This paper identifies the basic safety functions in nuclear reactor design, and the safety design issues for accelerator-driven subcritical reactors.
NASA Astrophysics Data System (ADS)
Subcritical Assembly in Dubna (SAD), a project funded by the International Science and Technology Centre, driven in collaboration with many European partners, may become the first Accelerator Driven Subcritical experiment coupling an existing proton accelerator of 660 MeV ...
A demonstration facility for Accelerator Driven Systems has been proposed to be constructed at the Joint Institute of Nuclear Research in Dubna. The Subcritical Assembly in Dubna project proposes to couple an existing proton accelerator of 660 MeV and 1 ?A current with a specially designed U-Pu MOX ...
We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.
Energy Citations Database
Accelerator reliability corresponding to a very low frequency of beam interrupts is an important new accelerator requirement for accelerator-driven subcritical reactor systems. In this paper we review typical accelerator-reliability requirements and discuss possible methods for meeting these ...
The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe,...
National Technical Information Service (NTIS)
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in a subcritical device. Calculations were also made to ...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show ...
DOE Information Bridge
A series of basic experiments for an accelerator driven subcritical reactor (ADSR) has been performed at the Kyoto University Critical Assembly (KUCA) by combining a critical assembly with a Cockcroft-Walton type accelerator in view of a future plan to establish a new neutron source for research. By injecting 14 ...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power lev...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To acc...
Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early in...
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for ...
An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nucle...
The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of re...
In order to operate accelerator driven subcritical system safely, it is necessary to monitor the subcriticality in real-time. In this paper, we propose a highly accurate real-time subcriticality-monitoring system by combining the existing multiple measurement techniques, a number of neutron ...
The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to ...
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical ...
The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical ...
Study of a small accelerator-driven subcritical research reactor in the Vin?a Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the ...
Hybrid reactors (Accelerator Driven Sub-critical Systems, ADS), coupling an accelerator with a target and a sub-critical reactor, could simultaneously burn minor actinides and transmute long-lived fission products, while producing a consistent amount of electrical energy. A group of Italian ...
The TRiga Accelerator-Driven Experiment (TRADE), to be performed in the TRIGA reactor of the ENEA-Casaccia Centre in Italy, consists of the coupling of an external proton accelerator to a target to be installed in the central channel of the reactor scrammed to subcriticality. This pilot experiment, aimed at a global demonstration of ...
Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear ...
High intensity proton accelerators have two important applications in China in recent years: Accelerator Driven Sub-critical System for nuclear waste transmutation and China Spallation Neutron Source. This paper focuses on the R&D activities of the key technology of high intensity proton ...
The problem of nuclear safety and reliability of power installation based on accelerator-driver. The maximum reliability of electronuclear power installation may be reached by designing it as sum of several subcritical multiplying assemblies each driven by individual accelerator. Every cell is insulated from ...
A new concept for a power breeder reactor that consists of an accelerator-driven subcritical thermal fission system is proposed. In this system an accelerator provides a high-energy proton beam which interacts with a heavy-element target to produce, via s...
Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to i...
An accelerator can be used to increase the safety and neutron economy of a power reactor and transmuter of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9-0.95 which we originally proposed for such a ...
The paper present results of Monte Carlo modeling of an Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the Joint Institute for Nuclear Research in Dubna. The mix of oxides PuO2+UO2 MOX fuel ...
Fissile fuel can be produced at a high rate using an accelerator driven Pu fueled fast reactor operated at deep subcriticality; this approach avoids encountering a shortage of Pu during a high rate of growth in the production of nuclear energy. Slightly reducing the acceleration field minimizes the tripping of the ...
The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear...
For the Thermophysical analysis of the Accelerator Driven Systems (ADS) an simplified model of ADS core was used. The neutron flux was calculated by means of diffusion theory for subcritical homogeneous reactor with an external neutron source. From this result the distribution of the heat sources was found and next the distribution of ...
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and e...
Thermal neutron reactor (LWR), fast neutron reactor (FBR), accelerator- driven subcritical system have been studied as the potential transmutation devices. Oxide fuel is considered in LWR and metal, oxide, and nitride fuels are studied in FBR. In accelera...
Accelerators can play a role in the disposal of long-lived radioactive waste: an alternative to the storage in deep underground repositories might transmute long-lived elements into stable or short-lived ones in subcritical systems driven by spallation ne...
