to know how rapidly coasts have been eroding in the past, and to understand the driving mechanisms of coastal change. Direct observations of cliff retreat rarely extend beyond 150 y, during which humans have significantly modified the coastal system. Cliff retreat rates are unknown in prior centuries and millennia. In this study, we derived retreat rates of chalk cliffs on the south coast of Great Britain over millennial time scales by coupling high-precision cosmogenic radionuclide geochronology and rigorous numerical modeling. Measured 10 Be concentrations on rocky coastal platforms were compared with simulations of coastal evolution using a Monte Carlo approach to determine the most likely history of cliff retreat. The 10 Be concentrations are consistent with retreat rates of chalk cliffs that were relatively slow (2-6 cm⋅y -1 ) until a few hundred years ago. Historical observations reveal that retreat rates have subsequently accelerated by an order of magnitude (22-32 cm⋅y -1 ). We suggest that acceleration is the result of thinning of cliff-front beaches, exacerbated by regional storminess and anthropogenic modification of the coast.

  1. Effects of normal acceleration on transient burning rate augmentation of an aluminized solid propellant

    NASA Technical Reports Server (NTRS)

    Northam, G. B.

    1972-01-01

    Instantaneous burning rate data for a polybutadiene acrylic acid propellant, containing 16 weight percent aluminum, were calculated from the pressure histories of a test motor with 96.77 sq cm of burning area and a 5.08-cm-thick propellant web. Additional acceleration tests were conducted with reduced propellant web thicknesses of 3.81, 2.54, and 1.27 cm. The metallic residue collected from the various web thickness tests was characterized by weight and shape and correlated with the instantaneous burning rate measurements. Rapid depressurization extinction tests were conducted in order that surface pitting characteristics due to localized increased burning rate could be correlated with the residue analysis and the instantaneous burning rate data. The acceleration-induced burning rate augmentation was strongly dependent on propellant distance burned, or burning time, and thus was transient in nature. The results from the extinction tests and the residue analyses indicate that the transient rate augmentation was highly dependent on local enhancement of the combustion zone heat feedback to the surface by the growth of molten residue particles on or just above the burning surface. The size, shape, and number density of molten residue particles, rather than the total residue weight, determined the acceleration-induced burning rate augmentation.

  2. Feasibility and Safety of Evaluating Patients with Prior Coronary Artery Disease Using an Accelerated Diagnostic Algorithm in a Chest Pain Unit

    PubMed Central

    Goldkorn, Ronen; Goitein, Orly; Ben-Zekery, Sagit; Shlomo, Nir; Narodetsky, Michael; Livne, Moran; Sabbag, Avi; Asher, Elad; Matetzky, Shlomi

    2016-01-01

    An accelerated diagnostic protocol for evaluating low-risk patients with acute chest pain in a cardiologist-based chest pain unit (CPU) is widely employed today. However, limited data exist regarding the feasibility of such an algorithm for patients with a history of prior coronary artery disease (CAD). The aim of the current study was to assess the feasibility and safety of evaluating patients with a history of prior CAD using an accelerated diagnostic protocol. We evaluated 1,220 consecutive patients presenting with acute chest pain and hospitalized in our CPU. Patients were stratified according to whether they had a history of prior CAD or not. The primary composite outcome was defined as a composite of readmission due to chest pain, acute coronary syndrome, coronary revascularization, or death during a 60-day follow-up period. Overall, 268 (22%) patients had a history of prior CAD. Non-invasive evaluation was performed in 1,112 (91%) patients. While patients with a history of prior CAD had more comorbidities, the two study groups were similar regarding hospitalization rates (9% vs. 13%, p = 0.08), coronary angiography (13% vs. 11%, p = 0.41), and revascularization (6.5% vs. 5.7%, p = 0.8) performed during CPU evaluation. At 60-days the primary endpoint was observed in 12 (1.6%) and 6 (3.2%) patients without and with a history of prior CAD, respectively (p = 0.836). No mortalities were recorded. To conclude, Patients with a history of prior CAD can be expeditiously and safely evaluated using an accelerated diagnostic protocol in a CPU with outcomes not differing from patients without such a history. PMID:27669521

  3. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    USGS Publications Warehouse

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  4. Analysis on the time and frequency domains of the acceleration in front crawl stroke.

    PubMed

    Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella

    2012-05-01

    The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level.

  5. GPU-accelerated algorithms for many-particle continuous-time quantum walks

    NASA Astrophysics Data System (ADS)

    Piccinini, Enrico; Benedetti, Claudia; Siloi, Ilaria; Paris, Matteo G. A.; Bordone, Paolo

    2017-06-01

    Many-particle continuous-time quantum walks (CTQWs) represent a resource for several tasks in quantum technology, including quantum search algorithms and universal quantum computation. In order to design and implement CTQWs in a realistic scenario, one needs effective simulation tools for Hamiltonians that take into account static noise and fluctuations in the lattice, i.e. Hamiltonians containing stochastic terms. To this aim, we suggest a parallel algorithm based on the Taylor series expansion of the evolution operator, and compare its performances with those of algorithms based on the exact diagonalization of the Hamiltonian or a 4th order Runge-Kutta integration. We prove that both Taylor-series expansion and Runge-Kutta algorithms are reliable and have a low computational cost, the Taylor-series expansion showing the additional advantage of a memory allocation not depending on the precision of calculation. Both algorithms are also highly parallelizable within the SIMT paradigm, and are thus suitable for GPGPU computing. In turn, we have benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for a 2-particle system over lattices of increasing dimension, showing that the speedup provided by GPU computing, with respect to the OPENMP parallelization, lies in the range between 8x and (more than) 20x, depending on the frequency of post-processing. GPU-accelerated codes thus allow one to overcome concerns about the execution time, and make it possible simulations with many interacting particles on large lattices, with the only limit of the memory available on the device.

  6. Chemical vs. Physical Acceleration of Cement Hydration

    PubMed Central

    Bentz, Dale P.; Zunino, Franco; Lootens, Didier

    2016-01-01

    Cold weather concreting often requires the use of chemical accelerators to speed up the hydration reactions of the cement, so that setting and early-age strength development will occur in a timely manner. While calcium chloride (dihydrate – CaCl2·2H2O) is the most commonly used chemical accelerator, recent research using fine limestone powders has indicated their high proficiency for physically accelerating early-age hydration and reducing setting times. This paper presents a comparative study of the efficiency of these two approaches in accelerating hydration (as assessed via isothermal calorimetry), reducing setting times (Vicat needle), and increasing early-age mortar cube strength (1 d and 7 d). Both the CaCl2 and the fine limestone powder are used to replace a portion of the finest sand in the mortar mixtures, while keeping both the water-to-cement ratio and volume fractions of water and cement constant. Studies are conducted at 73.4 °F (23°C) and 50 °F (10 °C), so that activation energies can be estimated for the hydration and setting processes. Because the mechanisms of acceleration of the CaCl2 and limestone powder are different, a hybrid mixture with 1 % CaCl2 and 20 % limestone powder (by mass of cement) is also investigated. Both technologies are found to be viable options for reducing setting times and increasing early-age strengths, and it is hoped that concrete producers and contractors will consider the addition of fine limestone powder to their toolbox of techniques for assuring performance in cold weather and other concreting conditions where acceleration may be needed. PMID:28077884

  7. Amplitude-dependent orbital period in alternating gradient accelerators

    DOE PAGES

    Machida, S.; Kelliher, D. J.; Edmonds, C. S.; ...

    2016-03-16

    Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. In this study, we measured orbital period in a linear non-scaling fixed-field alternating-gradient accelerator, which is a candidate for muon acceleration, and compared it with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particlemore » and nuclear physics experiments.« less

  8. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouzes, Richard T.

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less

  9. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration.

    PubMed

    Sato, Hirochika; Kakue, Takashi; Ichihashi, Yasuyuki; Endo, Yutaka; Wakunami, Koki; Oi, Ryutaro; Yamamoto, Kenji; Nakayama, Hirotaka; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2018-01-24

    Although electro-holography can reconstruct three-dimensional (3D) motion pictures, its computational cost is too heavy to allow for real-time reconstruction of 3D motion pictures. This study explores accelerating colour hologram generation using light-ray information on a ray-sampling (RS) plane with a graphics processing unit (GPU) to realise a real-time holographic display system. We refer to an image corresponding to light-ray information as an RS image. Colour holograms were generated from three RS images with resolutions of 2,048 × 2,048; 3,072 × 3,072 and 4,096 × 4,096 pixels. The computational results indicate that the generation of the colour holograms using multiple GPUs (NVIDIA Geforce GTX 1080) was approximately 300-500 times faster than those generated using a central processing unit. In addition, the results demonstrate that 3D motion pictures were successfully reconstructed from RS images of 3,072 × 3,072 pixels at approximately 15 frames per second using an electro-holographic reconstruction system in which colour holograms were generated from RS images in real time.

  10. Generalized Accelerated Failure Time Spatial Frailty Model for Arbitrarily Censored Data

    PubMed Central

    Zhou, Haiming; Hanson, Timothy; Zhang, Jiajia

    2017-01-01

    Flexible incorporation of both geographical patterning and risk effects in cancer survival models is becoming increasingly important, due in part to the recent availability of large cancer registries. Most spatial survival models stochastically order survival curves from different subpopulations. However, it is common for survival curves from two subpopulations to cross in epidemiological cancer studies and thus interpretable standard survival models can not be used without some modification. Common fixes are the inclusion of time-varying regression effects in the proportional hazards model or fully non-parametric modeling, either of which destroys any easy interpretability from the fitted model. To address this issue, we develop a generalized accelerated failure time model which allows stratification on continuous or categorical covariates, as well as providing per-variable tests for whether stratification is necessary via novel approximate Bayes factors. The model is interpretable in terms of how median survival changes and is able to capture crossing survival curves in the presence of spatial correlation. A detailed Markov chain Monte Carlo algorithm is presented for posterior inference and a freely available function frailtyGAFT is provided to fit the model in the R package spBayesSurv. We apply our approach to a subset of the prostate cancer data gathered for Louisiana by the Surveillance, Epidemiology, and End Results program of the National Cancer Institute. PMID:26993982

  11. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  12. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generatormore » based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)« less

  13. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, Million

    2015-08-25

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less

  14. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less

  15. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandi, F., E-mail: fernando.brandi@ino.it; Istituto Italiano di Tecnologia; Giammanco, F.

    2016-08-15

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gasmore » flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10{sup 19} cm{sup −3} range well suited for LWFA.« less

  16. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-02-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global

  17. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-06-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global

  18. Exponential Acceleration of VT Seismicity in the Years Prior to Major Eruptions of Basaltic Volcanoes

    NASA Astrophysics Data System (ADS)

    Lengline, O.; Marsan, D.; Got, J.; Pinel, V.

    2007-12-01

    The evolution of the seismicity at three basaltic volcanoes (Kilauea, Mauna-Loa and Piton de la Fournaise) is analysed during phases of magma accumulation. We show that the VT seismicity during these time-periods is characterized by an exponential increase at long-time scale (years). Such an exponential acceleration can be explained by a model of seismicity forced by the replenishment of a magmatic reservoir. The increase in stress in the edifice caused by this replenishment is modeled. This stress history leads to a cumulative number of damage, ie VT earthquakes, following the same exponential increase as found for seismicity. A long-term seismicity precursor is thus detected at basaltic volcanoes. Although this precursory signal is not able to predict the onset times of futures eruptions (as no diverging point is present in the model), it may help mitigating volcanic hazards.

  19. Nonlocal Models of Cosmic Acceleration

    NASA Astrophysics Data System (ADS)

    Woodard, R. P.

    2014-02-01

    I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation. Although these simple models are not consistent with data on the growth of cosmic structures many of their features are likely to carry over to more complicated models which are in better agreement with the data.

  20. Mediation Analysis with Survival Outcomes: Accelerated Failure Time vs. Proportional Hazards Models

    PubMed Central

    Gelfand, Lois A.; MacKinnon, David P.; DeRubeis, Robert J.; Baraldi, Amanda N.

    2016-01-01

    Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration. Method: We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings. Results: AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome—underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG. Conclusions: When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results. PMID:27065906

  1. Mediation Analysis with Survival Outcomes: Accelerated Failure Time vs. Proportional Hazards Models.

    PubMed

    Gelfand, Lois A; MacKinnon, David P; DeRubeis, Robert J; Baraldi, Amanda N

    2016-01-01

    Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration. We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings. AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome-underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG. When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

  2. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  3. Pulsed-focusing recirculating linacs for muon acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a

  4. Human Life History Evolution Explains Dissociation between the Timing of Tooth Eruption and Peak Rates of Root Growth

    PubMed Central

    Dean, M. Christopher; Cole, Tim J.

    2013-01-01

    We explored the relationship between growth in tooth root length and the modern human extended period of childhood. Tooth roots provide support to counter chewing forces and so it is advantageous to grow roots quickly to allow teeth to erupt into function as early as possible. Growth in tooth root length occurs with a characteristic spurt or peak in rate sometime between tooth crown completion and root apex closure. Here we show that in Pan troglodytes the peak in root growth rate coincides with the period of time teeth are erupting into function. However, the timing of peak root velocity in modern humans occurs earlier than expected and coincides better with estimates for tooth eruption times in Homo erectus. With more time to grow longer roots prior to eruption and smaller teeth that now require less support at the time they come into function, the root growth spurt no longer confers any advantage in modern humans. We suggest that a prolonged life history schedule eventually neutralised this adaptation some time after the appearance of Homo erectus. The root spurt persists in modern humans as an intrinsic marker event that shows selection operated, not primarily on tooth tissue growth, but on the process of tooth eruption. This demonstrates the overarching influence of life history evolution on several aspects of dental development. These new insights into tooth root growth now provide an additional line of enquiry that may contribute to future studies of more recent life history and dietary adaptations within the genus Homo. PMID:23342167

  5. Time history prediction of direct-drive implosions on the Omega facility

    DOE PAGES

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; ...

    2016-01-14

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  6. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  7. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape.more » In contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  8. Accelerating the kiln drying of oak

    Treesearch

    William T. Simpson

    1980-01-01

    Reducing kiln-drying time for oak lumber can reduce energy requirements as well as reduce lumber inventories. In this work, l-inch northern red oak and white oak were kiln dried from green by a combination of individual accelerating techniques– presurfacing, presteaming, accelerated and smooth schedule, and high-temperature drying below 18 percent moisture content....

  9. A comparison in a youth population between those with and without a history of concussion using biomechanical reconstruction.