Various transmutation concepts such as PWR, LMR, Accelerator Driven Subcritical Reactor, are under investigation. A study to decide which option is the optimum among three concepts has been performed in this project. In addition, various computer code sys...
At the National Science Centre, Kharkiv Institute of Physics and Technology (NSC KIPT) the possibility of creating an installation with a subcritical reactor driven by an electron accelerator is examined. To obtain the maximal stream of neutrons from a neutron-producing target at a minimal density of energy emission, the electron ...
Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides ...
As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens ...
E-print Network
The plants envisioned in this ATW technology roadmap would contain multiple sub-critical fission assemblies (burners) driven by two high-power proton linear accelerators. The accelerator technology and design are similar to those proposed for the Accelera...
The schemes of jet gas and liquid targets as well as the gastargets with a solid phase dispersion are introduced to use to receive the neutrons admitted to a subcritical reactor core. The possible variants of target position in the reactor are considered, target characteristics are calculated. The authors pay a great attention to the estimation of radioactive products yield ...
The Japan Atomic Energy Agency (JAEA) has been proceeding with the research and development on accelerator-driven system (ADS) for the transmutation of long-lived radioactive nuclides. The ADS proposed by JAEA is a lead-bismuth eutectic (LBE) cooled fast subcritical core with 800 MWth. Various activities were conducted to investigate the feasibility of the ...
Los Alamos and Oak Ridge National Laboratories are investigating the accelerator-based conversion (ABC) concept, one of several U.S. Department of Energy efforts to define and assess plutonium disposition technologies. The ABC concept uses an accelerator-driven, fluid-fuel blanket, operating subcriticality, to achieve near-total ...
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a ...
Thorium cycle subcritical reactor driven by 800MeV protons delivered by flux coupled superconducting stack of cyclotrons can operate as a sealed unit for up to 7 years and is stable against melt-down. Small, low power units with minimum security and small crew of operators are perfect candidates for powering remote small towns. The reactor can eat ...
Historically, subcritical accelerator-driven systems have been called electronuclear devices. Interest in these devices has been revived for numerous nuclear applications, such as boron neutron capture therapy, accelerator transmutation of waste (ATW), and accelerator-based conversion (ABC). The latter systems are ...
Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven ...
The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the ...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal-fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcriticality of the system. To accomplish this, an accelerator proton beam/tungsten neutron ...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To accomplish this an accelerator proton beam/tungsten neutron ...
The most challenging issue to realize an accelerator for an Accelerator Driven Sub-critical Reactor system (ADSR) is the handling of high intensity beam�more than 1 mA. For such an application, FFAG is one of most promising candidates. To take advantage of the FFAG as a high intensity ...
Subcritical nuclear reactors driven by intense neutron sources can be very suitable tools for nuclear waste transmutation, particularly in the case of minor actinides with very low fractions of delayed neutrons. A proper control of these systems needs to know at every time the absolute value of the reactor subcriticality (negative ...
The progress in the field of designing and constructing a heavy-current proton linear accelerator became noticeable last year and allows one to count on large-scale industrial linac application. Symbiosis of linac and subcritical reactor as target has new opportunities for energetics. This accelerator concept is described.
A novel, highly compact, fusion neutron source (CNS) based on a coaxial electrostatic accelerator is under development at the Lawrence Berkeley National Laboratory. This source is designed to generate up to approx. 10(sup 12) D-D n/s. This source intensit...
An experimental neutron source facility has been developed for producing medical isotopes, training young nuclear professionals, providing capability for performing reactor physics, material research, and basic science experiments. It uses a driven subcritical assembly with an electron accelerator. The neutrons driving the ...
An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and a few tens of mA for large industrial systems. This high power accelerator requires an exceptional reliability: because of the induced ...
The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the ...
A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the US and Russia. The highly fissile plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly ...
Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, ...
To study control and safety of accelerator driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated ...
In Europe, uranium-free fuels for minor actinide burning in Accelerator-Driven Systems (ADS) are under development in the frame of the CONFIRM, FUTURE and MATINE projects. In the present paper, the status of these projects is reviewed. Transuranium oxide and nitride fuel samples have been fabricated and characterized. Their performance has been modelled under normal operation ...
In recent years, there has been an increasing worldwide interest in accelerator driven systems (ADS) due to their perceived superior safety characteristics and their potential for burning actinides and long-lived fission products. Indian interest in ADS has an additional dimension, which is related to our planned large-scale thorium utilization for future ...