    PubMed

    Post, Andrew; Hoshizaki, T Blaine; Gilchrist, Michael D; Koncan, David; Dawson, Lauren; Chen, Wesley; Ledoux, Andrée-Anne; Zemek, Roger

    2017-04-01

    OBJECTIVE Concussion is a common topic of research as a result of the short- and long-term effects it can have on the affected individual. Of particular interest is whether previous concussions can lead to a biomechanical susceptibility, or vulnerability, to incurring further head injuries, particularly for youth populations. The purpose of this research was to compare the impact biomechanics of a concussive event in terms of acceleration and brain strains of 2 groups of youths: those who had incurred a previous concussion and those who had not. It was hypothesized that the youths with a history of concussion would have lower-magnitude biomechanical impact measures than those who had never suffered a previous concussion. METHODS Youths who had suffered a concussion were recruited from emergency departments across Canada. This pool of patients was then separated into 2 categories based on their history of concussion: those who had incurred 1 or more previous concussions, and those who had never suffered a concussion. The impact event that resulted in the brain injury was reconstructed biomechanically using computational, physical, and finite element modeling techniques. The output of the events was measured in biomechanical parameters such as energy, force, acceleration, and brain tissue strain to determine if those patients who had a previous concussion sustained a brain injury at lower magnitudes than those who had no previously reported concussion. RESULTS The results demonstrated that there was no biomechanical variable that could distinguish between the concussion groups with a history of concussion versus no history of concussion. CONCLUSIONS The results suggest that there is no measureable biomechanical vulnerability to head impact related to a history of concussions in this youth population. This may be a reflection of the long time between the previous concussion and the one reconstructed in the laboratory, where such a long period has been associated with

  10. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to

  11. Detection of Large Ions in Time-of-Flight Mass Spectrometry: Effects of Ion Mass and Acceleration Voltage on Microchannel Plate Detector Response

    NASA Astrophysics Data System (ADS)

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M.

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  12. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  13. Superconducting traveling wave accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, Z.D.

    1984-11-01

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 10/sup 6/ in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 10/sup 3/, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRAmore » reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table.« less

  14. Evaluating secular acceleration in geomagnetic field model GRIMM-3

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Wardinski, I.

    2012-12-01

    Secular acceleration of the magnetic field is the rate of change of its secular variation. One of the main results of studying magnetic data collected by the German survey satellite CHAMP was the mapping of field acceleration and its evolution in time. Questions remain about the accuracy of the modeled acceleration and the effect of the applied regularization processes. We have evaluated to what extent the regularization affects the temporal variability of the Gauss coefficients. We also obtained results of temporal variability of the Gauss coefficients where alternative approaches to the usual smoothing norms have been applied for regularization. Except for the dipole term, the secular acceleration of the Gauss coefficients is fairly well described up to spherical harmonic degree 5 or 6. There is no clear evidence from observatory data that the spectrum of this acceleration is underestimated at the Earth surface. Assuming a resistive mantle, the observed acceleration supports a characteristic time scale for the secular variation of the order of 11 years.

  15. Synchronous acceleration with tapered dielectric-lined waveguides

    NASA Astrophysics Data System (ADS)

    Lemery, F.; Floettmann, K.; Piot, P.; Kärtner, F. X.; Aßmann, R.

    2018-05-01

    We present a general concept to accelerate nonrelativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program astra and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100 MV /m . Numerical simulations indicate that a ˜200 -keV electron beam can be accelerated to an energy of ˜10 MeV over ˜10 cm with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  16. EDITORIAL: Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009 Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009

    NASA Astrophysics Data System (ADS)

    Bingham, Bob; Muggli, Patric

    2011-01-01

    The Laser and Plasma Accelerators Workshop 2009 was part of a very successful series of international workshops which were conceived at the 1985 Laser Acceleration of Particles Workshop in Malibu, California. Since its inception, the workshop has been held in Asia and in Europe (Kardamyli, Kyoto, Presqu'ile de Giens, Portovenere, Taipei and the Azores). The purpose of the workshops is to bring together the most recent results in laser wakefield acceleration, plasma wakefield acceleration, laser-driven ion acceleration, and radiation generation produced by plasma-based accelerator beams. The 2009 workshop was held on 22-26 June in Kardamyli, Greece, and brought together over 80 participants. (http://cfp.ist.utl.pt/lpaw09/). The workshop involved five main themes: • Laser plasma electron acceleration (experiment/theory/simulation) • Computational methods • Plasma wakefield acceleration (experiment/theory/simulation) • Laser-driven ion acceleration • Radiation generation and application. All of these themes are covered in this special issue of Plasma Physics and Controlled Fusion. The topic and application of plasma accelerators is one of the success stories in plasma physics, with laser wakefield acceleration of mono-energetic electrons to GeV energies, of ions to hundreds of MeV, and electron-beam-driven wakefield acceleration to 85 GeV. The accelerating electric field in the wake is of the order 1 GeV cm-1, or an accelerating gradient 1000 times greater than in conventional accelerators, possibly leading to an accelerator 1000 times smaller (and much more affordable) for the same energy. At the same time, the electron beams generated by laser wakefield accelerators have very good emittance with a correspondingly good energy spread of about a few percent. They also have the unique feature in being ultra-short in the femtosecond scale. This makes them attractive for a variety of applications, ranging from material science to ultra-fast time

  17. Effect of Response Reduction Factor on Peak Floor Acceleration Demand in Mid-Rise RC Buildings

    NASA Astrophysics Data System (ADS)

    Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.

    2017-06-01

    Estimation of Peak Floor Acceleration (PFA) demand along the height of a building is crucial for the seismic safety of nonstructural components. The effect of the level of inelasticity, controlled by the response reduction factor (strength ratio), is studied using incremental dynamic analysis. A total of 1120 nonlinear dynamic analyses, using a suite of 30 recorded ground motion time histories, are performed on mid-rise reinforced-concrete (RC) moment-resisting frame buildings covering a wide range in terms of their periods of vibration. The obtained PFA demands are compared with some of the major national seismic design and retrofit codes (IS 1893 draft version, ASCE 41, EN 1998, and NZS 1170.4). It is observed that the PFA demand at the building's roof level decreases with increasing period of vibration as well as with strength ratio. However, current seismic building codes do not account for these effects thereby producing very conservative estimates of PFA demands. Based on the identified parameters affecting the PFA demand, a model to obtain the PFA distribution along the height of a building is proposed. The proposed model is validated with spectrum-compatible time history analyses of the considered buildings with different strength ratios.

  18. Exercise Versus +Gz Acceleration Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, S. R.; Stocks, J. M.; Evans, J. M.; Knapp, C. F.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Decreased working capacity and "orthostatic" intolerance are two major problems for astronauts during and after landing from spaceflight in a return vehicle. The purpose was to test the hypotheses that (1) supine-passive-acceleration training, supine-interval-exercise plus acceleration training, and supine exercise plus acceleration training will improve orthostatic tolerance (OT) in ambulatory men; and that (2) addition of aerobic exercise conditioning will not influence this enhanced OT from that of passive-acceleration training. Seven untrained men (24-38 yr) underwent 3 training regimens (30 min/d x 5d/wk x 3wk on the human-powered centrifuge - HPC): (a) Passive acceleration (alternating +1.0 Gz to 50% Gzmax); (b) Exercise acceleration (alternating 40% - 90% V02max leg cycle exercise plus 50% of HPCmax acceleration); and (c) Combined intermittent exercise-acceleration at 40% to 90% HPCmax. Maximal supine exercise workloads increased (P < 0.05) by 8.3% with Passive, by 12.6% with Exercise, and by 15.4% with Combined; but maximal V02 and HR were unchanged in all groups. Maximal endurance (time to cessation) was unchanged with Passive, but increased (P < 0.05) with Exercise and Combined. Resting pre-tilt HR was elevated by 12.9% (P < 0.05) only after Passive training, suggesting that exercise training attenuated this HR response. All resting pre-tilt blood pressures (SBP, DBP, MAP) were not different pre- vs. post-training. Post-training tilt-tolerance time and HR were increased (P < 0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training attenuated the increased Passive tilt tolerance. Resting (pre-tilt) and post-tilt cardiac R-R interval, stroke volume, end-diastolic volume, and cardiac output were all uniformly reduced (P < 0.05) while peripheral resistance was uniformly increased (P < 0.05) pre-and post-training for the three regimens indicating no effect of any training regimen on those cardiovascular

  19. History of psychological knowledge in Brazilian culture: Weaving threads on the loom of time.

    PubMed

    Massimi, Marina; Gontijo, Sandro R

    2015-05-01

    After a brief presentation of the research program on the "history of psychological knowledge in the ambit of cultural history," this article addresses 2 issues that we consider particularly important from the methodological point of view: the notion of multiple temporalities (regimes of historicity) and of complexity as characteristics of the contexture of Brazilian culture. It will be shown how both require specific attention from the researcher, because the process of incorporation of psychology in Brazil over time is complex and articulated according to various regimes of historicity that intersect and interpenetrate each other, without being exclusive. Our approach will be exemplified by the concept of memory, showing how this can be grasped in its constitution in Brazilian culture, which is composed of several sedimented layers according to different temporalities. (c) 2015 APA, all rights reserved).

  20. Significance of acceleration period in a dynamic strength testing study.

    PubMed

    Chen, W L; Su, F C; Chou, Y L

    1994-06-01

    The acceleration period that occurs during isokinetic tests may provide valuable information regarding neuromuscular readiness to produce maximal contraction. The purpose of this study was to collect the normative data of acceleration time during isokinetic knee testing, to calculate the acceleration work (Wacc), and to determine the errors (ERexp, ERwork, ERpower) due to ignoring Wacc during explosiveness, total work, and average power measurements. Seven male and 13 female subjects attended the test by using the Cybex 325 system and electronic stroboscope machine for 10 testing speeds (30-300 degrees/sec). A three-way ANOVA was used to assess gender, direction, and speed factors on acceleration time, Wacc, and errors. The results indicated that acceleration time was significantly affected by speed and direction; Wacc and ERexp by speed, direction, and gender; and ERwork and ERpower by speed and gender. The errors appeared to increase when testing the female subjects, during the knee flexion test, or when speed increased. To increase validity in clinical testing, it is important to consider the acceleration phase effect, especially in higher velocity isokinetic testing or for weaker muscle groups.

  1. The complex nature of storm-time ion dynamics: Transport and local acceleration

    DOE PAGES

    Denton, M. H.; Reeves, G. D.; Thomsen, M. F.; ...

    2016-09-29

    Data from the Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O + dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O + might easily be interpreted as strong energization of ionospheric plasma. In this paper, we demonstrate, however, that both the energy spectrum and the limited magnetic local time extent of these features can be explained by energy-dependent drift of particles injected on the nightside 24 hmore » earlier. Particle tracing simulations show that the energetic O + can originate in the magnetotail, not in the ionosphere. Finally, enhanced wave activity is colocated with the heavy ion-rich plasma, and we further conclude that the waves were not a source of free energy for accelerating ionospheric plasma but rather the consequence of the arrival of substorm-injected plasma.« less

  2. Accelerated Testing and Analysis | Photovoltaic Research | NREL

    Science.gov Websites

    & Engineering pages: Real-Time PV & Solar Resource Testing Systems Engineering Systems PV standards. Each year, NCPV researchers, along with solar companies and other national lab Accelerated Testing and Analysis Accelerated Testing and Analysis PV Research Other Reliability

  3. Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature

    PubMed Central

    Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat

    2014-01-01

    It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185

  4. Femtosecond timing distribution and control for next generation accelerators and light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li -Jin

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even attosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. Anmore » increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objective of the work described in this proposal is to set up an optical timing distribution system based on mode locked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the

  5. Concussion History and Time Since Concussion Do not Influence Static and Dynamic Balance in Collegiate Athletes.

    PubMed

    Merritt, Eric D; Brown, Cathleen N; Queen, Robin M; Simpson, Kathy J; Schmidt, Julianne D

    2017-11-01

    Dynamic balance deficits exist following a concussion, sometimes years after injury. However, clinicians lack practical tools for assessing dynamic balance. To determine if there are significant differences in static and dynamic balance performance between individuals with and without a history of concussion. Cross sectional. Clinical research laboratory. 45 collegiate student-athletes with a history of concussion (23 males, 22 females; age = 20.0 ± 1.4 y; height = 175.8 ± 11.6 cm; mass = 76.4 ± 19.2 kg) and 45 matched controls with no history of concussion (23 males, 22 females; age = 20.0 ± 1.3 y; height = 178.8 ± 13.2 cm; mass = 75.7 ± 18.2 kg). Participants completed a static (Balance Error Scoring System) and dynamic (Y Balance Test-Lower Quarter) balance assessment. A composite score was calculated from the mean normalized Y Balance Test-Lower Quarter reach distances. Firm, foam, and overall errors were counted during the Balance Error Scoring System by a single reliable rater. One-way ANOVAs were used to compare balance performance between groups. Pearson's correlations were performed to determine the relationship between the time since the most recent concussion and balance performance. A Bonferonni adjusted a priori α < 0.025 was used for all analyses. Static and dynamic balance performance did not significantly differ between groups. No significant correlation was found between the time since the most recent concussion and balance performance. Collegiate athletes with a history of concussion do not present with static or dynamic balance deficits when measured using clinical assessments. More research is needed to determine whether the Y Balance Test-Lower Quarter is sensitive to acute balance deficits following concussion.

  6. Electron and Ion Acceleration Associated with Magnetotail Reconnection

    NASA Astrophysics Data System (ADS)

    Liang, Haoming

    proton acceleration associated with reconnection mainly occurs in the exhaust and is consistent with Cluster observations. Oxygen ions and protons in the pre-existing current sheet are reflected by the DFs. The reflected oxygen beam forms a hook-shaped signature in phase space. In principle, this signature can be applied to deduce the DF speed history, and thus lead to remote-sensing of the reconnection dynamics.

  7. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  8. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  9. Can f(T) gravity theories mimic ΛCDM cosmic history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir

    2013-01-01

    Recently the teleparallel Lagrangian density described by the torsion scalar T has been extended to a function of T. The f(T) modified teleparallel gravity has been proposed as the natural gravitational alternative for dark energy to explain the late time acceleration of the universe. In order to reconstruct the function f(T) by demanding a background ΛCDM cosmology we assume that, (i) the background cosmic history provided by the flat ΛCDM (the radiation ere with ω{sub eff} = (1/3), matter and de Sitter eras with ω{sub eff} = 0 and ω{sub eff} = −1, respectively) (ii) the radiation dominate in themore » radiation era with Ω{sub 0r} = 1 and the matter dominate during the matter phases when Ω{sub 0m} = 1. We find the cosmological dynamical system which can obey the ΛCDM cosmic history. In each era, we find a critical lines that, the radiation dominated and the matter dominated are one points of them in the radiation and matter phases, respectively. Also, we drive the cosmologically viability condition for these models. We investigate the stability condition with respect to the homogeneous scalar perturbations in each era and we obtain the stability conditions for the fixed points in each eras. Finally, we reconstruct the function f(T) which mimics cosmic expansion history.« less

  10. Noninertial coordinate time: A new concept affecting time standards, time transfers, and clock synchronization

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.

    1992-01-01

    Relativity compensations must be made in precise and accurate measurements whenever an observer is accelerated. Although many believe the Earth-centered frame is sufficiently inertial, accelerations of the Earth, as evidenced by the tides, prove that it is technically a noninertial system for even an Earth-based observer. Using the constant speed of light, a set of fixed remote clocks in an inertial frame can be synchronized to a fixed master clock transmitting its time in that frame. The time on the remote clock defines the coordinate time at that coordinate position. However, the synchronization procedure for an accelerated frame is affected, because the distance between the master and remote clocks is altered due to the acceleration of the remote clock toward or away from the master clock during the transmission interval. An exact metric that converts observations from noninertial frames to inertial frames was recently derived. Using this metric with other physical relationships, a new concept of noninertial coordinate time is defined. This noninertial coordinate time includes all relativity compensations. This new issue raises several timekeeping issues, such as proper time standards, time transfer process, and clock synchronization, all in a noninertial frame such as Earth.

  11. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  12. A Bayesian account of quantum histories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlow, Thomas

    2006-05-15

    We investigate whether quantum history theories can be consistent with Bayesian reasoning and whether such an analysis helps clarify the interpretation of such theories. First, we summarise and extend recent work categorising two different approaches to formalising multi-time measurements in quantum theory. The standard approach consists of describing an ordered series of measurements in terms of history propositions with non-additive 'probabilities.' The non-standard approach consists of defining multi-time measurements to consist of sets of exclusive and exhaustive history propositions and recovering the single-time exclusivity of results when discussing single-time history propositions. We analyse whether such history propositions can be consistentmore » with Bayes' rule. We show that certain class of histories are given a natural Bayesian interpretation, namely, the linearly positive histories originally introduced by Goldstein and Page. Thus, we argue that this gives a certain amount of interpretational clarity to the non-standard approach. We also attempt a justification of our analysis using Cox's axioms of probability theory.« less

  13. First staging of two laser accelerators.

    PubMed

    Kimura, W D; van Steenbergen, A; Babzien, M; Ben-Zvi, I; Campbell, L P; Cline, D B; Dilley, C E; Gallardo, J C; Gottschalk, S C; He, P; Kusche, K P; Liu, Y; Pantell, R H; Pogorelsky, I V; Quimby, D C; Skaritka, J; Steinhauer, L C; Yakimenko, V

    2001-04-30

    Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.

  14. Cosmic acceleration in a dust only universe via energy-momentum powered gravity

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Katırcı, Nihan; Kumar, Suresh

    2018-01-01

    We propose a modified theory of gravitation constructed by the addition of the term f (Tμ νTμ ν) to the Einstein-Hilbert action, and elaborate a particular case f (Tμ νTμ ν)=α (Tμ νTμ ν)η, where α and η are real constants, dubbed energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG, especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters (α ,η ) on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that η =0 corresponds to the Λ CDM model, whereas η ≠0 leads to a w CDM -type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as ρ ∝a-3 with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the Λ CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.

  15. Optimal Congestion Management in Electricity Market Using Particle Swarm Optimization with Time Varying Acceleration Coefficients

    NASA Astrophysics Data System (ADS)

    Boonyaritdachochai, Panida; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes an optimal power redispatching approach for congestion management in deregulated electricity market. Generator sensitivity is considered to indicate the redispatched generators. It can reduce the number of participating generators. The power adjustment cost and total redispatched power are minimized by particle swarm optimization with time varying acceleration coefficients (PSO-TVAC). The IEEE 30-bus and IEEE 118-bus systems are used to illustrate the proposed approach. Test results show that the proposed optimization scheme provides the lowest adjustment cost and redispatched power compared to the other schemes. The proposed approach is useful for the system operator to manage the transmission congestion.

  16. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGES

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; ...

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  17. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  18. The time and place of European admixture in Ashkenazi Jewish history.

    PubMed

    Xue, James; Lencz, Todd; Darvasi, Ariel; Pe'er, Itsik; Carmi, Shai

    2017-04-01

    The Ashkenazi Jewish (AJ) population is important in genetics due to its high rate of Mendelian disorders. AJ appeared in Europe in the 10th century, and their ancestry is thought to comprise European (EU) and Middle-Eastern (ME) components. However, both the time and place of admixture are subject to debate. Here, we attempt to characterize the AJ admixture history using a careful application of new and existing methods on a large AJ sample. Our main approach was based on local ancestry inference, in which we first classified each AJ genomic segment as EU or ME, and then compared allele frequencies along the EU segments to those of different EU populations. The contribution of each EU source was also estimated using GLOBETROTTER and haplotype sharing. The time of admixture was inferred based on multiple statistics, including ME segment lengths, the total EU ancestry per chromosome, and the correlation of ancestries along the chromosome. The major source of EU ancestry in AJ was found to be Southern Europe (≈60-80% of EU ancestry), with the rest being likely Eastern European. The inferred admixture time was ≈30 generations ago, but multiple lines of evidence suggest that it represents an average over two or more events, pre- and post-dating the founder event experienced by AJ in late medieval times. The time of the pre-bottleneck admixture event, which was likely Southern European, was estimated to ≈25-50 generations ago.

  19. The time and place of European admixture in Ashkenazi Jewish history

    PubMed Central

    Xue, James; Lencz, Todd; Darvasi, Ariel; Pe’er, Itsik

    2017-01-01

    The Ashkenazi Jewish (AJ) population is important in genetics due to its high rate of Mendelian disorders. AJ appeared in Europe in the 10th century, and their ancestry is thought to comprise European (EU) and Middle-Eastern (ME) components. However, both the time and place of admixture are subject to debate. Here, we attempt to characterize the AJ admixture history using a careful application of new and existing methods on a large AJ sample. Our main approach was based on local ancestry inference, in which we first classified each AJ genomic segment as EU or ME, and then compared allele frequencies along the EU segments to those of different EU populations. The contribution of each EU source was also estimated using GLOBETROTTER and haplotype sharing. The time of admixture was inferred based on multiple statistics, including ME segment lengths, the total EU ancestry per chromosome, and the correlation of ancestries along the chromosome. The major source of EU ancestry in AJ was found to be Southern Europe (≈60–80% of EU ancestry), with the rest being likely Eastern European. The inferred admixture time was ≈30 generations ago, but multiple lines of evidence suggest that it represents an average over two or more events, pre- and post-dating the founder event experienced by AJ in late medieval times. The time of the pre-bottleneck admixture event, which was likely Southern European, was estimated to ≈25–50 generations ago. PMID:28376121

  20. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Srivastava, Milan

    2018-03-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.

  1. Burial thermal histories, vitrinite reflectance, and laumontite isograd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloh, T.H.; Fan, J.J.

    1985-02-01

    The optical reflectance of vitrinite has become the standard basis for quantitative judgments of integrated temperature-time (burial) histories. Inferences about the crystallization temperature of the calcium zeolite laumontite also have been used repeatedly for such purposes. In a few cases, these 2 approaches have been combined or their results compared. As generally employed, neither approach has quantitative validity. Factors other than temperature and time play roles in the way that burial history affects vitrinite reflectance (R/sub o/). In particular, the organic geochemical environment exerts a strong and variable local-to-regional influence on the rate of increase of R/sub o/ versus temperature.more » Hydrocarbon-rich environments retard the rate of R/sub o/ increase; hydrocarbon-deficient environments accelerate it. Local (interbed) R/sub o/ divergencies up to 0.5% result, and regional (interbasin) divergencies are equal or possibly greater. Much of the scatter in compilation plots of R/sub o/ versus TTI may result from such divergencies. Laumontite, where it can crystallize at all, precipitates according to specific stringent requirements of fluid pressure and temperature. The crystallization temperature at the laumontite isograd ranges from 32/sup 0/C (1 atm) to 193/sup 0/C (P/sub f/ = 1325 atm). The crystallization rate is geologically instantaneous, completely unlike the time-dependent organic reactions responsible for the progressive aromatization of coal macerals during kerogen maturation, providing an instantaneous pressure-sensitive maximum-recording thermometer. Paleotemperatures to constrain interpretations of R/sub o/ data may be one of the greatest values to be gained from studies of diagenetic laumontite.« less

  2. Accelerated Reader. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    "Accelerated Reader" is a computer-based reading management system designed to complement an existing classroom literacy program for grades pre-K-12. It is designed to increase the amount of time students spend reading independently. Students choose reading-level appropriate books or short stories for which Accelerated Reader tests are…

  3. Predicting drowsy driving in real-time situations: Using an advanced driving simulator, accelerated failure time model, and virtual location-based services.

    PubMed

    Wang, Junhua; Sun, Shuaiyi; Fang, Shouen; Fu, Ting; Stipancic, Joshua

    2017-02-01

    This paper aims to both identify the factors affecting driver drowsiness and to develop a real-time drowsy driving probability model based on virtual Location-Based Services (LBS) data obtained using a driving simulator. A driving simulation experiment was designed and conducted using 32 participant drivers. Collected data included the continuous driving time before detection of drowsiness and virtual LBS data related to temperature, time of day, lane width, average travel speed, driving time in heavy traffic, and driving time on different roadway types. Demographic information, such as nap habit, age, gender, and driving experience was also collected through questionnaires distributed to the participants. An Accelerated Failure Time (AFT) model was developed to estimate the driving time before detection of drowsiness. The results of the AFT model showed driving time before drowsiness was longer during the day than at night, and was longer at lower temperatures. Additionally, drivers who identified as having a nap habit were more vulnerable to drowsiness. Generally, higher average travel speeds were correlated to a higher risk of drowsy driving, as were longer periods of low-speed driving in traffic jam conditions. Considering different road types, drivers felt drowsy more quickly on freeways compared to other facilities. The proposed model provides a better understanding of how driver drowsiness is influenced by different environmental and demographic factors. The model can be used to provide real-time data for the LBS-based drowsy driving warning system, improving past methods based only on a fixed driving. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  5. The Interstellar Mapping and Acceleration Probe - A Mission to Discover the Origin of Particle Acceleration and its Fundamental Connection to the Global Interstellar Interaction

    NASA Astrophysics Data System (ADS)

    Schwadron, N.

    2017-12-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. The Interstellar Boundary Explorer (IBEX) was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies ( 5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The global structure of the heliosphere is highly complex and influenced by competing factors ranging from the local interstellar magnetic field, suprathermal populations both within and beyond the heliopause, and the detailed flow properties of the LISM. Global heliospheric structure and microphysics in turn influences the acceleration of energetic particles and creates feedbacks that modify the interstellar interaction as a whole. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics and probe the acceleration of suprathermal and higher energy particles at a time when the space environment is rapidly evolving. IMAP ultimately connects the acceleration processes observed directly at 1 AU with unprecedented sensitivity and temporal resolution with the global structure of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose

  6. Longitudinal timed function tests in Duchenne muscular dystrophy: ImagingDMD cohort natural history.

    PubMed

    Arora, Harneet; Willcocks, Rebecca J; Lott, Donovan J; Harrington, Ann T; Senesac, Claudia R; Zilke, Kirsten L; Daniels, Michael J; Xu, Dandan; Tennekoon, Gihan I; Finanger, Erika L; Russman, Barry S; Finkel, Richard S; Triplett, William T; Byrne, Barry J; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2018-05-09

    Tests of ambulatory function are common clinical trial endpoints in Duchenne muscular dystrophy (DMD). The ImagingDMD study has generated a large data set using these tests, which can describe the contemporary natural history of DMD in 5-12.9 year olds. 92 corticosteroid treated boys with DMD and 45 controls participated in this longitudinal study. Subjects performed the 6 minute walk test (6MWT) and timed function tests (TFTs: 10m walk/run, 4 stairs, supine to stand). Boys with DMD had impaired functional performance even at 5-6.9 years. Boys older than 7 had significant declines in function over 1 year for 10m walk/run and 6MWT. 80% of subjects could perform all functional tests at 9 years old. TFTs appear to be slightly more responsive and predictive of disease progression than 6MWT in 7-12.9 year olds. This study provides insight into the contemporary natural history of key functional endpoints in DMD. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  7. Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS

    DTIC Science & Technology

    2017-05-17

    order reaction mechanism, the best acceleration was 6.1 times. For a larger, more chemically detailed mechanism, the best acceleration exceeded 60 times...simulations at previously inaccessible scales. A principle feature of DPD-RX is its ability to model chemical reactions within each CG particle. The...change in composition due to chemical reactions is described by a system of ordinary differential equations (ODEs) that are evaluated at each DPD time

  8. Tiempos Pasados (Past Times). Grass-Roots Oral History.

    ERIC Educational Resources Information Center

    Hunsaker, Alan, Ed.

    Compiled with learning objectives, suggested lesson plans, learning center activities, and selected teacher and student bibliographies for use at the elementary level, transcripts of oral history interviews with 11 Mexican Americans in San Bernardino County's West End provide understanding of the mass movement of Mexicans to the United States in…

  9. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.

  10. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  11. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris)

    PubMed Central

    Williams, S. B.; Usherwood, J. R.; Jespers, K.; Channon, A. J.; Wilson, A. M.

    2009-01-01

    Summary Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the `gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration – a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration. PMID:19181903

  12. Accelerator science in medical physics.

    PubMed

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future.

  13. Experimental test of entangled histories

    NASA Astrophysics Data System (ADS)

    Cotler, Jordan; Duan, Lu-Ming; Hou, Pan-Yu; Wilczek, Frank; Xu, Da; Yin, Zhang-Qi; Zu, Chong

    2017-12-01

    Entangled histories arise when a system partially decoheres in such a way that its past cannot be described by a sequence of states, but rather a superposition of sequences of states. Such entangled histories have not been previously observed. We propose and demonstrate the first experimental scheme to create entangled history states of the Greenberger-Horne-Zeilinger (GHZ) type. In our experiment, the polarization states of a single photon at three different times are prepared as a GHZ entangled history state. We define a GHZ functional which attains a maximum value 1 on the ideal GHZ entangled history state and is bounded above by 1 / 16 for any three-time history state lacking tripartite entanglement. We have measured the GHZ functional on a state we have prepared experimentally, yielding a value of 0 . 656 ± 0 . 005, clearly demonstrating the contribution of entangled histories.