Linear accelerator breeders (LAB) could be used to produce fissile fuel in two modes, either with fuel reprocessing or without fuel reprocessing. With fuel reprocessing, the fissile would be separated from the target and refabricated into a fuel element for use in a burner power reactor. Without reprocessing, the fissile material would be produced in-situ, either in a fresh ...
Different reactivity determination methods have been investigated, based on experiments performed at the subcritical assembly Yalina in Minsk, Belarus. The development of techniques for on-line monitoring of the reactivity level in a future accelerator-driven system (ADS) is of major importance for safe operation. Since an ADS is operating in a ...
A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the ...
It is desirable to have only a small reactivity change in the large burn-up of a solid fuel fast reactor, so that the number of replacements or shuffling of the fuel can be reduced, and plant factor accordingly increased. Also, this reduces the number of control rods needed for the change in burn-up reactivity. In subcritical operation, power controlled by beam power is ...
Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a ...
In this work, we focus on the analysis of a coronal mass ejection (CME) driven shock observed by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment. We show that white-light coronagraphic images can be employed to estimate the compression ratio X = ? d /? u all along the front of CME-driven shocks. X increases from ...
We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating ...
Progress in particle accelerator technology makes it possible to use a proton accelerator to produce energy and to destroy nuclear waste efficiently. Energy Amplifier (EA) systems consist of a sub-critical fast neutron core driven by a proton accelerator. They are particularly attractive for ...
The Backward Theory of Feynman- and Rossi-Alpha Methods with Multiple Emission Sources I. P�zsit October 26, 1998 Accepted February 3, 1999 Abstract � The Feynman- and Rossi-alpha formulas are calculated accelerator-driven subcritical systems (ADS), such as the energy amplifier. The Feynman- and Rossi
The accelerator-driven transmutation of waste (ATW) system has been proposed for transmuting the long-lived radioactive nuclei of high-level waste to stable or short-lived species. In recent ATW design concepts, lead-bismuth eutectic (LBE), consisting of ...
Progress in particle accelerator technology makes it possible to use a proton accelerator to produce energy and to destroy nuclear waste efficiently. The energy amplifier (EA) proposed by Carlo Rubbia and his group is a subcritical fast neutron system driven by a proton accelerator. It is ...
The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called ''OMEGA,'' is presented. Under this national program, major R and D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a ...
The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor system in a subcritical ...
The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been ...
We discuss radiation damage to a transmutation system driven by a proton accelerator. The transmuter is composed of a lead target, beam window, structural wall, subcritical core, and reflector. Because of its subcritical condition, neutrons are supplied by the spallation reaction generated by high-energy protons. ...
Subcritical source-driven noise measurements are simultaneous Rossia and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu ...
Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and ...
This paper is a preliminary sketch of a conception to develop the ''ultimate safety reactor'' using modern reactor and accelerator technologies. This approach would not require a long-range R and D program. The ultimate safety reactor could produce heat and electric energy, expand the production of fuel, or be used for the transmutation of ...
A concept of an accelerator-driven subcritical blanket with Pb or molten salt (heavy chloride) as the primary target, a graphite moderator-reflector to produce high-density thermal neutron fluxes and a fluid fuel carrying TUA actinides and Th-U, is being studied at MRTI. A driver is CW H{sup +}/H{sup -} linac: 1 GeV, 200 mA, SIU-DTL-D and W structure ...
A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten ...
Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be ...
The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of ...
We employ three-dimensional magnetohydrodynamic simulations including ambipolar diffusion to study the gravitationally driven fragmentation of subcritical molecular clouds, in which the gravitational fragmentation is stabilized as long as magnetic flux-freezing applies. The simulations show that the cores in an initially subcritical ...
Increasing worldwide interests in accelerator-driven systems is related to their potential role in transmutation of the spent reactor fuel. Margin of safety expressed in terms of reactivity, measuring proximity to criticality, has to be properly addressed for such systems. Monitoring of reactivity enables us to predict performance of a nuclear system and prevent unforeseen ...
The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear energy applications using low enriched uranium. The YALINA-Booster ...
We seek to develop accelerator-driven subcritical (ADS) nuclear power stations operating at more than 5 to 10 GW in an inherently safe region below criticality, generating no greenhouse gases, producing minimal nuclear waste and no byproducts that are useful to rogue nations or terrorists, incinerating waste from conventional nuclear reactors, and ...
For transmutation systems based on externally driven sub-critical assemblies with a fast neutron spectrum, there is an incentive to expose the actinides directly to the source neutrons, since these neutrons have higher energies than the fission neutrons. ...
This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting stati...
A design methodology for the lead-bismuth eutectic (LBE) spallation target has been developed and applied. This methodology includes the target interface with the subcritical assembly and the different engineering aspects of the target design, physics, heat-transfer, hydraulics, structural, radiological, and safety analyses. Several design constrains were defined and utilized ...
An accelerator-driven fast reactor (700 MWt), run in a subcritical condition, and fueled with MOX can generate {sup 233}U more safely and efficiently than can a critical reactor. We evaluate the production of {sup 233}U, {sup 239}Pu, and the transmutation of the long-lived fission products of {sup 99}Tc and {sup 129}I, which are loaded with YH1.7 between ...
Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical ...
The proton beam duct of the accelerator-driven system (ADS) acts as a streaming path for spallation neutrons and photons and causes the activation of the magnets and other devices above the subcritical core. We have performed a streaming analysis at the upper section of the lead-bismuth target/cooled ADS (800 MWth). MCNPX was used to calculate the ...
PubMed
A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron ...
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a ...
From FY 02-05 IAC has been a part of the DOE Advanced Fuel Cycle Initiative and its predecessor organization Advanced Accelerator Applications. In the IAC program effort has been divided into three parts; Student Research, Accelerator Driven Nuclear Research and Materials Science. Within the three parts specific research and ...
This article presents the different activity of Ingot niobium in BARC. BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a ...
Design and development of superconducting (SC) cavity having {beta}{sub g}>0.42 has been taken up as a part of the accelerator driven subcritical system project. An input coupler is designed for the SC, elliptical cavity operating at 1.056 GHz, using the Kroll-Yu method. The evaluation procedure is optimized and the method has ...
The management of long-lived high-level waste, such as minor actinides (MA) and long-lived fission products (LLFP), is one of the most important issues to be solved for the utilization of the nuclear fission energy. The transmutation project of the radioactive wastes based on an accelerator driven sub-critical (ADS) system is very ...
Steady development in SRF accelerator technology combined with the success of large scale installations such as CEBAF at Jefferson Laboratory and the SNS Linac at ORNL gives credibility to the concept of very high average power CW machines for light sources or Proton drivers. Such machines would be powerful tools for discovery science in themselves but could also pave the way ...
There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from ...
The destruction of plutonium and other long-lived radionuclides in high-level nuclear waste is receiving considerable international technical interest and effort. At Los Alamos, accelerator-based concepts are under investigation which achieve high burnups of plutonium and other actinides and which simultaneously transmute key long-lived fission products. This paper describes ...
Power supply is a key issue for China's further economic development. To meet the needs of our economic growth in the next century, the part of nuclear energy in the total newly increased power supply must become larger. However, the present nuclear power stations dominated by the PWR in the world are facing some troubles. Recently, a new concept, called ADS (Accelerator ...
Medium energy hadron beams are desirable in various applications such as accelerator-driven subcritical systems (ADSR), high intensity neutron sources and carbon therapy. Compactness and easy operation characters are important for this energy region, especially in the case of medical use purposes. This paper introduces a novel superferric scheme with ...
In the thesis an absolute measurements technique for the subcriticality determination is presented. The ADS is a hybrid system where a subcritical system is fed by a proton accelerator. There are different proposals to define an ADS, one is to use plutonium and minor actinides from power plants waste as fuel to be transmuted into non ...
Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory ...
A neutronic analysis is presented of three incinerator subcritical lattices, driven by accelerated protons and designed to transmute the minor actinides, the {sup 99}Tc and the {sup 129}I, of light water reactor (LWR) waste. A calculational methodology must first be established to enable a neutronic burnup analysis of fission cores ...
Several laboratories are studying the possibility of a fission reactor system based on driving a sub-critical assembly using an accelerator-spallation target neutron source. The objective is to effectively eliminate possible criticality and meltdown accidents, increasing plant safety. However, one disadvantage is the large cost projected for the ...
This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 ...
TRASCO-ADS is a national funded program in which INFN, ENEA, and Italian industries work on the design of an accelerator driven subcritical system for nuclear waste transmutation. TRASCO is the Italian acronym for Transmutation (TRAsmutazione) of Waste (SCOrie). One of the most critical aspects in the design of an ...