  14. Time-dependent Electron Acceleration in Pulsar Wind Termination Shocks: Application to the 2011 April Crab Nebula Gamma-Ray Flare

    NASA Astrophysics Data System (ADS)

    Kroon, John J.; Becker, Peter A.; Finke, Justin D.

    2018-01-01

    The γ-ray flares from the Crab Nebula observed by AGILE and Fermi-LAT between 2007 and 2013 reached GeV photon energies and lasted several days. The strongest emission, observed during the 2011 April “superflare”, exceeded the quiescent level by more than an order of magnitude. These observations challenge the standard models for particle acceleration in pulsar wind nebulae, because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron emission. Particle-in-cell simulations have suggested that the classical synchrotron limit can be exceeded if the electrons also experience electrostatic acceleration due to shock-driven magnetic reconnection. In this paper, we revisit the problem using an analytic approach based on solving a fully time-dependent electron transport equation describing the electrostatic acceleration, synchrotron losses, and escape experienced by electrons in a magnetically confined plasma “blob” as it encounters and passes through the pulsar wind termination shock. We show that our model can reproduce the γ-ray spectra observed during the rising and decaying phases of each of the two sub-flare components of the 2011 April superflare. We integrate the spectrum for photon energies ≥slant 100 MeV to obtain the light curve for the event, which also agrees with the observations. We find that strong electrostatic acceleration occurs on both sides of the termination shock, driven by magnetic reconnection. We also find that the dominant mode of particle escape changes from diffusive escape to advective escape as the blob passes through the shock.

  15. Synchronous acceleration with tapered dielectric-lined waveguides

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    Here, we present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  16. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  17. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  18. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  19. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  20. The influence of tyre transient side force properties on vehicle lateral acceleration for a time-varying vertical force

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshimichi

    2018-05-01

    The tyre model which formerly developed by the author et al. and describes the tyre transient responses of side force and aligning moment under the time-varying vertical force was implemented to the vehicle dynamics simulation software and the influence of tyre side force transient property on the vehicle behaviour was investigated. The vehicle responses with/without tyre transient property on sinusoidally undulated road surfaces were simulated and compared. It was found that the average lateral acceleration of the vehicle at the sinusoidal steering wheel angle input decreases on the undulated road of long wavelength (3 m) for both cases, but when the wavelength becomes shorter (1 m), the average lateral acceleration increases only in the case that the transient property is considered. The cause of those changes is explained by using the tyre-related variables. Also the steady-state turning behaviour of the vehicle on undulated roads are shown and discussed.

  1. Physics History Books in the Fermilab Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sara Tompson.

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is historymore » of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.« less

  2. Physics History Books in the Fermilab Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sara Tompson

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the world�s most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is historymore » of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.« less

  3. Improving History Learning through Cultural Heritage, Local History and Technology

    ERIC Educational Resources Information Center

    Magro, Graça; de Carvalho, Joaquim Ramos; Marcelino, Maria José

    2014-01-01

    History learning is many times considered dull and demotivating by young students. Probably this is due because the learning process is disconnected from these students' reality and experience. One possible way to overcome this state of matters is to use technology like mobile devices with georeferencing software and local history and heritage…

  4. Postural Control Characteristics during Single Leg Standing of Individuals with a History of Ankle Sprain: Measurements Obtained Using a Gravicorder and Head and Foot Accelerometry.

    PubMed

    Abe, Yota; Sugaya, Tomoaki; Sakamoto, Masaaki

    2014-03-01

    [Purpose] This study aimed to validate the postural control characteristics of individuals with a history of ankle sprain during single leg standing by using a gravicorder and head and foot accelerometry. [Subjects] Twenty subjects with and 23 subjects without a history of ankle sprain (sprain and control groups, respectively) participated. [Methods] The anteroposterior, mediolateral, and total path lengths, as well as root mean square (RMS) of each length, were calculated using the gravicorder. The anteroposterior, mediolateral, and resultant acceleration of the head and foot were measured using accelerometers and were evaluated as the ratio of the acceleration of the head to the foot. [Results] There was no significant difference between the two groups in path length or RMS acceleration of the head and foot. However, the ratios of the mediolateral and resultant components were significantly higher in the sprain group than in the control group. [Conclusion] Our findings suggest that individuals with a history of ankle sprain have a higher head-to-foot acceleration ratio and different postural control characteristics than those of control subjects.

  5. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  6. Radiation from Accelerating Electric Charges: The Third Derivative of Position

    NASA Astrophysics Data System (ADS)

    Butterworth, Edward

    2010-03-01

    While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.

  7. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Zank, Gary P.

    2013-01-01

    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  8. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  9. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  10. Laser-driven ion acceleration at BELLA

    NASA Astrophysics Data System (ADS)

    Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  11. Art History in 3-D

    ERIC Educational Resources Information Center

    Snyder, Jennifer

    2012-01-01

    Students often have a hard time equating time spent on art history as time well spent in the art room. Likewise, art teachers struggle with how to keep interest in their classrooms high when the subject turns to history. Some teachers show endless videos, with the students nodding sleepily along to the narrator. Others try to incorporate small…

  12. Time-dependent effects of heat advection and topography on cooling histories during erosion

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil S.; Grasemann, Bernhard

    1997-03-01

    Both erosion and surface topography cause a time-dependent variation in isotherm geometry that can result in significant errors in estimating natural exhumation rates from geochronologic data. Analytical solutions and two-dimensional numerical modelling are used to investigate the magnitude of these inaccuracies for conditions appropriate to many rapidly exhumed mountain chains of rugged relief. It is readily demonstrated that uplift of the topographic surface has a negligible effect on the cooling history of an exhumed rock sample and cannot be quantified by current geochronologic methods. The topography itself perturbs the isotherms to a depth that depends on both the vertical and horizontal scale of the surface relief. Estimations employing different isotopic systems in the same sample with higher closure temperatures (> 200°C) are not generally influenced by topography. However, direct conversion of cooling rates to exhumation rates assuming a simple constant linear geotherm markedly underestimates peak rates, due to variation of the geothermal gradient in time and space and to the time lag between exhumation and cooling. Estimations based on the altitude variation in apatite fission-track ages are less prone to such inaccuracies in geothermal gradient but are affected by near-surface time-dependent variation in isotherm depth due to advection and topography. In tectonically active mountain belts, high exhumation rates are coupled with rugged topography, and exhumation rates may be markedly overestimated, by factors of 2 or more. Even at lower exhumation rates on the order of 1 mm/a, the shape of the cooling curve is modified by advection and topography. A convex-concave shape to the cooling curve does not necessarily imply a change of exhumation rate; it may also be attained by a more complicated geothermal gradient induced by topographic relief. Very fast cooling below 100°C, often interpreted as reflecting faster exhumation, can be more simply explained by

  13. Design for simultaneous acceleration of stable and unstable beams in a superconducting heavy-ion linear accelerator for RISP

    NASA Astrophysics Data System (ADS)

    Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho

    2017-11-01

    The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.

  14. Implementation guidance for accelerated bridge construction in South Dakota

    DOT National Transportation Integrated Search

    2017-09-01

    A study was conducted to investigate implementation of accelerated bridge construction (ABC) in South Dakota. Accelerated bridge construction is defined as construction practices that employ innovative techniques to reduce on-site construction time a...

  15. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  16. A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, A.

    We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc

  17. Variation in Seed Germination of 134 Common Species on the Eastern Tibetan Plateau: Phylogenetic, Life History and Environmental Correlates

    PubMed Central

    Xu, Jing; Li, Wenlong; Zhang, Chunhui; Liu, Wei; Du, Guozhen

    2014-01-01

    Seed germination is a crucial stage in the life history of a species because it represents the pathway from adult to offspring, and it can affect the distribution and abundance of species in communities. In this study, we examined the effects of phylogenetic, life history and environmental factors on seed germination of 134 common species from an alpine/subalpine meadow on the eastern Tibetan Plateau. In one-way ANOVAs, phylogenetic groups (at or above order) explained 13.0% and 25.9% of the variance in germination percentage and mean germination time, respectively; life history attributes, such as seed size, dispersal mode, explained 3.7%, 2.1% of the variance in germination percentage and 6.3%, 8.7% of the variance in mean germination time, respectively; the environmental factors temperature and habitat explained 4.7%, 1.0% of the variance in germination percentage and 13.5%, 1.7% of the variance in mean germination time, respectively. Our results demonstrated that elevated temperature would lead to a significant increase in germination percentage and an accelerated germination. Multi-factorial ANOVAs showed that the three major factors contributing to differences in germination percentage and mean germination time in this alpine/subalpine meadow were phylogenetic attributes, temperature and seed size (explained 10.5%, 4.7% and 1.4% of the variance in germination percentage independently, respectively; and explained 14.9%, 13.5% and 2.7% of the variance in mean germination time independently, respectively). In addition, there were strong associations between phylogenetic group and life history attributes, and between life history attributes and environmental factors. Therefore, germination variation are constrained mainly by phylogenetic inertia in a community, and seed germination variation correlated with phylogeny is also associated with life history attributes, suggesting a role of niche adaptation in the conservation of germination variation within lineages

  18. Interactions of Grazing History, Cattle Removal and Time since Rain Drive Divergent Short-Term Responses by Desert Biota

    PubMed Central

    Frank, Anke S. K.; Dickman, Chris R.; Wardle, Glenda M.; Greenville, Aaron C.

    2013-01-01

    Arid grasslands are used worldwide for grazing by domestic livestock, generating debate about how this pastoral enterprise may influence native desert biota. One approach to resolving this question is to experimentally reduce livestock numbers and measure the effects. However, a key challenge in doing this is that historical grazing impacts are likely to be cumulative and may therefore confound comparisons of the short-term responses of desert biota to changes in stocking levels. Arid areas are also subject to infrequent flooding rainfalls that drive productivity and dramatically alter abundances of flora and fauna. We took advantage of an opportunity to study the recent effects of a property-scale cattle removal on two properties with similarly varied grazing histories in central Australia. Following the removal of cattle in 2006 and before and after a significant rainfall event at the beginning of 2007, we sampled vegetation and small vertebrates on eight occasions until October 2008. Our results revealed significant interactions of time of survey with both grazing history and grazing removal for vascular plants, small mammals and reptiles. The mammals exhibited a three-way interaction of time, grazing history and grazing removal, thus highlighting the importance of careful sampling designs and timing for future monitoring. The strongest response to the cessation of grazing after two years was depressed reproductive output of plants in areas where cattle continued to graze. Our results confirm that neither vegetation nor small vertebrates necessarily respond immediately to the removal of livestock, but that rainfall events and cumulative grazing history are key determinants of floral and faunal performance in grassland landscapes with low and variable rainfall. We suggest that improved assessments could be made of the health of arid grazing environments if long-term monitoring were implemented to track the complex interactions that influence how native biota

  19. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The Com

  20. History of teaching anatomy in India: from ancient to modern times.

    PubMed

    Jacob, Tony George

    2013-01-01

    Safe clinical practice is based on a sound knowledge of the structure and function of the human body. Thus, knowledge of anatomy has been an essential tool in the practice of healthcare throughout the ages. The history of anatomy in India traces from the Paleolithic Age to the Indus Valley Civilization, the Vedic Times, the Islamic Dynasties, the modern Colonial Period, and finally to Independent India. The course of the study of anatomy, despite accompanying controversies and periods of latencies, has been fascinating. This review takes the reader through various periods of Indian medicine and the role of anatomy in the field of medical practice. It also provides a peek into the modern system of pedagogy in anatomical sciences in India. Copyright © 2013 American Association of Anatomists.

  1. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  2. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  3. Changing times at the Rocky Mountain Forest & Range Experiment Station: Station history from 1976 to 1997

    Treesearch

    R. H. Hamre

    2005-01-01

    Changing Times includes a review of early Station history, touches on changing societal perspectives and how things are now done differently, how the Station has changed physically and organizationally, technology transfer, a sampling of major characters, how some Station research has been applied, and a timeline of significant and/or interesting events. It includes...

  4. Accelerated telomere shortening: Tracking the lasting impact of early institutional care at the cellular level.

    PubMed

    Humphreys, Kathryn L; Esteves, Kyle; Zeanah, Charles H; Fox, Nathan A; Nelson, Charles A; Drury, Stacy S

    2016-12-30

    Studies examining the association between early adversity and longitudinal changes in telomere length within the same individual are rare, yet are likely to provide novel insight into the subsequent lasting effects of negative early experiences. We sought to examine the association between institutional care history and telomere shortening longitudinally across middle childhood and into adolescence. Buccal DNA was collected 2-4 times, between the ages of 6 and 15 years, in 79 children enrolled in the Bucharest Early Intervention Project (BEIP), a longitudinal study exploring the impact of early institutional rearing on child health and development. Children with a history of early institutional care (n=50) demonstrated significantly greater telomere shortening across middle childhood and adolescence compared to never institutionalized children (n=29). Among children with a history of institutional care, randomization to high quality foster care was not associated with differential telomere attrition across development. Cross-sectional analysis of children randomized to the care as usual group indicated shorter telomere length was associated with greater percent of the child's life spent in institutional care up to age 8. These results suggest that early adverse care from severe psychosocial deprivation may be embedded at the molecular genetic level through accelerated telomere shortening. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Accelerated telomere shortening: Tracking the lasting impact of early institutional care at the cellular level

    PubMed Central

    Humphreys, Kathryn L.; Esteves, Kyle; Zeanah, Charles H; Fox, Nathan A; Nelson, Charles A.; Drury, Stacy S.

    2016-01-01

    Studies examining the association between early adversity and longitudinal changes in telomere length within the same individual are rare, yet are likely to provide novel insight into the subsequent lasting effects of negative early experiences. We sought to examine the association between institutional care history and telomere shortening longitudinally across middle childhood and into adolescence. Buccal DNA was collected 2 to 4 times, between the ages of 6 and 15 years, in 79 children enrolled in the Bucharest Early Intervention Project (BEIP), a longitudinal study exploring the impact of early institutional rearing on child health and development. Children with a history of early institutional care (n=50) demonstrated significantly greater telomere shortening across middle childhood and adolescence compared to never institutionalized children (n=29). Among children with a history of institutional care, randomization to high quality foster care was not associated with differential telomere attrition across development. Cross-sectional analysis of children randomized to the care as usual group indicated shorter telomere length was associated with greater percent of the child’s life spent in institutional care up to age 8. These results suggest that early adverse care from severe psychosocial deprivation may be embedded at the molecular genetic level through accelerated telomere shortening. PMID:27677058

  6. Explicitly modelled deep-time tidal dissipation and its implication for Lunar history

    NASA Astrophysics Data System (ADS)

    Green, J. A. M.; Huber, M.; Waltham, D.; Buzan, J.; Wells, M.