The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating ...
There are many possible applications for the non-scaling Fixed Field Alternating Gradient (NS-FFAG): accelerating non-relativistic ions, ion cancer therapy, proton drivers, accelerator driven subcritical reactors, heavy radioactive ions, recirculating linacs, and etc. They are confronted with two significant ...
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the ...
DOEpatents
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the ...
The subcritical neutron multiplication factor has been measured previously by the sup 252 Cf-source-driven neutron noise analysis method for a variety of noninteracting single systems with a wide variety of materials and geometries. For these single syste...
Recent measurements at Sandia Laboratories have demonstrated that a laser gas excited solely by fission products can be made to lase. This paper explores the concept of a subcritical nuclear driven laser (NDL) system excited by a fast pulse reactor of the...
The TRADE project (TRiga Accelerator Driven Experiment), to be performed at the existing TRIGA reactor at ENEA Casaccia, has been proposed as a validation of the accelerator-driven system (ADS) concept. TRADE will be the first experiment in which the three main components of an ADS--the accelerator, spallation ...
We present reactor physics analyses for the accelerator-driven thermal reactor configuration of the Reactor-Accelerator Coupling Experiments Project (RACE) at Idaho State University. A full-core model is developed using the ERANOS deterministic code coupled with the JEF2.2 nuclear data library. A pulsed source experiment is simulated to test performance of ...
The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation ...
A new concept termed ADAPT for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D.0 target. The neutrons are then absorbed in a surrounding subcritical (K{sub eff} {approximately} 0.95) blanket assembly, that holds small ({approximately} 0.5 cm ...
A new concept; termed ADAPT; for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D2O target. The neutrons are then absorbed in a surrounding subcritical (Keff{approx}0.95) blanket assembly, that holds small ({approx}0.5 cm diameter) graphite beads ...
SCK.CEN, the Belgian Nuclear Research Centre, in partnership with IBA s.a., Ion Beam Applications, is designing an ADS prototype, MYRRHA, and is conducting an associated R&D programme. The project focuses primarily on research on structural materials, nuclear fuel, liquid metals and associated aspects, on subcritical reactor physics and subsequently on applications such as ...
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while ...
Subcritical source-driven noise measurements are simultaneous Rossi-{alpha} and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed ...
Reactor safety, the disposal of high-level nuclear waste, and nonproliferation of nuclear material for military purposes are the problems of greatest concern for nuclear energy. Technologies for accelerators developed in the field of high-energy physics can contribute to solving these problems. For reactor safety, especially for that of a Na-cooled fast reactor, the use of an ...
The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H? linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron ...
In the context of general environmental concerns, the issue of waste from nuclear power plants is a question of actual interest. Here fundamental research in Nuclear Science may have great potential impact on society and on the longer-term future. In contrast to certain non-scientifically voiced opininos, it is clear, from basic facts of Nuclear Science, that e.g. fast neutrons can transmute ...
An accelerator driven system (ADS) for transmutation of nuclear waste typically requires a 600 MeV 1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an ...
Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the ...
This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an ...
This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, ...
The coupling between an accelerator, a spallation target and a subcritical core has been studied for the first time at SCK�CEN in collaboration with Ion Beam Applications (IBA, Louvain-la-Neuve) in the frame of the ADONIS project (1995-1997). ADONIS was a small irradiation facility, based on the ADS concept, having a dedicated objective to produce ...
Fissioning surplus weapons-grade plutonium (WG-Pu) in a reactor is an effective means of rendering this stockpile non-weapons useable. In addition the enormous energy content of the plutonium is released by the fission process and can be captured to produce valuable electric power. While no fission option has been identified that can accomplish the destruction of more than about 70% of the WG-Pu ...
{Z, 0} denote the positive and negative part of Z. #12;ON THE GLOBAL REGULARITY OF SUB-CRITICAL EULER-POISSONON THE GLOBAL REGULARITY OF SUB-CRITICAL EULER-POISSON EQUATIONS WITH PRESSURE EITAN TADMOR AND DONGMING WEI Abstract. We prove that the one-dimensional Euler-Poisson system driven by the Poisson forcing
The China Spallation Neutron Source (CSNS) is an accelerator based multidiscipline user facility planned to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an negative hydrogen linear accelerator, a rapid cycling proton synchrotron accelerating the beam to 1.6 GeV energy, a solid tungsten target station, and ...
In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although ...
The Accelerator Driven Test Facility (ADTF) is being developed as a reactor concepts test bed for transmutation of nuclear waste. A 13.3 mA continuous-wave (CW) proton beam will be accelerated to 600 MeV and impinged on a spallation target. The subsequent neutron shower is used to create a nuclear reaction within a ...
The /sup 252/Cf-source-driven noise analysis method determines the subcriticality of a system containing fissionable material from the ratio of cross power spectral densities between the detectors that detect particles from the fission process and between these detectors and an ionization chamber containing a spontaneously fissioning neutron source which ...
This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems ...
The Monte Carlo code MCNP-DSP was developed from the Los Alamos MCNP4a code to calculate the time and frequency response statistics obtained from subcritical measurements. The code can be used to simulate a variety of subcritical measurements including source-driven noise analysis, Rossi-{alpha}, pulsed source, passive frequency ...
The research into advanced acceleration concepts for electron linear accelerators being pursued at SLAC is reviewed. This research includes experiments in laser acceleration, plasma wakefield acceleration, and mmwavelength RF driven accelerators.
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates ...
Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo ...
Within the scope of the Accelerator Driven System (ADS) concept for nuclear waste management applications, the burnup uncertainty estimates due to uncertainty in the activation cross sections (XSs) are important regarding both the safety and the efficiency of the waste burning process. We have applied both sensitivity analysis and Monte Carlo methodology ...
Subcritical reactors driven by proton accelerators have been studied as transmutation systems. In those systems, the lack of neutrons is mitigated by the spallation reaction, using high-energy protons. Usually, lead is selected as the target nucleus to produce neutrons. Therefore, it is important to study the nuclear reaction between ...
The Los Alamos National Laboratory (LANL) is involved in the analysis of many different types of nuclear systems. The nuclear systems that we have analyzed have included subcritical accelerator driven systems for the transmutation of waste, fusion systems, critical experiment systems, and space propulsion and power systems. We have ...
Accelerator driven nuclear transmutation system has been pursued to have a clue to the solution of high-level radioactive waste management. The concept consists of super conducting linac, sub-critical reactor and the beam window. Reference model is set up to 800MW thermal power by using 1.5GeV proton beams with considerations ...
ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes ...
Transmutation of minor actinides and fission products using proton accelerators has many advantages over a transmutor operated in a critical condition. The energy required for this transmutation can be reduced by multiplying the spallation neutrons in a subcritical assembly surrounding the spallation target. The authors have studied the relation between ...
Pool heating of liquid hydrogen, assessing multigravity effects on boiling and supercritical heating
NASA Technical Reports Server (NTRS)
Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The discriminators ...
Since 1998, SCK*CEN, in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose accelerator driven system (ADS) for Research and Development (R&D) applications-MYRRHA-and is conducting an associated R&D support programme. MYRRHA is an ADS under development at Mol in Belgium and is aiming to serve as a basis ...
Within the framework of the neutronic characterization of the TRIGA RC-1 reactor in support to the TRADE (TRiga Accelerator Driven Experiment) program, the interpretation of the subcriticality level measurements performed in static regime during the TRADE In-Pile experimental program is presented. Different levels of ...
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron ...
The subcriticality of two interacting solution tanks was determined using sup 252 Cf-source-driven neutron noise analysis methods. These experiments were the first test of this method for an interacting system with materials (in this case, uranyl nitrate)...
A portable system has been assembled that is capable of measuring the subcriticality of fissile materials using the sup 252 CF-source-driven neutron noise analysis method. The measurement system consists of a parallel-plate ionization chamber containing s...
A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. 8 refs.
In a high intensity proton accelerator complex comprising a linac and a ring, a beam chopper is often necessary in order to reduce the beam loss during injection from the linac to the ring. The China Spallation Neutron Source (CSNS) front end incorporates a pre-chopper in the Low Energy Beam Transport line (LEBT) that will remove a 530 ns section of beam at approximately 1 MHz ...
Evaluation of nuclear data typically includes validation of the data through computation of k{sub eff}for critical assemblies. The sensitivity of the computed k{sub eff} values to the nuclear data is used as an indicator in determining the adequacy of an evaluation. Subcritical measurements offer an alternative to critical experiments as a means to evaluate nuclear data ...