    2017-03-01

    Dissipation of tidal energy causes the Moon to recede from the Earth. The currently measured rate of recession implies that the age of the Lunar orbit is 1500 My old, but the Moon is known to be 4500 My old. Consequently, it has been proposed that tidal energy dissipation was weaker in the Earth's past, but explicit numerical calculations are missing for such long time intervals. Here, for the first time, numerical tidal model simulations linked to climate model output are conducted for a range of paleogeographic configurations over the last 252 My. We find that the present is a poor guide to the past in terms of tidal dissipation: the total dissipation rates for most of the past 252 My were far below present levels. This allows us to quantify the reduced tidal dissipation rates over the most resent fraction of lunar history, and the lower dissipation allows refinement of orbitally-derived age models by inserting a complete additional precession cycle.

  7. Absolute acceleration measurements on STS-50 from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1994-01-01

    Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.

  8. Local and Community History: Some Cautionary Remarks on an Idea Whose Time Has Returned.

    ERIC Educational Resources Information Center

    Gerber, David A.

    1979-01-01

    Analyzes past local history movements and addresses benefits and problems for historical studies and history teaching in the current upsurge of interest in local and community history. Concludes that local history must transcend parochialism in order to see the larger picture. (KC)

  9. Physical activities to enhance an understanding of acceleration

    NASA Astrophysics Data System (ADS)

    Lee, S. A.

    2006-03-01

    On the basis of their everyday experiences, students have developed an understanding of many of the concepts of mechanics by the time they take their first physics course. However, an accurate understanding of acceleration remains elusive. Many students have difficulties distinguishing between velocity and acceleration. In this report, a set of physical activities to highlight the differences between acceleration and velocity are described. These activities involve running and walking on sand (such as an outdoor volleyball court).

  10. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  11. Statistical properties of the time histories of cosmic gamma-ray bursts detected by the BATSE experiment of the Compton gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    Sagdeev, Roald

    1995-01-01

    The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.

  12. A systematic FPGA acceleration design for applications based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  13. Scale-by-scale contributions to Lagrangian particle acceleration

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Wilczek, Michael

    2017-11-01

    Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.

  14. Hand function is altered in individuals with a history of illicit stimulant use.

    PubMed

    Pearson-Dennett, Verity; Flavel, Stanley C; Wilcox, Robert A; Thewlis, Dominic; Vogel, Adam P; White, Jason M; Todd, Gabrielle

    2014-01-01

    Use of illicit stimulant drugs such as methamphetamine, cocaine, and ecstasy are a significant worldwide problem. However, little is known about the effect of these drugs on movement. The aim of the current study was to investigate hand function in adults with a history of illicit stimulant use. We hypothesized that prior use of illicit stimulant drugs is associated with abnormal manipulation of objects. The study involved 22 subjects with a history of illicit stimulant use (aged 29±8 yrs; time since last use: 1.8±4.0 yrs) and two control groups comprising 27 non-drug users (aged 25±8 yrs) and 17 cannabis users with no history of stimulant use (aged 22±5 yrs). Each subject completed screening tests (neuropsychological assessment, medical history questionnaire, lifetime drug history questionnaire, and urine drug screen) prior to gripping and lifting a light-weight object with the dominant right hand. Horizontal grip force, vertical lift force, acceleration, and first dorsal interosseus electromyographic (EMG) activity were recorded during three trials. In trial one, peak grip force was significantly greater in the stimulant group (12.8±3.9 N) than in the control groups (non-drug: 10.3±4.6 N; cannabis: 9.4±2.9 N, P<0.022). However, peak grip force did not differ between groups in trials two and three. The results suggest that individuals with a history of stimulant use overestimate the grip force required to manipulate a novel object but, are able to adapt grip force in subsequent lifts. The results suggest that movement dysfunction may be an unrecognized consequence of illicit stimulant use.

  15. Hand Function is Altered in Individuals with a History of Illicit Stimulant Use

    PubMed Central

    Pearson-Dennett, Verity; Flavel, Stanley C.; Wilcox, Robert A.; Thewlis, Dominic; Vogel, Adam P.; White, Jason M.; Todd, Gabrielle

    2014-01-01

    Use of illicit stimulant drugs such as methamphetamine, cocaine, and ecstasy are a significant worldwide problem. However, little is known about the effect of these drugs on movement. The aim of the current study was to investigate hand function in adults with a history of illicit stimulant use. We hypothesized that prior use of illicit stimulant drugs is associated with abnormal manipulation of objects. The study involved 22 subjects with a history of illicit stimulant use (aged 29±8 yrs; time since last use: 1.8±4.0 yrs) and two control groups comprising 27 non-drug users (aged 25±8 yrs) and 17 cannabis users with no history of stimulant use (aged 22±5 yrs). Each subject completed screening tests (neuropsychological assessment, medical history questionnaire, lifetime drug history questionnaire, and urine drug screen) prior to gripping and lifting a light-weight object with the dominant right hand. Horizontal grip force, vertical lift force, acceleration, and first dorsal interosseus electromyographic (EMG) activity were recorded during three trials. In trial one, peak grip force was significantly greater in the stimulant group (12.8±3.9 N) than in the control groups (non-drug: 10.3±4.6 N; cannabis: 9.4±2.9 N, P<0.022). However, peak grip force did not differ between groups in trials two and three. The results suggest that individuals with a history of stimulant use overestimate the grip force required to manipulate a novel object but, are able to adapt grip force in subsequent lifts. The results suggest that movement dysfunction may be an unrecognized consequence of illicit stimulant use. PMID:25545892

  16. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  17. Exploring the History of Time in an Integrated System: the Ramifications for Water

    NASA Astrophysics Data System (ADS)

    Green, M. B.; Adams, L. E.; Allen, T. L.; Arrigo, J. S.; Bain, D. J.; Bray, E. N.; Duncan, J. M.; Hermans, C. M.; Pastore, C.; Schlosser, C. A.; Vorosmarty, C. J.; Witherell, B. B.; Wollheim, W. M.; Wreschnig, A. J.

    2009-12-01

    Characteristic time scales are useful and simple descriptors of geophysical and socio-economic system dynamics. Focusing on the integrative nature of the hydrologic cycle, new insights into system couplings can be gained by compiling characteristic time scales of important processes driving these systems. There are many examples of changing characteristic time scales. Human life expectancy has increased over the recent history of medical advancement. The transport time of goods has decreased with the progression from horse to rail to car to plane. The transport time of information changed with the progression from letter to telegraph to telephone to networked computing. Soil residence time (pedogenesis to estuary deposition) has been influenced by changing agricultural technology, urbanization, and forest practices. Surface water residence times have varied as beaver dams have disappeared and been replaced with modern reservoirs, flood control works, and channelization. These dynamics raise the question of how these types of time scales interact with each other to form integrated Earth system dynamics? Here we explore the coupling of geophysical and socio-economic systems in the northeast United States over the 1600 to 2010 period by examining characteristic time scales. This visualization of many time scales serves as an exploratory analysis, producing new hypotheses about how the integrated system dynamics have evolved over the last 400 years. Specifically, exponential population growth and the evolving strategies to maintain that population appears as fundamental to many of the time scales.

  18. Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors

    NASA Astrophysics Data System (ADS)

    Talebizadeh, P.; Rahimzadeh, H.; Ahmadi, G.; Brown, R.; Inthavong, K.

    2016-12-01

    Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.

  19. Development of a subway operation incident delay model using accelerated failure time approaches.

    PubMed

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An Accelerated Method for Soldering Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Qingyou; Xu, Hanbing; Ried, Paul

    2007-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations have been applied to simulate the die casting conditions such as high pressure and high molten metal velocity on the pin. The soldering tendency of steels and coated pins has been examined. The results suggest that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to between 30-60 times. Coatings significantly reduce the soldering tendency. For purposes of this study, several commercialmore » coatings from Balzers demonstrated the potential for increasing the service life of core pins between 15 and 180 times.« less

  1. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  2. Fermilab | Tevatron | Accelerator

    Science.gov Websites

    Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab temperature. They were used to transfer particles from one part of the Fermilab accelerator complex to another center ring of Fermilab's accelerator complex. Before the Tevatron shut down, it had three primary

  3. A new perspective on global mean sea level (GMSL) acceleration

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-06-01

    The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.

  4. Evolutionary history, immigration history, and the extent of diversification in community assembly.

    PubMed

    Knope, Matthew L; Forde, Samantha E; Fukami, Tadashi

    2011-01-01

    During community assembly, species may accumulate not only by immigration, but also by in situ diversification. Diversification has intrigued biologists because its extent varies even among closely related lineages under similar ecological conditions. Recent research has suggested that some of this puzzling variation may be caused by stochastic differences in the history of immigration (relative timing and order of immigration by founding populations), indicating that immigration and diversification may affect community assembly interactively. However, the conditions under which immigration history affects diversification remain unclear. Here we propose the hypothesis that whether or not immigration history influences the extent of diversification depends on the founding populations' prior evolutionary history, using evidence from a bacterial experiment. To create genotypes with different evolutionary histories, replicate populations of Pseudomonas fluorescens were allowed to adapt to a novel environment for a short or long period of time (approximately 10 or 100 bacterial generations) with or without exploiters (viral parasites). Each evolved genotype was then introduced to a new habitat either before or after a standard competitor genotype. Most genotypes diversified to a greater extent when introduced before, rather than after, the competitor. However, introduction order did not affect the extent of diversification when the evolved genotype had previously adapted to the environment for a long period of time without exploiters. Diversification of these populations was low regardless of introduction order. These results suggest that the importance of immigration history in diversification can be predicted by the immigrants' evolutionary past. The hypothesis proposed here may be generally applicable in both micro- and macro-organisms.

  5. Recent results of studies of acceleration of compact toroids

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Hartmen, C. W.; Eddleman, J.

    1984-03-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.

  6. The Case for "Big History."

    ERIC Educational Resources Information Center

    Christian, David

    1991-01-01

    Urges an approach to the teaching of history that takes the largest possible perspective, crossing time as well as space. Discusses the problems and advantages of such an approach. Describes a course on "big" history that begins with time, creation myths, and astronomy, and moves on to paleontology and evolution. (DK)

  7. Decades of Data: Extracting Trends from Microgravity Crystallization History

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Kephart, Richard; vanderWoerd, Mark; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The reduced acceleration environment of an orbiting spacecraft has been posited as an ideal environment for biological crystal growth since buoyancy driven convection and sedimentation are greatly reduced. Since the first sounding rocket flight in 1981 many crystallization experiments have flown with some showing improvement and others not. To further explore macromolecule crystal improvement in microgravity we have accumulated data from published reports and reports submitted by individual investigators to NASA, forming a database called BIOSEArCH (Biological Space Experiment Archive of Crystallization History). To date it contains information from 63 missions including, the Space Shuttle program, unmanned satellites, the Russian Space Station MIR and sounding rocket experiments, containing reports for more than 736 macromolecule experiments. While it is not at this point in time a comprehensive record of all flight crystallization experimental results, there is however sufficient information for emerging trends to be identified. These trends will be highlighted.

  8. Piezoelectric particle accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  9. Memory-induced acceleration and slowdown of barrier crossing

    NASA Astrophysics Data System (ADS)

    Kappler, Julian; Daldrop, Jan O.; Brünig, Florian N.; Boehle, Moritz D.; Netz, Roland R.

    2018-01-01

    We study the mean first-passage time τMFP for the barrier crossing of a single massive particle with non-Markovian memory by Langevin simulations in one dimension. In the Markovian limit of short memory time τΓ, the expected Kramers turnover between the overdamped (high-friction) and the inertial (low-friction) limits is recovered. Compared to the Markovian case, we find barrier crossing to be accelerated for intermediate memory time, while for long memory time, barrier crossing is slowed down and τMFP increases with τΓ as a power law τM F P˜τΓ2. Both effects are derived from an asymptotic propagator analysis: while barrier crossing acceleration at intermediate memory can be understood as an effective particle mass reduction, slowing down for long memory is caused by the slow kinetics of energy diffusion. A simple and globally accurate heuristic formula for τMFP in terms of all relevant time scales of the system is presented and used to establish a scaling diagram featuring the Markovian overdamped and the Markovian inertial regimes, as well as the non-Markovian intermediate memory time regime where barrier crossing is accelerated and the non-Markovian long memory time regime where barrier crossing is slowed down.

  10. Mechanism and preparation of liquid alkali-free liquid setting accelerator for shotcrete

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Ding, Bei; Gan, Jiezhong; Guo, Zhaolai; Zheng, Chunyang; Jiang, Haidong

    2017-03-01

    A new alkali-free liquid accelerator for shotcrete was prepared through normal temperature drop process by using the nano activated alumina and the modified alcohol amine as the main raw materials. The effect of alkali-free liquid accelerator on the cement setting time and the mechanical properties of mortar, the effect of the penetration strength on the shotcrete rebound were investigated. And the accelerating mechanism of the as-prepared alkali-free liquid accelerator was also analyzed via XRD and SEM characterization methods. The experimental results indicated that the hydration of C3A was accelerated by the polyamine complexation of accelerator, resulting in forming a large number of acicular ettringite and reducing the amount of Ca(OH)2 crystal, which would not affect the later hydration of cement. When the content of alkali-free liquid accelerator was 6%, the initial setting time and final setting time were less than 3min and 8min respectively, and 1d and 28d compressive strength ratios reached 207.6% and 114.2% respectively; beside that, the shotcrete rebound was very low because of the high penetration strength within 30min.

  11. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations

  12. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Thomson, J. Ross; Drolet, Francois; Vinals, Jorge

    1996-01-01

    We summarize several aspects of an ongoing investigation of the effects that stochastic residual accelerations (g-jitter) onboard spacecraft can have on experiments conducted in a microgravity environment. The residual acceleration field is modeled as a narrow band noise, characterized by three independent parameters: intensity (g(exp 2)), dominant angular frequency Omega, and characteristic correlation time tau. Realistic values for these parameters are obtained from an analysis of acceleration data corresponding to the SL-J mission, as recorded by the SAMS instruments. We then use the model to address the random motion of a solid particle suspended in an incompressible fluid subjected to such random accelerations. As an extension, the effect of jitter on coarsening of a solid-liquid mixture is briefly discussed, and corrections to diffusion controlled coarsening evaluated. We conclude that jitter will not be significant in the experiment 'Coarsening of solid-liquid mixtures' to be conducted in microgravity. Finally, modifications to the location of onset of instability in systems driven by a random force are discussed by extending the standard reduction to the center manifold to the stochastic case. Results pertaining to time-modulated oscillatory convection are briefly discussed.

  13. Accelerated Monte Carlo Methods for Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  14. Time development of high-altitude auroral acceleration region plasma, potentials, and field-aligned current systems observed by Cluster during a substorm

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Mozer, F.; Frey, H. U.

    2013-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. These auroral acceleration processes in turn accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. The complex interplay between field-aligned current system formation, the development of parallel electric fields, and resultant changes in the plasma constituents that occur during substorms within or just above the auroral acceleration zone remain unclear. We present Cluster multi-point observations within the high-altitude acceleration region (> 3 Re altitude) at key instances during the development of a substorm. Of particular emphasis is on the time-development of the plasma, potentials and currents that occur therein with the aim of ascertaining high-altitude drivers of substorm active auroral acceleration processes and auroral emission consequences. Preliminary results show that the initial onset is dominated by Alfvenic activity as evidenced by the sudden occurrence of relatively intense, short-spatial scale Alfvenic currents and attendant energy dispersed, counterstreaming electrons poleward of the growth-phase arc. The Alfvenic currents are locally planar structures with characteristic thicknesses on the order of a few tens of kilometers. In subsequent passages by the other spacecraft, the plasma sheet region became hotter and thicker via the injection of new hot, dense plasma of magnetospheric origins poleward of the pre-existing growth phase arc. In association with the heating and/or thickening of the plasma sheet, the currents appeared to broaden to larger scales as Alfven dominated activity gave way to either inverted-V dominated or mixed inverted-V and Alfvenic behavior depending on location. The transition from Alfven dominated to inverted-V dominated

  15. The beat in laser-accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Schnürer, M.; Andreev, A. A.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Platonov, K. Yu.; Priebe, G.; Sandner, W.

    2013-10-01

    Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.

  16. Figuring the Acceleration of the Simple Pendulum

    NASA Astrophysics Data System (ADS)

    Lieberherr, Martin

    2011-12-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time.1,2 The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal.3 But sentences like "the acceleration is always directed towards the equilibrium position" beside the picture of a swing on a circular arc can still be found in textbooks, as e.g. in Ref. 4. Vectors have been invented by Grassmann (1844)5 and are conveniently used to describe the acceleration in curved orbits, but acceleration is more often treated as a scalar with or without sign, as the words acceleration/deceleration suggest. The component tangential to the orbit is enough to deduce the period of the simple pendulum, but it is not enough to discuss the forces on the pendulum, as has been pointed out by Santos-Benito and A. Gras-Marti.6 A suitable way to address this problem is a nice figure with a catch for classroom discussions or homework. When I plotted the acceleration vectors of the simple pendulum in their proper positions, pictures as in Fig. 1 appeared on the screen. The endpoints of the acceleration vectors, if properly scaled, seemed to lie on a curve with a familiar shape: a cardioid. Is this true or just an illusion?

  17. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  18. Spatially inhomogeneous acceleration of electrons in solar flares

    NASA Astrophysics Data System (ADS)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  19. Promoting Acceleration of Comprehension and Content through Text in High School Social Studies Classes

    ERIC Educational Resources Information Center

    Wanzek, Jeanne; Swanson, Elizabeth A.; Roberts, Greg; Vaughn, Sharon; Kent, Shawn C.

    2015-01-01

    The purpose of this study was to evaluate the efficacy of Promoting Acceleration of Comprehension and Content Through Text intervention implemented with 11th-grade students enrolled in U.S. History classes. Using a within-teacher randomized design, the study was conducted in 41 classes (23 treatment classes) with 14 teachers providing the…

  20. Menopause accelerates biological aging

    PubMed Central

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  1. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic fieldmore » is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.« less

  2. Graphics-processing-unit-accelerated finite-difference time-domain simulation of the interaction between ultrashort laser pulses and metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V. P.; Stegailov, V. V.

    2018-01-01

    Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.

  3. VAiRoma: A Visual Analytics System for Making Sense of Places, Times, and Events in Roman History.

    PubMed

    Cho, Isaac; Dou, Wewnen; Wang, Derek Xiaoyu; Sauda, Eric; Ribarsky, William

    2016-01-01

    Learning and gaining knowledge of Roman history is an area of interest for students and citizens at large. This is an example of a subject with great sweep (with many interrelated sub-topics over, in this case, a 3,000 year history) that is hard to grasp by any individual and, in its full detail, is not available as a coherent story. In this paper, we propose a visual analytics approach to construct a data driven view of Roman history based on a large collection of Wikipedia articles. Extracting and enabling the discovery of useful knowledge on events, places, times, and their connections from large amounts of textual data has always been a challenging task. To this aim, we introduce VAiRoma, a visual analytics system that couples state-of-the-art text analysis methods with an intuitive visual interface to help users make sense of events, places, times, and more importantly, the relationships between them. VAiRoma goes beyond textual content exploration, as it permits users to compare, make connections, and externalize the findings all within the visual interface. As a result, VAiRoma allows users to learn and create new knowledge regarding Roman history in an informed way. We evaluated VAiRoma with 16 participants through a user study, with the task being to learn about roman piazzas through finding relevant articles and new relationships. Our study results showed that the VAiRoma system enables the participants to find more relevant articles and connections compared to Web searches and literature search conducted in a roman library. Subjective feedback on VAiRoma was also very positive. In addition, we ran two case studies that demonstrate how VAiRoma can be used for deeper analysis, permitting the rapid discovery and analysis of a small number of key documents even when the original collection contains hundreds of thousands of documents.

  4. Relationship between employment histories and frailty trajectories in later life: evidence from the English Longitudinal Study of Ageing

    PubMed Central

    Lu, Wentian; Benson, Rebecca; Glaser, Karen; Corna, Laurie M; Worts, Diana; McDonough, Peggy; Price, Debora; Sacker, Amanda

    2017-01-01

    Background Given the acceleration of population ageing and policy changes to extend working lives, evidence is needed on the ability of older adults to work for longer. To understand more about the health impacts of work, this study examined the relationship between employment histories before retirement and trajectories of frailty thereafter. Methods The sample comprised 2765 women and 1621 men from the English Longitudinal Study of Ageing. We used gendered typologies of life-time employment and a frailty index (FI). Multilevel growth curve models were used to predict frailty trajectories by employment histories. Results Women who had a short break for family care, then did part-time work till 59 years had a lower FI after 60 years than those who undertook full-time work until 59 years. Women who were largely family carers or non-employed throughout adulthood, had higher levels of frailty at 60 years but experienced a slower decline with age. Men who worked full-time but early exited at either 49 or 60 years had a higher FI at 65 years than those who worked full-time up to 65 years. Interaction between employment histories and age indicated that men in full-time work who experienced an early exit at 49 tended to report slower declines. Conclusions For women, experiencing distinct periods throughout the lifecourse of either work or family care may be advantageous for lessening frailty risk in later life. For men, leaving paid employment before 65 years seems to be beneficial for decelerating increases in frailty thereafter. Continuous full-time work until retirement age conferred no long-term health benefits. PMID:27913614

  5. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  6. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  7. K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow.

    PubMed

    Stankovic, Zoran; Fink, Jury; Collins, Jeremy D; Semaan, Edouard; Russe, Maximilian F; Carr, James C; Markl, Michael; Langer, Mathias; Jung, Bernd

    2015-04-01

    We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.

  8. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  9. Non-invasive characterization of real-time bladder sensation using accelerated hydration and a novel sensation meter: An initial experience.

    PubMed

    Nagle, Anna S; Speich, John E; De Wachter, Stefan G; Ghamarian, Peter P; Le, David M; Colhoun, Andrew F; Ratz, Paul H; Barbee, Robert W; Klausner, Adam P

    2017-06-01

    The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0-100% scale) and standardized verbal sensory thresholds using a novel, touch-screen "sensation meter." 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity-sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. © 2016 Wiley Periodicals, Inc.

  10. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  11. A History of Spike-Timing-Dependent Plasticity

    PubMed Central

    Markram, Henry; Gerstner, Wulfram; Sjöström, Per Jesper

    2011-01-01

    How learning and memory is achieved in the brain is a central question in neuroscience. Key to today’s research into information storage in the brain is the concept of synaptic plasticity, a notion that has been heavily influenced by Hebb's (1949) postulate. Hebb conjectured that repeatedly and persistently co-active cells should increase connective strength among populations of interconnected neurons as a means of storing a memory trace, also known as an engram. Hebb certainly was not the first to make such a conjecture, as we show in this history. Nevertheless, literally thousands of studies into the classical frequency-dependent paradigm of cellular learning rules were directly inspired by the Hebbian postulate. But in more recent years, a novel concept in cellular learning has emerged, where temporal order instead of frequency is emphasized. This new learning paradigm – known as spike-timing-dependent plasticity (STDP) – has rapidly gained tremendous interest, perhaps because of its combination of elegant simplicity, biological plausibility, and computational power. But what are the roots of today’s STDP concept? Here, we discuss several centuries of diverse thinking, beginning with philosophers such as Aristotle, Locke, and Ribot, traversing, e.g., Lugaro’s plasticità and Rosenblatt’s perceptron, and culminating with the discovery of STDP. We highlight interactions between theoretical and experimental fields, showing how discoveries sometimes occurred in parallel, seemingly without much knowledge of the other field, and sometimes via concrete back-and-forth communication. We point out where the future directions may lie, which includes interneuron STDP, the functional impact of STDP, its mechanisms and its neuromodulatory regulation, and the linking of STDP to the developmental formation and continuous plasticity of neuronal networks. PMID:22007168

  12. Flutter Boundary Identification From Simulation Time Histories

    NASA Technical Reports Server (NTRS)

    Baker, Myles; Goggin, P. J.

    1997-01-01

    While there has been much recent progress in simulating nonlinear aeroelastic systems, and in predicting many of the aeroelastic phenomena of concern in transport aircraft design (i.e. transonic flutter buckets), the utility of a simulation in generating an understanding of the flutter behavior is limited. This is due in part to the high cost of generating these simulations; and the implied limitation on the number of conditions that can be analyzed, but there are also some difficulties introduced by the very nature of a simulation. Flutter engineers have traditionally worked in the frequency domain, and are accustomed to describing the flutter behavior of an airplane in terms of its V-G and V-F (or Q-G and Q-F) plots and flutter mode shapes. While the V-G and V-F plots give information about how the dynamic response of an airplane changes as the airspeed is increased, the simulation only gives information about one isolated condition (Mach, airspeed, altitude, etc.). Therefore, where a traditional flutter analysis can let the engineer determine an airspeed at which an airplane becomes unstable, while a simulation only serves as a binary check: either the airplane is fluttering at this condition, or it is not. In this document, a new technique is described in which system identification is used to easily extract modal frequencies and damping ratios from simulation time histories, and shows how the identified parameters can be used to determine the variation in frequency and dampin,o ratio as the airspeed is changed. This technique not only provides the flutter engineer with added insight into the aeroelastic behavior of the airplane, but it allows calculation of flutter mode shapes, and allows estimation of flutter boundaries while minimizing the number of simulations required.

  13. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  14. Visions of Woman-Centered History.

    ERIC Educational Resources Information Center

    Evans, Sara M.

    1982-01-01

    Discusses three alternative approaches to women's history: (1) that although men have made history, women have contributed; (2) that women have been victimized, cross-culturally and throughout time; and (3) "woman-centered history," which recognizes the reality of repression but accords women the dignity of having survived and shaped social…

  15. Nonlinear dynamics of autonomous vehicles with limits on acceleration

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2014-07-01

    The stability of autonomous vehicle platoons with limits on acceleration and deceleration is determined. If the leading-vehicle acceleration remains within the limits, all vehicles in the platoon remain within the limits when the relative-velocity feedback coefficient is equal to the headway time constant [k=1/h]. Furthermore, if the sensitivity α>1/h, no collisions occur. String stability for small perturbations is assumed and the initial condition is taken as the equilibrium state. Other values of k and α that give stability with no collisions are found from simulations. For vehicles with non-negligible mechanical response, simulations indicate that the acceleration-feedback-control gain might have to be dynamically adjusted to obtain optimal performance as the response time changes with engine speed. Stability is demonstrated for some perturbations that cause initial acceleration or deceleration greater than the limits, yet do not cause collisions.

  16. Acceleration of ions and neutrals by a traveling electrostatic wave

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Lee, L. C.; Wong, A. Y.

    2018-02-01

    We propose a new scheme for accelerating a weakly ionized gas by externally imposing a sinusoidal electrostatic (ES) potential in a tubular system. The weakly ionized gas consists of three fluid components: neutral hydrogen fluid ( H ), positively charged fluid ( H + ), and negatively charged fluids ( H - and/or e - ), as an example. The sinusoidal ES potential is imposed on a series of conductive meshes in the tubular system, and its phase varies with time and space to mimic a traveling ES wave. The charged fluids are trapped and accelerated by the sinusoidal ES potential, while the neutral fluid is accelerated through neutral-ion collisions. The neutral fluid can be accelerated to the wave phase velocity in a few neutral-ion collision times. The whole device remains charge-neutral, and there is no build-up of space charge. The acceleration scheme can be applied to, for example, the propulsion of glider in the air, partially ionized plasma in a chamber, spacecraft, and wind tunnel.

  17. Accelerating solutions of one-dimensional unsteady PDEs with GPU-based swept time-space decomposition

    NASA Astrophysics Data System (ADS)

    Magee, Daniel J.; Niemeyer, Kyle E.

    2018-03-01

    The expedient design of precision components in aerospace and other high-tech industries requires simulations of physical phenomena often described by partial differential equations (PDEs) without exact solutions. Modern design problems require simulations with a level of resolution difficult to achieve in reasonable amounts of time-even in effectively parallelized solvers. Though the scale of the problem relative to available computing power is the greatest impediment to accelerating these applications, significant performance gains can be achieved through careful attention to the details of memory communication and access. The swept time-space decomposition rule reduces communication between sub-domains by exhausting the domain of influence before communicating boundary values. Here we present a GPU implementation of the swept rule, which modifies the algorithm for improved performance on this processing architecture by prioritizing use of private (shared) memory, avoiding interblock communication, and overwriting unnecessary values. It shows significant improvement in the execution time of finite-difference solvers for one-dimensional unsteady PDEs, producing speedups of 2 - 9 × for a range of problem sizes, respectively, compared with simple GPU versions and 7 - 300 × compared with parallel CPU versions. However, for a more sophisticated one-dimensional system of equations discretized with a second-order finite-volume scheme, the swept rule performs 1.2 - 1.9 × worse than a standard implementation for all problem sizes.

  18. Preparation and comparative testing of advanced diamond-like carbon foils for tandem accelerators and time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Liechtenstein, V. Kh.; Ivkova, T. M.; Olshanski, E. D.; Baranov, A. M.; Repnow, R.; Hellborg, R.; Weller, R. A.; Wirth, H. L.

    1999-12-01

    The sputter preparation technique for thin diamond-like carbon (DLC) foils, advantageously used for ion-beam stripping and timing in accelerator experiments, has been optimized to improve the quality and the performance of the foils. Irradiation lifetimes of 5 μg/cm 2 DLC foils prepared by this technique have been compared with those for foils of approximately the same thickness, prepared by laser plasma ablation and for ethylene cracked foils when bombarded by 11 MeV Cu - - and Au --ion beams of ˜1 μA beam current at the Heidelberg MP-tandem. Standard carbon arc-evaporated foils were used as references. In these experiments, DLC stripper foils appeared to have a mean lifetime approximately two times longer than ethylene-cracked foils regardless of ion species, and compared favorably with foils prepared by laser ablation method. All these foils lasted at least, 10 times longer than standard carbon foils, when irradiated in the MP terminal. Approximately, the same improvement factor was confirmed with 3 μg/cm 2 DLC stripper foils irradiated with 2.3 MeV Ni-beams at the Pelletron accelerator in Lund. Unlike standard carbon foils, most of the advanced lifetime foils exhibited thinning during long irradiation, under clean vacuum. This suggests that sputtering of the foil by the heavy-ion beam might be a dominant process, responsible for the observed failure of these long-lived strippers. Along with specifically corrugated self-supporting DLC beam strippers, we succeeded in the fabrication of very smooth and ultra thin (˜0.5 μg/cm 2) DLC foils, mounted on grids and used as start foils for the ToF spectrometers applied in ion beam analysis.

  19. Analyzing Collision Processes with the Smartphone Acceleration Sensor

    ERIC Educational Resources Information Center

    Vogt, Patrik; Kuhn, Jochen

    2014-01-01

    It has been illustrated several times how the built-in acceleration sensors of smartphones can be used gainfully for quantitative experiments in school and university settings (see the overview in Ref. 1 ). The physical issues in that case are manifold and apply, for example, to free fall, radial acceleration, several pendula, or the exploitation…

  20. Modeling laser-plasma acceleration in the laboratory frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame".

  1. PW-class laser-driven super acceleration systems in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke

    2017-10-01

    Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.

  2. Acceleration during magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipationmore » in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.« less

  3. ACCELERATED FAILURE TIME MODELS PROVIDE A USEFUL STATISTICAL FRAMEWORK FOR AGING RESEARCH

    PubMed Central

    Swindell, William R.

    2009-01-01

    Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model “deceleration factor”. AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data. PMID:19007875

  4. Accelerated failure time models provide a useful statistical framework for aging research.

    PubMed

    Swindell, William R

    2009-03-01

    Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.

  5. Bridging the gap between high and low acceleration for planetary escape

    NASA Astrophysics Data System (ADS)

    Indrikis, Janis; Preble, Jeffrey C.

    With the exception of the often time consuming analysis by numerical optimization, no single orbit transfer analysis technique exists that can be applied over a wide range of accelerations. Using the simple planetary escape (parabolic trajectory) mission some of the more common techniques are considered as the limiting bastions at the high and the extremely low acceleration regimes. The brachistochrone, the minimum time of flight path, is proposed as the technique to bridge the gap between the high and low acceleration regions, providing a smooth bridge over the entire acceleration spectrum. A smooth and continuous velocity requirement is established for the planetary escape mission. By using these results, it becomes possible to determine the effect of finite accelerations on mission performance and target propulsion and power system designs which are consistent with a desired mission objective.

  6. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. SU-E-T-405: Evaluation of the Raystation Electron Monte Carlo Algorithm for Varian Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansourekidou, P; Allen, C

    2015-06-15

    Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore » water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.« less

  8. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  9. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  10. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  11. The Influence of Accelerator Science on Physics Research

    NASA Astrophysics Data System (ADS)

    Haussecker, Enzo F.; Chao, Alexander W.

    2011-06-01

    We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.

  12. Tandem accelerators in Romania: Multi-tools for science, education and technology

    NASA Astrophysics Data System (ADS)

    Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.

    2017-06-01

    An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].

  13. Omnibus Risk Assessment via Accelerated Failure Time Kernel Machine Modeling

    PubMed Central

    Sinnott, Jennifer A.; Cai, Tianxi

    2013-01-01

    Summary Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai et al., 2011). In this paper, we derive testing and prediction methods for KM regression under the accelerated failure time model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. PMID:24328713

  14. Omnibus risk assessment via accelerated failure time kernel machine modeling.

    PubMed

    Sinnott, Jennifer A; Cai, Tianxi

    2013-12-01

    Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. © 2013, The International Biometric Society.

  15. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations

  16. A likelihood-based time series modeling approach for application in dendrochronology to examine the growth-climate relations and forest disturbance history

    EPA Science Inventory

    A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...

  17. Using "Short" Interrupted Time-Series Analysis To Measure the Impacts of Whole-School Reforms: With Applications to a Study of Accelerated Schools.

    ERIC Educational Resources Information Center

    Bloom, Howard S.

    2002-01-01

    Introduces an new approach for measuring the impact of whole school reforms. The approach, based on "short" interrupted time-series analysis, is explained, its statistical procedures are outlined, and how it was used in the evaluation of a major whole-school reform, Accelerated Schools is described (H. Bloom and others, 2001). (SLD)

  18. Latent Subgroup Analysis of a Randomized Clinical Trial Through a Semiparametric Accelerated Failure Time Mixture Model

    PubMed Central

    Altstein, L.; Li, G.

    2012-01-01

    Summary This paper studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. PMID:23383608

  19. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    NASA Astrophysics Data System (ADS)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  20. A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.

    2014-06-01

    For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.

  1. History + Mystery = Inquiring Young Historians

    ERIC Educational Resources Information Center

    Kirchner, Jana; Helm, Allison; Pierce, Kristin; Galloway, Michele

    2011-01-01

    While social studies content about communities, neighborhood jobs, and maybe even some state history is taught in the early elementary grades, often the upper elementary grades are the first time students learn about the larger progression of history. How do teachers begin to teach the progression of U.S. history and the themes and questions that…

  2. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  3. Accelerated Slice Encoding for Metal Artifact Correction

    PubMed Central

    Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts

    2010-01-01

    Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445

  4. Accelerated slice encoding for metal artifact correction.

    PubMed

    Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts

    2010-04-01

    To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.

  5. Accelerating Neoproterozoic Research through Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Condon, Daniel; Prave, Anthony; Boggiani, Paulo; Fike, David; Halverson, Galen; Kasemann, Simone; Knoll, Andrew; Zhu, Maoyan

    2014-05-01

    The Neoproterozoic Era (1.0 to 0.541 Ga) and earliest Cambrian (541 to ca. 520 Ma) records geologic changes unlike any other in Earth history: supercontinental tectonics of Rodinia followed by its breakup and dispersal into fragments that form the core of today's continents; a rise in oxygen that, perhaps for the first time in Earth history, resulted in the deep oceans becoming oxic; snowball Earth, which envisages a blanketing of global ice cover for millions of years; and, at the zenith of these combined biogeochemical changes, the evolutionary leap from eukaryotes to animals. Such a concentration of hallmark events in the evolution of our planet is unparalleled and many questions regarding Earth System evolution during times of profound climatic and geological changes remain to be answered. Neoproterozoic successions also offer insight into the genesis of a number of natural resources. These include banded-iron formation, organic-rich shale intervals (with demonstrated hydrocarbon source rocks already economically viable in some countries), base and precious metal ore deposits and REE occurrences, as well as industrial minerals and dimension stone. Developing our understanding of the Neoproterozoic Earth-system, combined with regional geology has the potential to impact the viability of these resources. Our understanding of the Neoproterozoic and early Cambrian, though, is overwhelmingly dependent on outcrop-based studies, which suffer from lack of continuity of outcrop and, in many instances, deep weathering profiles. A limited number of research projects study Precambrian strata have demonstrated the potential impact of scientific drilling to augment and complement ongoing outcrop based studies and advancing research. An ICDP and ECORD sponsored workshop, to be held in March 2014, has been convened to discuss the utility of scientific drilling for accelerating research of the Neoproterozoic through early Cambrian (ca. 0.9 to 0.52 Ga) rock record. The aim is to

  6. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro

  7. Action-perception dissociation in response to target acceleration.

    PubMed

    Dubrowski, Adam; Carnahan, Heather

    2002-05-01

    The purpose of this study was to investigate whether information about the acceleration characteristics of a moving target can be used for both action and perception. Also of interest was whether prior movement experience altered perceptual judgements. Participants manually intercepted targets moving with various acceleration, velocity and movement time characteristics. They also made perceptual judgements about the acceleration characteristics of these targets either with or without prior manual interception experience. Results showed that while aiming kinematics were sensitive to the acceleration characteristics of the target, participants were only able to perceptually discriminate the velocity characteristics of target motion, even after performing interceptive actions to the same targets. These results are discussed in terms of a two channel (action-perception) model of visuomotor control.

  8. History of Antibiotics Research.

    PubMed

    Mohr, Kathrin I

    2016-01-01

    For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms

  9. Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla

    PubMed Central

    Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Smith, Stephen M.; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil

    2013-01-01

    We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight (MB = 8) with blipped controlled aliasing in parallel imaging (CAIPI), in the absence of in-plane accelerations, can be used routinely with acceptable image quality and integrity for whole brain imaging. Spectral analyses of single-shot fMRI time series demonstrate that temporal fluctuations due to both neuronal and physiological sources were distinguishable and comparable up to slice-acceleration factors of nine (MB = 9). The increased temporal efficiency could be employed to achieve, within a given acquisition period, higher spatial resolution, increased fMRI statistical power, multiple TEs, faster sampling of temporal events in a resting state fMRI time series, increased sampling of q-space in diffusion imaging, or more quiet time during a scan. PMID:23899722

  10. Rapid electron beam accelerator (REBA-tron)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapetanakos, C.A.; Sprangle, P.A.; Dialetis, D.

    1986-03-05

    This invention comprises a particle accelerator with a toroidal vacuum chamber, an injector for injecting a charged-paticle beam into the chamber and an exit port to extract the accelerated particle beam. A toroidal magnetic field to confine the beam in the chamber is generated by a set of coils with their axis along the minor axis of the chamber and by two twisted wires that carry current in the same direction wrapped around the chamber. The two twisted wires also generate a torsatron magnetic field that controls the minor radius of the beam. A time-varying magnetic field is generated bymore » two concentric cylindrical plates surrounding the chamber. A convoluted transmission line generates a localized electric field in the chamber to accelerate the beam.« less

  11. Psychohistorical Hypotheses on Japan's History of Hostility Towards China.

    PubMed

    Wang, Bo; Rudmin, Floyd

    2016-01-01

    The accelerating tensions and military posturing between Japan and China have created a serious crisis with a danger of a catastrophic war. The purpose of this paper is to summarize the events of the current crisis, and to put it in the context of Japan's long history of hostility to China and repeated attempts at conquest. The historical record shows that Japan has attacked China at least seven times, even though China has never attacked Japan. The irrationality of Japan's behavior is demonstrated by the repetition of this hostile behavior despite the enormous human and economic costs that Japan has suffered because of it. The irrationality of Japan's militarism suggests that psychological explanations may be required to understand this phenomenon. Several hypotheses are proposed, including 1) projected paranoid aggression, 2) collective Zeigarnik compulsion, 3) perceived weakness exciting aggression, 4) national inferiority feelings, 5) cultural narcissism, and 6) Oedipal-like hatred of a parent culture.

  12. Bounded influence function based inference in joint modelling of ordinal partial linear model and accelerated failure time model.

    PubMed

    Chakraborty, Arindom

    2016-12-01

    A common objective in longitudinal studies is to characterize the relationship between a longitudinal response process and a time-to-event data. Ordinal nature of the response and possible missing information on covariates add complications to the joint model. In such circumstances, some influential observations often present in the data may upset the analysis. In this paper, a joint model based on ordinal partial mixed model and an accelerated failure time model is used, to account for the repeated ordered response and time-to-event data, respectively. Here, we propose an influence function-based robust estimation method. Monte Carlo expectation maximization method-based algorithm is used for parameter estimation. A detailed simulation study has been done to evaluate the performance of the proposed method. As an application, a data on muscular dystrophy among children is used. Robust estimates are then compared with classical maximum likelihood estimates. © The Author(s) 2014.

  13. AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.

    PubMed

    Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S

    2017-09-01

    Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Non-invasive characterization of real-time bladder sensation using accelerated hydration and a novel sensation meter: An initial experience

    PubMed Central

    Nagle, Anna S.; Speich, John E.; De Wachter, Stefan G.; Ghamarian, Peter P.; Le, David M.; Colhoun, Andrew F.; Ratz, Paul H.; Barbee, Robert W.; Klausner, Adam P.

    2016-01-01

    AIMS The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. METHODS Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0–100% scale) and standardized verbal sensory thresholds using a novel, touch-screen “sensation meter.” 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. RESULTS Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. CONCLUSIONS This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity–sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. PMID:27654469

  15. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  16. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  17. Microdroplets Accelerate Ring Opening of Epoxides

    NASA Astrophysics Data System (ADS)

    Lai, Yin-Hung; Sathyamoorthi, Shyam; Bain, Ryan M.; Zare, Richard N.

    2018-05-01

    The nucleophilic opening of an epoxide is a classic organic reaction that has widespread utility in both academic and industrial applications. We have studied the reaction of limonene oxide with morpholine to form 1-methyl-2-morpholino-4-(prop-1-en-2-yl) cyclohexan-1-ol in bulk solution and in electrosprayed microdroplets with a 1:1 v/ v water/methanol solvent system. We find that even after 90 min at room temperature, there is no product detected by nuclear magnetic resonance spectroscopy in bulk solution whereas in room-temperature microdroplets (2-3 μm in diameter), the yield is already 0.5% in a flight time of 1 ms as observed by mass spectrometry. This constitutes a rate acceleration of 105 in the microdroplet environment, if we assume that as much as 5% of product is formed in bulk after 90 min of reaction time. We examine how the reaction rate depends on droplet size, solvent composition, sheath gas pressure, and applied voltage. These factors profoundly influence the extent of reaction. This dramatic acceleration is not limited to just one system. We have also found that the nucleophilic opening of cis-stilbene oxide by morpholine is similarly accelerated. Such large acceleration factors in reaction rates suggest the use of microdroplets for ring opening of epoxides in other systems, which may have practical significance if such a procedure could be scaled. [Figure not available: see fulltext.

  18. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  19. SU-E-I-37: Low-Dose Real-Time Region-Of-Interest X-Ray Fluoroscopic Imaging with a GPU-Accelerated Spatially Different Bilateral Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H; Lee, J; Pua, R

    2014-06-01

    Purpose: The purpose of our study is to reduce imaging radiation dose while maintaining image quality of region of interest (ROI) in X-ray fluoroscopy. A low-dose real-time ROI fluoroscopic imaging technique which includes graphics-processing-unit- (GPU-) accelerated image processing for brightness compensation and noise filtering was developed in this study. Methods: In our ROI fluoroscopic imaging, a copper filter is placed in front of the X-ray tube. The filter contains a round aperture to reduce radiation dose to outside of the aperture. To equalize the brightness difference between inner and outer ROI regions, brightness compensation was performed by use of amore » simple weighting method that applies selectively to the inner ROI, the outer ROI, and the boundary zone. A bilateral filtering was applied to the images to reduce relatively high noise in the outer ROI images. To speed up the calculation of our technique for real-time application, the GPU-acceleration was applied to the image processing algorithm. We performed a dosimetric measurement using an ion-chamber dosimeter to evaluate the amount of radiation dose reduction. The reduction of calculation time compared to a CPU-only computation was also measured, and the assessment of image quality in terms of image noise and spatial resolution was conducted. Results: More than 80% of dose was reduced by use of the ROI filter. The reduction rate depended on the thickness of the filter and the size of ROI aperture. The image noise outside the ROI was remarkably reduced by the bilateral filtering technique. The computation time for processing each frame image was reduced from 3.43 seconds with single CPU to 9.85 milliseconds with GPU-acceleration. Conclusion: The proposed technique for X-ray fluoroscopy can substantially reduce imaging radiation dose to the patient while maintaining image quality particularly in the ROI region in real-time.« less

  20. Intermittent sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  1. Independent Confirmation of the Pioneer 10 Anomalous Acceleration

    NASA Technical Reports Server (NTRS)

    Markwardt, Craig B.

    2002-01-01

    I perform an independent analysis of radio Doppler tracking data from the Pioneer 10 spacecraft for the time period 1987-1994. All of the tracking data were taken from public archive sources, and the analysis tools were developed independently by myself. I confirm that an apparent anomalous acceleration is acting on the Pioneer 10 spacecraft, which is not accounted for by present physical models of spacecraft navigation. My best fit value for the acceleration, including corrections for systematic biases and uncertainties, is (8.60 plus or minus 1.34) x 10(exp -8) centimeters per second, directed towards the Sun. This value compares favorably to previous results. I examine the robustness of my result to various perturbations of the analysis method, and find agreement to within plus or minus 5%. The anomalous acceleration is reasonably constant with time, with a characteristic variation time scale of greater than 70 yr. Such a variation timescale is still too short to rule out on-board thermal radiation effects, based on this particular Pioneer 10 data set.

  2. Preserving History: The Construction of History in the K-16 Classroom

    ERIC Educational Resources Information Center

    Waring, Scott Monroe

    2011-01-01

    What and how to teach in the K-16 classroom history has been a perennial and, at times, heated debate. Beginning as early as 1892, the question of what knowledge is of the most worth and what should be the central function of the history curriculum became a focus of many interested in education. It was felt that the teachers needed to move away…

  3. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  4. Study of Car Acceleration and Deceleration Characteristics at Dangerous Route FT050

    NASA Astrophysics Data System (ADS)

    Omar, N.; Prasetijo, J.; Daniel, B. D.; Abdullah, M. A. E.; Ismail, I.

    2018-04-01

    Individual vehicle acceleration and deceleration are important to generate vehicles speed profile. This study covered acceleration and deceleration characteristics of passenger car in Federal Route FT050 Jalan Batu Pahat-Ayer Hitam that was the top ranking dangerous road. Global Positioning System was used to record 10 cars speed to develop speed profile with clustering zone. At the acceleration manoeuver, the acceleration rate becomes lower as the drivers get near to desired speed. While, at deceleration manoeuver, vehicles with high speed needs more time to stop compare to low speed vehicle. This is because, the drivers need to accelerate more from zero speed to achieve desired speed and drivers need more distance and time to stop their vehicles. However, it was found out that 30% to 50% are driving in dangerous condition that was proven in clustering acceleration and deceleration speed profile. As conclusion, this excessive drivers are the factor that creating high risk in rear-end collision that inline FT050 as dangerous road in Malaysia

  5. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  6. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  7. Decreasing litter size of marmots over time: a life history response to climate change?

    PubMed

    Tafani, Marion; Cohas, Aurélie; Bonenfant, Christophe; Gaillard, Jean-Michel; Allainé, Dominique

    2013-03-01

    The way that plants and animals respond to climate change varies widely among species, but the biological features underlying their actual response remains largely unknown. Here, from a 20-year monitoring study, we document a continuous decrease in litter size of the Alpine marmot (Marmota marmota) since 1990. To cope with harsh winters, Alpine marmots hibernate in burrows and their reproductive output should depend more on spring conditions compared to animals that are active year-round. However, we show that litter size decreased over time because of the general thinning of winter snow cover that has been repeatedly reported to occur in the Alps over the same period, despite a positive effect of an earlier snowmelt in spring. Our results contrast markedly with a recent study on North American yellow-bellied marmots, suggesting that between-species differences in life histories can lead to opposite responses to climate change, even between closely related species. Our case study therefore demonstrates the idiosyncratic nature of the response to climate change and emphasizes, even for related species with similar ecological niches, that it may be hazardous to extrapolate life history responses to climate change from one species to another.

  8. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  9. Hominin life history: reconstruction and evolution

    PubMed Central

    Robson, Shannen L; Wood, Bernard

    2008-01-01

    life history-related variables among the transitional hominin grade are consistent and none agrees with a modern human pattern. Aside from mean body mass, adult brain size, crown and root formation times, and the timing and sequence of dental eruption of Homo erectus are inconsistent with that of modern humans. Homo antecessor fossil material suggests a brain size similar to that of Homo erectus s. s., and crown formation times that are not yet modern, though there is some evidence of modern human-like timing of tooth formation and eruption. The body sizes, brain sizes, and dental development of Homo heidelbergensis and Homo neanderthalensis are consistent with a modern human life history but samples are too small to be certain that they have life histories within the modern human range. As more life history-related variable information for hominin species accumulates we are discovering that they can also have distinctive life histories that do not conform to any living model. At least one extinct hominin subclade, Paranthropus, has a pattern of dental life history-related variables that most likely set it apart from the life histories of both modern humans and chimpanzees. PMID:18380863

  10. Relationship between employment histories and frailty trajectories in later life: evidence from the English Longitudinal Study of Ageing.

    PubMed

    Lu, Wentian; Benson, Rebecca; Glaser, Karen; Platts, Loretta G; Corna, Laurie M; Worts, Diana; McDonough, Peggy; Di Gessa, Giorgio; Price, Debora; Sacker, Amanda

    2017-05-01

    Given the acceleration of population ageing and policy changes to extend working lives, evidence is needed on the ability of older adults to work for longer. To understand more about the health impacts of work, this study examined the relationship between employment histories before retirement and trajectories of frailty thereafter. The sample comprised 2765 women and 1621 men from the English Longitudinal Study of Ageing. We used gendered typologies of life-time employment and a frailty index (FI). Multilevel growth curve models were used to predict frailty trajectories by employment histories. Women who had a short break for family care, then did part-time work till 59 years had a lower FI after 60 years than those who undertook full-time work until 59 years. Women who were largely family carers or non-employed throughout adulthood, had higher levels of frailty at 60 years but experienced a slower decline with age. Men who worked full-time but early exited at either 49 or 60 years had a higher FI at 65 years than those who worked full-time up to 65 years. Interaction between employment histories and age indicated that men in full-time work who experienced an early exit at 49 tended to report slower declines. For women, experiencing distinct periods throughout the lifecourse of either work or family care may be advantageous for lessening frailty risk in later life. For men, leaving paid employment before 65 years seems to be beneficial for decelerating increases in frailty thereafter. Continuous full-time work until retirement age conferred no long-term health benefits. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Accelerated increase in plant species richness on mountain summits is linked to warming.

    PubMed

    Steinbauer, Manuel J; Grytnes, John-Arvid; Jurasinski, Gerald; Kulonen, Aino; Lenoir, Jonathan; Pauli, Harald; Rixen, Christian; Winkler, Manuela; Bardy-Durchhalter, Manfred; Barni, Elena; Bjorkman, Anne D; Breiner, Frank T; Burg, Sarah; Czortek, Patryk; Dawes, Melissa A; Delimat, Anna; Dullinger, Stefan; Erschbamer, Brigitta; Felde, Vivian A; Fernández-Arberas, Olatz; Fossheim, Kjetil F; Gómez-García, Daniel; Georges, Damien; Grindrud, Erlend T; Haider, Sylvia; Haugum, Siri V; Henriksen, Hanne; Herreros, María J; Jaroszewicz, Bogdan; Jaroszynska, Francesca; Kanka, Robert; Kapfer, Jutta; Klanderud, Kari; Kühn, Ingolf; Lamprecht, Andrea; Matteodo, Magali; di Cella, Umberto Morra; Normand, Signe; Odland, Arvid; Olsen, Siri L; Palacio, Sara; Petey, Martina; Piscová, Veronika; Sedlakova, Blazena; Steinbauer, Klaus; Stöckli, Veronika; Svenning, Jens-Christian; Teppa, Guido; Theurillat, Jean-Paul; Vittoz, Pascal; Woodin, Sarah J; Zimmermann, Niklaus E; Wipf, Sonja

    2018-04-01

    Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.

  12. Earth History databases and visualization - the TimeScale Creator system

    NASA Astrophysics Data System (ADS)

    Ogg, James; Lugowski, Adam; Gradstein, Felix

    2010-05-01

    The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the

  13. An Accelerator Neutron Source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability,more » and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.« less

  14. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator.

    PubMed

    Thangaraj, J; Andonian, G; Thurman-Keup, R; Ruan, J; Johnson, A S; Lumpkin, A; Santucci, J; Maxwell, T; Murokh, A; Ruelas, M; Ovodenko, A

    2012-04-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (~0.24 mm) and 1.5 ps (~0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches. © 2012 American Institute of Physics

  15. Demonstration of a real-time interferometer as a bunch-lenght monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-03-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  16. Proton acceleration measurements using fs laser irradiation of foils in the target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Batani, D.; Boutoux, G.; Burgy, F.; Jakubowska, K.; Ducret, J. E.

    2018-05-01

    We present experimental results obtained at the CELIA laboratory using the laser ECLIPSE to study proton acceleration from ultra-intense laser pulses. Several types of targets were irradiated with different laser conditions (focusing and prepulse level). Proton emission was characterized using time-of-flight detectors (SiC and diamond) and a Thomson parabola spectrometer. In all cases, the maximum energy of observed protons was of the order of 260 keV with a large energy spectrum. Such characteristics are typical of protons emitted following the target normal sheath acceleration mechanism for low-energy short-pulse lasers like ECLIPSE.

  17. 49 CFR 572.152 - Head assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... acceleration vs. time history curve shall be unimodal, and the oscillations occurring after the main pulse... 71 g. The resultant acceleration vs. time history curve shall be unimodal, and the oscillations... with its midsagittal plane in vertical orientation as shown in Figure R1 of this subpart. The lowest...

  18. Tanning accelerators: prevalence, predictors of use, and adverse effects.

    PubMed

    Herrmann, Jennifer L; Cunningham, Rachel; Cantor, Alan; Elewski, Boni E; Elmets, Craig A

    2015-01-01

    Tanning accelerators are topical products used by indoor tanners to augment and hasten the tanning process. These products contain tyrosine, psoralens, and/or other chemicals. We sought to better define the population using accelerators, identify predictors of their use, and describe any related adverse effects. This cross-sectional study surveyed 200 indoor tanners about their tanning practices and accelerator use. Primary analysis compared accelerator users with nonusers with respect to questionnaire variables. Descriptive statistics and χ(2) contingency tables were applied to identify statistically significant variables. Of respondents, 53% used accelerators; 97% were female and 3% were male with a median age of 22 years (range: 19-67). Users were more likely to spray tan, tan frequently, and be addicted to tanning. Acne and rashes were more common in accelerator users. Adverse reactions to accelerators prevented their further use 31% of the time. A limited adult population was evaluated; exact accelerator ingredients were not examined. Tanning accelerator users are high-risk indoor tanners who tan more frequently and who are more likely addicted to tanning. Acne and rashes are more common with these products and act as only mild deterrents to continued use. Additional research should investigate accelerators' longer-term health effects. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    PubMed

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a

  20. On the Connection between Turbulent Motions and Particle Acceleration in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Gaspari, M.; Vazza, F.; Gastaldello, F.; Tramacere, A.; Zimmer, S.; Ettori, S.; Paltani, S.

    2017-07-01

    Giant radio halos are megaparsec-scale diffuse radio sources associated with the central regions of galaxy clusters. The most promising scenario to explain the origin of these sources is that of turbulent re-acceleration, in which MeV electrons injected throughout the formation history of galaxy clusters are accelerated to higher energies by turbulent motions mostly induced by cluster mergers. In this Letter, we use the amplitude of density fluctuations in the intracluster medium as a proxy for the turbulent velocity and apply this technique to a sample of 51 clusters with available radio data. Our results indicate a segregation in the turbulent velocity of radio halo and radio quiet clusters, with the turbulent velocity of the former being on average higher by about a factor of two. The velocity dispersion recovered with this technique correlates with the measured radio power through the relation {P}{radio}\\propto {σ }v3.3+/- 0.7, which implies that the radio power is nearly proportional to the turbulent energy rate. In case turbulence cascades without being dissipated down to the particle acceleration scales, our results provide an observational confirmation of a key prediction of the turbulent re-acceleration model and possibly shed light on the origin of radio halos.