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing ...
The importance of intermediate-energy nuclear data les as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is ...
When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator wa...
The Accelerator Performance Demonstration Facility is the front-end prototype of a CW accelerator useful for accelerator-driven technologies. Its purpose is for evaluating the reliability, availability, and maintainability of a high-current and high-power...
Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and ...
Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, ...
A collaborative experimental research program has been established between industry and university partners to evaluate the subcritical behavior of fresh and spent highly enriched fuel assemblies at the University of Missouri Research Reactor (MURR). This proposed program will involve a series of subcritical measurements using the Oak Ridge National ...
Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven subcritical system (ADS). The ADS utilizes neutrons, which are generated by high-energy protons of giga-electron-volt-grade, but cross sections for the interaction of high-energy particles are not available for use in ...
A lead-bismuth eutectic (LBE) target design concept has been developed to drive the subcritical multiplier (SCM) of the accelerator-driven test facility (ADTF). This report gives the target design description, the results from the parametric studies, and the design analyses including physics, heat-transfer, hydraulics, structural, radiological, and safety ...
A design methodology for the lead-bismuth eutectic (LBE) spallation target has been developed and applied for the accelerator-driven test facility (ADTF) target. This methodology includes the target interface with the subcritical multiplier (SCM) of the ADTF and the different engineering aspects of the target design, physics, heat-transfer, hydraulics, ...
Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of ...
Accelerators are playing increasingly important roles in basic science, technology, and medicine. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider) but remain particularly challenging, encountering duty cycle and ...
In the recently completed RACE Project of the AFCI, accelerator-driven subcritical systems (ADS) experiments were conducted to develop technology of coupling accelerators to nuclear reactors. In these experiments electron accelerators induced photon-neutron reactions in heavy-metal targets to initiate fission ...
I suggest that an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of the long-lived radioactive wastes, such as minor actinides and fission products, by providing the neutrons for its subcritical operation.
The accelerator-driven transmutation of waste (ATW) system has been proposed for transmuting the long-lived radioactive nuclei of high-level waste to stable or short-lived species. In recent ATW design concepts, lead-bismuth eutectic (LBE), consisting of 44.5% Pb and 55.5% Bi by weight is used as the spallation target, system coolant, and reflector. Because of the excellent ...
The target system, whose function is to supply an external neutron source to the ADS sub-critical core to sustain the neutron chain reaction, is the most critical part of an ADS being subject to severe thermo-mechanical loading and material damage due to accelerator protons and fission neutrons. A windowless option was chosen as reference configuration for ...
Since 1998, SCK�CEN, Mol, Belgium, - in partnership with many European research laboratories - is designing a multipurpose Accelerator Driven System for R&D applications - MYRRHA. In parallel, an associated R&D support program is being conducted. MYRRHA aims to serve as a basis for the European experimental ADS providing protons and neutrons for ...
In the framework of nuclear waste management, highly radiotoxic long-lived fission products and minor actinides are planned to be transmuted in a sub-critical reactor coupled with an intense external neutron source. The latter source would be created by a high-energy proton beam hitting a high atomic number target. Such a new system, termed an ...
... Accession Number : ADA057287. Title : A Laser-Driven Pellet Accelerator for CTR Fuel Injection. Descriptive Note : Master's thesis,. ...
DTIC Science & Technology
In order to study the beam power amplification of an accelerator-driven system (ADS), a new parameter, the proton source efficiency {psi}* is introduced. {psi}* represents the average importance of the external proton source, relative to the average importance of the eigenmode production, and is closely related to the neutron source efficiency [varphi]*, which is frequently ...
Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to opticalerent kind of structure. We require an optical waveguide th...
Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are ...
Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.
... Descriptors : *CARBON DIOXIDE LASERS, LASER APPLICATIONS, RAMAN SCATTERING, ELECTRON ACCELERATORS, LINEAR ...
A brief discussion of the Cf-252 source driven method for subcritical measurements serves as an introduction to the concept and use of the spectral ratio, (Gamma). It has also been shown that the Monte Carlo calculation of spectral densities and effective...
Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural ...
Core subcriticality can play an important role if the safety enhancement of a nuclear system is necessary, in particular, when minor actinides submitted for transmutation cause essential degradation of the reactivity feedback effects or/and significant reduction of the delayed neutron fraction. The present work shows that core subcriticality together with ...
A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a ...
Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven ...