Sample records for accelerator grid erosion

  1. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  2. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  3. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  4. Assessment of Spectroscopic, Real-time Ion Thruster Grid Erosion-rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2000-01-01

    The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.

  5. Optimization of electrostatic dual-grid beam-deflection system

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.

    1972-01-01

    Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.

  6. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  7. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  8. Internal erosion rates of a 10-kW xenon ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1988-01-01

    A 30 cm diameter divergent magnetic field ion thruster, developed for mercury operation at 2.7 kW, was modified and operated with xenon propellant at a power level of 10 kW for 567 h to evaluate thruster performance and lifetime. The major differences between this thruster and its baseline configuration were elimination of the three mercury vaporizers, use of a main discharge cathode with a larger orifice, reduction in discharge baffle diameter, and use of an ion accelerating system with larger acceleration grid holes. Grid thickness measurement uncertainties, combined with estimates of the effects of reactive residual facility background gases gave a minimum screen grid lifetime of 7000 h. Discharge cathode orifice erosion rates were measured with three different cathodes with different initial orifice diameters. Three potential problems were identified during the wear test: the upstream side of the discharge baffle eroded at an unacceptable rate; two of the main cathode tubes experienced oxidation, deformation, and failure; and the accelerator grid impingement current was more than an order of magnitude higher than that of the baseline mercury thruster. The charge exchange ion erosion was not quantified in this test. There were no measurable changes in the accelerator grid thickness or the accelerator grid hole diameters.

  9. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back

  10. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon

  11. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil

  12. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  13. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  14. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  15. Modeling of Hall Thruster Lifetime and Erosion Mechanisms (Preprint)

    DTIC Science & Technology

    2007-09-01

    Hall thruster plasma discharge has been upgraded to simulate the erosion of the thruster acceleration channel, the degradation of which is the main life-limiting factor of the propulsion system. Evolution of the thruster geometry as a result of material removal due to sputtering is modeled by calculating wall erosion rates, stepping the grid boundary by a chosen time step and altering the computational mesh between simulation runs. The code is first tuned to predict the nose cone erosion of a 200 W Busek Hall thruster , the BHT-200. Simulated erosion

  16. Energy dissipation on ion-accelerator grids during high-voltage breakdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, M.M.; Ponte, N.S.

    1981-01-01

    The effects of stored energy in the system capacitance across the accelerator grids during high voltage vacuum breakdown are examined. Measurements were made of the current flow and the energy deposition on the grids during breakdown. It is shown that only a portion (less than or equal to 40 J) of the total stored energy (congruent to 100 J) is actually dissipated on the grids. Most of the energy is released during the formation phase of the vacuum arc and is deposited primarily on the most positive grid. Certain abnormal situations led to energy depositions of about 200 J onmore » the grid, but the ion accelerator endured them without exhibiting any deterioration in performance.« less

  17. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  18. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne E.

    2013-01-01

    We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.

  19. Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics

    NASA Technical Reports Server (NTRS)

    Vahrenkamp, R. P.

    1976-01-01

    Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.

  20. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  1. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  2. Ion beamlet steering for two-grid electrostatic thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Homa, J. M.

    1984-01-01

    An experimental study of ion beamlet steering in which the direction of beamlets emitted from a two grid aperture system is controlled by relative translation of the grids, is described. The results can be used to design electrostatic accelerating devices for which the direction and focus of emerging beamlets are important. Deflection and divergence angle data are presented for two grid systems as a function of the relative lateral displacement of the holes in these grids. At large displacements, accelerator grid impingements become excessive and this determines the maximum allowable displacement and as a result the useful range of beamlet deflection. Beamlet deflection is shown to vary linearly with grid offset angle over this range. The divergence of the beamlets is found to be unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished grid ion thruster are examined to determine the effects of thermally induced grid distortion and prescribed offsets of grid hole centerlines on the characteristics of the emerging beamlets. The results are used to determine the region on the grid surface where ion beamlet deflections exceed the useful range. Over this region high accelerator grid impingement currents and rapid grid erosion are predicted.

  3. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  4. Multiple-grid convergence acceleration of viscous and inviscid flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1983-01-01

    A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.

  5. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  6. Design, fabrication, and operation of dished accelerator grids on a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Banks, B. A.; Byers, D. C.

    1972-01-01

    Several closely-space dished accelerator grid systems were fabricated and tested on a 30-cm diameter mercury bombardment thruster and they appear to be a solution to the stringent requirements imposed by the near-term, high-thrust, low specific impulse electric propulsion missions. The grids were simultaneously hydroformed and then simultaneously stress relieved. The ion extraction capability and discharge chamber performance were studied as the total accelerating voltage, the ratio of net-to-total voltage, grid spacing, and dish direction were varied.

  7. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  8. Time-Dependent Erosion of Ion Optics

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.

    2008-01-01

    The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.

  9. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C

  10. Association between childhood trauma and accelerated telomere erosion in adulthood: A meta-analytic study.

    PubMed

    Li, Zongchang; He, Ying; Wang, Dong; Tang, Jingsong; Chen, Xiaogang

    2017-10-01

    Childhood trauma has long-term sequelae on health status and contributes to numbers of somatic and mental disorders in later life. Findings from experimental studies in animals suggest that telomere erosion may be a mediator of this relationship. However, results from human studies are heterogeneous. To address these inconsistencies, we performed a meta-analysis regarding the association between childhood trauma and telomere length in adulthood. Articles were identified by systematically searching the Medline, EMBASE and Web of Science databases. Twenty four studies, which include twenty six sample sets and 30,919 participants, met the inclusion criteria for meta-analyses. This meta-analyses revealed that individuals experienced childhood trauma have accelerated telomere erosion in adulthood, with a small effect size (r = -0.05, 95% CI = -0.08-0.03, p < 0.001). Subgroup analyses by type of childhood trauma revealed a trend in difference between groups (Q = 5.24, p = 0.07). Analyses for individual trauma types revealed a significant association between childhood separation and telomere erosion (r = -0.09, p < 0.001), but not for physical abuse, sexual abuse and loss of a parent. This meta-analysis demonstrated a significant association between childhood trauma and accelerated telomere erosion in adulthood, and further revealed that different trauma types have various impacts on telomere. Additional research on the mechanism that links the individual types of childhood trauma with telomere is needed in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua

    2016-10-01

    A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.

  12. A coarse-grid-projection acceleration method for finite-element incompressible flow computations

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne; FiN Lab Team

    2015-11-01

    Coarse grid projection (CGP) methodology provides a framework for accelerating computations by performing some part of the computation on a coarsened grid. We apply the CGP to pressure projection methods for finite element-based incompressible flow simulations. Based on it, the predicted velocity field data is restricted to a coarsened grid, the pressure is determined by solving the Poisson equation on the coarse grid, and the resulting data are prolonged to the preset fine grid. The contributions of the CGP method to the pressure correction technique are twofold: first, it substantially lessens the computational cost devoted to the Poisson equation, which is the most time-consuming part of the simulation process. Second, it preserves the accuracy of the velocity field. The velocity and pressure spaces are approximated by Galerkin spectral element using piecewise linear basis functions. A restriction operator is designed so that fine data are directly injected into the coarse grid. The Laplacian and divergence matrices are driven by taking inner products of coarse grid shape functions. Linear interpolation is implemented to construct a prolongation operator. A study of the data accuracy and the CPU time for the CGP-based versus non-CGP computations is presented. Laboratory for Fluid Dynamics in Nature.

  13. Does Canoeing Increase Streambank Erosion?

    Treesearch

    Edward A. Hansen

    1975-01-01

    Describes research on the Pine River in Michigan to determine if large increases in canoeing accelerated streambank erosion. Most erosion was natural, but people sliding and camping on streambanks created some erosion. Heavy canoe traffic was not a cause of erosion.

  14. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Liang, WANG; Juntai, YANG; Xiaodong, WEN; Yongjie, HUANG; Meng, WANG

    2018-04-01

    In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster, the thermal deformation, upstream ion density and component lifetime of the grids are simulated with finite element analysis, fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test. The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results. The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW. In 5 kW mode, the decelerator grid shows the most serious corrosion, the accelerator grid shows moderate corrosion, and the screen grid shows the least amount of corrosion. With the serious corrosion of the grids in 5 kW operation mode, the intercept current of the acceleration and deceleration grids increases substantially. Meanwhile, the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm, while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation. At equilibrium temperature with 5 kW power, the finite element method (FEM) simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm. Accordingly, the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm. According to the fluid method, the plasma density simulated in most regions of the discharge chamber is 1 × 1018‑8 × 1018 m‑3. The upstream plasma density of the screen grid is in the range 6 × 1017‑6 × 1018 m‑3 and displays a parabolic characteristic. The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5 × 10‑14 kg s‑1 and

  15. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    PubMed

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of facility background gases on internal erosion of the 30-cm Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Mantenieks, M. A.

    1978-01-01

    Sputtering erosion of the upstream side of the molybdenum screen grid by discharge chamber ions in mercury bombardment thrusters was considered. Data which revealed that the screen grid erosion was very sensitive to the partial pressure of certain background gases in the space simulation vacuum facility were presented along with results of tests conducted to evaluate this effect. It is shown from estimates of the screen grid erosion in space that adequate lifetime for proposed missions exists.

  17. Soil erosion in developing countries: A politicoeconomic explanation

    NASA Astrophysics Data System (ADS)

    Thapa, Gopal B.; Weber, Karl E.

    1991-07-01

    Soil erosion is accelerating in developing countries of Asia, Africa, and Latin America. It has threatened the livelihood of millions of peasants, for agriculture is their economic mainstay. A probe into the forces causing erosion reveals that the elite’s resolve to accumulate ever more wealth and to maintain, consolidate, or expand their sociopolitical power and the necessity of the poor to fulfill their requirements of food, fuelwood, and fodder are the two major factors accelerating soil erosion. Unless the vast masses of poor people are integrated into the national mainstream through the implementation of equitable and redistributive development policies, it is impossible to control the accelerating rate of soil erosion and thus to achieve the objective of sustainable development.

  18. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  19. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less

  20. Sensitivity of mountain ecosystems to human-accelerated soil erosion. Contrasting geomorphic response between tropical and semi-arid ecosystems.

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Bellin, Nicolas; Schoonejans, Jerome; Molina, Armando; Kubik, Peter W.

    2014-05-01

    Tropical Andes where the share of natural erosion in the modern erosion rate is minimal for most disturbed sites. When pooling pre- and post-disturbance erosion data from both sites, it becomes evident that the human acceleration of erosion is significantly related to vegetation disturbance. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between human disturbed and undisturbed or restored sites.

  1. Determination of neutral beam injection accelerator grid deformation using beam emission measurements

    NASA Astrophysics Data System (ADS)

    Nightingale, M. P. S.; Kugel, H.; Gee, S. J.; Price, M. N.

    1999-01-01

    Theoretical modeling of 1-2 MW positive hydrogen ion neutral injectors developed at Oak Ridge National Laboratory (ORNL) has suggested that the plasma grid temperature could rise by up to 180 °C at pulse lengths above 0.5 s, leading to a grid deformation on the order of 5 mm, with a consequent change in focal length (from 4 to 2 m) and beamlet focusing. One of these injectors (on loan from ORNL) was used to achieve record β values on the Small Tight Aspect Ratio Tokamak at Culham, and two more are to be used on the Mega-Ampere Spherical Tokamak (MAST) at pulse lengths of up to 5 s. Since the grid modeling has never been tested experimentally, a method for diagnosing changes in beam transport as a function of pulse length using light emitted by the beam is now under development at Culham to see if grid modifications are required for MAST. Initial experimental results, carried out using a 50 A 30 keV hydrogen beam, are presented (including comparison with thermocouple data using an EK98 graphite beam stop). These confirm that emission measurement should allow the accelerator focal length and beamlet divergence to be determined to accuracies of better than ±0.45 m and ±0.2°, respectively (compared to nominal values of 4 m and 1.2°).

  2. Ion extraction capabilities of closely spaced grids

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1982-01-01

    The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.

  3. Erosion and Channel Incision Analysis with High-Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Potapenko, J.; Bookhagen, B.

    2013-12-01

    High-resolution LiDAR (LIght Detection And Ranging) provides a new generation of sub-meter topographic data that is still to be fully exploited by the Earth science communities. We make use of multi-temporal airborne and terrestrial lidar scans in the south-central California and Santa Barbara area. Specifically, we have investigated the Mission Canyon and Channel Islands regions from 2009-2011 to study changes in erosion and channel incision on the landscape. In addition to gridding the lidar data into digital elevation models (DEMs), we also make use of raw lidar point clouds and triangulated irregular networks (TINs) for detailed analysis of heterogeneously spaced topographic data. Using recent advancements in lidar point cloud processing from information technology disciplines, we have employed novel lidar point cloud processing and feature detection algorithms to automate the detection of deeply incised channels and gullies, vegetation, and other derived metrics (e.g. estimates of eroded volume). Our analysis compares topographically-derived erosion volumes to field-derived cosmogenic radionuclide age and in-situ sediment-flux measurements. First results indicate that gully erosion accounts for up to 60% of the sediment volume removed from the Mission Canyon region. Furthermore, we observe that gully erosion and upstream arroyo propagation accelerated after fires, especially in regions where vegetation was heavily burned. The use of high-resolution lidar point cloud data for topographic analysis is still a novel method that needs more precedent and we hope to provide a cogent example of this approach with our research.

  4. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.

    PubMed

    Benkert, Thomas; Tian, Ye; Huang, Chenchan; DiBella, Edward V R; Chandarana, Hersh; Feng, Li

    2018-07-01

    Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs

    PubMed Central

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.

    2013-01-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203

  6. Time effect of erosion by solid particle impingement on ductile materials

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    Erosion and morphological studies of several metals and alloys eroded by normal impingement jets of spherical glass beads and angular crushed-glass erodent particles were conducted. Erosion morphology (the width, depth, and width-depth ratio of the pit) was studied in order to fully investigate the effect of time on erosion rate. The eroded surfaces were studied with a scanning electron microscope, and surface profiles were measured with a profilometer. A large amount of experimental data reported in the literature was also analyzed in order to understand the effect of variables such as the type of device, the erodent particle size and shape, the impact velocity, and the abrasive charge on erosion-rate-versus-time curves. In the present experiments the pit-width-versus-time or pit-depth-versus-time curves were similar to erosion-versus-time curves for glass-bead impingement. The pit-depth-rate-versus-time curves were similar to erosion-rate-versus-time curves for crushed-glass impingement. Analysis of experimental data with two forms of glass resulted in four types of erosion-rate-versus-time curves: (1) incubation, acceleration, and steady-state periods (type I), (2) incubation, acceleration, deceleration, and steady-state periods (type III), (3) incubation, acceleration, peak rate, and deceleration periods (type IV), and (4) incubation, acceleration, steady-state, and deceleration periods (type V).

  7. The global coastline dataset: the observed relation between erosion and sea-level rise

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; Luijendijk, A.; Hagenaars, G.

    2017-12-01

    Erosion of sandy coasts is considered one of the key risks of sea-level rise. Because sandy coastlines of the world are often highly populated, erosive coastline trends result in risk to populations and infrastructure. Most of our understanding of the relation between sea-level rise and coastal erosion is based on local or regional observations and generalizations of numerical and physical experiments. Until recently there was no reliable global scale assessment of the location of sandy coasts and their rate of erosion and accretion. Here we present the global coastline dataset that covers erosion indicators on a local scale with global coverage. The dataset uses our global coastline transects grid defined with an alongshore spacing of 250 m and a cross shore length extending 1 km seaward and 1 km landward. This grid matches up with pre-existing local grids where available. We present the latest results on validation of coastal-erosion trends (based on optical satellites) and classification of sandy versus non-sandy coasts. We show the relation between sea-level rise (based both on tide-gauges and multi-mission satellite altimetry) and observed erosion trends over the last decades, taking into account broken-coastline trends (for example due to nourishments).An interactive web application presents the publicly-accessible results using a backend based on Google Earth Engine. It allows both researchers and stakeholders to use objective estimates of coastline trends, particularly when authoritative sources are not available.

  8. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  9. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  10. Numerical Nuclear Second Derivatives on a Computing Grid: Enabling and Accelerating Frequency Calculations on Complex Molecular Systems.

    PubMed

    Yang, Tzuhsiung; Berry, John F

    2018-06-04

    The computation of nuclear second derivatives of energy, or the nuclear Hessian, is an essential routine in quantum chemical investigations of ground and transition states, thermodynamic calculations, and molecular vibrations. Analytic nuclear Hessian computations require the resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations, while numerical differentiation of analytic first derivatives has an unfavorable 6 N ( N = number of atoms) prefactor. Herein, we present a new method in which grid computing is used to accelerate and/or enable the evaluation of the nuclear Hessian via numerical differentiation: NUMFREQ@Grid. Nuclear Hessians were successfully evaluated by NUMFREQ@Grid at the DFT level as well as using RIJCOSX-ZORA-MP2 or RIJCOSX-ZORA-B2PLYP for a set of linear polyacenes with systematically increasing size. For the larger members of this group, NUMFREQ@Grid was found to outperform the wall clock time of analytic Hessian evaluation; at the MP2 or B2LYP levels, these Hessians cannot even be evaluated analytically. We also evaluated a 156-atom catalytically relevant open-shell transition metal complex and found that NUMFREQ@Grid is faster (7.7 times shorter wall clock time) and less demanding (4.4 times less memory requirement) than an analytic Hessian. Capitalizing on the capabilities of parallel grid computing, NUMFREQ@Grid can outperform analytic methods in terms of wall time, memory requirements, and treatable system size. The NUMFREQ@Grid method presented herein demonstrates how grid computing can be used to facilitate embarrassingly parallel computational procedures and is a pioneer for future implementations.

  11. Time dependence of solid-particle impingement erosion of an aluminum alloy

    NASA Technical Reports Server (NTRS)

    Veerabhadrarao, P.; Buckley, D. H.

    1983-01-01

    Erosion studies were conducted on 6061-T6511 aluminum alloy by using jet impingement of glass beads and crushed glass particles to investigate the influence of exposure time on volume loss rate at different pressures. The results indicate a direct relationship between erosion-versus-time curves and pitmorphology (width, depth, and width-depth ratio)-versus-time curves for both glass forms. Extensive erosion data from the literature were analyzed to find the variations of erosion-rate-versus-time curves with respect to the type of device, the size and shape of erodent particles, the abrasive charge, the impact velocity, etc. Analysis of the experimental data, obtained with two forms of glass, resulted in three types of erosion-rate-versus-time curves: (1) curves with incubation, acceleration, and steadystate periods (type 1); (2) curves with incubation, acceleration, decleration, and steady-state periods (type 3); and (3) curves with incubation, acceleration, peak rate, and deceleration periods (type 4). The type 4 curve is a less frequently seen curve and was not reported in the literature. Analysis of extensive literature data generally indicated three types of erosion-rate-versus-time curves. Two types (types 1 and 3) were observed in the present study; the third type involves incubation (and deposition), acceleration, and steady-state periods (type 2). Examination of the extensive literature data indicated that it is absolutely necessary to consider the corresponding stages or periods of erosion in correlating and characterizing erosion resistance of a wide spectrum of ductile materials.

  12. Grid Modernization Laboratory Consortium - Testing and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Benjamin; Skare, Paul; Pratt, Rob

    This paper highlights some of the unique testing capabilities and projects being performed at several national laboratories as part of the U. S. Department of Energy Grid Modernization Laboratory Consortium. As part of this effort, the Grid Modernization Laboratory Consortium Testing Network isbeing developed to accelerate grid modernization by enablingaccess to a comprehensive testing infrastructure and creating a repository of validated models and simulation tools that will be publicly available. This work is key to accelerating thedevelopment, validation, standardization, adoption, and deployment of new grid technologies to help meet U. S. energy goals.

  13. Runoff and erosion from a rapidly eroding pinyon-juniper hillslope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, B.P.; Davenport, D. W.; Pitlick, J.

    1996-02-01

    The dramatic acceleration of erosion associated with the expansion of pinyon-juniper woodlands over the past 100 years has been a widely recognized but poorly understood phenomenon. A more complete understanding will come only through long-term observations of erosion and related factors. To this end, we are conducting a study of a small (1-ha) catchment in a rapidly eroding pinyon-juniper woodland. Since July 1993, we have been collecting data on runoff, erosion, and weather conditions in the catchment, as well as on the topography, soils, and vegetation. Our preliminary results suggest that (1) the catchment is currently in a cycle ofmore » accelerated erosion that began concomitant with a shift from ponderosa pine forest to pinyon-juniper woodland that was initiated by a prolonged drought; (2) the intercanopy soils cannot be sustained at the current erosion rates and will be mostly stripped away in about a century; (3) large summer thunderstorms are the most important agents of erosion (4) erosion increases dramatically as the scale increases; (5) runoff makes up <10% of the water budget.« less

  14. Forest road erosion control using multiobjective optimization

    Treesearch

    Matthew Thompson; John Sessions; Kevin Boston; Arne Skaugset; David Tomberlin

    2010-01-01

    Forest roads are associated with accelerated erosion and can be a major source of sediment delivery to streams, which can degrade aquatic habitat. Controlling road-related erosion therefore remains an important issue for forest stewardship. Managers are faced with the task to develop efficient road management strategies to achieve conflicting environmental and economic...

  15. Spatial application of WEPS for estimating wind erosion in the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is used to simulate soil erosion on croplands and was originally designed to run field scale simulations. This research is an extension of the WEPS model to run on multiple fields (grids) covering a larger region. We modified the WEPS source code to allow it...

  16. Spatial application of WEPS for estimating wind erosion in the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is used to simulate soil erosion on cropland and was originally designed to run simulations on a field-scale size. This study extended WEPS to run on multiple fields (grids) independently to cover a large region and to conduct an initial investigation to ass...

  17. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  18. Grid Gap Measurement for an NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Diaz, Esther M.; Soulas, George C.

    2006-01-01

    The change in gap between the screen and accelerator grids of an engineering model NSTAR ion optics assembly was measured during thruster operation with beam extraction. The molybdenum ion optics assembly was mounted onto an engineering model NSTAR ion thruster. The measurement technique consisted of measuring the difference in height of an alumina pin relative to the downstream accelerator grid surface. The alumina pin was mechanically attached to the center aperture of the screen grid and protruded through the center aperture of the accelerator grid. The change in pin height was monitored using a long distance microscope coupled to a digital imaging system. Transient and steady-state hot grid gaps were measured at three power levels: 0.5, 1.5 and 2.3 kW. Also, the change in grid gap was measured during the transition between power levels, and during the startup with high voltage applied just prior to discharge ignition. Performance measurements, such as perveance, electron backstreaming limit and screen grid ion transparency, were also made to confirm that this ion optics assembly performed similarly to past testing. Results are compared to a prior test of 30 cm titanium ion optics.

  19. Post-Test Analysis of the Deep Space One Spare Flight Thruster Ion Optics

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Sengupta, Anita; Brophy, John R.

    2004-01-01

    The Deep Space 1 (DSl) spare flight thruster (FT2) was operated for 30,352 hours during the extended life test (ELT). The test was performed to validate the service life of the thruster, study known and identify unknown life limiting modes. Several of the known life limiting modes involve the ion optics system. These include loss of structural integrity for either the screen grid or accelerator grid due to sputter erosion from energetic ions striking the grid, sputter erosion enlargement of the accelerator grid apertures to the point where the accelerator grid power supply can no longer prevent electron backstreaming, unclearable shorting between the grids causes by flakes of sputtered material, and rouge hole formation due to flakes of material defocusing the ion beam. Grid gap decrease, which increases the probability of electron backstreaming and of arcing between the grids, was identified as an additional life limiting mechanism after the test. A combination of accelerator grid aperture enlargement and grid gap decrease resulted in the inability to prevent electron backstreaming at full power at 26,000 hours of the ELT. Through pits had eroded through the accelerator grid webbing and grooves had penetrated through 45% of the grid thickness in the center of the grid. The upstream surface of the screen grid eroded in a chamfered pattern around the holes in the central portion of the grid. Sputter deposited material, from the accelerator grid, adhered to the downstream surface of the screen grid and did not spall to form flakes. Although a small amount of sputter deposited material protruded into the screen grid apertures, no rouge holes were found after the ELT.

  20. Erosion-corrosion and cavitation-erosion measurements on copper alloys utilizing thin layer activation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.; Hsu, K.Y.; Kai, J.J.

    1992-12-31

    The surface layers of copper alloy specimens were made radioactive by bombarding with 5 MeV protons from a van de Graaff accelerator which converted Cu-65 into Zn-65 through (p,n) reaction. The amount of surface material loss could then be monitored by measuring the total remaining {gamma}-ray activity generated from Zn-65 decay. This technique, termed thin layer activation (TLA), has the advantage of in situ monitoring the rate of surface removal due to corrosion, erosion-corrosion, wearing, etc. In this work, the erosion-corrosion tests on aluminum brass and 90Cu-10Ni were conducted in circulating sea water and the erosion-corrosion rates measured using TLAmore » and conventional methods such as linear polarization resistance (LPR) method and weight loss coupons were compared. A vibrational cavitation-erosion test was also performed on aluminum bronze, in which the measurements by TLA were compared with those of weight loss measurements.« less

  1. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  2. Multi-scale wind erosion monitoring and assessment for US rangelands

    USDA-ARS?s Scientific Manuscript database

    Wind erosion is a major resource concern for rangeland managers. Although wind erosion is a naturally occurring process in many drylands, land use activities, and land management in particular, can accelerate wind-driven soil loss – impacting ecosystem dynamics and agricultural production, air quali...

  3. Geomorphic considerations for erosion prediction

    USGS Publications Warehouse

    Osterkamp, W.R.; Toy, T.J.

    1997-01-01

    Current soil-erosion prediction technology addresses processes of rainsplash, overland-flow sediment transport, and rill erosion in small watersheds. The effects of factors determining sediment yield from larger-scale drainage basins, in which sediment movement is controlled by the combined small-scale processes and a complex set of channel and other basin-scale sediment-delivery processes, such as soil creep, bioturbation, and accelerated erosion due to denudation of vegetation, have been poorly evaluated. General suggestions are provided for the development of erosion-prediction technology at the geomorphic or drainage-basin scale based on the separation of sediment-yield data for channel and geomorphic processes from those of field-scale soil loss. An emerging technology must consider: (1) the effects on sediment yield of climate, geology and soils, topography, biotic interactions with other soil processes, and land-use practices; (2) all processes of sediment delivery to a channel system; and (3) the general tendency in most drainage basins for progressively greater sediment storage in the downstream direction.

  4. A new methodology for hydro-abrasive erosion tests simulating penstock erosive flow

    NASA Astrophysics Data System (ADS)

    Aumelas, V.; Maj, G.; Le Calvé, P.; Smith, M.; Gambiez, B.; Mourrat, X.

    2016-11-01

    Hydro-abrasive resistance is an important property requirement for hydroelectric power plant penstock coating systems used by EDF. The selection of durable coating systems requires an experimental characterization of coating performance. This can be achieved by performing accelerated and representative laboratory tests. In case of severe erosion induced by a penstock flow, there is no suitable method or standard representative of real erosive flow conditions. The presented study aims at developing a new methodology and an associated laboratory experimental device. The objective of the laboratory apparatus is to subject coated test specimens to wear conditions similar to the ones generated at the penstock lower generatrix in actual flow conditions. Thirteen preselected coating solutions were first been tested during a 45 hours erosion test. A ranking of the thirteen coating solutions was then determined after characterisation. To complete this first evaluation and to determine the wear kinetic of the four best coating solutions, additional erosion tests were conducted with a longer duration of 216 hours. A comparison of this new method with standardized tests and with real service operating flow conditions is also discussed. To complete the final ranking based on hydro-abrasive erosion tests, some trial tests were carried out on penstock samples to check the application method of selected coating systems. The paper gives some perspectives related to erosion test methodologies for materials and coating solutions for hydraulic applications. The developed test method can also be applied in other fields.

  5. Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent

    NASA Technical Reports Server (NTRS)

    Benford, S. M.; Zellars, G. R.; Lowell, C. E.

    1981-01-01

    Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.

  6. Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2003-01-01

    The imposition of a magnetic field has been proposed as a means of reducing the electron backstreaming problem in ion thrusters. Electron backstreaming refers to the backflow of electrons into the ion thruster. Backstreaming electrons are accelerated by the large potential difference that exists between the ion-thruster acceleration electrodes, which otherwise accelerates positive ions out of the engine to develop thrust. The energetic beam formed by the backstreaming electrons can damage the discharge cathode, as well as other discharge surfaces upstream of the acceleration electrodes. The electron-backstreaming condition occurs when the center potential of the ion accelerator grid is no longer sufficiently negative to prevent electron diffusion back into the ion thruster. This typically occurs over extended periods of operation as accelerator-grid apertures enlarge due to erosion. As a result, ion thrusters are required to operate at increasingly negative accelerator-grid voltages in order to prevent electron backstreaming. These larger negative voltages give rise to higher accelerator grid erosion rates, which in turn accelerates aperture enlargement. Electron backstreaming due to accelerator-gridhole enlargement has been identified as a failure mechanism that will limit ionthruster service lifetime. The proposed method would make it possible to not only reduce the electron backstreaming current at and below the backstreaming voltage limit, but also reduce the backstreaming voltage limit itself. This reduction in the voltage at which electron backstreaming occurs provides operating margin and thereby reduces the magnitude of negative voltage that must be placed on the accelerator grid. Such a reduction reduces accelerator- grid erosion rates. The basic idea behind the proposed method is to impose a spatially uniform magnetic field downstream of the accelerator electrode that is oriented transverse to the thruster axis. The magnetic field must be sufficiently

  7. A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research

    PubMed Central

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue

    2012-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  8. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    PubMed

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  9. Assessing soil erosion using USLE model and MODIS data in the Guangdong, China

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Wang, Yunpeng; Yang, Jingxue

    2017-07-01

    In this study, soil erosion in the Guangdong, China during 2012 was quantitatively assessed using Universal Soil Loss Equation (USLE). The parameters of the model were calculated using GIS and MODIS data. The spatial distribution of the average annual soil loss on grid basis was mapped. The estimated average annual soil erosion in Guangdong in 2012 is about 2294.47t/ (km2.a). Four high sensitive area of soil erosion in Guangdong in 2012 was found. The key factors of these four high sensitive areas of soil erosion were significantly contributed to the land cover types, rainfall and Economic development and human activities.

  10. Estimating two indirect logging costs caused by accelerated erosion.

    Treesearch

    Glen O. Klock

    1976-01-01

    In forest areas where high soil erosion potential exists, a comparative yarding cost estimate, including the indirect costs determined by methods proposed here, shows that the total cost of using "advanced" logging methods may be less than that of "traditional" systems.

  11. Improvement of voltage holding and high current beam acceleration by MeV accelerator for ITER NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, M.; Kashiwagi, M.; Inoue, T.

    Voltage holding of -1 MV is an essential issue in development of a multi-aperture multi-grid (MAMuG) negative ion accelerator, of which target is to accelerate 200 A/m{sup 2} H{sup -} ion beam up to the energy of 1 MeV for several tens seconds. Review of voltage holding results ever obtained with various geometries of the accelerators showed that the voltage holding capability was about a half of designed value based on the experiment obtained from ideal small electrode. This is considered due to local electric field concentration in the accelerators, such as edge and steps between multi-aperture grids and itsmore » support structures. Based on the detailed investigation with electric field analysis, accelerator was modified to reduce the electric field concentration by reshaping the support structures and expanding the gap length between the grid supports. After the modifications, the accelerator succeeded in sustaining -1 MV for more than one hour in vacuum. Improvement of the voltage holding characteristics progressed the energy and current accelerated by the MeV accelerator. Up to 2010, beam parameters achieved by the MAMuG accelerator were increased to 879 keV, 0.36 A (157 A/m{sup 2}) at perveance matched condition and 937 keV, 0.33 A (144 A/m{sup 2}) slightly under perveance.« less

  12. Erosion rate diagnostics in ion thrusters using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.

    1993-01-01

    We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.

  13. Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1994-01-01

    A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.

  14. Deposition, erosion, and bathymetric change in South San Francisco Bay: 1858-1983

    USGS Publications Warehouse

    Foxgrover, Amy C.; Higgins, Shawn A.; Ingraca, Melissa K.; Jaffe, Bruce E.; Smith, Richard E.

    2004-01-01

    Since the California Gold Rush of 1849, sediment deposition, erosion, and the bathymetry of South San Francisco Bay have been altered by both natural processes and human activities. Historical hydrographic surveys can be used to assess how this system has evolved over the past 150 years. The National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS), collected five hydrographic surveys of South San Francisco Bay from 1858 to 1983. Analysis of these surveys enables us to reconstruct the surface of the bay floor for each time period and quantify spatial and temporal changes in deposition, erosion, and bathymetry. The creation of accurate bathymetric models involves many steps. Sounding data was obtained from the original USCGS and NOS hydrographic sheets and were supplemented with hand drawn depth contours. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings and shorelines were entered into a Geographic Information System (GIS), and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 50 m were developed for each of the five hydrographic surveys. Prior to conducting analyses of sediment deposition and erosion, we converted all of the grids to a common vertical datum and made adjustments to correct for land subsidence that occurred from 1934 to 1967. Deposition and erosion that occurred during consecutive periods was then computed by differencing the corrected grids. From these maps of deposition and erosion, we calculated volumes and rates of net sediment change in the bay. South San Francisco Bay has lost approximately 90 x 106 m3 of sediment from 1858 to 1983; however within this timeframe there have been periods of both deposition and erosion. During the most recent period, from 1956 to 1983, sediment loss approached 3 x 106 m3/yr. One of the most striking changes that occurred from 1858 to 1983 was the conversion of more

  15. Controlling Electron Backstreaming Phenomena Through the Use of a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    DEEP-SPACE mission propulsion requirements can be satisfied by the use of high specific impulse systems such as ion thrusters. For such missions. however. the ion thruster will be required to provide thrust for long periods of time. To meet the long operation time and high-propellant throughput requirements, thruster lifetime must be increased. In general, potential ion thruster failure mechanisms associated with long-duration thrusting can be grouped into four areas: (1) ion optics failure; (2) discharge cathode failure; (3) neutralizer failure; and (4) electron backstreaming caused by accelerator grid aperture enlargement brought on by accelerator grid erosion. The work presented here focuses on electron backstreaming. which occurs when the potential at the center of an accelerator grid aperture is insufficient to prevent the backflow of electrons into the ion thruster. The likelihood of this occurring depends on ion source operation time. plasma density, and grid voltages, as accelerator grid apertures enlarge as a result of erosion. Electrons that enter the gap between the high-voltage screen and accelerator grids are accelerated to the energies approximately equal to the beam voltage. This energetic electron beam (typically higher than 1 kV) can damage not only the ion source discharge cathode assembly. but also any of the discharge surfaces upstream of the ion acceleration optics that the electrons happen to impact. Indeed. past backstreaming studies have shown that near the backstreaming limit, which corresponds to the absolute value of the accelerator grid voltage below which electrons can backflow into the thruster, there is a rather sharp rise in temperature at structures such as the cathode keeper electrode. In this respect operation at accelerator grid voltages near the backstreaming limit is avoided. Generally speaking, electron backstreaming is prevented by operating the accelerator grid at a sufficiently negative voltage to ensure a sufficiently

  16. Convergence acceleration of viscous flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1982-01-01

    A multiple-grid convergence acceleration technique introduced for application to the solution of the Euler equations by means of Lax-Wendroff algorithms is extended to treat compressible viscous flow. Computational results are presented for the solution of the thin-layer version of the Navier-Stokes equations using the explicit MacCormack algorithm, accelerated by a convective coarse-grid scheme. Extensions and generalizations are mentioned.

  17. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  18. Measurement of beam divergence of 30-centimeter dished grids

    NASA Technical Reports Server (NTRS)

    Danilowicz, R. L.; Rawlin, V. K.; Banks, B. A.; Wintucky, E. G.

    1973-01-01

    The beam divergence of a 30-centimeter diameter thruster with dished grids was calculated from current densities measured with a probe rake containing seventeen planar molybdenum probes. The measured data were analyzed as a function of a number of parameters. The most sensitive parameters were the amount of compensation of the accelerator grid and the ratio of net to total accelerating voltage. The thrust losses were reduced by over 5 percent with the use of compensated grids alone, and by variation of other parameters the overall thrust losses due to beam divergence were reduced to less than 2 percent.

  19. Measurement of beam divergence of 30-centimeter dished grids

    NASA Technical Reports Server (NTRS)

    Danilowicz, R. L.; Rawlin, V. K.; Banks, B. A.; Wintucky, E. G.

    1973-01-01

    The beam divergence of a 30-centimeter diameter thrustor with dished grids was calculated from current densities measured with a probe rake containing seventeen planar molybdenum probes. The measured data were analyzed as a function of a number of parameters. The most sensitive parameters were the amount of compensation of the accelerator grid and the ratio of net to total accelerating voltage. The thrust losses were reduced by over 5 percent with the use of compensated grids alone, and by variation of other parameters the overall thrust losses due to beam divergence were reduced to less than 2 percent.

  20. Erosion measurement techniques for plasma-driven railgun barrels

    NASA Astrophysics Data System (ADS)

    Jamison, K. A.; Niiler, Andrus

    1987-04-01

    Plasma-driven railguns are now in operation at several locations throughout the world. All share common problems in barrel erosion arising from the fact that the bore surface must contain a high temperature plasma armature which transmits the acceleration force to a projectile. The plasma temperature at the core of the armature is estimated to be 30 000 K or higher. Such conditions are erosive to most materials even when the exposure time is 100 μs or less. We have adapted two accelerator based techniques to aid in the study of this erosion. The first technique involves the collection and analysis of material ablated and left behind by the plasma. This analysis is based on the unfolding of the Rutherford backscattered (RBS) spectra of 1 MeV deuterons incident on residue collected from a railgun bore. The second technique is an erosion measurement involving thin layer activation (TLA) of surfaces. In this process, the copper rail surface is activated by 2.4 MeV protons creating a relatively thin (3 m) layer sparsely seeded with a long lived zinc isotope. Monitoring the decay of the activated sample before and after a firing can detect surface wear of about 0. 1 m. Results from the RBS and TLA experiments on the BRL plasma driven railgun are described.

  1. Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.

    2016-05-01

    This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.

  2. OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery.

    PubMed

    Ekins, Sean; Perryman, Alexander L; Horta Andrade, Carolina

    2016-10-01

    The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses.

  3. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange.

    PubMed

    Van Oost, Kristof; Verstraeten, Gert; Doetterl, Sebastian; Notebaert, Bastiaan; Wiaux, François; Broothaerts, Nils; Six, Johan

    2012-11-20

    Carbon exchange associated with accelerated erosion following land cover change is an important component of the global C cycle. In current assessments, however, this component is not accounted for. Here, we integrate the effects of accelerated C erosion across point, hillslope, and catchment scale for the 780-km(2) Dijle River catchment over the period 4000 B.C. to A.D. 2000 to demonstrate that accelerated erosion results in a net C sink. We found this long-term C sink to be equivalent to 43% of the eroded C and to have offset 39% (17-66%) of the C emissions due to anthropogenic land cover change since the advent of agriculture. Nevertheless, the erosion-induced C sink strength is limited by a significant loss of buried C in terrestrial depositional stores, which lagged the burial. The time lag between burial and subsequent loss at this study site implies that the C buried in eroded terrestrial deposits during the agricultural expansion of the last 150 y cannot be assumed to be inert to further destabilization, and indeed might become a significant C source. Our analysis exemplifies that accounting for the non-steady-state C dynamics in geomorphic active systems is pertinent to understanding both past and future anthropogenic global change.

  4. Legacy of human-induced C erosion and burial on soil–atmosphere C exchange

    PubMed Central

    Van Oost, Kristof; Verstraeten, Gert; Doetterl, Sebastian; Notebaert, Bastiaan; Wiaux, François; Broothaerts, Nils; Six, Johan

    2012-01-01

    Carbon exchange associated with accelerated erosion following land cover change is an important component of the global C cycle. In current assessments, however, this component is not accounted for. Here, we integrate the effects of accelerated C erosion across point, hillslope, and catchment scale for the 780-km2 Dijle River catchment over the period 4000 B.C. to A.D. 2000 to demonstrate that accelerated erosion results in a net C sink. We found this long-term C sink to be equivalent to 43% of the eroded C and to have offset 39% (17–66%) of the C emissions due to anthropogenic land cover change since the advent of agriculture. Nevertheless, the erosion-induced C sink strength is limited by a significant loss of buried C in terrestrial depositional stores, which lagged the burial. The time lag between burial and subsequent loss at this study site implies that the C buried in eroded terrestrial deposits during the agricultural expansion of the last 150 y cannot be assumed to be inert to further destabilization, and indeed might become a significant C source. Our analysis exemplifies that accounting for the non–steady-state C dynamics in geomorphic active systems is pertinent to understanding both past and future anthropogenic global change. PMID:23134723

  5. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    PubMed

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  6. LAPSUS: soil erosion - landscape evolution model

    NASA Astrophysics Data System (ADS)

    van Gorp, Wouter; Temme, Arnaud; Schoorl, Jeroen

    2015-04-01

    LAPSUS is a soil erosion - landscape evolution model which is capable of simulating landscape evolution of a gridded DEM by using multiple water, mass movement and human driven processes on multiple temporal and spatial scales. It is able to deal with a variety of human landscape interventions such as landuse management and tillage and it can model their interactions with natural processes. The complex spatially explicit feedbacks the model simulates demonstrate the importance of spatial interaction of human activity and erosion deposition patterns. In addition LAPSUS can model shallow landsliding, slope collapse, creep, solifluction, biological and frost weathering, fluvial behaviour. Furthermore, an algorithm to deal with natural depressions has been added and event-based modelling with an improved infiltration description and dust deposition has been pursued. LAPSUS has been used for case studies in many parts of the world and is continuously developing and expanding. it is now available for third-party and educational use. It has a comprehensive user interface and it is accompanied by a manual and exercises. The LAPSUS model is highly suitable to quantify and understand catchment-scale erosion processes. More information and a download link is available on www.lapsusmodel.nl.

  7. New multigrid approach for three-dimensional unstructured, adaptive grids

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Vijayan; Kallinderis, Y.

    1994-01-01

    A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.

  8. OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery

    PubMed Central

    Perryman, Alexander L.; Horta Andrade, Carolina

    2016-01-01

    The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses. PMID:27764115

  9. Viewpoint: Sustainability of piñon-juniper ecosystems - A unifying perspective of soil erosion thresholds

    USGS Publications Warehouse

    Davenport, David W.; Breshears, D.D.; Wilcox, B.P.; Allen, Craig D.

    1998-01-01

    Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.

  10. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  11. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  12. Effects of aeolian erosion on microbial release from solids.

    NASA Technical Reports Server (NTRS)

    Gustan, E. A.; Olson, R. L.; Taylor, D. M.; Green, R. H.

    1972-01-01

    This study was initiated to determine the percentage of spores that would be expected to be released from the interior of solid materials by aeolian erosion on a planetary surface. Methyl methacrylate and Eccobond disks were fabricated so that each disk contained approximately 40,000 Bacillus subtilis var. niger spores. The disks were placed in a specially designed sandblasting device and eroded. Exposure periods of 0.5, 2 and 24 hours were investigated using filtered air to accelerate the sand. A series of tests was also conducted for a 0.5 hour period using carbon dioxide. Examination of the erosion products showed that less than 1% of the spores originally contained in the solids was released by aeolian erosion.

  13. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  14. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  15. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu; Ponton, Camilo; Usman, Muhammed; Blusztajn, Jerzy; Fuller, Dorian Q.; Galy, Valier; Haghipour, Negar; Johnson, Joel E.; McIntyre, Cameron; Wacker, Lukas; Eglinton, Timothy I.

    2017-12-01

    Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.

  16. Effect of current ripple on cathode erosion in 30 kWe class arcjets

    NASA Technical Reports Server (NTRS)

    Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.

    1991-01-01

    An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.

  17. Implications of climate change on wind erosion of agricultural lands in the Columbia Plateau

    USDA-ARS?s Scientific Manuscript database

    Climate change may impact soil health and productivity as a result of accelerated or decelerated rates of erosion. Previous studies suggest a greater risk of wind erosion on arid and semi-arid lands due to loss of biomass under a future warmer climate. There have been no studies conducted to assess ...

  18. Fertilization To Accelerate Loblolly Pine Foliage Growth For Erosion Control

    Treesearch

    Paul D. Duffy

    1977-01-01

    On the southern Coastal Plain, loblolly pine (Pinus taeda L.) can be used to help control erosion because it produces abundant soil-protecting litter. The species requires several years to produce enough litter for adequate soil protection, but on loamy soils fertilization can reduce the time by a year or more. When five fertilizer combinations...

  19. Sputtering Erosion Measurement on Boron Nitride as a Hall Thruster Material

    NASA Technical Reports Server (NTRS)

    Britton, Melissa; Waters, Deborah; Messer, Russell; Sechkar, Edward; Banks, Bruce

    2002-01-01

    The durability of a high-powered Hall thruster may be limited by the sputter erosion resistance of its components. During normal operation, a small fraction of the accelerated ions will impact the interior of the main discharge channel, causing its gradual erosion. A laboratory experiment was conducted to simulate the sputter erosion of a Hall thruster. Tests of sputter etch rate were carried out using 300 to 1000 eV Xenon ions impinging on boron nitride substrates with angles of attack ranging from 30 to 75 degrees from horizontal. The erosion rates varied from 3.41 to 14.37 Angstroms/[sec(mA/sq cm)] and were found to depend on the ion energy and angle of attack, which is consistent with the behavior of other materials.

  20. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASA's Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. The post-test inspection objectives for the ion optics were derived from the original NEXT LDT test objectives, such as service life model validation, and expanded to encompass other goals that included verification of in situ measurements, test issue root causes, and past design changes. The ion optics cold grid gap had decreased only by an average of 7% of pretest center grid gap, so efforts to stabilize NEXT grid gap were largely successful. The upstream screen grid surface exhibited a chamfered erosion pattern. Screen grid thicknesses were = 86% of the estimated pretest thickness, indicating that the screen grid has substantial service life remaining. Deposition was found on the screen aperture walls and downstream surfaces that was primarily composed of grid material and back-sputtered carbon, and this deposition likely caused the minor decreases in screen grid ion transparency during the test. Groove depths had eroded through up to 35% of the accelerator grid thickness. Minimum accelerator aperture diameters increased only by about 5-7% of the pretest values and downstream surface diameters increased by about 24-33% of the pretest diameters. These results suggest that increasing the accelerator aperture diameters, improving manufacturing tolerances, and masking down the perforated diameter to 36 cm were successful in reducing the degree of accelerator aperture erosion at larger radii.

  1. Soil erosion and causative factors at Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  2. Advanced electric propulsion research, 1991

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeffery M.

    1992-01-01

    A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.

  3. Assessment of soil erosion sensitivity and post-timber-harvesting erosion response in a mountain environment of Central Italy

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Schütt, Brigitta

    2014-01-01

    This study aimed to assess the effects of forest management on the occurrence of accelerated soil erosion by water. The study site is located in a mountainous area of the Italian Central Apennines. Here, forest harvesting is a widespread forestry activity and is mainly performed on the moderate to steep slopes of the highlands. Through modeling operations based on data on soil properties and direct monitoring of changes in the post-forest-harvesting soil surface level at the hillslope scale, we show that the observed site became prone to soil erosion after human intervention. Indeed, the measured mean soil erosion rate of 49 t ha- 1 yr- 1 for the harvested watershed is about 21 times higher than the rate measured in its neighboring undisturbed forested watershed (2.3 t ha- 1 yr- 1). The erosive response is greatly aggravated by exposing the just-harvested forest, with very limited herbaceous plant cover, to the aggressive attack of the heaviest annual rainfall without adopting any conservation practices. The erosivity of the storms during the first four months of field measurements was 1571 MJ mm h- 1 ha- 1 in total (i.e., from September to December 2008). At the end of the experiment (16 months), 18.8%, 26.1% and 55.1% of the erosion monitoring sites in the harvested watershed recorded variations equal or greater than 0-5, 5-10 and > 10 mm, respectively. This study also provides a quantification of Italian forestland surfaces with the same pedo-lithological characteristics exploited for wood supply. Within a period of ten years (2002-2011), about 9891 ha of coppice forest changes were identified and their potential soil erosion rates modeled.

  4. Soil erosion modelling for NSW coastal catchments using RUSLE in a GIS environment

    NASA Astrophysics Data System (ADS)

    Yang, Xihua; Chapman, Greg

    2006-10-01

    In this study, hillslope erosion risk has been estimated for all eastern New South Wales (NSW) catchments, Australia using Revised Universal Soil Loss Equation (RUSLE) in a geographic information system (GIS) environment. Rainfall-runoff erosivity (R) factor was interpolated from NSW rainfall-erosivity contour (isoerodent) data. Soil erodibility (K) factor was based on the soil regolith stability and sediment yield classification. The classification was derived from soil landscape and related soil map data. The slope length and steepness (LS) factor was derived from high resolution digital elevation model (DEM). A fully-automated program using Arc Macro Language (AML) produced RUSLE-based LS factor grids for all coastal catchments. The outputs are comparable to the range of LS values summarised in the literature. Cover and management (C) factor and conservation support-practices (P) factor were set to one. They are intended to be allocated according to land use, ground cover and erosion control provisions for particular land management actions. The resulting erosion risk map, with pixel size of 25-m, provides unprecedented resolution of relative expected sheet and rill erosion across all NSW costal catchments and can be adapted for a range of erosion control purposes such as bushfire hazard reduction and comprehensive costal assessment.

  5. Ecohydrology of pinon-juniper woodlands in the Jemez Mountains, New Mexico: Runoff, erosion, and restoration

    Treesearch

    Craig D. Allen

    2008-01-01

    (Please note, this is an extended abstract only) Woodlands of pinon (Pinus edulis) and oneseed juniper (Juniperus monosperma) in the Jemez Mountains at Bandelier National Monument in northern New Mexico exhibit greatly accelerated rates of soil erosion, triggered by historic land use practices (livestock grazing and fire suppression). This erosion is degrading these...

  6. Study on the influence of three-grid assembly thermal deformation on breakdown times and an ion extraction process

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Yanhui, JIA; Yongjie, HUANG; Juntai, YANG; Xiaodong, WEN; Meng, WANG

    2018-04-01

    In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process, a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 kW operation mode. Meanwhile, the fluid simulation method and particle-in-cell-Monte Carlo collision (PIC-MCC) method are adopted to simulate the ion extraction process according to the previous test results. The numerical calculation results are verified by the ion thruster performance test. The results show that after about 1.2 h operation, the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm, while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium, and the hot gap is almost unchanged. In addition, the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value. Fluid simulation results show that the plasma density of the screen grid is in the range 6 × 1017–6 × 1018 m13 and displays a parabolic characteristic, while the electron temperature gradually increases along the axial direction. The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant. Meanwhile, the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap. The ion beam current has optimal perveance status without thermal deformation, and the intercepted current of the accelerator grid and the decelerator grid are 3.65 mA and 6.26 mA, respectively. Furthermore, under the effect of thermal deformation, the ion beam current has over-perveance status, and the intercepted current of the accelerator grid and the decelerator grid are 10.46 mA and 18.24 mA, respectively. Performance test

  7. Erosion characteristics of ethylene propylene diene monomer composite insulation by high-temperature dense particles

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Guo, Meng-fei; Lv, Xiang; Liu, Yang; Xi, Kun; Guan, Yi-wen

    2018-04-01

    In this study, a dense particles erosion test motor which can simulate the erosion state of a solid rocket motor under high acceleration was developed. Subsequently, erosion experiments were carried out for the ethylene propylene diene monomer composite insulation and the microstructure of the char layer analysed. A turning point effect was found from the influence of the particle impact velocity on the ablation rate, and three erosion modes were determined according to the micro-morphology of the char layer. A reasonable explanation for the different structures of the char layer in the three modes was presented based on the formation mechanism of the compact/loose structure of the char layer.

  8. High natural erosion rates are the backdrop for enhanced anthropogenic soil erosion in the Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; Aumaître, G.; Bourlès, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2014-08-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be difficult to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well-maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills, but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Because of the high natural background rates, simple comparison of short- and long-term rates may not reveal unsustainable soil degradation, particularly if much of the catchment-scale erosion flux derives from mass wasting. Correcting for the mass wasting contribution in the Likhu implies minimum catchment-averaged soil production rates of ~0.25-0.35 mm yr-1. The deficit between these production rates and soil losses suggests that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest and scrubland may lead to rapid depletion of soil resources.

  9. LIF Density Measurement Calibration Using a Reference Cell

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Williams, George J., Jr.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. A pulsed UV laser was used to pump the ground state molybdenum at 345.64nm, and the non-resonant fluorescence at 550-nm was collected using a bandpass filter and a photomultiplier tube or intensified CCD array. The sensitivity of the fluorescence was evaluated to determine the limitations of the calibration technique. The suitability of the diagnostic calibration technique was assessed for application to ion engine erosion rate measurements.

  10. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  11. Designing a national soil erosion monitoring network for England and Wales

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Rawlins, Barry; Anderson, Karen; Evans, Martin; Farrow, Luke; Glendell, Miriam; James, Mike; Rickson, Jane; Quine, Timothy; Quinton, John; Brazier, Richard

    2014-05-01

    Although soil erosion is recognised as a significant threat to sustainable land use and may be a priority for action in any forthcoming EU Soil Framework Directive, those responsible for setting national policy with respect to erosion are constrained by a lack of robust, representative, data at large spatial scales. This reflects the process-orientated nature of much soil erosion research. Recognising this limitation, The UK Department for Environment, Food and Rural Affairs (Defra) established a project to pilot a cost-effective framework for monitoring of soil erosion in England and Wales (E&W). The pilot will compare different soil erosion monitoring methods at a site scale and provide statistical information for the final design of the full national monitoring network that will: provide unbiased estimates of the spatial mean of soil erosion rate across E&W (tonnes ha-1 yr-1) for each of three land-use classes - arable and horticultural grassland upland and semi-natural habitats quantify the uncertainty of these estimates with confidence intervals. Probability (design-based) sampling provides most efficient unbiased estimates of spatial means. In this study, a 16 hectare area (a square of 400 x 400 m) positioned at the centre of a 1-km grid cell, selected at random from mapped land use across E&W, provided the sampling support for measurement of erosion rates, with at least 94% of the support area corresponding to the target land use classes. Very small or zero erosion rates likely to be encountered at many sites reduce the sampling efficiency and make it difficult to compare different methods of soil erosion monitoring. Therefore, to increase the proportion of samples with larger erosion rates without biasing our estimates, we increased the inclusion probability density in areas where the erosion rate is likely to be large by using stratified random sampling. First, each sampling domain (land use class in E&W) was divided into strata; e.g. two sub

  12. Modelling soil erosion at European scale: towards harmonization and reproducibility

    NASA Astrophysics Data System (ADS)

    Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.

    2015-02-01

    Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water-holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale, because a systematic knowledge of local climatological and soil parameters is often unavailable. A new approach for modelling soil erosion at regional scale is here proposed. It is based on the joint use of low-data-demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available data sets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p ≤ 0.05). A comparison with country-level statistics of pre-existing European soil erosion maps is also provided.

  13. The effects of log erosion barriers on post-fire hydrologic response and sediment yield in small forested watersheds, southern Califonia

    Treesearch

    Peter M. Wohlgemuth; Ken R. Hubbert; Peter R. Robichaud

    2001-01-01

    Wildfire usually promotes flooding and accelerated erosion in upland watersheds. In the summer of 1999, a high-severity wildfire burned a series of mixed pine/oak headwater catchments in the San Jacinto Mountains of southern California. Log erosion barriers (LEBs) were constructed across much of the burned area as an erosion control measure. We built debris basins in...

  14. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    PubMed Central

    2012-01-01

    Particulate matter (PM) pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD). While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer. Not only would pollution

  15. Modeling of gun barrel surface erosion: Historic perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckingham, A.C.

    1996-08-01

    Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given tomore » cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.« less

  16. Erosive Wear Characterization of Materials for Lunar Construction

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  17. A 15,000-hour cyclic endurance test of an 8-centimeter-diameter electron bombardment mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1976-01-01

    A laboratory model 8 cm thruster with improvements to minimize ion chamber erosion and peeling of sputtered metal was subjected to a cyclic endurance test for 15,040 hours and 460 restarts. A charted history of several thruster operating variables and off-normal events are shown in 600-hour segments at three points in the test. The transient behavior of these variables during a typical start-stop cycle is presented. Finding of the post-test inspection confirmed most of the expected results. Charge exchange ions caused normal accelerator grid erosion. The workability of the various design features was substantiated, and attainable improvements in propellant utilization efficiency should significantly reduce accelerator erosion.

  18. Global evaluation of erosion rates in relation to tectonics

    NASA Astrophysics Data System (ADS)

    Hecht, Hagar; Oguchi, Takashi

    2017-12-01

    Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (< 0.68 g) and short distance (< 94.34 km) are almost inexistent suggesting a strong coupling between PGA and distance to tectonic plate boundary. Groups with low erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.

  19. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.

    1993-01-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.

  20. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment

  1. Climatic controls on the pace of glacier erosion

    NASA Astrophysics Data System (ADS)

    Koppes, Michele; Hallet, Bernard; Rignot, Eric; Mouginot, Jeremie; Wellner, Julia; Love, Katherine

    2016-04-01

    Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, suggesting that modern erosion rates exceed orogenic rates by 2-3 orders of magnitude. These modern rates are presumed to be due to dynamic acceleration of the ice masses during deglaciation and retreat. Recent numerical models have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple quantitative index that relates erosion rate to ice dynamics and to climate. To provide such an index, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes. Holding tectonic history, bedrock lithology and glacier hypsometries relatively constant across a latitudinal transect from Patagonia to the Antarctic Peninsula, we find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 for temperate tidewater glaciers to 0.01-<0.1 mm yr-1 for polar outlet glaciers, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theory. The general relationship between ice dynamics and erosion suggests that the erosion rate scales non-linearly with basal sliding speed, with an exponent n ≈ 2-2.62. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar ice discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold

  2. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.

    2013-09-01

    A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.

  3. Wind erosion potential after land application of biosolids

    NASA Astrophysics Data System (ADS)

    PI, H.; Sharratt, B. S.; Schillinger, W. F.; Bary, A.; Cogger, C.

    2017-12-01

    The world population is currently 7.6 billion and, along with continued population growth, comes the challenge of disposing of wastewater and sewage sludge (biosolids). Applying biosolids to agricultural land to replace synthetic fertilizers represents a relatively safe method to recycle or sustainably use biosolids. While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolid fertilizer to conventional and conservation tillage practices during the summer fallow phase of a winter wheat-summer fallow rotation in 2015 and 2016 in east-central Washington. Little difference in soil loss was observed between biosolid and synthetic fertilizer treatments, but this result appeared to be dependent on susceptibility of the soil to erosion. Regression analysis between soil loss from fertilizer or tillage treatments indicated that soil loss was lower from biosolid versus synthetic fertilizer and conservation versus conventional tillage at high erosion rates. This suggests that biosolids may reduce wind erosion under highly erodible conditions. Meanwhile, heavy metal concentrations in the windblown sediment were similar for the biosolid and synthetic fertilizer treatments whereas metal loss in windblown sediment was 10% lower from biosolid than synthetic fertilizer. Our results indicate that land application of biosolids did not accelerate the loss of metals or nutrients from soils during high winds. KeywordsLand application of biosolids; wind erosion; wind tunnel; sustainable agriculture

  4. Acceleration of incremental-pressure-correction incompressible flow computations using a coarse-grid projection method

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne

    2016-11-01

    Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping functions transfer data between the two grids. Here we propose a version of CGP for incompressible flow computations using incremental pressure correction methods, called IFEi-CGP (implicit-time-integration, finite-element, incremental coarse grid projection). Incremental pressure correction schemes solve Poisson's equation for an intermediate variable and not the pressure itself. This fact contributes to IFEi-CGP's efficiency in two ways. First, IFEi-CGP preserves the velocity field accuracy even for a high level of pressure field grid coarsening and thus significant speedup is achieved. Second, because incremental schemes reduce the errors that arise from boundaries with artificial homogenous Neumann conditions, CGP generates undamped flows for simulations with velocity Dirichlet boundary conditions. Comparisons of the data accuracy and CPU times for the incremental-CGP versus non-incremental-CGP computations are presented.

  5. Shoreline erosion rates along barrier islands of the north central gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Shabica, Stephen V.; Dolan, Robert; May, Suzette; May, Paul

    1983-09-01

    Rates of shoreline change and overwash penetration distances were calculated for barrier islands along the Louisiana, Mississippi, and Alabama coasts with the orthogonal grid mapping system (OGMS). Average rates of shoreline change are exceptionally high in Louisiana, being of the order -4.7 to -7.4 m yr-1. Mississippi and Alabama recession rates are lower and range from -2.0 to -3.1 m yr-1 over the period of record. Erosion rates along the shorelines of these islands have remained relatively constant over the period of study with five exceptions in coastal Louisiana and the Chandeleur-Breton Islands Arc, and two exceptions along the Mississippi-Alabama barrier islands where they have accelerated. Mean overwash penetration is greatest along Dauphin Island, Alabama, and Cat Island, Mississippi: 207.6 and 197.9 m, respectively. The Chandeleur-Brenton Islands Arc range from 88.1 m at the central barrier to 180.4 along the flanks. The Mississippi islands range from 105.2 m on Ship Island to 200.5 m along central Horn Island. Mean overwash penetration along the Louisiana barriers is highly variable: 46.3 to 211.4 m.

  6. Analysis of lead-acid battery accelerated testing data

    NASA Astrophysics Data System (ADS)

    Clifford, J. E.; Thomas, R. E.

    1983-06-01

    Battelle conducted an independent review and analysis of the accelerated test procedures and test data obtained by Exide in the 3 year Phase 1 program to develop advanced lead acid batteries for utility load leveling. Of special importance is the extensive data obtained in deep discharge cycling tests on 60 cells at elevated temperatures over a 2-1/2 year period. The principal uncertainty in estimating cell life relates to projecting cycle life data at elevated temperature to the lower operating temperatures. The accelerated positive grid corrosion test involving continuous overcharge at 500C provided some indication of the degree of grid corrosion that might be tolerable before failure. The accelerated positive material shedding test was not examined in any detail. Recommendations are made for additional studies.

  7. Interventions for recurrent corneal erosions.

    PubMed

    Watson, Stephanie L; Lee, Ming-Han H; Barker, Nigel H

    2012-09-12

    corneal erosion, a single-centre trial in the UK with 30 participants showed that oral tetracycline 250 mg twice daily for 12 weeks or topical prednisolone 0.5% four times daily for one week, or both, in addition to standard treatment, accelerated healing rates and improved symptoms. A single-centre trial in Sweden with 56 participants showed that excimer laser ablation in addition to mechanical debridement may reduce the number of erosions and improve symptoms. Furthermore, in a single-centre trial in Germany with 100 participants, transepithelial technique for excimer laser ablation had the same efficacy as the traditional subepithelial excimer laser technique but caused less pain. In a small study of 24 participants in UK, therapeutic contact lens wear was inferior to lubricant drops and ointment in abolishing the symptoms of recurrent corneal erosion and had a high complication rate, although the contact lenses used were the older generation with low oxygen permeability. A recent study in Hong Kong with 48 participants found diamond burr polishing to reduce episodes of recurrent corneal erosion. For prophylaxis of further episodes of recurrent corneal erosion, there was no difference in the occurrence of objective signs of recurrent erosion between hypertonic saline ointment versus tetracycline ointment or lubricating ointment in a small Japanese study with 26 participants. Also, in a single-centre study in the UK with 117 participants, there was no difference in symptom improvement between hypertonic saline versus paraffin ointment when used for prophylaxis. In a UK study with 42 participants, lubricating ointment at night in addition to standard treatment to prevent recurrence following traumatic corneal abrasion (erosion) caused by fingernail injury led to increased symptoms of recurrent corneal erosion compared to standard therapy alone. Well-designed, masked, randomised controlled trials using standardised methods are needed to establish the benefits of new and

  8. A 15,000-hour cyclic endurance test of an 8-centimeter-diameter electron bombardment mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1976-01-01

    A laboratory model 8-cm thruster with improvements to minimize ion chamber erosion and peeling of sputtered metal was subjected to a cyclic endurance test for 15,040 hours and 460 restarts. A charted history of several thruster operating variables and off-normal events are shown in 600-hour segments at three points in the test. The transient behavior of these variables during a typical start-stop cycle is presented. Performance and operating characteristics were nearly constant throughout the test except for a change in the accelerator back-streaming limit. Findings of the post-test inspection confirmed most of the expected results. Charge-exchange ions caused normal accelerator grid erosion. The workability of the various design features have been substantiated, and attainable improvements in propellant utilization efficiency should significantly reduce accelerator erosion.

  9. Erosion

    USDA-ARS?s Scientific Manuscript database

    Erosion is the detachment of soil particles and transportation to another location. Wind erosion occurs when wind speed exceeds a critical threshold level, and loose soil particles or soil particles removed by abrasion then move in one of three ways: creep, saltation, and suspension. Erosion by wate...

  10. The Arctic Coastal Erosion Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.; Thomas, Matthew Anthony; Bull, Diana L.

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible bymore » all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  11. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    PubMed

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Estimating rangeland runoff, soil erosion, and salt mobility and transport processes

    USDA-ARS?s Scientific Manuscript database

    Over 55% of sediment and salts entering the Colorado River are derived from accelerated soil erosion from federal rangelands with damages estimated to be $385 million per year. About 55% of the loading is derived from rangelands. This suggests a significant potential to reduce dissolved-solids loa...

  13. Sparse grid techniques for particle-in-cell schemes

    NASA Astrophysics Data System (ADS)

    Ricketson, L. F.; Cerfon, A. J.

    2017-02-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.

  14. Hillslope-channel coupling in a steep Hawaiian catchment accelerates erosion rates over 100-fold

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Hanshaw, M. N.; Rosener, M.; Schmidt, K. M.; Brooks, B. A.; Tribble, G.; Jacobi, J.

    2009-12-01

    In tropical watersheds, hillslope changes are producing increasing amounts of fine sediment that can be quickly carried to reefs by channels. Suspended sediment concentrations off the reefs of Molokai, Hawaii, chronically exceed a toxic level of 10 mg/L, threatening reef ecosystems. We hypothesize that historic conversion of watersheds from soil creep to overland flow erosion increased both magnitude and frequency of sediment flooding adjacent reefs. We combined surficial and ecological mapping, hillslope and stream gages, and novel sensors to locate, quantify and model the generation of fine sediments polluting the Molokai reef. Ecological and geomorphic mapping from LiDAR and multi-spectral imagery located a subset of overland flow areas with vegetation cover below a threshold value preventing erosion. Here, feral goat grazing exposed cohesive volcanic soils whose low matrix hydraulic conductivities (1-20 mm/hour) promote Horton overland flow erosion. We instrumented steep, barren hillslopes with soil moisture sensors, overland flow meters, Parshall flumes, ISCO sediment samplers, and a rain gage and conducted repeat Tripod LiDAR and infiltration tests. To characterize soil resistance here and elsewhere to overland flow erosion, we deployed a Cohesive Strength Meter (CSM) to simulate the stresses of flowing water. At the 13.5 km 2 watershed mouth we used a USGS stream gage and ISCO sediment sampler to estimate total load. Over 2 years, storms triggered overland flow during rainfall intensities above 10-15 mm/hr. Overland flow meters indicate such flows can be up to 3 cm deep, with a tendency to deepen downslope. CSM tests indicate that these depths are insufficient to erode soils where vegetation is dense, but far above threshold values of 2-3 mm depth for bare soil erosion. Sediment ratings curves for both hillslope and downstream catchment gages show strong clock-wise hysteresis during the first intense storms in the Fall, becoming linear later in the rainy

  15. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.; Hawke, R. S.

    1982-09-01

    Experimental and theoretical research was conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams were launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressure in the tens of megabars range are obtained for high pressure equations of state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The beating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined.

  16. Erosion of volcanic ocean islands: insights from modeling, topographic analyses, and cosmogenic exposure dating

    NASA Astrophysics Data System (ADS)

    Huppert, K.; Perron, J. T.; Ferrier, K.; Mukhopadhyay, S.; Rosener, M.; Douglas, M.

    2016-12-01

    With homogeneous bedrock, dramatic rainfall gradients, paleoshorelines, and datable remnant topography, volcanic ocean islands provide an exceptional natural experiment in landscape evolution. Analyses traversing gradients in island climate and bedrock age have the potential to advance our understanding of landscape evolution in a diverse range of continental settings. However, as small, conical, dominantly subsiding, and initially highly permeable landmasses, islands are unique, and it remains unclear how these properties influence their erosional history. We use a landscape evolution model and observations from the Hawaiian island of Kaua'i and other islands to characterize the topographic evolution of volcanic ocean islands. We present new measurements of helium-3 concentrations in detrital olivine from 20 rivers on Kaua'i. These measurements indicate that minimum erosion rates over the past 3 to 48 kyr are on average 2.6 times faster than erosion rates averaged over the past 3.9 to 4.4 Myr estimated from the volume of river canyons. This apparent acceleration of erosion rates on Kaua'i is consistent with observations on other islands; erosion rates estimated from the volume of river canyons on 31 islands worldwide, combined with observations of minimal incision on young island volcanoes, suggest a progressive increase in erosion rates over the first few million years of island landscape development. Using a landscape evolution model, we perform a set of experiments to quantify the contribution of subsidence, climate change, and initial geometry to changes in island erosion rates through time. We base these experiments on the evolution of Kaua'i, and we use measured erosion rates and the observed topography to calibrate the model. We find that progressive steepening of island topography by canyon incision drives an acceleration of erosion rates over time. Increases in mean channel and hillslope gradient with island age in the global compilation suggest this may

  17. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a

  18. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  19. Effects of uranium development on erosion and associated sedimentation in southern San Juan Basin, New Mexico

    USGS Publications Warehouse

    Cooley, Maurice E.

    1979-01-01

    A reconnaissance was made of some of the effects of uranium development on erosion and associated sedimentation in the southern San Juan Basin, where uranium development is concentrated. In general, the effects of exploration on erosion are minor, although erosion may be accelerated by the building of access roads, by activities at the drilling sites, and by close concentration of drilling sites. Areas where the greatest effects on erosion and sedimentation from mining and milling operations have occurred are: (1) in the immediate vicinity of mines and mills, (2) near waste piles, and (3) in stream channels where modifications, such as changes in depth have been caused by discharge of excess mine and mill water. Collapse of tailings piles could result in localized but excessive erosion and sedimentation.

  20. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  1. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.

    PubMed

    Mottyll, Stephan; Skoda, Romuald

    2016-07-01

    As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the

  2. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  3. Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure-from-motion photogrammetric techniques

    USDA-ARS?s Scientific Manuscript database

    Rural and urban development can accelerate gully erosion, including on unpaved roads. Quantification of erosion from gullies is challenging in environments where gullies are rapidly repaired, and in urban areas where microtopographic complexity complicates delineation of contributing areas. This st...

  4. Rainfall and Erosion Response Following a Southern California Wildfire

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, P. M.; Robichaud, P. R.; Brown, R. E.

    2011-12-01

    Wildfire renders landscapes susceptible to flooding and accelerated surface erosion. Consumption of the vegetation canopy and the litter or duff layer removes resistances to the agents of erosion. Moreover, changes in soil properties can restrict infiltration, increasing the effectiveness of the driving forces of rainsplash and surface runoff. However, it is unclear whether surface erosion varies linearly with rainfall amounts and intensities or if thresholds exist beyond which erosion increases in a different trajectory. The Santiago Fire burned over 11000 ha in northeastern Orange County, California in October 2007. The burn area consists of a deeply dissected mountain block underlain by sedimentary and metamorphic rocks that produce erosive soils. Regional erosion and sediment transport is triggered by winter cyclonic storms. Recording raingages were deployed across a vertical gradient within the burned area and silt fences were constructed to monitor hillslope erosion. During the study period initial storms were characterized by moderate rainfall (amounts less than 25 mm with peak 10-minute intensities of less than 10 mm per hr). Surface erosion was concomitantly minor, less than 0.4 Mg per ha. However, an unusual thunderstorm in late May 2008 produced spatially variable rainfall and consequent surface erosion across the study area. The raingage at a lower elevation site measured 41.4 mm of rain for this storm with a peak 10-minute intensity of 81 mm per hr. The silt fences were overtopped, yielding a minimum value of 18.5 Mg per ha. In contrast, the raingage at an upper elevation site recorded 19.6 mm of rain with a peak 10-minute intensity of 50 mm per hr. Surface erosion in the higher elevation sites was negligible (0.1 Mg per ha). Subsequently, individual storms exceeded 100 mm of rainfall but peak 10-minute intensities never approached those of the May thunderstorm. Erosion was moderate (mostly less than 5 Mg per ha), albeit influenced by the presence of

  5. Accelerated recession of a desert cliff due to sewage water disposal, Sede Boqer, Israel

    NASA Astrophysics Data System (ADS)

    Arkin, Yaacov; Karnieli, Arnon; Issar, Arie; Mtz.-Esparza, Javier Diaz

    1986-12-01

    Accelerated erosion of a desert cliff due to uncontrolled sewage water disposal was investigated at the Sede Boqer Campus in the Negev, Israel An erosional cirque formed by this water was studied as a model simulating natural processes. The cliffs consist of loess and conglomerate underlain by soft marl, clay, and chalk. The rate of erosion is of the order of 5% 8% of the volume of water discharged. The rate of incision ranges from 10 2 to 13.3 m/yr and is several orders higher than that expected under normal rainfall conditions The introduction of this new hydrological factor resulted in a severe disturbance of the morphological balance in the vicinity of the cliffs, accelerated erosion, and generated circular slides

  6. Renewable Resource Data | Grid Modernization | NREL

    Science.gov Websites

    , and tools related to U.S. biomass, geothermal, solar, and wind energy resources. Measurement and resource data to help energy system designers, building architects and engineers, renewable energy analysts , and others to accelerate the integration of renewable energy technologies on the grid. National Solar

  7. Transonic cascade flow calculations using non-periodic C-type grids

    NASA Technical Reports Server (NTRS)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1991-01-01

    A new kind of C-type grid is proposed for turbomachinery flow calculations. This grid is nonperiodic on the wake and results in minimum skewness for cascades with high turning and large camber. Euler and Reynolds averaged Navier-Stokes equations are discretized on this type of grid using a finite volume approach. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. Jameson's explicit Runge-Kutta scheme is adopted for the integration in time, and computational efficiency is achieved through accelerating strategies such as multigriding and residual smoothing. A detailed numerical study was performed for a turbine rotor and for a vane. A grid dependence analysis is presented and the effect of artificial dissipation is also investigated. Comparison of calculations with experiments clearly demonstrates the advantage of the proposed grid.

  8. An Offload NIC for NASA, NLR, and Grid Computing

    NASA Technical Reports Server (NTRS)

    Awrach, James

    2013-01-01

    This work addresses distributed data management and access dynamically configurable high-speed access to data distributed and shared over wide-area high-speed network environments. An offload engine NIC (network interface card) is proposed that scales at nX10-Gbps increments through 100-Gbps full duplex. The Globus de facto standard was used in projects requiring secure, robust, high-speed bulk data transport. Novel extension mechanisms were derived that will combine these technologies for use by GridFTP, bandwidth management resources, and host CPU (central processing unit) acceleration. The result will be wire-rate encrypted Globus grid data transactions through offload for splintering, encryption, and compression. As the need for greater network bandwidth increases, there is an inherent need for faster CPUs. The best way to accelerate CPUs is through a network acceleration engine. Grid computing data transfers for the Globus tool set did not have wire-rate encryption or compression. Existing technology cannot keep pace with the greater bandwidths of backplane and network connections. Present offload engines with ports to Ethernet are 32 to 40 Gbps f-d at best. The best of ultra-high-speed offload engines use expensive ASICs (application specific integrated circuits) or NPUs (network processing units). The present state of the art also includes bonding and the use of multiple NICs that are also in the planning stages for future portability to ASICs and software to accommodate data rates at 100 Gbps. The remaining industry solutions are for carrier-grade equipment manufacturers, with costly line cards having multiples of 10-Gbps ports, or 100-Gbps ports such as CFP modules that interface to costly ASICs and related circuitry. All of the existing solutions vary in configuration based on requirements of the host, motherboard, or carriergrade equipment. The purpose of the innovation is to eliminate data bottlenecks within cluster, grid, and cloud computing systems

  9. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau.

    PubMed

    Munson, Seth M; Belnap, Jayne; Okin, Gregory S

    2011-03-08

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  10. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  11. Bringing Federated Identity to Grid Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teheran, Jeny

    The Fermi National Accelerator Laboratory (FNAL) is facing the challenge of providing scientific data access and grid submission to scientific collaborations that span the globe but are hosted at FNAL. Users in these collaborations are currently required to register as an FNAL user and obtain FNAL credentials to access grid resources to perform their scientific computations. These requirements burden researchers with managing additional authentication credentials, and put additional load on FNAL for managing user identities. Our design integrates the existing InCommon federated identity infrastructure, CILogon Basic CA, and MyProxy with the FNAL grid submission system to provide secure access formore » users from diverse experiments and collab orations without requiring each user to have authentication credentials from FNAL. The design automates the handling of certificates so users do not need to manage them manually. Although the initial implementation is for FNAL's grid submission system, the design and the core of the implementation are general and could be applied to other distributed computing systems.« less

  12. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) satellite data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Ridd, Merrill K.

    1991-01-01

    The sensitivity of Landsat TM data for detecting soil erosion within pinyon-juniper woodlands, and the potential of the spectral data for assigning the universal soil loss equation (USLE) crop managemnent (C) factor to varying cover types within the woodlands are assessed. Results show greatly accelerated rates of soil erosion on pinyon-juniper sites. Percent cover by pinyon-juniper, total soil-loss, and total nonliving ground cover accounted for nearly 70 percent of the variability in TM channels 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion than the biotic and abiotic field variables. Satellite data were more sensitive to vegetation variation than the USLE C factor, and USLE was found to be a poor predictor of soil loss on pinyon-juniper sites. A new string-to-ground soil erosion prediction technique is introduced.

  13. Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Lashkov, V. A.; Valiev, R. Z.; Bondarenko, A. S.

    2016-09-01

    This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.

  14. Increasing the Life of a Xenon-Ion Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard

    2007-01-01

    A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.

  15. Thermal erosion of a permafrost coastline: Improving process-based models using time-lapse photography

    USGS Publications Warehouse

    Wobus, C.; Anderson, R.; Overeem, I.; Matell, N.; Clow, G.; Urban, F.

    2011-01-01

    Coastal erosion rates locally exceeding 30 m y-1 have been documented along Alaska's Beaufort Sea coastline, and a number of studies suggest that these erosion rates have accelerated as a result of climate change. However, a lack of direct observational evidence has limited our progress in quantifying the specific processes that connect climate change to coastal erosion rates in the Arctic. In particular, while longer ice-free periods are likely to lead to both warmer surface waters and longer fetch, the relative roles of thermal and mechanical (wave) erosion in driving coastal retreat have not been comprehensively quantified. We focus on a permafrost coastline in the northern National Petroleum Reserve-Alaska (NPR-A), where coastal erosion rates have averaged 10-15 m y-1 over two years of direct monitoring. We take advantage of these extraordinary rates of coastal erosion to observe and quantify coastal erosion directly via time-lapse photography in combination with meteorological observations. Our observations indicate that the erosion of these bluffs is largely thermally driven, but that surface winds play a crucial role in exposing the frozen bluffs to the radiatively warmed seawater that drives melting of interstitial ice. To first order, erosion in this setting can be modeled using formulations developed to describe iceberg deterioration in the open ocean. These simple models provide a conceptual framework for evaluating how climate-induced changes in thermal and wave energy might influence future erosion rates in this setting.

  16. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    NASA Technical Reports Server (NTRS)

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  17. Different Solutions for the Generator-accelerator Module

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.

    The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.

  18. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.

    PubMed

    Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren

    2017-11-01

    Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.

  19. Application of a multi-level grid method to transonic flow calculations

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr.; Brandt, A.

    1976-01-01

    A multi-level grid method was studied as a possible means of accelerating convergence in relaxation calculations for transonic flows. The method employs a hierarchy of grids, ranging from very coarse to fine. The coarser grids are used to diminish the magnitude of the smooth part of the residuals. The method was applied to the solution of the transonic small disturbance equation for the velocity potential in conservation form. Nonlifting transonic flow past a parabolic arc airfoil is studied with meshes of both constant and variable step size.

  20. The development and performance of smud grid-connected photovoltaic projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, D.E.; Collier, D.E.

    1995-11-01

    The utility grid-connected market has been identified as a key market to be developed to accelerate the commercialization of photovoltaics. The Sacramento Municipal Utility District (SMUD) has completed the first two years of a continuing commercialization effort based on two years of a continuing commercialization effort based on the sustained, orderly development of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system and to stimulate the collaborative processes needed to accelerate the cost reductions necessary for PV to be cost-effective in these applications bymore » the year 2000. In the first two years, SMUD has installed over 240 residential and commercial building, grid-connected, rooftop, {open_quotes}PV Pioneer{close_quotes} systems totaling over 1MW of capacity and four substation sited, grid-support PV systems totaling 600 kW bringing the SMUD distributed PV power systems to over 3.7 MW. The 1995 SMUD PV Program will add another approximately 800 kW of PV systems to the District`s distributed PV power system. SMUD also established a partnership with its customers through the PV Pioneer {open_quotes}green pricing{close_quotes} program to advance PV commercialization.« less

  1. A 5000-hour test of a grid-translation beam-deflection system for a 5-cm diameter Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1973-01-01

    A grid-translation type beam deflection system was tested on a 5-cm diameter mercury ion thruster for 5000 hours at a thrust level of about 0.36 mlb. During the first 2000 hours the beam was vectored 10 degrees in one direction. No erosion damage attributable to beam deflection was detected. Results indicate a possible lifetime of 15,000 to 20,000 hours. An optimized neutralizer position was used which eliminated the sputter erosion groove observed on the SERT 2 thrusters.

  2. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  3. Accelerated Thermal Cycling and Failure Mechanisms

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1999-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies.

  4. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  5. The consequences of land-cover changes on soil erosion distribution in Slovakia

    NASA Astrophysics Data System (ADS)

    Cebecauer, Tomáš; Hofierka, Jaroslav

    2008-06-01

    Soil erosion is a complex process determined by mutual interaction of numerous factors. The aim of erosion research at regional scales is a general evaluation of the landscape susceptibility to soil erosion by water, taking into account the main factors influencing this process. One of the key factors influencing the susceptibility of a region to soil erosion is land cover. Natural as well as human-induced changes of landscape may result in both the diminishment and acceleration of soil erosion. Recent studies of land-cover changes indicate that during the last decade more than 4.11% of Slovak territory has changed. The objective of this study is to assess the influence of land-cover and crop rotation changes over the 1990-2000 period on the intensity and spatial pattern of soil erosion in Slovakia. The assessment is based on principles defined in the Universal Soil Loss Equation (USLE) modified for application at regional scale and the use of the CORINE land cover (CLC) databases for 1990 and 2000. The C factor for arable land has been refined using statistical data on the mean crop rotation and the acreage of particular agricultural crops in the districts of Slovakia. The L factor has been calculated using sample areas with parcels identified by LANDSAT TM data. The results indicate that the land-cover and crop rotation changes had a significant influence on soil erosion pattern predominately in the hilly and mountainous parts of Slovakia. The pattern of soil erosion changes exhibits high spatial variation with overall slightly decreased soil erosion risks. These changes are associated with ongoing land ownership changes, changing structure of crops, deforestation and afforestation.

  6. High natural erosion rates are the backdrop for present-day soil erosion in the agricultural Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; AumaItre, G.; Bourles, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2015-07-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be challenging to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Catchment-scale erosional fluxes may be similar over short and long timescales if both are dominated by mass wasting sources such as gullies, landslides, and debris flows (e.g., as is evident in the landslide-dominated Khudi Khola of the Nepal High Himalaya, based on compiled data). As a consequence, simple comparison of catchment-scale fluxes will not necessarily pinpoint land use effects on soils where these are only a small part of the total erosion budget, unless rates of mass wasting are also considered. Estimates of the mass wasting contribution to erosion in the Likhu imply catchment-averaged soil production rates on the order of ~ 0.25-0.35 mm yr-1, though rates of mass wasting are

  7. An animal model of intrinsic dental erosion caused by gastro-oesophageal reflux disease.

    PubMed

    Higo, T; Mukaisho, K; Ling, Z-Q; Oue, K; Chen, K-H; Araki, Y; Sugihara, H; Yamamoto, G; Hattori, T

    2009-07-01

    To explore the association between dental erosion and gastro-oesophageal reflux disease (GORD), we used an animal model of GORD. We performed an operation to force gastro-duodenal contents reflux in male Wistar rats, and examined the teeth in the reflux rats at 15 or 30 weeks postoperatively. Dental erosion was evaluated based on a slightly modified index from a previous report. Estimation of pH was employed in the oesophageal and gastric contents. Macroscopically, dental erosion was only detected in the reflux rats. Histopathologically, dentin exposure was detected in three of the seven cases after 30 weeks. Alveolar bone destruction and osteomyelitis were also noted in severe cases. The pH of the oesophageal and stomach contents was 6.93 +/- 0.15 and 3.7 +/- 0.39, respectively. We confirmed the relationship between dental erosion and GORD. First step of dental erosion caused by GORD is the loss of surface enamel induced by regurgitation of an acidic liquid and acidic gas. Subsequently, further destruction of dental hard tissues and tooth supporting structure is accelerated by mixed juice with gastric and duodenal contents. The reflux animal model is a useful tool to examine the mechanism of dental erosion in GORD.

  8. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    PubMed Central

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. PMID:21368143

  9. A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars

    NASA Astrophysics Data System (ADS)

    Lanz, Thierry; Hubeny, Ivan

    2007-03-01

    We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K<=Teff<=30,000 K with 1000 K steps, 13 surface gravities, 1.75<=logg<=4.75 with 0.25 dex steps, six chemical compositions, and a microturbulent velocity of 2 km s-1. The lower limit of logg for a given effective temperature is set by an approximate location of the Eddington limit. The selected chemical compositions range from twice to one-tenth of the solar metallicity and metal-free. Additional model atmospheres for B supergiants (logg<=3.0) have been calculated with a higher microturbulent velocity (10 km s-1) and a surface composition that is enriched in helium and nitrogen and depleted in carbon. This new grid complements our earlier OSTAR2002 grid of O-type stars (our Paper I). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY Web site.

  10. A 9700-hour durability test of a five centimeter diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.; Finke, R. C.

    1973-01-01

    A modified Hughes SIT-5 thruster was life-tested at the Lewis Research Center. The final 2700 hours of the test are described with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were nearly constant throughout the test except for neutralizer heater power requirements and accelerator drain current. A post-shutdown inspection revealed sputter erosion of ion chamber components and component flaking of sputtered metal. Several flakes caused beamlet divergence and anomalous grid erosion, causing the test to be terminated. All sputter erosion sources were identified.

  11. Soil erosion in Iran: Issues and solutions

    NASA Astrophysics Data System (ADS)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  12. Modeling target normal sheath acceleration using handoffs between multiple simulations

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard

    2013-10-01

    We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.

  13. Contrasting Modern and 10Be- derived erosion rates for the Southern Betic Cordillera, Spain

    NASA Astrophysics Data System (ADS)

    Bellin, N.; Vanacker, V.; Kubik, P.

    2012-04-01

    In Europe, Southeast Spain was identified as one of the regions with major treat of desertification in the context of future land use and climate change. During the last years, significant progress has been made to understand spatial patterns of modern erosion rates in these semi-arid degraded environments. Numerous European projects have contributed to the collection of modern erosion data at different spatial scales for Southeast Spain. However, these data are rarely analysed in the context of long-term changes in vegetation, climate and human occupation. In this paper, we present Modern and Holocene denudation rates for small river basins (1 to 10 km2) located in the Spanish Betic Cordillera. Long-term erosion data were derived from cosmogenic nuclide analyses of river-borne sediment. Modern erosion data were quantified through analysis of sediment deposition volumes behind check dams, and represent average erosion rates over the last 10 to 40 years. Modern erosion rates are surprisingly low (mean erosion rate = 0.048 mm y-1; n=36). They indicate that the steep, sparsely vegetated hillslopes in the Betic Cordillera cannot directly be associated with high erosion rates. 10Be -derived erosion rates integrate over the last 37500 to 3500 years, and are roughly of the same magnitude. They range from 0.013 to 0.243 mm y-1 (mean denudation rate = 0.062 mm y-1 ± 0.054; n=20). Our data suggest that the modern erosion rates are similar to the long-term erosion rates in this area. This result is in contrast with the numerous reports on human-accelerated modern erosion rates for Southeast Spain. Interestingly, our new data on long-term erosion rates show a clear spatial pattern, with higher erosion rates in the Sierra Cabrera and lower erosion rates in Sierra de las Estancias, and Sierra Torrecilla. Preliminary geomorphometric analyses suggest that the spatial variation that we observe in long-term erosion rates is related to the gradient in uplift rates of the Betic

  14. Carbon Erosion in the Great Karoo Region of South Africa

    NASA Astrophysics Data System (ADS)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Foster, Ian; Boardman, John; Meadows, Mike; Kuhn, Nikolaus

    2015-04-01

    Work undertaken in the seasonally arid upland areas of the Great Karoo region of South Africa has established a link between land degradation and overgrazing which began in the second half of the 18th century when European farmers first settled the area. Ongoing land use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and gully systems on valley bottoms. As a consequence of agricultural intensification and overgrazing, accompanied by a higher water demand, many small reservoirs were constructed, most of which are now in-filled with sediment. The deposited material serves as an environmental archive by which land use change over the last 100 years can be analysed, but with a particular focus on erosion and deposition of soil-associated carbon (C). It is assumed that erosion caused an initial flush of carbon rich soil which was subsequently buried and stored off-site. Despite this assumption, however the net-effect of erosion on carbon dioxide emissions is still unknown. In this project, preliminary results are presented from an investigation to determine whether land degradation in the Karoo has resulted in a shift from a net sink of C to a net source of C. Firstly, a high resolution digital elevation model was generated and erosion modelling was then employed to create an erosion risk map showing areas most prone to erosion. Information from the model output then served as the basis for ground-truthing and on-site erosion mapping. Secondly, sediment deposits from silted reservoirs were analysed for varying physicochemical parameters, in order to reconstruct spatial patterns of erosion and deposition. Analysis of total carbon (TC) content revealed a sharp decrease with decreasing depth. This provisionally suggests that land degradation during and after post-European settlement probably led to accelerated erosion of the relatively fertile surface soils. This presumably resulted in the rapid in-filling of

  15. Managing dental erosion.

    PubMed

    Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal

    2012-01-01

    The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.

  16. Acceleration and focusing of plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Martin Elias

    The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, producemore » plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel

  17. Vertical motions of passive margins of Greenland: influence of ice sheet, glacial erosion, and sediment transport

    NASA Astrophysics Data System (ADS)

    Souche, A.; Medvedev, S.; Hartz, E. H.

    2009-04-01

    The sub-ice topography of Greenland is characterized by a central depression below the sea level and by elevated (in some places significantly) margins. Whereas the central depression may be explained by significant load of the Greenland ice sheet, the origin of the peripheral relief remains unclear. We analyze the influence of formation of the ice sheet and carving by glacial erosion on the evolution of topography along the margins of Greenland. Our analysis shows that: (1) The heavy ice loading in the central part of Greenland and consecutive peripheral bulging has a negligible effect on amplitude of the uplifted Greenland margins. (2) First order estimates of uplift due to isostatic readjustment caused by glacial erosion and unloading in the fjord systems is up to 1.1 km. (3) The increase of accuracy of topographic data (comparing several data sets of resolution with grid size from 5 km to 50 m) results in increase of the isostatic response in the model. (4) The analysis of mass redistribution during erosion-sedimentation process and data on age of offshore sediments allows us to estimate the timing of erosion along the margins of Greenland. This ongoing analysis, however, requires careful account for the link between sources (localized glacial erosion) and sinks (offshore sedimentary basins around Greenland).

  18. Analysis of Actual Soil Degradation by Erosion Using Satellite Imagery and Terrain Attributes in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zizala, Daniel

    2015-04-01

    Soil water and wind erosion (possibly tillage erosion) is the most significant soil degradation factor in the Czech Republic. Moreover, this phenomenon also affects seriously quality of water sources., About 50 % of arable land are endangered by water erosion and about 10 % of arable land are endangered wind erosion in the Czech Republic. These processes have been accelerated by human activity. Specific condition of agriculture land in the Czech Republic including highland relief and particularly size of land parcel and intensification of agriculture does not enable to reduce flow of runoff water. Insufficient protection against accelerated erosion processes is related to lack of landscape and hydrographic elements and large area of agricultural plots. Currently, this issue is solved at plot scale by field investigation or at regional scale using numerical and empirical erosion models. Nevertheless, these models enable only to predict the potential of soil erosion. Large scale assessment of actual degradation level of soils is based on expert knowledge. However, there are still many uncertainties in this issue. Therefore characterization of actual degradation level of soil is required especially for assessment of long-term impact of soil erosion on soil fertility. Soil degradation by erosion can be effectively monitored or quantified by modern tools of remote sensing with variable level of detail accessible. Aims of our study is to analyse the applicability of remote sensing for monitoring of actual soil degradation by erosion. Satellite and aerial image data (multispectral and hyperspectral), terrain attributes and data from field investigation are the main source for this analyses. The first step was the delimitation of bare soils using supervised classification of the set of Landsat scenes from 2000 - 2014. The most suitable period of time for obtaining spectral image data with the lowest vegetation cover of soil was determined. The results were verified by

  19. [Erosive petechial gastritis].

    PubMed

    Llorens, P

    1988-01-01

    We studied 20 patients in which a variety of erosive gastritis is described. We named it petechial erosive gastritis. We have to bring up that its sequence is due to the presence of the petechiae in the center of the mucosal area. Then in degrees of higher intensity erosions occur also at the center of the area mucosa. Occasionally the erosions meet, become larger and may bleed. An endoscopic classification of petechial erosive gastritis is established it rates mild, moderate, severe and hemorrhagic degrees. Even if the histopathologic study does not keep a strict correspondence with the severity of endoscopic observation of the lesions, it is possible to separate easily a petechial stage from an erosive stage. Demonstration of these lesions at their sequence from petechial to bleeding erosion constitutes an important contribution to the study of acute gastric lesions and it might open a way to a better study of the alterations of the irrigation of the gastric mucosa and the etiology of erosive lesions and acute ulcer.

  20. Trends in life science grid: from computing grid to knowledge grid.

    PubMed

    Konagaya, Akihiko

    2006-12-18

    Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  1. NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Sohlberg, A.; Watabe, H.; Iida, H.

    2008-07-01

    Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.

  2. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at

  3. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  4. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  5. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  6. Soil erosion in mountainous areas: how far can we go?

    NASA Astrophysics Data System (ADS)

    Egli, Markus

    2017-04-01

    Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow

  7. Carbon and macronutrient loss during accelerated erosion under different tillage and residue management systems

    USDA-ARS?s Scientific Manuscript database

    The effects of tillage and crop residue removal on erosion and associated macronutrient fluxes on erodible soils subjected to a high intensity simulated rain event (70 mm/h) were investigated in an experimental watershed in Ohio, USA. A set of plots which constitute two experiments at this site were...

  8. Contemporary and long-term erosion in the Kruger National Park, Lowveld Savanna, South Africa. First results.

    NASA Astrophysics Data System (ADS)

    Baade, Jussi; Rheinwarth, Bastian; Glotzbach, Christoph

    2017-04-01

    Human-induced soil erosion as a consequence of the transformation of landscapes to pasture or arable land is a function of natural conditions (relief and soil properties), natural drivers (climate) as well as land use and management. It is common understanding that humans have accelerated erosion of landscapes by modifying land surface characteristics, like vegetation cover and soil properties, among others. But the magnitude of the acceleration is not yet well established. Partly, the uncertainty about the magnitude of the problem is due to the fact that baseline values, i.e., data on rates of natural erosion from uncultivated land under current climate conditions, are difficult to find. Against this background, we conducted an assessment of contemporary and long-term erosion in the Kruger National Park (KNP), South Africa. The KNP has been set aside for the recovery of wildlife in the early 20th century and was spared from agricultural practices even before that. Concerning soil properties and vegetation cover the KNP can thus be considered to represent a rather pristine savanna environment. In order to secure water provision to wildlife a number of reservoirs was established in the 1930s to 1970s with catchment areas entirely within the KNP boundaries. The size of the catchments varies from 4 to 100 km2. Volumetric mapping and dry bulk density measurements of reservoir deposits provided average minimum sediment yield rates for observation periods of 30 to 80 years. Hydrological modelling was used to assess the trap efficiency of the reservoirs and to estimate the most likely sediment yield rates. At the same time this exercise provided evidence for the stochastic nature of runoff and erosion events in this semi-arid environment and the need to evaluate contemporary erosion based on long observation periods. Measuring cosmogenic 10Be in quartz sand samples collected at the inlet of the reservoirs provided the corresponding average long-term erosion rates for

  9. The Impact of Sea Ice Loss on Wave Dynamics and Coastal Erosion Along the Arctic Coast

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Anderson, R. S.; Wobus, C. W.; Matell, N.; Urban, F. E.; Clow, G. D.; Stanton, T. P.

    2010-12-01

    The extent of Arctic sea ice has been shrinking rapidly over the past few decades, and attendant acceleration of erosion is now occurring along the Arctic coast. This both brings coastal infrastructure into harm’s way and promotes a complex response of the adjacent landscape to global change. We quantify the effects of declining sea ice extent on coastal erosion rates along a 75-km stretch of coastal permafrost bluffs adjacent to the Beaufort Sea, Alaska, where present-day erosion rates are among the highest in the world at ~14 m yr-1. Our own observations reinforce those of others, and suggest that the rate-limiting process is thermal erosion at the base of the several-meter tall bluffs. Here we focus on the interaction between the nearshore sea ice concentration, the location of the sea ice margin, and the fetch-limited, shallow water wave field, since these parameters ultimately control both sea surface temperatures and the height to which these waters can bathe the frozen bluffs. Thirty years of daily or bi-daily passive microwave data from Nimbus-7 SMMR and DMSP SSM/I satellites reveal that the nearshore open water season lengthened ~54 days over 1979-2009. The open water season, centered in August, expands more rapidly into the fall (September and October~0.92 day yr-1) than into the early summer (July~0.71 days yr-1). Average fetch, defined for our purposes as the distance from the sea ice margin to the coast over which the wind is blowing, increased by a factor 1.7 over the same time-span. Given these time series, we modeled daily nearshore wave heights during the open water season for each year, which we integrated to provide a quantitative metric for the annual exposure of the coastal bluffs to thermal erosion. This “annual wave exposure” increased by 250% during 1979-2009. In the same interval, coastal erosion rates reconstructed from satellite and aerial photo records show less acceleration. We attribute this to a disproportionate extension of the

  10. Manufacturing issues which affect coating erosion performance in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  11. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Brian; Burman, Kari; Davidson, Carolyn

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  12. Linking rapid erosion of the Mekong River delta to human activities.

    PubMed

    Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-10-08

    As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.

  13. Linking rapid erosion of the Mekong River delta to human activities

    PubMed Central

    Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-01-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752

  14. "Kicking Up Some Dust": An Experimental Investigation Relating Lunar Dust Erosive Wear to Solar Power Loss

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2013-01-01

    The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators.

  15. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  16. Changing from computing grid to knowledge grid in life-science grid.

    PubMed

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  17. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of

  18. Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows

    NASA Astrophysics Data System (ADS)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-12-01

    Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  19. Prevention of dentine erosion by brushing with anti-erosive toothpastes.

    PubMed

    Aykut-Yetkiner, Arzu; Attin, Thomas; Wiegand, Annette

    2014-07-01

    This in vitro study aimed to investigate the preventive effect of brushing with anti-erosive toothpastes compared to a conventional fluoride toothpaste on dentine erosion. Bovine dentine specimens (n=12 per subgroup) were eroded in an artificial mouth (6 days, 6×30 s/day) using either citric acid (pH:2.5) or a hydrochloric acid/pepsin solution (pH:1.6), simulating extrinsic or intrinsic erosive conditions, respectively. In between, the specimens were rinsed with artificial saliva. Twice daily, the specimens were brushed for 15 s in an automatic brushing machine at 2.5 N with a conventional fluoride toothpaste slurry (elmex, AmF) or toothpaste slurries with anti-erosive formulations: Apacare (NaF/1% nHAP), Biorepair (ZnCO3-HAP), Chitodent (Chitosan), elmex Erosionsschutz (NaF/AmF/SnCl2/Chitosan), mirasensitive hap (NaF/30% HAP), Sensodyne Proschmelz (NaF/KNO3). Unbrushed specimens served as control. Dentine loss was measured profilometrically and statistically analysed using two-way and one-way ANOVA followed by Scheffe's post hoc tests. RDA-values of all toothpastes were determined, and linear mixed models were applied to analyse the influence of toothpaste abrasivity on dentine wear (p<0.05). Dentine erosion of unbrushed specimens amounted to 5.1±1.0 μm (extrinsic conditions) and 12.9±1.4 μm (intrinsic conditions). All toothpastes significantly reduced dentine erosion by 24-67% (extrinsic conditions) and 21-40% (intrinsic conditions). Biorepair was least effective, while all other toothpastes were not significantly different from each other. Linear mixed models did not show a significant effect of the RDA-value of the respective toothpaste on dentine loss. Toothpastes with anti-erosive formulations reduced dentine erosion, especially under simulated extrinsic erosive conditions, but were not superior to a conventional fluoride toothpaste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    White, J. A.; Morrison, J. H.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  1. Spatial Analysis of Coastal Erosion over Five Decades near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Manley, W. F.

    2004-12-01

    There has been increasing interest in processes affecting Arctic coastlines, including shoreline erosion. The prospect of continued -- and possibly accelerated -- coastal erosion is a major concern for many Arctic communities. Documenting and understanding spatial variability in erosion rates are increasingly attainable as high-resolution imagery becomes available, and as GIS and remote-sensing tools are more widely accepted. This study presents such an analysis for a broad area near Barrow, Alaska. Shoreline erosion and accretion were quantified by comparison of coregistered datasets and imagery. Orthorectified Radar Imagery (ORRI) was acquired in July, 2002 at 1.25 m resolution. Twenty frames of aerial photos from August, 1955 were scanned and georectified to the ORRI using a polynomial transformation in ArcGIS, with resulting resolution of about 1.4 m and RMS error of 2.6 m. The 2002 and 1955 shorelines were digitized with points spaced every 20 m along the 250 km of mainland coastline. For barrier islands and the Barrow Spit, the 1955 coastline was digitized from DRG files depicting the USGS 15-minute maps. Using a variety of vector ArcInfo commands, horizontal displacement of the mainland shoreline was converted to erosion and accretion rates for the intervening 47 years. (Note that time-averaged rates will underrepresent episodically high rates during storm events). Overall error considering georectification, digitizing, and transient waterline shifts due to microtidal fluctuation and wave-set up is approx. 3.1 m for the mainland coast, equating with 0.07 m/yr. For barrier features, where the DRG's are less accurate, error is about 28 m (0.6 m/yr). Nearly all of the mainland coast (91%) has experienced erosion. Highly variable, rates average -0.91 m/yr, with an average horizontal shoreline displacement of -42.5 m. (Rates and displacements are negative for erosion). Relatively low rates of about -0.3 m/yr occur along the Chukchi coast, where sand- and gravel

  2. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    PubMed

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

  3. Grid Research | Grid Modernization | NREL

    Science.gov Websites

    Grid Research Grid Research NREL addresses the challenges of today's electric grid through high researcher in a lab Integrated Devices and Systems Developing and evaluating grid technologies and integrated Controls Developing methods for real-time operations and controls of power systems at any scale Photo of

  4. The effectiveness of aerial hydromulch as an erosion control treatment in burned chaparral watersheds

    Treesearch

    Pete Wohlgemuth; Jan Beyers; Pete Robichaud

    2011-01-01

    High severity wildfire can make watersheds susceptible to accelerated erosion, which impedes resource recovery and threatens life, property, and infrastructure in downstream human communities. Land managers often use mitigation measures on the burned hillside slopes to reduce postfire sediment fluxes. Hydromulch, a slurry of paper or wood fiber that dries to a...

  5. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mmmore » to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.« less

  6. Development of stable Grid service at the next generation system of KEKCC

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Iwai, G.; Matsunaga, H.; Murakami, K.; Sasaki, T.; Suzuki, S.; Takase, W.

    2017-10-01

    A lot of experiments in the field of accelerator based science are actively running at High Energy Accelerator Research Organization (KEK) by using SuperKEKB and J-PARC accelerator in Japan. In these days at KEK, the computing demand from the various experiments for the data processing, analysis, and MC simulation is monotonically increasing. It is not only for the case with high-energy experiments, the computing requirement from the hadron and neutrino experiments and some projects of astro-particle physics is also rapidly increasing due to the very high precision measurement. Under this situation, several projects, Belle II, T2K, ILC and KAGRA experiments supported by KEK are going to utilize Grid computing infrastructure as the main computing resource. The Grid system and services in KEK, which is already in production, are upgraded for the further stable operation at the same time of whole scale hardware replacement of KEK Central Computer System (KEKCC). The next generation system of KEKCC starts the operation from the beginning of September 2016. The basic Grid services e.g. BDII, VOMS, LFC, CREAM computing element and StoRM storage element are made by the more robust hardware configuration. Since the raw data transfer is one of the most important tasks for the KEKCC, two redundant GridFTP servers are adapted to the StoRM service instances with 40 Gbps network bandwidth on the LHCONE routing. These are dedicated to the Belle II raw data transfer to the other sites apart from the servers for the data transfer usage of the other VOs. Additionally, we prepare the redundant configuration for the database oriented services like LFC and AMGA by using LifeKeeper. The LFC servers are made by two read/write servers and two read-only servers for the Belle II experiment, and all of them have an individual database for the purpose of load balancing. The FTS3 service is newly deployed as a service for the Belle II data distribution. The service of CVMFS stratum-0 is

  7. Carbon-containing compounds on fusion-related surfaces: Thermal and ion-induced formation and erosion

    NASA Astrophysics Data System (ADS)

    Linsmeier, Christian

    2004-12-01

    The deposition of carbon on metals is the unavoidable consequence of the application of different wall materials in present and future fusion experiments like ITER. Presently used and prospected materials besides carbon (CFC materials in high heat load areas) are tungsten and beryllium. The simultaneous application of different materials leads to the formation of surface compounds due to the erosion, transport and re-deposition of material during plasma operations. The formation and erosion processes are governed by widely varying surface temperatures and kinetic energies as well as the spectrum of impinging particles from the plasma. The knowledge of the dependence on these parameters is crucial for the understanding and prediction of the compound formation on wall materials. The formation of surface layers is of great importance, since they not only determine erosion rates, but also influence the ability of the first wall for hydrogen isotope inventory accumulation and release. Surface compound formation, diffusion and erosion phenomena are studied under well-controlled ultra-high vacuum conditions using in-situ X-ray photoelectron spectroscopy (XPS) and ion beam analysis techniques available at a 3 MV tandem accelerator. XPS provides chemical information and allows distinguishing elemental and carbidic phases with high surface sensitivity. Accelerator-based spectroscopies provide quantitative compositional analysis and sensitivity for deuterium in the surface layers. Using these techniques, the formation of carbidic layers on metals is studied from room temperature up to 1700 K. The formation of an interfacial carbide of several monolayers thickness is not only observed for metals with exothermic carbide formation enthalpies, but also in the cases of Ni and Fe which form endothermic carbides. Additional carbon deposited at 300 K remains elemental. Depending on the substrate, carbon diffusion into the bulk starts at elevated temperatures together with additional

  8. The comparison of various approach to evaluation erosion risks and design control erosion measures

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas

  9. Cathode-less gridded ion thrusters for small satellites

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane

    2016-10-01

    Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm

  10. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Bala, Chaudhary V.; Johnson, N.C.

    2008-01-01

    Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise indicators of BSC development, chlorophyll a and exopolysaccharides (EPS), upon soil stability, which is closely inversely related to soil loss in an erosion event. To examine the relative influence of these elements of the C factor to the K factor, we conducted our investigation across eight strongly differing soils in the 0.8 million ha Grand Staircase-Escalante National Monument. We found that within every soil group, chlorophyll a was a moderate to excellent predictor of soil stability (R2 = 0.21-0.75), and consistently better than EPS. Using a simple structural equation model, we explained over half of the variance in soil stability and determined that the direct effect of chlorophyll a was 3?? more important than soil group in determining soil stability. Our results suggest that, holding the intensity of erosive forces constant, the acceleration or reduction of soil erosion in arid landscapes will primarily be an outcome of management practices. This is because the factor which is most influential to soil erosion, BSC development, is also among the most manageable, implying that water erosion in drylands has a solution. ?? 2008 Elsevier Ltd.

  11. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  12. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  13. Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.

    2013-04-01

    Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g. economic, environmental and social). Global intensification of agroecosystems is a major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Elevated erosion and transport is common in agroecosystems and presents a multi-disciplinary problem with direct physical impacts (e.g. soil loss), other less tangible impacts (e.g. loss of ecosystem productivity), and indirect downstream effects that necessitate an integrated approach to effectively address the problem. Climate is also likely to increase susceptibility of soil to erosion. Beyond physical response, the consequences of erosion on soil biota have hitherto been ignored, yet biota play a fundamental role in ecosystem service provision. To our knowledge few studies have addressed the gap between erosion and consequent impacts on soil biota. Transport and redistribution of soil biota by erosion is poorly understood, as is the concomitant impact on biodiversity and ability of soil to deliver the necessary range of ecosystem services to maintain function. To investigate impacts of erosion on soil biota a two-fold research approach is suggested. Physical processes involved in redistribution should be characterised and rates of transport and redistribution quantified. Similarly, cumulative and long-term impacts of biota erosion should be considered. Understanding these fundamental aspects will provide a basis upon which mitigation strategies can be considered.

  14. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    NASA Astrophysics Data System (ADS)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  15. Watershed Sediment Losses to Lakes Accelerating Despite Agricultural Soil Conservation Efforts

    PubMed Central

    Heathcote, Adam J.; Filstrup, Christopher T.; Downing, John A.

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha−1. Sediment deposition from erosion increased >6-fold, from 149 g m−2 yr−1 in 1850 to 986 g m−2 yr−1 by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm−1 at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation. PMID:23326454

  16. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    PubMed

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.

  17. The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, M. A.; Stoetter, J.; Sartohadi, J.; Christanto, N.

    2009-04-01

    tolerable soil erosion rate, the soil erosion management will be applied base on cost and benefit analysis. The soil erosion management measures will conduct as decision maker of defining the best alternative soil conservation method in a certain area. Besides the engineering and theoretical methods, the local wisdom also will be taken into account in defining the alternative manners of soil erosion management. As a prototype, this integrated model will be generated and simulated in Serayu Watershed, Central Java, since this area has a serious issue in soil erosion problem mainly in the upper stream area (Dieng area). The extraordinary monoculture plantation (potatoes) and very intensive soil tillage without proper soil conservation method has accelerated the soil erosion and depleted the soil fertility. Based on the potatoes productivity data (kg/ha) from 1997-2007 showed that there was a declining trend line, approximately minus 8,2% every year. On the other hand the fertilizer and pesticide consumption in agricultural land are significantly increasing every year. In the same time, the high erosion rate causes serious sedimentation problem in lower stream. Those conditions can be used as study case in determining the element at risk of soil erosion and calculation method for the total soil erosion cost (on-site and off-site effect). Moreover, The Serayu Watershed consists of complex landforms which might have variation of soil erosion tolerable rate. In the future, this integrated model can obtain valuable basis data of the soil erosion hazard in spatial and temporal information including its total cost, the sustainability time of certain land or agriculture area, also the consequences price of applying certain agriculture or soil management. Since this model give result explicitly in spatial and temporal, this model can be used by the local authority to run the land use scenario in term of soil erosion impact before applied them in the real condition. In practice, such

  18. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  19. Erosion resistant coatings

    NASA Technical Reports Server (NTRS)

    Falco, L.; Cushini, A.

    1981-01-01

    Apparatus for measuring the resistance of materials to erosion is examined and a scheme for standardization of the test parameters is described. Current materials being used for protecting aircraft parts from erosion are surveyed, their chief characteristics being given. The superior properties of urethane coatings are pointed out. The complete cycle for painting areas subject to erosion is described.

  20. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    NASA Astrophysics Data System (ADS)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  1. Dosimetric characteristics with spatial fractionation using electron grid therapy.

    PubMed

    Meigooni, A S; Parker, S A; Zheng, J; Kalbaugh, K J; Regine, W F; Mohiuddin, M

    2002-01-01

    Recently, promising clinical results have been shown in the delivery of palliative treatments using megavoltage photon grid therapy. However, the use of megavoltage photon grid therapy is limited in the treatment of bulky superficial lesions where critical radiosensitive anatomical structures are present beyond tumor volumes. As a result, spatially fractionated electron grid therapy was investigated in this project. Dose distributions of 1.4-cm-thick cerrobend grid blocks were experimentally determined for electron beams ranging from 6 to 20 MeV. These blocks were designed and fabricated at out institution to fit into a 20 x 20-cm(2) electron cone of a commercially available linear accelerator. Beam profiles and percentage depth dose (PDD) curves were measured in Solid Water phantom material using radiographic film, LiF TLD, and ionometric techniques. Open-field PDD curves were compared with those of single holes grid with diameters of 1.5, 2.0, 2.5, 3.0, and 3.5 cm to find the optimum diameter. A 2.5-cm hole diameter was found to be the optimal size for all electron energies between 6 and 20 MeV. The results indicate peak-to-valley ratios decrease with depth and the largest ratio is found at Dmax. Also, the TLD measurements show that the dose under the blocked regions of the grid ranged from 9.7% to 39% of the dose beneath the grid holes, depending on the measurement location and beam energy.

  2. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  3. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges

    PubMed Central

    Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; da Silva, Thiago Cruvinel; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges. PMID:28817591

  4. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    PubMed

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  5. Acceleration effects in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Langhenry, M. T.

    1986-01-01

    The performance variations due to acceleration loads imposed on spinning solid propellant rocket motors are investigated. The four potentially most significant modes of acceleration-induced phenomena are identified from a study of the literature and modeled. The four modes are a mechanical mode which deals with deformations of the propellant and case: a thermodynamic mode which covers acceleration-induced combustion phenomena; a stress mode which covers the stressed propellant's effect on burn rate; and a gas dynamic mode which deals with changes in gas flow in the chamber and through the nozzle. Simplified models of each mode are developed or taken from the literature and are added to an internal ballistics evaluation computer program. The resulting analysis is the first to include all of the modes. In order to do this an original analysis of the mechanical and stress modes was necessary. However, the analysis shows that the stress mode is not important for the circular perforated grains studied. The other effects are shown to have a significant influence on solid rocket motor performance. The magnitude of the different mode effects are such that one may not be ignored over the others as has been done in the past. The results of the analysis are compared to published rocket motor data. The comparisons indicate an erosive burning effect that is a function of spin rate. A qualitative explanation of the erosive effect is presented.

  6. An overview of controls research on the NASA Langley Research Center grid

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.

    1987-01-01

    The NASA Langley Research Center has assembled a flexible grid on which control systems research can be accomplished on a two-dimensional structure that has many physically distributed sensors and actuators. The grid is a rectangular planar structure that is suspended by two cables attached to one edge so that out of plane vibrations are normal to gravity. There are six torque wheel actuators mounted to it so that torque is produced in the grid plane. Also, there are six rate gyros mounted to sense angular motion in the grid plane and eight accelerometers that measure linear acceleration normal to the grid plane. All components can be relocated to meet specific control system test requirements. Digital, analog, and hybrid control systems capability is provided in the apparatus. To date, research on this grid has been conducted in the areas of system and parameter identification, model estimation, distributed modal control, hierarchical adaptive control, and advanced redundancy management algorithms. The presentation overviews each technique and presents the most significant results generated for each area.

  7. Irrigation: Erosion

    USDA-ARS?s Scientific Manuscript database

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  8. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  9. On the geoethical implications of wind erosion

    NASA Astrophysics Data System (ADS)

    Károly, Tatárvári

    2016-04-01

    precipitation changes, this also increases the occurrence of bush-fires, and the growing extent of uncovered soil surface shall intensify wind erosion as well accelerating the negative effects described above. Who will be held responsible for this? Who should bear the larger cost of production in agriculture that is caused by the cost of research necessary to uncover the methods of prevention of irreversible damages caused in nature and environment? Because the field of research requires an interdisciplinary approach, research and innovation requires huge funds, the different approaches to the problem in every single field, and different reasoning methods represent a hurdle as well. In search for possible solutions it is necessary that political decision-makers adopt regulations which have solid scientific fundamentals, and also the cooperation of mankind active in science and economy is crucial. This is the only way of finding sustainable and long term solutions to the problem.

  10. A 9700-hour durability test of a five centimeter diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.; Finke, R. C.

    1973-01-01

    A modified Hughes SIT-5 thrustor has been life-tested at the Lewis Research Center. The final 2700 hours of the test are described with a charted history of thrustor operating parameters and off-normal events. Performance and operating characteristics were nearly constant throughout the test except for neutralizer heater power requirements and accelerator drain current. A post-shutdown inspection revealed sputter erosion of ion chamber components and component flaking of sputtered metal. Several flakes caused beamlet divergence and anomalous grid erosion, causing the test to be terminated. All sputter erosion sources have been identified and promising sputter resistant components are currently being evaluated.

  11. Protection from erosion following wildfire

    Treesearch

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  12. Modelling soil erosion in a head catchment of Jemma Basin on the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Cama, Mariaelena; Schillaci, Calogero; Kropáček, Jan; Hochschild, Volker; Maerker, Michael

    2017-04-01

    Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality especially in developing countries such as Ethiopia where rapid population growth and climatic changes affect wide mountainous areas. The catchment of Andit-Tid is a head catchment of Jemma Basin draining to the Blue Nile (Central Ethiopia). It is located in an extremely variable topographical environment and it is exposed to high degradation dynamics especially in the lower part of the catchment. The increasing agricultural activity and grazing, lead to an intense use of the steep slopes which altered the soil structure. As a consequence, water erosion processes accelerated leading to the evolution of sheet erosion, gullies and badlands. This study is aimed at a geomorphological assessment of soil erosion susceptibility. First, a geomorphological map is generated using high resolution digital elevation model (DEM) derived from high resolution stereoscopic satellite data, multispectral imagery from Rapid Eye satellite system . The map was then validated by a detailed field survey. The final maps contains three inventories of landforms: i) sheet, ii) gully erosion and iii) badlands. The water erosion susceptibility is calculated with a Maximum Entropy approach. In particular, three different models are built using the three inventories as dependent variables and a set of spatial attributes describing the lithology, terrain, vegetation and land cover from remote sensing data and DEMs as independent variables. The single susceptibility maps for sheet, gully erosion as well as badlands showed good to excellent predictive performances. Moreover, we reveal and discuss the importance of different sets of variables among the three models. In order to explore the mutual overlap of the three susceptibility maps we generated a combined map as color composite whereas each color represents one component of water erosion. The latter map yield a useful information

  13. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  14. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  15. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  16. Grid-Enabled Measures

    PubMed Central

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  17. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    NASA Astrophysics Data System (ADS)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  18. Modelling soil erosion and associated sediment yield for small headwater catchments of the Daugava spillway valley, Latvia

    NASA Astrophysics Data System (ADS)

    Soms, Juris

    2015-04-01

    The accelerated soil erosion by water and associated fine sediment transfer in river catchments has various negative environmental as well as economic implications in many EU countries. Hence, the scientific community had recognized and ranked soil erosion among other environmental problems. Moreover, these matters might worsen in the near future in the countries of the Baltic Region, e.g. Latvia considering the predicted climate changes - more precisely, the increase in precipitation and shortening of return periods of extreme rainfall events, which in their turn will enable formation of surface runoff, erosion and increase of sediment delivery to receiving streams. Thereby it is essential to carry out studies focused on these issues in order to obtain reliable data in terms of both scientific and applied aims, e.g. environmental protection and sustainable management of soils as well as water resources. During the past decades, many of such studies of soil erosion had focused on the application of modelling techniques implemented in a GIS environment, allowing indirectly to estimate the potential soil losses and to quantify related sediment yield. According to research results published in the scientific literature, this approach currently is widely used all over the world, and most of these studies are based on the USLE model and its revised and modified versions. Considering that, the aim of this research was to estimate soil erosion rates and sediment transport under different hydro-climatic conditions in south-eastern Latvia by application of GIS-based modelling. For research purposes, empirical RUSLE model and ArcGIS software were applied, and five headwater catchments were chosen as model territories. The selected catchments with different land use are located in the Daugava spillway valley, which belongs to the upper Daugava River drainage basin. Considering lithological diversity of Quaternary deposits, a variety of soils can be identified, i.e., Stagnic

  19. Grid Effect on Spherical Shallow Water Jets Using Continuous and Discontinuous Galerkin Methods

    DTIC Science & Technology

    2013-01-01

    The high-order Legendre -Gauss-Lobatto (LGL) points are added to the linear grid by projecting the linear elements onto the auxiliary gnomonic space...mapping, the triangles are subdivided into smaller ones by a Lagrange polynomial of order nI . The number of quadrilateral elements and grid points of...of the acceleration of gravity and the vertical height of the fluid), ν∇2 is the artificial viscosity term of viscous coefficient ν = 1× 105 m2 s−1

  20. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    PubMed

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  1. PREDICTING MINESOIL EROSION POTENTIAL

    EPA Science Inventory

    Two experimental plots were instrumented with erosion pins to study the correspondence between point erosion and erosion over an area on strip mine soil. Using a rotating boom rainfall simulator, data were collected by sampling the runoff every five minutes for the duration of th...

  2. Flow Accelerated Erosion-Corrosion (FAC) considerations for secondary side piping in the AP1000{sup R} nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhoff, J. F.; Rao, G. V.; Stein, A.

    2012-07-01

    The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Duemore » to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)« less

  3. Domed, 40-cm-Diameter Ion Optics for an Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2006-01-01

    Improved accelerator and screen grids for an ion accelerator have been designed and tested in a continuing effort to increase the sustainable power and thrust at the high end of the accelerator throttling range. The accelerator and screen grids are undergoing development for intended use as NASA s Evolutionary Xenon Thruster (NEXT) a spacecraft thruster that would have an input-power throttling range of 1.2 to 6.9 kW. The improved accelerator and screen grids could also be incorporated into ion accelerators used in such industrial processes as ion implantation and ion milling. NEXT is a successor to the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) thruster - a state-of-the-art ion thruster characterized by, among other things, a beam-extraction diameter of 28 cm, a span-to-gap ratio (defined as this diameter divided by the distance between the grids) of about 430, and a rated peak input power of 2.3 kW. To enable the NEXT thruster to operate at the required higher peak power, the beam-extraction diameter was increased to 40 cm almost doubling the beam-extraction area over that of NSTAR (see figure). The span-to-gap ratio was increased to 600 to enable throttling to the low end of the required input-power range. The geometry of the apertures in the grids was selected on the basis of experience in the use of grids of similar geometry in the NSTAR thruster. Characteristics of the aperture geometry include a high open-area fraction in the screen grid to reduce discharge losses and a low open-area fraction in the accelerator grid to reduce losses of electrically neutral gas atoms or molecules. The NEXT accelerator grid was made thicker than that of the NSTAR to make more material available for erosion, thereby increasing the service life and, hence, the total impulse. The NEXT grids are made of molybdenum, which was chosen because its combination of high strength and low thermal expansion helps to minimize thermally and inertially induced

  4. Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2016-11-01

    We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement. Financial support provided by National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  5. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    PubMed Central

    Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I. S.; Stayman, J. W.; Vaquero, J. J.; Siewerdsen, J. H.

    2013-01-01

    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm

  6. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  7. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    NASA Astrophysics Data System (ADS)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  8. Saliva and dental erosion

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  9. Saliva and dental erosion.

    PubMed

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  10. Evaluation of the serum zinc level in erosive and non-erosive oral lichen planus.

    PubMed

    Gholizadeh, N; Mehdipour, M; Najafi, Sh; Bahramian, A; Garjani, Sh; Khoeini Poorfar, H

    2014-06-01

    Lichen planus is a chronic inflammatory immunologic-based disease involving skin and mucosa. This disease is generally divided into two categories: erosive and non-erosive. Many etiologic factors are deliberated regarding the disease; however, the disorders of immune system and the role of cytotoxic T-lymphocytes and monocytes are more highlighted. Zinc is an imperative element for the growth of epithelium and its deficiency induces the cytotoxic activity of T-helper2 cells, which seems to be associated with lichen planus. This study was aimed to evaluate the levels of serum zinc in erosive and non-erosive oral lichen planus (OLP) and to compare it with the healthy control group to find out any feasible inference. A total of 22 patients with erosive oral lichen planus, 22 patients with non erosive OLP and 44 healthy individuals as the control group were recruited in this descriptive-comparative study. All the participants were selected from the referees to the department of oral medicine, school of dentistry, Tabriz University of Medical Sciences. Serum zinc level was examined for all the individuals with liquid-stat kit (Beckman Instruments Inc.; Carlsbad, CA). Data were analyzed by adopting the ANOVA and Tukey tests, using SPSS 16 statistical software. The mean age of patients with erosive and non-erosive LP was 41.7 and 41.3 years, respectively. The mean age of the healthy control group was 34.4 years .The mean serum zinc levels in the erosive and non erosive lichen planus groups and control groups were 8.3 (1.15), 11.15 (0.92) and 15.74 (1.75) μg/dl respectively. The difference was statistically significant (p< 0.05). The serum zinc levels were decreased in patients with erosive oral lichen planus. This finding may probably indicate the promising role of zinc in development of oral lichen planus.

  11. Rainfall erosivity in Europe.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  12. Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology using nematodes as a model organism

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.

    2013-11-01

    Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g.~economic, environmental and social). Global intensification of agroecosystems is a recognised major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Transport and redistribution of biota by soil erosion has hitherto been ignored and thus is poorly understood. With the move to sustainable intensification this is a key knowledge gap that needs to be addressed. Here we highlight the erosion-energy and effective-erosion-depth continuum in soils, differentiating between different forms of soil erosion, and argue that nematodes are an appropriate model taxa to investigate impacts of erosion on soil biota across scales. We review the different known mechanisms of soil erosion that impact on soil biota in general, and nematodes in particular, and highlight the few detailed studies, primarily from tropical regions, that have considered soil biota. Based on the limited literature and using nematodes as a model organism we outline future research priorities to initially address the important interrelationships between soil erosion processes and soil biota.

  13. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    PubMed Central

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans. PMID:26699461

  14. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    USGS Publications Warehouse

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  15. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition.

    PubMed

    Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng

    2017-08-01

    Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p < .039) by both soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.

  16. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    PubMed

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-05

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  17. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    NASA Astrophysics Data System (ADS)

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  18. Electron acceleration by turbulent plasmoid reconnection

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  19. A Study of Cavitation Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiromu Isaka; Masatsugu Tsutsumi; Tadashi Shiraishi

    2002-07-01

    The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regardingmore » the 1. item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2. item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results. (authors)« less

  20. Development of a New Rain Erosion Test Method

    NASA Astrophysics Data System (ADS)

    Chung, Dong-Teak; Kang, Hyung; Jin, Doo-Han

    The nose of a missile, flying through raining region with a supersonic speed, is subjected to the rain erosion because the nose is made of a brittle ceramic material. Various test methods are used to address such a phenomenon. However, most of the methods are expensive and/or require complicated facilities. The simple yet very effective rain erosion test method is developed. It consists of (1) a low pressure air gun, (2) a sabot assembly for launching single rain drop, (3) a stopper, and (4) a specimen holder block. The sabot assembly similar to the hypodermic syringe carries specific amount of water toward the stopper launched by the low pressure air gun. When the impact occurs against the stopper which stops the sabot, the water and the steel plunger (at the back of the sabot) continues pushing the sabot to generate a high pressure in the chamber filled with resilient silicon rubber. The pressurized silicon rubber then is squeezed through the small opening in front of the sabot, thus, accelerates the water droplet to a much higher velocity. The velocity of the droplet is measured by the make-screen method, where there are two aluminum foils with an insulating layer in between. The droplet velocity up to 800 m/s is successfully attained using a low pressure air compressor. The specimen made of a ceramic material is placed in front of the high speed water droplet and the rain erosion damage on the surface of the specimen is observed.

  1. Assessment of grid optimisation measures for the German transmission grid using open source grid data

    NASA Astrophysics Data System (ADS)

    Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.

    2018-02-01

    The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.

  2. The success of recent land management efforts to tackle gully erosion in Northern France

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Nyssen, Jan; Salvador, Pierre-Gil

    2017-04-01

    In the open-field agricultural landscapes of Europe, especially in the topographic-rolling loess-covered regions, soil erosion is an important problem. Here, small headwater catchments hold almost no permanent vegetation, and with few physical obstacles to reduce runoff velocities, runoff concentration along linear landscape elements (plot boundaries) or thalwegs frequently causes ephemeral gullies to occur - the latter reflecting the poor hydrogeomorphic condition of the land- and soilscape. To tackles this, and to remediate negative on- and off-site effects, land management efforts have multiplied over the past decades in many regions. This includes, amongst others measures, the implementation of vegetation barriers (French fascines, Dutch wilgenteendam). In the loess-dominated Aa river basin (640 km2) of northern France, where cropland accounts for 67% of the cover, mainly managed in open-field agro-industrial farming schemes, we investigated the effect of the implementation of vegetation barriers on ephemeral gully erosion dynamics, together with rainfall characteristics and cropland management. This was done from a spatially explicit study at the scale of 500 x 500 m grid cells using a diachronic analysis of historical aerial photographs (period 1947-2012). Fascines, introduced since 2001, were present in ca. 25% of the gully erosion sites. Spatio-temporal gully length variability was mainly driven by cumulative precipitation, and the presence of fascines could not significantly explain trends in decreasing gully lengths. In addition, the impact of fascines on mudflow hazards and on local sediment storage was also analysed. In sum, fascines clearly showed to have a local effect on the storage of sediment, but due to their limited implementation and poor maintenance, they did not decrease the landscape's vulnerability to gully erosion or mudflow hazards. Being increasingly implemented for erosion control in western Europe, this study points at the challenges

  3. Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner

    NASA Astrophysics Data System (ADS)

    Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.

    2007-12-01

    Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and

  4. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    PubMed Central

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, <10%, 10-25%, and >50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  5. Do erosion control and snakes mesh?

    Treesearch

    Christopher Barton; Karen Kinkead

    2005-01-01

    In the battle to curb soil erosion and sedimentation, numberous techniques and products for controlling erosion and sedimentation have been developed and are being implemented. Rolled erosion control products, such as a temporary erosion control blankets and permanent turf reinforcement mats, represent one type of erosion control product that has been used extensively...

  6. Enabling campus grids with open science grid technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitzel, Derek; Bockelman, Brian; Swanson, David

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condormore » clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.« less

  7. Legacy of Topography and Land Use on Erosion and Soil Organic Carbon Burial

    NASA Astrophysics Data System (ADS)

    Nater, E. A.; Dalzell, B. J.; Fissore, C.; Wu, A.; Yoo, K.; Ginakes, P.

    2012-12-01

    There is a growing body of evidence to suggest that soil erosion in agricultural landscapes can function as a net carbon (C) sink due to burial of carbon-rich topsoil at depositional sites. It has been argued, however, that soil organic carbon (SOC) degradation during erosion may represent an important source of C to the atmosphere and weaken the overall strength of the erosion-induced C sink. In this study we compare SOC in the top 1.5 m of soil in grassland and cropland landscapes and employ 137Cs (from atmospheric testing of thermonuclear bombs) as a proxy for soil movement over the past half-century. Using soil depth and terrain attributes calculated from LiDAR-derived digital elevation models, we are able to account for 82 and 83% of the variability observed in SOC and 137Cs content from grassland sites. For cropland sites, we are able to explain 78 and 50% of SOC and 137Cs variability, respectively. For cropland sites, slope steepness and curvature play a stronger predictive role than in grassland sites. Comparing SOC and 137Cs content between grassland and agricultural sites shows that there is not preferential SOC depletion in eroded soils. This suggests that, for the soils studied here, erosion functions to redistribute SOC around the landscape but does not accelerate SOC decomposition beyond what can be replaced by primary productivity.

  8. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  9. Rill erosion rates in burned forests

    Treesearch

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  10. Investigation of accelerating ion triode with magnetic insulation for neutron generation

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Kozlovskij, K. I.; Vovchenko, E. D.; Rashchikov, V. I.; Shatokhin, V. L.; Isaev, A. A.

    2017-12-01

    Vacuum accelerating tube (AT) for neutron generation with the secondary electron emission suppressed by helical line pulse magnetic field which allocated inside accelerating gap in front of hollow conical cathodeis discussed. The central anode was covered by the hollow cathode. This technical solution of AT is an ion triode in which helical line serve as a grid. Computer simulation results of longitudinal magnetic field distributional along the axis are presented.

  11. Modern Grid Initiative Distribution Taxonomy Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.

    2008-11-01

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies ismore » the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels

  12. WSA index as an indicator of soil degradation due to erosion

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Schmidtova, Zuzana; Kubis, Adam; Fer, Miroslav; Klement, Ales; Nikodem, Antonin

    2014-05-01

    Knowledge of spatial distribution of soil aggregate stability as an indicator of soil degradation vulnerability is required for many scientific and practical environmental studies. The goal of our study was to assess predisposition of different soil types to change aggregate stability due to erosion. Five agriculture arable lands with different soil types were chosen. The common feature of these sites is relatively large slope and thus soils are impacted by water erosion. The first studied area was in Brumovice. The original soil type was Haplic Chernozem on loess, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). A similar process has been described at other four locations Vidim, Sedlcany, Zelezna and Hostoun, where the original soil types were Haplic Luvisol on loess and Haplic Cambisol on gneiss, Haplic Cambisol on shales, and Calcaric Cambisol on marlstone, respectively. The regular and semi-regular soil sampling grids were set at all five sites. The basic soil properties were measured and stability of soil aggregates (WSA index) was evaluated. In all cases, the higher aggregates stability was observed in soils, which were not (or only slightly) affected by water erosion and at base slope and the tributary valley (eroded soil particle accumulation). The lowest aggregate stability was measured at the steepest parts. When comparing individual sites, the highest WSA index, e.g. aggregate stability, was found in Sedlcany (Cambisol). Lower WSA indexes were measured on aggregates from Hostoun (Cambisol), Zelezna (Cambisol), Vidim (Luvisol) and the lowest values were obtained in Brumovice (Chernozem). The largest WSA indexes for Cambisols in comparison to Luvisols and Chernozem could be attributed to higher organic matter content and presence of iron oxides. Slightly higher aggregate stability of Luvisols in comparison to Chernozem, could be explained by the positive influence of clay (especially in

  13. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  14. Use of (137)Cs technique for soil erosion study in the agricultural region of Casablanca in Morocco.

    PubMed

    Nouira, A; Sayouty, E H; Benmansour, M

    2003-01-01

    Accelerated erosion and soil degradation currently cause serious problems to the Oued El Maleh basin (Morocco). Furthermore, there is still only limited information on rates of soil loss for optimising strategies for soil conservation. In the present study we have used the (137)Cs technique to assess the soil erosion rates on an agricultural land in Oued el Maleh basin near Casablanca (Morocco). A small representative agricultural field was selected to investigate the soil degradation required by soil managers in this region. The transect approach was applied for sampling to identify the spatial redistribution of (137)Cs. The spatial variability of (137)Cs inventory has provided evidence of the importance of tillage process and the human effects on the redistribution of (137)Cs. The mean (137)Cs inventory was found about 842 Bq m(-2), this value corresponds to an erosion rate of 82 tha(-1) yr(-1) by applying simplified mass balance model in a preliminary estimation. When data on site characteristics were available, the refined mass balance model was applied to highlight the contribution of tillage effect in soil redistribution. The erosion rate was estimated about 50 tha(-1) yr(-1). The aspects related to the sampling procedures and the models for calculation of erosion rates are discussed.

  15. Accelerated leukocyte telomere erosion in schizophrenia: Evidence from the present study and a meta-analysis.

    PubMed

    Rao, Shuquan; Kota, Lakshmi Narayanan; Li, Zongchang; Yao, Yao; Tang, Jinsong; Mao, Canquan; Jain, Sanjeev; Xu, Yong; Xu, Qi

    2016-08-01

    Human telomeres consist of tandem nucleotide repeats (TTAGGG) and associated proteins, and telomere length (TL) is reduced progressively with cell division over the lifespan. Telomere erosion might be accelerated or prevented to varying degrees when exposure to serious medical illnesses. In previous studies, an association between TL decrease and schizophrenia has been extensively reported; however, the results remain largely controversial. To further investigate TL in schizophrenia patients and reconcile this controversy, we first measured leucocyte TL (LTL) in our samples (52 paranoid schizophrenia, 89 non-paranoid patients and 120 controls), and then conducted a comprehensive meta-analysis of the existing results of LTL in patients of schizophrenia compared to healthy subjects. Totally, 11 studies encompassing 1243 patients of schizophrenia and 1274 controls were included in the final meta-analysis model. In our samples, significant reduction of LTL in paranoid schizophrenia was observed compared to controls (F = 50.88, P < 0.001); whereas there was no significant difference in LTL between non-paranoid schizophrenia and controls (F = 0.842, P = 0.360). For meta-analysis, random-effects model showed significant LTL decrease in patients of schizophrenia when compared to controls (Z = 2.07, P = 0.039, SMD = -0.48, 95% CI = -0.94 to -0.03). Moreover, a marginal decrease in LTL was observed in medicated patients (Z = 1.92, P = 0.055, SMD = -0.58, 95% CI = -1.18-0.01) and those patients with poor response to antipsychotics (Z = 1.76, P = 0.078, SMD = -0.60, 95% CI = -1.27-0.07). In conclusion, we observed significant reduction of LTL in individuals with schizophrenia compared with controls. However, all the studies included in the meta-analysis were cross-sectional, and better controlled long-term studies are needed to replicate this result. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dental Erosion in Industry

    PubMed Central

    Cate, H. J. Ten Bruggen

    1968-01-01

    Five hundred and fifty-five acid workers were examined between March 1962 and October 1964. One hundred and seventy-six (31·7%) were affected by industrial dental erosion at the first examinations. In 33 cases (6·0%) the dentine was affected. During the period of the survey, 66 (20·4%) of 324 workers examined more than once showed evidence that erosion was progressing. The prevalence and incidence of erosion were highest among battery formation workers, lower among picklers, and least among other processes covered by the survey. The age of workers did not appear to influence their susceptibility to erosion. The habit of working with the lips slightly parted had little effect. Erosion superimposed upon attrition predisposed to more severe loss of tooth structure than either operating alone. Little inconvenience or functional disability was suffered by acid workers due to erosion. Twenty-seven (23·7%) of 114 erosions were considered to be disfiguring. Regular dental treatment was sought less by acid workers than by controls, and the oral hygiene of the latter was superior. There was no evidence to show any difference between caries experience among acid workers and controls. Calculus and periodontal disease were more prevalent among acid workers than among controls, but it was not possible to attribute this to the working environment. Black staining in iron picklers was considered to be due to the working environment. The use of closed acid containers or lip extraction on open acid vats prevented significant atmospheric contamination and diminished the prevalence of erosion. The use of wall fans and detergent foaming agents was helpful. Images PMID:5723349

  17. Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling

    NASA Astrophysics Data System (ADS)

    Cao, L.; Elliot, W.

    2017-12-01

    Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates

  18. Seasonal variations of soil erosion in UK under climate change: simulations with the use of high-resolution regional climatic models

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian

    2017-04-01

    Climate change is expected to have a significant impact on the hydrological cycle, twenty-first century climate change simulations for Great Britain forecast an increase of surface runoff and flooding frequency. Once quality and resolution of the simulated rainfall deeply influence the results, we adopted rainfall simulations issued of a high-resolution climate model recently carried out for extended periods (13 years for present-day and future periods 2100) at 1.5 km grid scale over the south of the United Kingdom (simulations, which for the future period use the Intergovernmental Panel on Climate Change RCP 8.5 scenario, Kendon et al., 2014). We simulated soil erosion with 3D soil erosion model Schmidt (1990) on two catchments of Great Britain: the Rother catchment (350 km2) in West Sussex, England, because it has reported some of the most erosive events observed during the last 50 years in the UK, and the Conwy catchment (628 Km2) in North Wales, which is extremely resilient to soil erosion because of the abundant natural vegetation. Estimation of changes in soil moisture, saturation deficit as well as vegetation cover at daily time step have been done with the Joint UK Land Environment Simulator (JULES) (Best et al, 2011). Our results confirm the Rother catchment is the most erosive, while the Conwy catchment is the more resilient to soil erosion. Sediment production is perceived increase in both cases for the end of the century (27% and 50%, respectively). Seasonal disaggregation of the results revels that, while the most part of soil erosion is produced in winter months (DJF), the higher soil erosion variability for future periods is observed in summer (JJA). This behaviour is supported by the rainfall simulation analyse which highlighted this dual behaviour in precipitations.

  19. Solid impingement erosion mechanisms and characterization of erosion resistance of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, V. P.; Buckley, D. H.

    1982-01-01

    Experimental results pertaining to spherical glass bead and angular crushed glass particle impingement are presented. A concept of energy adsorption to explain the failure of material is proposed. The erosion characteristics of several pure metals were correlated with the proposed energy parameters and with other properties. Correlations of erosion and material properties were also carried out with these materials to study the effect of the angle of impingement. Analyses of extensive erosion data indicate that surface energy, strain energy, melting point, bulk modulus, hardness, ultimate resilience, atomic volume and product of linear coefficient of thermal expansion, bulk modulus, and temperature rise required for melting, and ultimate resilience, and hardness exhibit the best correlations. It appears that both energy and thermal properties contribute to the total erosion.

  20. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall

  1. Sediment Deposition, Erosion, and Bathymetric Change in Central San Francisco Bay: 1855-1979

    USGS Publications Warehouse

    Fregoso, Theresa A.; Foxgrover, Amy C.; Jaffe, Bruce E.

    2008-01-01

    Central San Francisco Bay is the hub of a dynamic estuarine system connecting the San Joaquin and Sacramento River Deltas, Suisun Bay, and San Pablo Bay to the Pacific Ocean and South San Francisco Bay. To understand the role that Central San Francisco Bay plays in sediment transport throughout the system, it is necessary to first determine historical changes in patterns of sediment deposition and erosion from both natural and anthropogenic forces. The first extensive hydrographic survey of Central San Francisco Bay was conducted in 1853 by the National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS)). From 1894 to 1979, four additional surveys, composed of a total of approximately 700,000 bathymetric soundings, were collected within Central San Francisco Bay. Converting these soundings into accurate bathymetric models involved many steps. The soundings were either hand digitized directly from the original USCGS and NOS hydrographic sheets (H-sheets) or obtained digitally from the National Geophysical Data Center's (NGDC) Geophysical Data System (GEODAS) (National Geophysical Data Center, 1996). Soundings were supplemented with contours that were either taken directly from the H-sheets or added in by hand. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings, depth contours, shorelines, and marsh areas were entered into a geographic information system (GIS) and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 25 m were developed for each of the five hydrographic surveys. Before analyses of sediment deposition and erosion were conducted, interpolation bias was removed and all of the grids were converted to a common vertical datum. These bathymetric grids were then used to develop bathymetric change maps for subsequent survey periods and to determine long-term changes in deposition and erosion by calculating volumes and

  2. Scales and erosion

    USDA-ARS?s Scientific Manuscript database

    There is a need to develop scale explicit understanding of erosion to overcome existing conceptual and methodological flaws in our modelling methods currently applied to understand the process of erosion, transport and deposition at the catchment scale. These models need to be based on a sound under...

  3. Rainfall erosivity and sediment load over the Poyang Lake Basin under variable climate and human activities since the 1960s

    NASA Astrophysics Data System (ADS)

    Gu, Chaojun; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Sun, Wenyi; Yu, Qiang

    2018-03-01

    Accelerated soil erosion exerts adverse effects on water and soil resources. Rainfall erosivity reflects soil erosion potential driven by rainfall, which is essential for soil erosive risk assessment. This study investigated the spatiotemporal variation of rainfall erosivity and its impacts on sediment load over the largest freshwater lake basin of China (the Poyang Lake Basin, abbreviate to PYLB). The spatiotemporal variations of rainfall erosivity from 1961 to 2014 based on 57 meteorological stations were detected using the Mann-Kendall test, linear regression, and kriging interpolation method. The sequential t test analysis of regime shift (STARS) was employed to identify the abrupt changes of sediment load, and the modified double mass curve was used to assess the impacts of rainfall erosivity variability on sediment load. It was found that there was significant increase (P < 0.05) in rainfall erosivity in winter due to the significant increase in January over the last 54 years, whereas no trend in year and other seasons. Annual sediment load into the Poyang Lake (PYL) decreased significantly (P < 0.01) between 1961 and 2014, and the change-points were identified in both 1985 and 2003. It was found that take annual rainfall erosivity as the explanatory variables of the double mass curves is more reasonable than annual rainfall and erosive rainfall. The estimation via the modified double mass curve demonstrated that compared with the period before change-point (1961-1984), the changes of rainfall erosivity increased 8.0 and 2.1% of sediment load during 1985-2002 and 2003-2014, respectively. Human activities decreased 50.2 and 69.7% of sediment load during the last two periods, which indicated effects of human activities on sediment load change was much larger than that of rainfall erosivity variability in the PYLB.

  4. Influence of sodium dodecyl sulfate on swelling, erosion and release behavior of HPMC matrix tablets containing a poorly water-soluble drug.

    PubMed

    Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan

    2009-01-01

    The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium.

  5. Five-centimeter diameter ion thruster development

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1972-01-01

    All system components were tested for endurance and steady state and cyclic operation. The following results were obtained: acceleration system (electrostatic type), 3100 hours continuous running; acceleration system (translation type), 2026 hours continuous running; cathode-isolator-vaporizer assembly, 5000 hours continuous operation and 190 restart cycles with 1750 hours operation; mercury expulsion system, 5000 hours continuous running; and neutralizer, 5100 hours continuous operation. The results of component optimization studies such as neutralizer position, neutralizer keeper hole, and screen grid geometry are included. Extensive mapping of the magnet field within and immediately outside the thruster are shown. A technique of electroplating the molybdenum accelerator grid with copper to study erosion patterns is described. Results of tests being conducted to more fully understand the operation of the hollow cathode are also given. This type of 5-cm thruster will be space tested on the Communication Technology Satellite in 1975.

  6. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  7. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    PubMed Central

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530

  8. Effectiveness assessment of soil conservation measures in reducing soil erosion in Baiquan County of Northeastern China by using (137)Cs techniques.

    PubMed

    Zhang, Qing-Wen; Li, Yong

    2014-05-01

    Accelerated soil erosion is considered as a major land degradation process resulting in increased sediment production and sediment-associated nutrient inputs to the rivers. Over the last decade, several soil conservation programs for erosion control have been conducted throughout Northeastern China. Reliable information on soil erosion rates is an essential prerequisite to assess the effectiveness of soil conservation measures. A study was carried out in Baiquan County of Northeastern China to assess the effectiveness of soil conservation measures in reducing soil erosion using the (137)Cs tracer technique and related techniques. This study reports the use of (137)Cs measurements to quantify medium-term soil erosion rates in traditional slope farmland, contour cropping farmland and terrace farmland in the Dingjiagou catchment and the Xingsheng catchment of Baiquan County. The (137)Cs reference inventory of 2532 ± 670 Bq m(-2) was determined. Based on the principle of the (137)Cs tracer technique, soil erosion rates were estimated. The results showed that severe erosion on traditional slope farmland is the dominant soil erosion process in the area. The terrace measure reduced soil erosion rates by 16% for the entire slope. Typical net soil erosion rates are estimated to be 28.97 Mg per hectare per year for traditional slope farmland and 25.04 Mg per hectare per year for terrace farmland in the Dingjiagou catchment. In contrast to traditional slope farmland with a soil erosion rate of 34.65 Mg per hectare per year, contour cultivation reduced the soil erosion rate by 53% resulting in a soil erosion rate of 22.58 Mg per hectare per year in the Xingsheng catchment. These results indicated that soil losses can be controlled by changing tillage practices from the traditional slope farmland cultivation to the terrace or contour cultivation.

  9. Erosion in radial inflow turbines. Volume 4: Erosion rates on internal surfaces

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1975-01-01

    An analytic study of the rate at which material is removed by ingested dust impinging on the internal surfaces of a typical radial inflow turbine is presented. Results show that there are several regions which experience very severe erosion loss, and other regions that experience moderate levels of erosion loss: (1) the greatest amount of material loss occurs on the trailing edges of the nozzle blades where very high velocity, moderate angle impacts occur. The tip regions of ductile materials are also subjected to serious levels of erosion loss; (2) moderate amounts of erosion occur near the end of the scroll and on a few of the nozzle blades near this location. Results are presented in the form of surface contours that exist on the scroll and blade surfaces after continuous particulate ingestion with time.

  10. Acceleration of 500 keV Negative Ion Beams By Tuning Vacuum Insulation Distance On JT-60 Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Tanaka, Y.

    2011-09-26

    Acceleration of a 500 keV beam up to 2.8 A has been achieved on a JT-60U negative ion source with a three-stage accelerator by overcoming low voltage holding which is one of the critical issues for realization of the JT-60SA ion source. In order to improve the voltage holding, preliminary voltage holding tests with small-size grids with uniform and locally intense electric fields were carried out, and suggested that the voltage holding was degraded by both the size and local electric field effects. Therefore, the local electric field was reduced by tuning gap lengths between the large size grids andmore » grid support structures of the accelerator. Moreover, a beam radiation shield which limited extension of the minimum gap length was also optimized so as to reduce the local electric field while maintaining the shielding effect. These modifications were based on the experiment results, and significantly increased the voltage holding from <150 kV/stage for the original configuration to 200 kV/stage. These techniques for improvement of voltage holding should also be applicable to other large ion sources accelerators such as those for ITER.« less

  11. Validating and Improving Interrill Erosion Equations

    PubMed Central

    Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi

    2014-01-01

    Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h−1) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of −0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations. PMID:24516624

  12. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  13. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less

  14. [Sediment-yielding process and its mechanisms of slope erosion in wind-water erosion crisscross region of Loess Plateau, Northwest China].

    PubMed

    Tuo, Deng-Feng; Xu, Ming-Xiang; Zheng, Shi-Qing; Li, Qiang

    2012-12-01

    Due to the coupling effects of wind and water erosions in the wind-water erosion crisscross region of Loess Plateau, the slope erosion in the region was quite serious, and the erosion process was quite complicated. By using wind tunnel combined with simulated rainfall, this paper studied the sediment-yielding process and its mechanisms of slope erosion under the effects of wind-water alternate erosion, and quantitatively analyzed the efffects of wind erosion on water erosion and the relationships between wind and water erosions. There was an obvious positive interaction between wind and water erosions. Wind erosion promoted the development of microtopography, and altered the quantitative relationship between the sediment-yielding under water erosion and the variation of rainfall intensity. At the rainfall intensity of 60 and 80 mm x h(-1), the sediment-yielding without wind erosion decreased with the duration of rainfall and tended to be stable, but the sediment-yielding with wind erosion decreased to a certain valley value first, and then showed an increasing trend. At the rainfall intensity of 60, 80, and 100 mm x h(-1), the sediment-yielding with the wind erosion at speeds of 11 and 14 m x s(-1) increased by 7.3%-27.9% and 23.2%-39.0%, respectively, as compared with the sediment-yielding without wind erosion. At the rainfall intensity of 120 and 150 mm x h(-1) and in the rainfall duration of 15 minutes, the sediment-yielding with and without wind erosion presented a decreasing trend, but, with the increase of rainfall duration, the sediment-yielding with wind erosion showed a trend of decreasing first and increasing then, as compared with the sediment-yielding without wind erosion. The mechanisms of wind-water alternate erosion were complicated, reflecting in the mutual relation and mutual promotion of wind erosion and water erosion in the aspects of temporal-spatial distribution, energy supply, and action mode of erosion forces.

  15. Application of the NEXT Ion Thruster Lifetime Assessment to Thruster Throttling

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Herman, Daniel A.

    2010-01-01

    Ion thrusters are low thrust, high specific impulse devices with typical operational lifetimes of 10,000 to 30,000 hr over a range of throttling conditions. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest input power throttling point. This paper will provide a brief review the previous life assessment predictions for various throttling conditions. A further assessment will be presented examining the anticipated accelerator grid hole wall erosion and related electron backstreaming limit. The continued assessment of the NEXT ion thruster indicates that the first failure mode across the throttling range is expected to be in excess of 36,000 hr of operation from charge exchange induced groove erosion. It is at this duration that the groove is predicted to penetrate the accelerator grid possibly resulting in structural failure. Based on these lifetime and mission assessments, a throttling approach is presented for the Long Duration Test to demonstrate NEXT thruster lifetime and validate modeling.

  16. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  17. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  18. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  19. Can Clouds replace Grids? Will Clouds replace Grids?

    NASA Astrophysics Data System (ADS)

    Shiers, J. D.

    2010-04-01

    The world's largest scientific machine - comprising dual 27km circular proton accelerators cooled to 1.9oK and located some 100m underground - currently relies on major production Grid infrastructures for the offline computing needs of the 4 main experiments that will take data at this facility. After many years of sometimes difficult preparation the computing service has been declared "open" and ready to meet the challenges that will come shortly when the machine restarts in 2009. But the service is not without its problems: reliability - as seen by the experiments, as opposed to that measured by the official tools - still needs to be significantly improved. Prolonged downtimes or degradations of major services or even complete sites are still too common and the operational and coordination effort to keep the overall service running is probably not sustainable at this level. Recently "Cloud Computing" - in terms of pay-per-use fabric provisioning - has emerged as a potentially viable alternative but with rather different strengths and no doubt weaknesses too. Based on the concrete needs of the LHC experiments - where the total data volume that will be acquired over the full lifetime of the project, including the additional data copies that are required by the Computing Models of the experiments, approaches 1 Exabyte - we analyze the pros and cons of Grids versus Clouds. This analysis covers not only technical issues - such as those related to demanding database and data management needs - but also sociological aspects, which cannot be ignored, neither in terms of funding nor in the wider context of the essential but often overlooked role of science in society, education and economy.

  20. Dimensionless erosion laws for cohesive sediment

    USGS Publications Warehouse

    Walder, Joseph S.

    2016-01-01

    A method of achieving a dimensionless collapse of erosion-rate data for cohesive sediments is proposed and shown to work well for data collected in flume-erosion tests on mixtures of sand and mud (silt plus clay sized particles) for a wide range of mud fraction. The data collapse corresponds to a dimensional erosion law of the form E∼(τ−τc)m">E∼(τ−τc)mE∼(τ−τc)m, where E">EE is erosion rate, τ">ττ is shear stress, τc">τcτc is the threshold shear stress for erosion to occur, and m≈7/4">m≈7/4m≈7/4. This result contrasts with the commonly assumed linear erosion law E=kd(τ−τc)">E=kd(τ−τc)E=kd(τ−τc), where kd">kdkd is a measure of how easily sediment is eroded. The data collapse prompts a re-examination of the way that results of the hole-erosion test (HET) and jet-erosion test (JET) are customarily analyzed, and also calls into question the meaningfulness not only of proposed empirical relationships between kd">kdkd and τc">τcτc, but also of the erodibility parameter kd">kdkd itself. Fuller comparison of flume-erosion data with hole-erosion and jet-erosion data will require revised analyses of the HET and JET that drop the assumption m=1">m=1m=1 and, in the case of the JET, certain simplifying assumptions about the mechanics of jet scour.

  1. Oesophageal mucosal intercellular space diameter and reflux pattern in childhood erosive and non-erosive reflux disease.

    PubMed

    Mancini, Valentina; Ribolsi, Mentore; Gentile, Massimo; de'Angelis, Gianluigi; Bizzarri, Barbara; Lindley, Keith J; Cucchiara, Salvatore; Cicala, Michele; Borrelli, Osvaldo

    2012-12-01

    We sought to compare intercellular space diameter in children with non-erosive and erosive reflux disease, and a control group. We also aimed to characterize the reflux pattern in erosive and non-erosive reflux disease patients, and to explore the relationship between intercellular space diameter values and reflux parameters. Twenty-four children with non-erosive reflux disease, 20 with erosive reflux disease, and 10 controls were prospectively studied. All patients and controls underwent upper endoscopy. Biopsies were taken at 2-3 cm above the Z-line, and intercellular space diameter was measured using transmission electron microscopy. Non-erosive and erosive reflux disease patients underwent impedance-pH monitoring. Mean intercellular space diameter values were significantly higher in both non-erosive (0.9 ± 0.2 μm) and erosive reflux disease (1 ± 0.2 μm) compared to controls (0.5 ± 0.2 μm, p<0.01). No difference was found between the two patient groups. Acid exposure time, the number of acid, weakly acidic and weakly alkaline reflux events did not differ between the two patient groups. No difference was found in the mean intercellular space diameter between non-erosive reflux disease children with and without abnormal acid exposure time (1 ± 0.3 vs. 0.9 ± 0.2 μm). No correlation was found between any reflux parameter and intercellular space diameter values. Dilated intercellular space diameter seems to be a useful and objective marker of oesophageal damage in paediatric gastro-oesophageal reflux disease, regardless of acid exposure. In childhood, different gastro-oesophageal reflux disease phenotypes cannot be discriminated on the basis of reflux pattern. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  2. The FAST (FRC Acceleration Space Thruster) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  3. Annotated bibliography on soil erosion and erosion control in subarctic and high-latitude regions of North America.

    Treesearch

    C.W. Slaughter; J.W. Aldrich

    1989-01-01

    This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...

  4. Erosion rates of wood during natural weathering. Part II, Earlywood and latewood erosion rates

    Treesearch

    R. Sam Williams; Mark T. Knaebe; William C. Feist

    2001-01-01

    This is the second in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. In the work reported here, the erosion rates of earlywood and latewood were determined for smooth-planed vertical-grained lumber for an exposure period of 14 years. The specimens were oriented vertically, facing south; erosion was measured annually for the...

  5. Investigation of ion beam space charge compensation with a 4-grid analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, C., E-mail: c.ullmann@gsi.de; Adonin, A.; Berezov, R.

    2016-02-15

    Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system ofmore » the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.« less

  6. Mapping monthly rainfall erosivity in Europe.

    PubMed

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  7. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  8. GridTool: A surface modeling and grid generation tool

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  9. DRAGON Grid: A Three-Dimensional Hybrid Grid Generation Code Developed

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2000-01-01

    Because grid generation can consume 70 percent of the total analysis time for a typical three-dimensional viscous flow simulation for a practical engineering device, payoffs from research and development could reduce costs and increase throughputs considerably. In this study, researchers at the NASA Glenn Research Center at Lewis Field developed a new hybrid grid approach with the advantages of flexibility, high-quality grids suitable for an accurate resolution of viscous regions, and a low memory requirement. These advantages will, in turn, reduce analysis time and increase accuracy. They result from an innovative combination of structured and unstructured grids to represent the geometry and the computation domain. The present approach makes use of the respective strengths of both the structured and unstructured grid methods, while minimizing their weaknesses. First, the Chimera grid generates high-quality, mostly orthogonal meshes around individual components. This process is flexible and can be done easily. Normally, these individual grids are required overlap each other so that the solution on one grid can communicate with another. However, when this communication is carried out via a nonconservative interpolation procedure, a spurious solution can result. Current research is aimed at entirely eliminating this undesired interpolation by directly replacing arbitrary grid overlapping with a nonstructured grid called a DRAGON grid, which uses the same set of conservation laws over the entire region, thus ensuring conservation everywhere. The DRAGON grid is shown for a typical film-cooled turbine vane with 33 holes and 3 plenum compartments. There are structured grids around each geometrical entity and unstructured grids connecting them. In fiscal year 1999, Glenn researchers developed and tested the three-dimensional DRAGON grid-generation tools. A flow solver suitable for the DRAGON grid has been developed, and a series of validation tests are underway.

  10. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    USGS Publications Warehouse

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  11. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed

  12. Constructing a sequence of palaeoDEMs to obtain erosion rates in a drainage basin.N

    NASA Astrophysics Data System (ADS)

    Castelltort, F. Xavier; Carles Balasch, J.; Cirés, Jordi; Colombo, Ferran

    2017-04-01

    DEMs made in a present-day drainage basin, considering it as a geomorphic unit, represent the end result of a landscape evolution. This process has had to follow a model of erosion. Trying to establish a conceptual erosion model in landscape evolution represents the first difficulty in constructing a sequence of palaeoDEMs. But if one is able to do it, the result will be easier and believable. The next step to do is to make a catalogue of base level types present in the drainage basin. The list has to include elements with determinate position and elevation (x, y, z) from the centre of the basin until hillslopes. A list of base level types may contain fluvial terrace remnants, erosive surfaces, palaeosols, alluvial covers of glacis, alluvial fans, rockfalls, landslides and scree zones. It is very important to know the spatial and temporal relations between the elements of the list, even if they are disconnected by erosion processes. Relative chronologies have to be set for all elements of the catalogue, and as far as possible absolute chronologies. To do it,it is essential to have established first the spatial relations between them, including those elements that are gone. Moreover, it is also essential to have adapted all the elements to the conceptual erosion model proposed. In this step, it has to be kept in mind that erosion rates can be very different in determinate areas within the same geomorphic unit. Erosion processes are focused in specific zones while other areas are maintained in stability. A good technique to construct a palaeoDEM is to start making, by hand, a map of contour lines. At this point, it is valuable to use the elements' catalogue. The use of those elements belonging to the same palaeosurface will result in a map. Several maps can be obtained from a catalogue. Contour maps can be gridded into a 3D surface by means of a specific application and a set of surfaces will be obtained. Algebraic operations can be done with palaeoDEMs obtaining

  13. Can 239 + 240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout?

    PubMed

    Schimmack, W; Auerswald, K; Bunzl, K

    2001-01-01

    Erosion studies often use 137Cs from the global fallout (main period: 1953-1964) as a tracer in the soil. In many European countries, where 137Cs was deposited in considerable amounts also by the Chernobyl fallout in 1986, the global fallout fraction (GF-Cs) has to be separated from the Chernobyl fraction by means of the isotope 134Cs. In a few years, this will no longer be possible due to the short half-life of 134Cs (2 yr). Because GF-Cs in the soil can then no longer be determined, the potential of using 239 + 240Pu as a tracer is evaluated. This radionuclide originates in most European countries essentially only from the global fallout. The activities and spatial distributions of Pu and GF-Cs were compared in the soil of a steep field (inclination about 20%, area ca. 3 ha, main soil type Dystric Eutrochrept), sampled at 48 nodes of a 25 x 25 m2 grid. The reference values were determined at 12 points adjacent to the field. Their validity was assured by an inventory study of radiocaesium in a 70 ha area surrounding the field sampling 275 nodes of a 50 x 50 m2 grid. In the field studied, the activity concentrations of GF-Cs and Pu in the Ap horizon were not correlated (Spearman correlation coefficient R = 0.20, p > 0.05), and the activity balance of Pu differed from that of GF-Cs. Whereas no net loss of GF-Cs from the field was observed as compared to the reference site, Pu was more mobile with an average loss of ca. 11% per unit area. In addition, the spatial pattern of GF-Cs and Pu in the field differed significantly. The reason may be that due to their different associations with soil constituents, Pu and Cs represent different fractions of the soil, exhibiting different properties with respect to erosion/deposition processes. This indicates that both radionuclides or one of them may not be appropriate to quantity past erosion. When tracer losses are used to calibrate or verify erosion prediction models, systematic deviations may not only stem from model

  14. Emissions & Generation Resource Integrated Database (eGRID), eGRID2012

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes. eGRID2012 Version 1.0 is the eighth edition of eGRID, which contains the complete release of year 2009 data, as well as year 2007, 2005, and 2004 data. For year 2009 data, all the data are contained in a single Microsoft Excel workbook, which contains boiler, generator, plant, state, power control area, eGRID subregion, NERC region, U.S. total and grid gross loss factor tabs. Full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are also released in this edition. The fourth edition of eGRID, eGRID2002 Version 2.01, containing year 1996 through 2000 data is located on the eGRID Archive page (http://www.epa.gov/cleanenergy/energy-resources/egrid/archive.html). The current edition of eGRID and the archived edition of eGRID contain the following years of data: 1996 - 2000, 2004, 2005, and 2007. eGRID has no other years of data.

  15. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  16. Spatial and temporal diversification of crops dynamics in soil erosion modelling. A case study in the arable land of the upper Enziwigger River, Switzerland.

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Meusburger, Katrin; Panagos, Panos; Ballabio, Cristiano; Alewell, Christine

    2017-04-01

    Accelerated soil erosion by water is a widespread phenomenon that affects several Mediterranean and Alpine landscapes causing on-site and off-site environmental impacts. Recognized in the EU Thematic Strategy for Soil Protection as one of the major threats to European soils (COM(2006)231), accelerated soil erosion is a major concern in landscape management and conservation planning (UN SDG 2.4). Agriculture and associated land-use change is the primary cause of accelerated soil erosion. This, because the soil displacement by water erosion mainly occurs when bare-sloped soil surfaces are exposed to the effect of rainfall and overland flow. The Revised Universal Soil Loss Equation (RUSLE) and other RUSLE-based models (which account for more than 90% of current worldwide modelling applications) describe the effect of the vegetation in the so called cover and management factor (C). The C-factor is generally the most challenging modelling component to compute over large study sites. To run a GIS-based RUSLE modelling for a study site greater than few hectares, the use of a simplified approach to assess the C-factor is inevitably necessary. In most of the cases, the C-factor values are assigned to the different land-use classes according to i) the C-values proposed in the literature, and ii) through land-use classifications based on vegetation indices (VI). In previous national (Land Use Policy, 50, 408-421, 2016) and pan-European (Environmental Science & Policy, 54, 438-447, 2015) studies, we computed regional C-values through weighted average operations combining crop statistics with remote sensing and GIS modelling techniques. Here, we present the preliminary results of an object-oriented change detection approach that we are testing to acquire spatial as well temporal crops dynamics at field-scale level in complex agricultural systems.

  17. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; ...

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  18. caGrid 1.0: a Grid enterprise architecture for cancer research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  19. Advancing internal erosion monitoring using seismic methods in field and laboratory studies

    NASA Astrophysics Data System (ADS)

    Parekh, Minal L.

    This dissertation presents research involving laboratory and field investigation of passive and active methods for monitoring and assessing earthen embankment infrastructure such as dams and levees. Internal erosion occurs as soil particles in an earthen structure migrate to an exit point under seepage forces. This process is a primary failure mode for dams and levees. Current dam and levee monitoring practices are not able to identify early stages of internal erosion, and often the result is loss of structure utility and costly repairs. This research contributes to innovations for detection and monitoring by studying internal erosion and monitoring through field experiments, laboratory experiments, and social and political framing. The field research in this dissertation included two studies (2009 and 2012) of a full-scale earthen embankment at the IJkdijk in the Netherlands. In both of these tests, internal erosion occurred as evidenced by seepage followed by sand traces and boils, and in 2009, eventual failure. With the benefit of arrays of closely spaced piezometers, pore pressure trends indicated internal erosion near the initiation time. Temporally and spatially dense pore water pressure measurements detected two pore water pressure transitions characteristic to the development of internal erosion, even in piezometers located away from the backward erosion activity. At the first transition, the backward erosion caused anomalous pressure decrease in piezometers, even under constant or increasing upstream water level. At the second transition, measurements stabilized as backward erosion extended further upstream of the piezometers, as shown in the 2009 test. The transitions provide an indication of the temporal development and the spatial extent of backward erosion. The 2012 IJkdijk test also included passive acoustic emissions (AE) monitoring. This study analyzed AE activity over the course of the 7-day test using a grid of geophones installed on the

  20. FermiGrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yocum, D.R.; Berman, E.; Canal, P.

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  1. The Impact of the Grid Size on TomoTherapy for Prostate Cancer

    PubMed Central

    Kawashima, Motohiro; Kawamura, Hidemasa; Onishi, Masahiro; Takakusagi, Yosuke; Okonogi, Noriyuki; Okazaki, Atsushi; Sekihara, Tetsuo; Ando, Yoshitaka; Nakano, Takashi

    2017-01-01

    Discretization errors due to the digitization of computed tomography images and the calculation grid are a significant issue in radiation therapy. Such errors have been quantitatively reported for a fixed multifield intensity-modulated radiation therapy using traditional linear accelerators. The aim of this study is to quantify the influence of the calculation grid size on the dose distribution in TomoTherapy. This study used ten treatment plans for prostate cancer. The final dose calculation was performed with “fine” (2.73 mm) and “normal” (5.46 mm) grid sizes. The dose distributions were compared from different points of view: the dose-volume histogram (DVH) parameters for planning target volume (PTV) and organ at risk (OAR), the various indices, and dose differences. The DVH parameters were used Dmax, D2%, D2cc, Dmean, D95%, D98%, and Dmin for PTV and Dmax, D2%, and D2cc for OARs. The various indices used were homogeneity index and equivalent uniform dose for plan evaluation. Almost all of DVH parameters for the “fine” calculations tended to be higher than those for the “normal” calculations. The largest difference of DVH parameters for PTV was Dmax and that for OARs was rectal D2cc. The mean difference of Dmax was 3.5%, and the rectal D2cc was increased up to 6% at the maximum and 2.9% on average. The mean difference of D95% for PTV was the smallest among the differences of the other DVH parameters. For each index, whether there was a significant difference between the two grid sizes was determined through a paired t-test. There were significant differences for most of the indices. The dose difference between the “fine” and “normal” calculations was evaluated. Some points around high-dose regions had differences exceeding 5% of the prescription dose. The influence of the calculation grid size in TomoTherapy is smaller than traditional linear accelerators. However, there was a significant difference. We recommend calculating the final

  2. Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska

    USGS Publications Warehouse

    Mars, J.C.; Houseknecht, D.W.

    2007-01-01

    A new quantitative coastal land gained-and-lost method uses image analysis of topographic maps and Landsat thematic mapper short-wave infrared data to document accelerated coastal land loss and thermokarst lake expansion and drainage. The data span 1955-2005 along the Beaufort Sea coast north of Teshekpuk Lake in the National Petroleum Reserve in Alaska. Some areas have undergone as much as 0.9 km of coastal erosion in the past 50 yr. Land loss attributed to coastal erosion more than doubled, from 0.48 km2 yr-1 during 1955-1985 to 1.08 km2 yr-1 during 1985-2005. Coastal erosion has breached thermokarst lakes, causing initial draining of the lakes followed by marine floodng. Although inland thermokarst lakes show some uniform expansion, lakes breached by coastal erosion display lake expansion several orders of magnitude greater than inland lakes. ?? 2007 The Geological Society of America.

  3. caGrid 1.0: A Grid Enterprise Architecture for Cancer Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-01-01

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIGTM) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIGTM. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5. PMID:18693901

  4. Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In preparation for the Apollo program, Leonard Roberts of the NASA Langley Research Center developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts assumed that the erosion rate was determined by the excess shear stress in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumes a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. Roberts calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumed that only one particle size existed in the soil. He assumed that particle ejection angles were determined entirely by the shape of the terrain, which acts like a ballistic ramp, with the particle aerodynamics being negligible. The predicted erosion rate and the upper limit of particle size appeared to be within an order of magnitude of small-scale terrestrial experiments but could not be tested more quantitatively at the time. The lower limit of particle size and the predictions of ejection angle were not tested. We observed in the Apollo landing videos that the ejection angles of particles streaming out from individual craters were time-varying and correlated to the Lunar Module thrust, thus implying that particle aerodynamics dominate. We modified Roberts theory in two ways. First, we used ad hoc the ejection angles measured in the Apollo landing videos, in lieu of developing a more sophisticated method. Second, we integrated Roberts equations over the lunar-particle size distribution and obtained a compact expression that could be implemented in a numerical code. We also added a material damage model that predicts the number and size of divots which the impinging particles will cause in hardware surrounding the landing

  5. High-performance parallel approaches for three-dimensional light detection and ranging point clouds gridding

    NASA Astrophysics Data System (ADS)

    Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon

    2017-01-01

    With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.

  6. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Effects of Dissipation and Coarse Grid Resolution for Multigrid in Flow Problems

    NASA Technical Reports Server (NTRS)

    Eliasson, Peter; Engquist, Bjoern

    1996-01-01

    The objective of this paper is to investigate the effects of the numerical dissipation and the resolution of the solution on coarser grids for multigrid with the Euler equation approximations. The convergence is accomplished by multi-stage explicit time-stepping to steady state accelerated by FAS multigrid. A theoretical investigation is carried out for linear hyperbolic equations in one and two dimensions. The spectra reveals that for stability and hence robustness of spatial discretizations with a small amount of numerical dissipation the grid transfer operators have to be accurate enough and the smoother of low temporal accuracy. Numerical results give grid independent convergence in one dimension. For two-dimensional problems with a small amount of numerical dissipation, however, only a few grid levels contribute to an increased speed of convergence. This is explained by the small numerical dissipation leading to dispersion. Increasing the mesh density and hence making the problem over resolved increases the number of mesh levels contributing to an increased speed of convergence. If the steady state equations are elliptic, all grid levels contribute to the convergence regardless of the mesh density.

  8. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models.

    PubMed

    Teng, Hongfen; Liang, Zongzheng; Chen, Songchao; Liu, Yong; Viscarra Rossel, Raphael A; Chappell, Adrian; Yu, Wu; Shi, Zhou

    2018-04-18

    Soil erosion by water is accelerated by a warming climate and negatively impacts water security and ecological conservation. The Tibetan Plateau (TP) has experienced warming at a rate approximately twice that observed globally, and heavy precipitation events lead to an increased risk of erosion. In this study, we assessed current erosion on the TP and predicted potential soil erosion by water in 2050. The study was conducted in three steps. During the first step, we used the Revised Universal Soil Equation (RUSLE), publicly available data, and the most recent earth observations to derive estimates of annual erosion from 2002 to 2016 on the TP at 1-km resolution. During the second step, we used a multiple linear regression (MLR) model and a set of climatic covariates to predict rainfall erosivity on the TP in 2050. The MLR was used to establish the relationship between current rainfall erosivity data and a set of current climatic and other covariates. The coefficients of the MLR were generalised with climate covariates for 2050 derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) models to estimate rainfall erosivity in 2050. During the third step, soil erosion by water in 2050 was predicted using rainfall erosivity in 2050 and other erosion factors. The results show that the mean annual soil erosion rate on the TP under current conditions is 2.76tha -1 y -1 , which is equivalent to an annual soil loss of 559.59×10 6 t. Our 2050 projections suggested that erosion on the TP will increase to 3.17tha -1 y -1 and 3.91tha -1 y -1 under conditions represented by RCP2.6 and RCP8.5, respectively. The current assessment and future prediction of soil erosion by water on the TP should be valuable for environment protection and soil conservation in this unique region and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Coastal Erosion Control Methods

    NASA Astrophysics Data System (ADS)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  10. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  11. Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, Gary Patrick

    1990-01-01

    A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.

  12. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  13. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services

    NASA Astrophysics Data System (ADS)

    Wang, Dai; Coignard, Jonathan; Zeng, Teng; Zhang, Cong; Saxena, Samveg

    2016-11-01

    The risk of accelerated electric vehicle battery degradation is commonly cited as a concern inhibiting the implementation of vehicle-to-grid (V2G) technology. However, little quantitative evidence exists in prior literature to refute or substantiate these concerns for different grid services that vehicles may offer. In this paper, a methodology is proposed to quantify electric vehicle (EV) battery degradation from driving only vs. driving and several vehicle-grid services, based on a semi-empirical lithium-ion battery capacity fade model. A detailed EV battery pack thermal model and EV powertrain model are utilized to capture the time-varying battery temperature and working parameters including current, internal resistance and state-of-charge (SOC), while an EV is driving and offering various grid services. We use the proposed method to simulate the battery degradation impacts from multiple vehicle-grid services including peak load shaving, frequency regulation and net load shaping. The degradation impact of these grid services is compared against baseline cases for driving and uncontrolled charging only, for several different cases of vehicle itineraries, driving distances, and climate conditions. Over the lifetime of a vehicle, our results show that battery wear is indeed increased when vehicles offer V2G grid services. However, the increased wear from V2G is inconsequential compared with naturally occurring battery wear (i.e. from driving and calendar ageing) when V2G services are offered only on days of the greatest grid need (20 days/year in our study). In the case of frequency regulation and peak load shaving V2G grid services offered 2 hours each day, battery wear remains minimal even if this grid service is offered every day over the vehicle lifetime. Our results suggest that an attractive tradeoff exists where vehicles can offer grid services on the highest value days for the grid with minimal impact on vehicle battery life.

  14. How does soil erosion influence the terrestrial carbon cycle and the impacts of land use and land cover change?

    NASA Astrophysics Data System (ADS)

    Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.

    2017-12-01

    The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.

  15. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zika, M.R.; Adams, M.L.

    2000-02-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authorsmore » devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.« less

  16. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, K.P.

    1993-09-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. Correlation analysis showed that TM Band 4 (near infrared) accounted for 78% of the variability in percent trees (r=[minus] 0.88). In multiple regression, percent trees, total soil loss, and percent total nonliving cover together accounted for nearly 70% ofmore » the variability in TM Bands 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. A number of hypotheses have been advanced to explain the apparent accelerated rate of pinyon-juniper spread in the western United States. These include removal of natural plant competition by livestock overgrazing, reduction of wildfires, climatic change, and reinvasion of sites cleared of trees by 19th century settlers.« less

  17. Erosion Rates of Volcanic-ash Derived Soils in the Blue Mountains of Eastern Oregon, USA: A Comparison Across Sales in Space and Time.

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Clifton, C. F.; Harris, R. M.; Ritchie, J. C.

    2007-12-01

    We examined present day rates of erosion in the Blue Mountains of eastern Oregon to quantify background erosion rates to provide standards for assessing possible accelerated rates of erosion resulting from wild fire or from land-management activities such as prescribed fire. The Skookum Creek watersheds, where stream discharge and sediment yield have been recorded continuously since the watersheds were gauged in 1992, provided a watershed-scale estimate of erosion rates. We installed hillslope erosion plots on north- and south- facing slopes within the watersheds in 2002 and collected data for three years to estimate short-term, hillslope- scale erosion rates. We also collected soil samples and analyzed them for 137Cs to get a 40-yr time- integrated estimate of hillslope erosion rates. Our results showed large differences between whole-watershed sediment yields and hillslope erosion rates measured from plots, suggesting that episodic processes dominated sediment production and transport and therefore controlled watershed-scale sediment budgets. At the hillslope-scale, short-term erosion resulted primarily from digging by small mammals and trampling by elk. Visual observations at the plots suggested that annual down-slope sediment movement was usually less than one meter. There were no significant difference among slope positions, but erosion rates were significantly higher on south-facing aspects and positively correlated to the amount of bare ground. In contrast, the 137Cs data suggested that erosion rates differed with slope position. Higher erosion rates were measured in toe- and mid-slope positions, with little erosion occurring on upper slopes and ridge tops. We examine these results in light of the present-day pattern of surface soils resulting from redistribution of volcanic ash from upper- slope to lower-slope positions and the effects of disturbance, including wildfire and the preferential grazing of riparian and lower-slope positions by domestic livestock.

  18. MCTDH on-the-fly: Efficient grid-based quantum dynamics without pre-computed potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Richings, Gareth W.; Habershon, Scott

    2018-04-01

    We present significant algorithmic improvements to a recently proposed direct quantum dynamics method, based upon combining well established grid-based quantum dynamics approaches and expansions of the potential energy operator in terms of a weighted sum of Gaussian functions. Specifically, using a sum of low-dimensional Gaussian functions to represent the potential energy surface (PES), combined with a secondary fitting of the PES using singular value decomposition, we show how standard grid-based quantum dynamics methods can be dramatically accelerated without loss of accuracy. This is demonstrated by on-the-fly simulations (using both standard grid-based methods and multi-configuration time-dependent Hartree) of both proton transfer on the electronic ground state of salicylaldimine and the non-adiabatic dynamics of pyrazine.

  19. A Tutorial on Creating a Grid Cell Land Cover Data File from Remote Sensing Data.

    DTIC Science & Technology

    1985-06-01

    Creating a Grid Cell Land Cover Data File from Remote Sensing Data Gary E. Ford, Doreen L Meyer, and V. Ralph Algazi Signal and Image Processing Laboratory... L 1. INTRODUCTION Spatial data management systems, also known as geographic information systems, pro- vide powerful, practical tools for the...erosion [8]. Other -... ..... .. . . .. . . -5- 60 Z 0"C. 0 0. , ...- 9L> c 0 o o ( L - 0- 0.0a c 0 4- b. 0 ~ CL*~ C 0 .CL x 0 I" .- -J oo : -. 0 a a Z 0Z I1

  20. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Thomas

    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this

  1. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  2. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    NASA Astrophysics Data System (ADS)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  3. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  4. Grid Work

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.

  5. Arc Length Based Grid Distribution For Surface and Volume Grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1996-01-01

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  6. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  7. From the grid to the smart grid, topologically

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  8. Solution of Poisson equations for 3-dimensional grid generations. [computations of a flow field over a thin delta wing

    NASA Technical Reports Server (NTRS)

    Fujii, K.

    1983-01-01

    A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.

  9. Erosion and sediment transport in the Owens River near Bishop, California

    USGS Publications Warehouse

    Williams, Rhea P.

    1975-01-01

    Closure of Pleasant Valley Dam in 1954 has almost eliminated the supply of gravel to the 16-mile (25.7-kilometre) study reach of the Owens River. Because of armoring of the channel, scour has been limited to approximately 1 foot (0.3 metre) in the upper 2.3 miles (3.7 kilometres).This report presents information useful in determining long-term erosion effects below Pleasant Valley Dam, in assessing the feasibility of a proposed bypass channel versus retention of the main channel in its present state, and in determining man's influence on river morphology.Bedload transport is dependent on the hydraulics of a section and the availability of material. Ninety-eight percent by weight of the sampled bedload transported between sites 1 and 6 in the study reach was finer than 8 millimetres, although only 6 to 12 percent of the material in the bed available for transport was finer than 8 millimetres. Bank material, a prime source of new material for transport, is predominantly finer than 16 millimetres.Bank erosion is accelerated by wide ranges in flow release. The bank-erosion rates interpreted from aerial photographs indicate average annual erosion rates of 750 tons (680 tonnes) from 1947 to 1967, 1,970 tons (1,790 tonnes) from 1967 to 1968, and 2,020 tons (1,830 tonnes) from 1968 to 1971. These rates are compatible with the water discharge-sediment discharge relation developed from field data collected during 1972-73.Hydraulic geometry of the six sites indicates a shift in the river system regime since 1954. These changes have progressed downstream from the dam to a point between sites 4 and 5. Farther downstream channel changes will occur until the channel stabilizes.

  10. Spatial and temporal variations of wind erosion climatic erosivity in the farming-pastoral zone of Northern China

    NASA Astrophysics Data System (ADS)

    Yue, Shuping; Yang, Ruixin; Yan, Yechao; Yang, Zhengwei; Wang, Dandan

    2018-03-01

    Wind erosion climatic erosivity is an important parameter to assess the possible effects of climatic conditions on wind erosion. In this paper, the wind erosion climatic factor (C-factor), which was used to quantify the wind erosion climatic erosivity, was calculated for the period 1960-2014 based on monthly meteorological data collected from 101 stations in the farming-pastoral zone of Northern China. The Mann-Kendall (M-K) test, trend analysis, and geostatistical analysis methods were used to explore the spatial and temporal characteristics of the wind erosion climatic erosivity in this region. The result suggests that the annual C-factor, with a maximum of 76.05 in 1969 and a minimum of 26.57 in 2007, has a significant decreasing trend over the past 55 years. Strong seasonality in the C-factor was found, with the highest value in spring, which accounts for a significant proportion of the annual C-factor (41.46%). However, the coefficient of variation of the seasonal C-factor reaches a maximum in winter and a minimum in spring. The mean annual C-factor varies substantially across the region. Areas with high values of the mean annual C-factor (C ≥ 100) are located in Ulanqab and Dingxi, while areas with low values (C ≤ 10) lie in Lanzhou, Linxia, Dingxi, Xining, and Chengde. Spatial analysis on the trend of the C-factor reveals that 81% of the stations show statistically significant decreases at a 90% confidence level. An examination of the concentration ratio of the C-factor shows that the wind erosion climatic erosivity is concentrated in spring, especially in April, which makes this period particularly important for implementing soil conservation measures.

  11. Past changes of landscape due to increased dynamics of erosion processes in the Bezděz-Doksy region (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Vysloužilová, Barbora; Dreslerová, Dagmar; Kozáková, Radka; Poništiak, Štefan; Chuman, Tomáš; Šefrna, Luděk

    2016-04-01

    This study broadens the archaeological research of the the Bezděz - Doksy region in Northern Bohemia, Czech Republic (Dreslerová et al., 2013). Extensive field works between 2008 and 2012 showed that the region has been settled since the La Tène period. Survey of the alluvial plain of the Robečský stream revealed a record of two intensive erosion episodes in the catchment. We suppose that the first episode may be connected to land use changes and the beginnings of agriculture at the site in the La Tène period. The second episode may be connected to the foundation of the medieval village of Okna, which came into existence in the vicinity of the La Tène settlement. The accelerated erosion of former albeluvisols (on loess) led to significant changes of landscape in the region. The aim of this contribution is to bring a reconstruction of soils, vegetation and relief at the site of Okna before the human occupancy and to detect landscape changes over the time. It focuses on the hypothesis that the accelerated soil erosion has been occurring at the site since the first anthropogenic influence like it is demonstrated by other studies in Europe (e.g. Leopold and Völkel, 2007; Boardman, 2013). An abrupt change of land use from forest to arable land is proved by palynological records. Simultaneously there are buried soil horizons and alluvial sediments which can be studied as geoarchives. The difficulties in reconstruction of relief and quantification of the historical erosion effects are faced by applying GIS and model approaches (Peeters et al., 2003). References Boardman, J., 2013. Soil Erosion in Britain: Updating the Record. Agriculture 3, 418-442. doi:10.3390/agriculture3030418 Dreslerová, D., Waldhauser, J., Abraham, V., Kočár, P., Křivánek, R., Meduna, P., Sádlo, J., 2013. The Bezděz - Doksy region (Northern Bohemia) in prehistory and the La Tène settlement at Okna (in Czech). Archeologické rozhledy LXV, 535-573. Leopold, M., Völkel, J., 2007

  12. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  13. Assessment and management of dental erosion.

    PubMed

    Wang, Xiaojie; Lussi, Adrian

    2010-07-01

    Studies have shown a growing trend toward increasing prevalence of dental erosion, associated with the declining prevalence of caries disease in industrialized countries. Erosion is an irreversible chemical process that results in tooth substance loss and leaves teeth susceptible to damage as a result of wear over the course of an individual's lifetime. Therefore, early diagnosis and adequate prevention are essential to minimize the risk of tooth erosion. Clinical appearance is the most important sign to be used to diagnose erosion. The Basic Erosive Wear Examination (BEWE) is a simple method to fulfill this task. The determination of a variety of risk and protective factors (patient-dependent and nutrition-dependent factors) as well as their interplay are necessary to initiate preventive measures tailored to the individual. When tooth loss caused by erosive wear reaches a certain level, oral rehabilitation becomes necessary. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

    PubMed Central

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.

    2013-01-01

    Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359

  15. Medication-related dental erosion: a review.

    PubMed

    Thomas, Manuel S; Vivekananda Pai, A R; Yadav, Amit

    2015-10-01

    Dental erosion has become a major problem that affects the long-term health of the dentition. Among the various potential causes for erosive tooth wear, the different drugs prescribed for patients may be overlooked. Several therapeutic medications can directly or indirectly be associated with dental erosion. It is the responsibility of oral health providers to make both patients and colleagues aware of drugs that may contribute to this condition. Therefore, the purpose of this discussion is to provide an overview of the various therapeutic medications that can be related to tooth erosion. The authors also include precautionary measures-summarized as The 9 Rs-to avoid or at least reduce medication-induced erosion.

  16. 4 years of high-resolution LiDAR erosion monitoring of an elementary gully in the badlands of SE France (Draix)

    NASA Astrophysics Data System (ADS)

    Rudaz, Benjamin; Carrea, Dario; Antonio, Abellan; Jaboyedoff, Michel; Klotz, Sébastien

    2016-04-01

    The black marls outcrops of Draix (SE France) are an ideal site to study multiple erosional processes such as rain splashing, sheet erosion, concentrated flow erosion and micro-landslides. Their erosion constitute an important contribution to the bedload and suspended load of the Durance river basin, which can affect human infrastructure such as hydroelectric dams, irrigation systems and in general river maintenance. The badlands response to climatic events is thus crucial for long term management of those human endeavours. The topographical changes resulting from those different processes can be quantified and localized in both space and time, with repeated LiDAR acquisitions of high-resolution topography (up to 10 pts per cm2). To avoid shadowing induced vy vegetation or topography's curvature, an instrumented individual gully (named Roubinette) is equipped with a 4 m high scanning tower. It is small enough (400 m2) that the LiDAR can acquire it with no shadowing and in one scan, reducing merging and alignment errors. Seasonal acquisitions have been carried out since 2011, constituting a comprehensive dataset of the gully's evolution. The aligned scans are then converted to square grids and compared vertically to obtain DEMs of differences (DoD). Concentrated flow erosion, volume remobilization inside the secondary gullies and micro-landslides are easily detected by the DoD. Diffuse erosion is detected using a space-time filter to improve detection level accuracy. Combined with local meteorological data, photographic monitoring and sediment trap content data, a sequence of events can be reconstituted between each acquisition.

  17. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    PubMed

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Erosion of iron-chromium alloys by glass particles

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1984-01-01

    The material loss upon erosion was measured for several iron-chromium alloys. Two types of erodent material were used: spherical glass beads and sharp particles of crushed glass. For erosion with glass beads the erosion resistance (defined as the reciprocal of material loss rate) was linearly dependent on hardness. This is in accordance with the erosion behavior of pure metals, but contrary to the erosion behavior of alloys of constant composition that were subjected to different heat treatments. For erosion with crushed glass, however, no correlation existed between hardness and erosion resistance. Instead, the erosion resistance depended on alloy composition rather than on hardness and increased with the chromium content of the alloy. The difference in erosion behavior for the two types of erodent particles suggested that two different material removal mechanisms were involved. This was confirmed by SEM micrographs of the eroded surfaces, which showed that for erosion with glass beads the mechanism of material removal was deformation-induced flaking of surface layers, or peening, whereas for erosion with crushed glass it was cutting or chopping.

  19. The Volume Grid Manipulator (VGM): A Grid Reusability Tool

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.

  20. Diagnosis and management of dental erosion.

    PubMed

    Gandara, B K; Truelove, E L

    1999-11-15

    Early recognition of dental erosion is important to prevent serious irreversible damage to the dentition. This requires awareness of the clinical appearance of erosion compared to other forms of tooth wear. An understanding of the etiologies and risk factors for erosion is also important. These form the basis of a diagnostic protocol and management strategy that addresses the multifactorial nature of tooth wear. The primary dental care team has the expertise and the responsibility to provide this care for their patients with erosion.

  1. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    NASA Astrophysics Data System (ADS)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation

  2. Modeling a three-dimensional river plume over continental shelf using a 3D unstructured grid model

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; ,

    2004-01-01

    River derived fresh water discharging into an adjacent continental shelf forms a trapped river plume that propagates in a narrow region along the coast. These river plumes are real and they have been observed in the field. Many previous investigations have reported some aspects of the river plume properties, which are sensitive to stratification, Coriolis acceleration, winds (upwelling or downwelling), coastal currents, and river discharge. Numerical modeling of the dynamics of river plumes is very challenging, because the complete problem involves a wide range of vertical and horizontal scales. Proper simulations of river plume dynamics cannot be achieved without a realistic representation of the flow and salinity structure near the river mouth that controls the initial formation and propagation of the plume in the coastal ocean. In this study, an unstructured grid model was used for simulations of river plume dynamics allowing fine grid resolution in the river and in regions near the coast with a coarse grid in the far field of the river plume in the coastal ocean, in the vertical, fine fixed levels were used near the free surface, and coarse vertical levels were used over the continental shelf. The simulations have demonstrated the uniquely important role played by Coriolis acceleration. Without Coriolis acceleration, no trapped river plume can be formed no matter how favorable the ambient conditions might be. The simulation results show properties of the river plume and the characteristics of flow and salinity within the estuary; they are completely consistent with the physics of estuaries and coastal oceans.

  3. Introduction to tillage erosion

    USDA-ARS?s Scientific Manuscript database

    Tillage as a source of erosion Tillage erosion is the downslope movement of soil by tillage. During tillage, soil is lifted and gravity moves soil downslope. Soil movement by tillage increases with slope steepness. However, net soil transport by tillage is determined by the change in slope. Soil mov...

  4. Anthropogenic control on geomorphic process rates: can we slow down the erosion rates? (Geomorphology Outstanding Young Scientist Award & Penck Lecture)

    NASA Astrophysics Data System (ADS)

    Vanacker, V.

    2012-04-01

    The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.

  5. Internal erosion during soil pipe flow: Role in gully erosion and hillslope instability

    USDA-ARS?s Scientific Manuscript database

    Many field observations have lead to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved and inconsistent use of terms have exasperated the problem. One such piping proc...

  6. Sea Level Rise Drove Enhanced Coastal Erosion following the Last Glacial Maximum, Southern California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sharman, G.; Covault, J. A.; Stockli, D. F.; Sickmann, Z.; Malkowski, M. A.; Johnstone, S.

    2017-12-01

    Seacliff erosion poses a major threat to southern California coastal communities, including the propensity for episodic cliff failure and damage to residential and commercial property. Rising sea level is predicted to accelerate seacliff retreat, yet few constraints exist on how rapid sea level rise influenced coastal erosion rates in pre-modern timescales. Here we look to the geologic record in submarine fans to investigate changes in relative sediment supply from rivers and coastal erosion, the latter including seacliff retreat and bluffland erosion. To understand how sea level rise driven by past global warming impacted coastal erosion rates, we sampled modern rivers of the Peninsular Ranges and latest Pleistocene-Holocene submarine canyon-fan systems in southern California for detrital zircon U-Pb geochronology (1369 analyses from 10 samples). Modern river samples show a systematic north-south change in grain age populations broadly distributed across Cretaceous time (ca. 70-135 Ma) to a predominance of middle Cretaceous grain ages (ca. 95-115 Ma), reflecting variations in the geologic age of units within each river catchment. The Carlsbad and La Jolla submarine canyon-fan systems, deposited during sea level lowstand and highstand, respectively, exhibit detrital zircon age distributions consistent with derivation from upstream rivers, with mixing in the littoral zone. However, a sample from the Oceanside fan, deposited during rapid sea level rise at ca. 13 ka, is dominated by detrital ages that lack a local source in the northern Peninsular Ranges, including latest Cretaceous, late Jurassic, and Proterozoic ages. However, such grain ages are widespread in Paleogene sedimentary rocks that comprise the shelf and coastal area, suggesting increased sediment supply from coastal and shelf erosion. Assuming that the Oceanside sample is representative of sediment production during sea level rise, sediment mixing calculations suggest a one to two orders of magnitude

  7. TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1994-01-01

    A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.

  8. caGrid 1.0 : an enterprise Grid infrastructure for biomedical research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oster, S.; Langella, S.; Hastings, S.

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design: An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG{trademark}) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including (1) discovery, (2) integrated and large-scale data analysis, and (3) coordinated study. Measurements: The caGrid is built as a Grid software infrastructure andmore » leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results: The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: Grid>.« less

  9. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-06-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  10. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  11. caGrid 1.0: an enterprise Grid infrastructure for biomedical research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community.

  12. Fractal Approach to Erosion Threshold of Bentonites

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, X. Y.

    Bentonite has been considered as a candidate buffer material for the disposal of high-level radioactive waste (HLW) because of its low permeability, high sorption capacity, self-sealing characteristics and durability in a natural environment. Bentonite erosion caused by groundwater flow may take place at the interface of the compacted bentonite and fractured granite. Surface erosion of bentonite flocs is represented typically as an erosion threshold. Predicting the erosion threshold of bentonite flocs requires taking into account cohesion, which results from interactions between clay particles. Beyond the usual dependence on grain size, a significant correlation between erosion threshold and porosity measurements is confirmed for bentonite flocs. A fractal model for erosion threshold of bentonite flocs is proposed. Cohesion forces, the long-range van der Waals interaction between two clay particles are taken as the resource of the erosion threshold. The model verification is conducted by the comparison with experiments published in the literature. The results show that the proposed model for erosion threshold is in good agreement with the experimental data.

  13. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  14. Wind erosion of soils burned by wildfire

    Treesearch

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud

    2011-01-01

    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  15. Robotic weld overlay coatings for erosion control

    NASA Astrophysics Data System (ADS)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  16. Application of remote sensing to estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  17. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  18. Feasibility of a simple method of hybrid collimation for megavoltage grid therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almendral, Pedro; Mancha, Pedro J.; Roberto, Daniel

    2013-05-15

    Purpose: Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. Methods: The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equallymore » spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. Results: The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. Conclusions: The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver

  19. Feasibility of a simple method of hybrid collimation for megavoltage grid therapy.

    PubMed

    Almendral, Pedro; Mancha, Pedro J; Roberto, Daniel

    2013-05-01

    Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equally spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method

  20. Switching Logic for Converting Off-grid PV Customers to On-grid by Utilizing Off-grid Inverter and Battery

    NASA Astrophysics Data System (ADS)

    Anishkumar, A. R.; Sreejaya, P.

    2016-12-01

    Kerala is a state in India having a very good potential for solar PV energy production. The domestic customers in Kerala using PV system are approximately 15 % and almost all of them are using the off-grid PV system. When these off grid customers move to on-grid system, off grid system accessories such as inverter and batteries become redundant. In this paper, a switching logic has been developed for the effective utilization of off grid accessories and reducing islanding power loss for on grid customers. An algorithm is proposed for the switching logic and it is verified using simulation results and hardware implementation.

  1. Erosion rates of wood during natural weathering. Part III, Effect of exposure angle on erosion rate

    Treesearch

    R. Sam Williams; Mark T. Knaebe; James W. Evans; William C. Feist

    2001-01-01

    This is the third in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. The specimens were exposed at an orientation of 90* or 45* facing south or horizontally (0*) for 10 years. Erosion was measured annually for the first 8 years and after 10 years. The erosion rates of earlywood (springwood) and latewood (summerwood) were...

  2. Dynamic Analysis of Soil Erosion in Songhua River Watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    In this paper, based on RS and GIS technology and Revised Universal Soil Loss Equation (RUSLE), the soil erosion dynamic changes during the two periods of 1990 and 2010 in Bin County was analyzed by using the Landsat TM data of the two periods, so as to reveal the soil erosion spatial distribution pattern and spatial and temporal dynamic evolution rule in the region. The results showed that: the overall patterns of soil erosion were basically the same in both periods, mainly featuring slight erosion and mild erosion, with the area proportions of 80.68% and 74.71% respectively. The slight and extremely intensive erosion changing rates showed a narrowing trend; mild, moderate and intensive erosion was increasing, with a trend of increased soil erosion; mild and intensive erosion were developing towards moderate erosion and moderate and extremely intensive erosion were progressing towards intensive erosion.

  3. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  4. caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909

  5. Remote Sensing techniques used to characterize soil erosion in southwestern Sao Paulo state. M.S. Thesis - 29 Sep. 1982; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Pinto, S. D. A. F.

    1983-01-01

    Within randomly sampled squares of a 1 km x 1 km grid, rill/gullies frequency, land cover/land use type and shape of the slopes were extracted from aerial photographs of the Ribeirao Anhumas drainage basin. Mean slope gradient, stream frequency and slope length were calculated on topographic maps. Ground truth data on fine sand/coarse sand ratio and vegetation cover densities were obtained. The MSS-LANDSAT-2 data (CCTs) were analyzed using single-cell, cluster synthesis and slicer algorithms. Graphical and statistical analyses of the data indicate that different slope gradients and land cover/land use types are the most significant factors related to the soil erosion process. The digital analysis of MSS data allowed the association among gray level classes and vegetation cover classes, which defined seven classes. These gray level classes and slope gradient classes were used to rank erosion risk.

  6. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  7. Short term soil erosion dynamics in alpine grasslands - Results from a Fallout Radionuclide repeated-sampling approach

    NASA Astrophysics Data System (ADS)

    Arata, Laura; Meusburger, Katrin; Zehringer, Markus; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine

    2016-04-01

    Improper land management and climate change has resulted in accelerated soil erosion rates in Alpine grasslands. To efficiently mitigate and control soil erosion and reduce its environmental impact in Alpine grasslands, reliable and validated methods for comprehensive data generation on its magnitude and spatial extent are mandatory. The use of conventional techniques (e.g. sediment traps, erosion pins or rainfall simulations) may be hindered by the extreme topographic and climatic conditions of the Alps. However, the application of the Fallout Radionuclides (FRNs) as soil tracers has already showed promising results in these specific agro-ecosystems. Once deposited on the ground, FRNs strongly bind to fine particles at the surface soil and move across the landscape primarily through physical processes. As such, they provide an effective track of soil and sediment redistribution. So far, applications of FRN in the Alps include 137Cs (half-life: 30.2 years) and 239+240Pu (239Pu [half-life = 24110 years] and 240Pu [half-life = 6561 years]). To investigate short term (4-5 years) erosion dynamics in the Swiss Alps, the authors applied a FRNs repeated sampling approach. Two study areas in the central Swiss Alps have been investigated: the Urseren Valley (Canton Uri), where significant land use changes occurred in the last centuries, and the Piora Valley (Canton Ticino), where land use change plays a minor role. Soil samples have been collected at potentially erosive sites along the valleys over a period of 4-5 years and measured for 137Cs and 239+240Pu activity. The inventory change between the sampling years indicates high erosion and deposition dynamics at both valleys. High spatial variability of 137Cs activities at all sites has been observed, reflecting the heterogeneous distribution of 137Cs fallout after the Chernobyl power plant accident in 1986. Finally, a new modelling technique to convert the inventory changes to quantitative estimates of soil erosion has

  8. Grid commerce, market-driven G-negotiation, and Grid resource management.

    PubMed

    Sim, Kwang Mong

    2006-12-01

    Although the management of resources is essential for realizing a computational grid, providing an efficient resource allocation mechanism is a complex undertaking. Since Grid providers and consumers may be independent bodies, negotiation among them is necessary. The contribution of this paper is showing that market-driven agents (MDAs) are appropriate tools for Grid resource negotiation. MDAs are e-negotiation agents designed with the flexibility of: 1) making adjustable amounts of concession taking into account market rivalry, outside options, and time preferences and 2) relaxing bargaining terms in the face of intense pressure. A heterogeneous testbed consisting of several types of e-negotiation agents to simulate a Grid computing environment was developed. It compares the performance of MDAs against other e-negotiation agents (e.g., Kasbah) in a Grid-commerce environment. Empirical results show that MDAs generally achieve: 1) higher budget efficiencies in many market situations than other e-negotiation agents in the testbed and 2) higher success rates in acquiring Grid resources under high Grid loadings.

  9. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS

    USGS Publications Warehouse

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.

    2000-01-01

    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As

  10. NAS Grid Benchmarks: A Tool for Grid Space Exploration

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.

  11. Effects of rapid urbanization on streamflow, erosion, and sedimentation in a desert stream in the American Southwest

    USGS Publications Warehouse

    Whitney, John W.; Glancy, Patrick A.; Buckingham , Susan E.; Ehrenberg, Arthur C.

    2015-01-01

    Rapid urbanization has resulted in a series of sequential effects on a desert stream in the American Southwest. Lower Las Vegas Wash was a dry wash characterized by infrequent flood deposition when Las Vegas, Nevada was established in 1905. Wastewater effluent was discharged into the wash in low volumes for over 3 decades. Wastewater volumes increased commensurably with accelerated population growth during the late 20th century and created a sequence of feedback effects on the floodplain. Initially slow saturation of the valley fill created a desert oasis of dense floodplain vegetation and wetlands. Annual streamflow began in 1958 and erosion began a decade later with shallow incision in discontinuous channel segments. Increasing baseflow gradually enlarged channels; headcutting was active during the 1970s to 1984. The incised channels concentrated storm runoff, which accelerated local channel erosion, and in 1984 the headcuts were integrated during a series of monsoon floods. Wetlands were drained and most floodplain vegetation destroyed. Channel erosion continued unabated until engineering interventions began in the 21st century. No natural channel recovery occurred after initial urbanization effects because streamflow never stabilized in the late 20th century. A 6.6 M m3 sediment slug, eroded from the wash in ∼25 years, was deposited in Las Vegas Bay in Lake Mead. Falling reservoir levels during the 21st century are responsible for sediment redistribution and infilling of the bay. Close monitoring of impacts is recommended when urban wastewater and storm runoff are discharged on a desert wash. Channel interventions, when necessary, are advised in order to prevent costly engineering schemes of channel stabilization, flood control, and floodplain restoration.

  12. Decreasing soil erosion rates with evolving land-use techniques in a central European catchment

    NASA Astrophysics Data System (ADS)

    Larsen, Annegret; Heckmann, Tobias; Hans-Rudolf, Bork; Alexander, Fuelling

    2015-04-01

    Agricultural societies around the world have caused accelerated soil erosion. Soil erosion and a decrease in soil fertility may also have caused the abandonment of entire landscapes and the collapse of civilizations. In central Europe, Medieval land-use is thought to have lead to the largest loss of top soil in history, which in turn lead to a malnutrition of the population and abandonment of agricultural land. However, this might be only part of the picture, as people are also able to adapt to changing environmental conditions, including the type of land-use they adopt. Within a catchment in the central European mountain belt, we were able to distinguish the evolution between three main types of land-use techniques between ~ 900 AD and 1950 AD: horticulture, agriculture and shifting cultivation. We were able to relate these techniques with different soil erosion rates, which differ by an order of magnitude, ranging from 0.83 ± 0.09 mm/yr to 1.62 ± 0.17 mm/yr. Using high-resolution surface data and chrono-stratigraphical methods in combination with soil charcoal analysis, we were able to reconstruct past land-use techniques on a local scale. This illustrates that less erosive and more sustainable techniques were developed through time, and hypothesize that people were able to adapt to the less favorable environmental conditions by changing the cultivation techniques. Although cultural adaptation to changing environmental conditions has been extensively discussed, this study is able to quantitatively demonstrate improved soil management with evolving land-use in central Europe.

  13. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  14. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  15. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  16. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.

    PubMed

    Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos

    2013-09-01

    To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.

  17. To what extent can we attribute accelerated landscape change to human activity? A cautionary tale from the drylands of the South African interior

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen; Lyons, Richard; Duller, Geoff; McCarthy, Terence

    2013-04-01

    Across many parts of interior South Africa, alluvial and colluvial sediments are currently subject to widespread erosion by rivers, dongas (gullies), sheetwash and wind. This creates an impression of accelerated landscape change that is commonly attributed to factors such as poor land management by European settlers (mid 18th century onwards) or indigenous peoples, possibly in combination with decadal-scale climatic fluctuations and/or susceptible soil characteristics. Many resources are devoted to managing degrading lands, but effective conservation and restoration efforts are contingent on correctly identifying the underlying causes of erosion. Across South Africa, varied population densities, and diverse climates and soil types, mean that the causes of erosion are likely to be complex and to vary regionally. In some regions, examples of accelerated erosion resulting from vegetation clearance, overburning, overstocking, artificial drainage or land abandonment can be demonstrated. In other regions, however, our geomorphological, sedimentological and geochronological investigations provide an alternative 'geological' perspective on this erosion 'problem' by demonstrating that erosion may be a recurring, natural process linked to late Quaternary climate change and/or longer term landscape denudation. In particular, luminescence chronologies for hillslopes, alluvial fans and river floodplains/terraces at various locations across interior South Africa have enabled comparison with other regional/global palaeoenvironmental records. These comparisons reveal that climatically-controlled changes in runoff and sediment supply, mediated through vegetation cover changes, resulted in shifts between sedimentation (relative aridity), soil formation (relative humidity) and minor channel/donga erosion (semiaridity) from at least 40 kyr until the late Holocene. By contrast, major erosion involving sustained channel incision and associated donga formation appears to have been

  18. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of

  19. GridKit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peles, Slaven

    2016-11-06

    GridKit is a software development kit for interfacing power systems and power grid application software with high performance computing (HPC) libraries developed at National Labs and academia. It is also intended as interoperability layer between different numerical libraries. GridKit is not a standalone application, but comes with a suite of test examples illustrating possible usage.

  20. Accelerated relative sea-level rise and rapid coastal erosion: Testing a causal relationship for the Louisiana barrier islands

    USGS Publications Warehouse

    List, J.H.; Sallenger, A.H.; Hansen, M.E.; Jaffe, B.E.

    1997-01-01

    The role of relative sea-level rise as a cause for the rapid erosion of Louisiana's barrier island coast is investigated through a numerical implementation of a modified Bruun rule that accounts for the low percentage of sand-sized sediment in the eroding Louisiana shoreface. Shore-normal profiles from 150 km of coastline west of the Mississippi delta are derived from bathymetric surveys conducted during the 1880s. 1930s and 1980s. An RMS difference criterion is employed to test whether an equilibrium profile form is maintained between survey years. Only about half the studied profiles meet the equilibrium Criterion this represents a significant limitation on the potential applicability of the Bruun rule. The profiles meeting the equilibrium criterion, along with measured rates of relative sea-level rise, are used to hindcast shoreline retreat rates at 37 locations within the study area. Modeled and observed shoreline retreat rates show no significant correlation. Thus in terms of the Bruun approach relative sea-level rise has no power for hindcasting (and presumably forecasting) rates of coastal erosion for the Louisiana barrier islands.

  1. Regionalization of monthly rainfall erosivity patternsin Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion

  2. Categorization of erosion control matting.

    DOT National Transportation Integrated Search

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  3. Erosive lichen planus: a therapeutic challenge.

    PubMed

    Romero, Williams; Giesen, Laura; Navajas-Galimany, Lucas; Gonzalez, Sergio

    2016-01-01

    Erosive lichen planus is an uncommon variant of lichen planus. Chronic erosions of the soles, accompanied by intense and disabling pain, are some of its most characteristic manifestations. We present the case of a woman who developed oral and plantar erosive lichen planus associated with lichen planus pigmentosus and ungueal lichen planus that were diagnosed after several years. The patient failed to respond to multiple therapies requiring longstanding medication but remained refractory. Knowledge of the treatment options for erosive lichen planus is insufficient. Further research is required to clarify their effectiveness, ideally adopting an evidence-based methodology.

  4. Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing.

    PubMed

    Gallicchio, Emilio; Xia, Junchao; Flynn, William F; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M

    2015-11-01

    Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.

  5. Kinetic particle simulation of discharge and wall erosion of a Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-06-15

    The primary lifetime limiting factor of Hall thrusters is the wall erosion caused by the ion induced sputtering, which is predominated by dielectric wall sheath and pre-sheath. However, so far only fluid or hybrid simulation models were applied to wall erosion and lifetime studies in which this non-quasi-neutral and non-equilibrium area cannot be treated directly. Thus, in this study, a 2D fully kinetic particle-in-cell model was presented for Hall thruster discharge and lifetime simulation. Because the fully kinetic lifetime simulation was yet to be achieved so far due to the high computational cost, the semi-implicit field solver and the techniquemore » of mass ratio manipulation was employed to accelerate the computation. However, other artificial manipulations like permittivity or geometry scaling were not used in order to avoid unrecoverable change of physics. Additionally, a new physics recovering model for the mass ratio was presented for better preservation of electron mobility at the weakly magnetically confined plasma region. The validity of the presented model was examined by various parametric studies, and the thrust performance and wall erosion rate of a laboratory model magnetic layer type Hall thruster was modeled for different operation conditions. The simulation results successfully reproduced the measurement results with typically less than 10% discrepancy without tuning any numerical parameters. It is also shown that the computational cost was reduced to the level that the Hall thruster fully kinetic lifetime simulation is feasible.« less

  6. OpenMP parallelization of a gridded SWAT (SWATG)

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin

    2017-12-01

    Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.

  7. Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids

    NASA Technical Reports Server (NTRS)

    Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.

  8. Quantifying erosion over timescales of one million years: A photogrammetric approach on the amount of Rhenish erosion in southwestern Germany

    NASA Astrophysics Data System (ADS)

    Strasser, Annette; Strasser, Marcel; Seyfried, Hartmut

    2010-10-01

    The Lein valley in southwestern Germany possesses well-preserved Pliocene to mid Pleistocene land surfaces featuring a gentle relief and sediments accumulated by former tributaries of the Danube. This ancient Danubian land surface was captured and incised by mid Pleistocene to Holocene tributaries of the River Rhine. In a photogrammetric approach we calculated the volume of material extracted by Rhenish erosion providing a first quantification of the effects of stream piracy on timescales of about 1 Ma. Using stereoscopic surface modelling software a DEM was generated with a resolution of 5 m. From borehole data, literature, geological maps, and own field observations we determined the morphometric parameters of the ancient Danubian Ur-Lein valley. The gradient was imported as a 3D-breakline into the model where it controls the reinterpolation of surrounding data points. The result is a high-resolution DEM of the valley of the Ur-Lein. Subtraction of the DEM of the actual landscape from the DEM of the ancient Ur-Lein valley yields a model representing the rock volume eroded by the Rhenish Lein which totals 1.39 km 3 and converts into a rate of erosion between 63 and 74 mm/ka over a period of 700 to 600 ka, respectively, in accordance with figures obtained elsewhere in Central Europe through cosmogenic nuclides. It reflects the dominance of frequent fluctuations in climate and is considered to be mainly a product of strong changes in temperature and related processes during the transitional times between mid to late Pleistocene warm and cold states. A filtering procedure applied to cold and transitional state erosion rates of the Middle and Late Pleistocene yielded peak values between 66 and 77 mm/ka, up to three times higher than the modern rate or the rate of warm-state episodes. An assessment of the contribution of Rhenish stream piracy on long-term mid Pleistocene denudation under changing climate conditions resulted in a maximum 4.9-fold acceleration.

  9. Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber

    NASA Astrophysics Data System (ADS)

    Yuen, A.; Bombardelli, F. A.

    2014-12-01

    Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on

  10. Composition of enamel pellicle from dental erosion patients.

    PubMed

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p < 0.05). In particular, statherin, a calcium-binding protein, was 35% less abundant (p < 0.05). Calcium concentration within the acquired pellicle was also reduced by 50% in erosion patients (p < 0.001). In contrast, the natural pellicle on the incisor had similar amounts of total protein in erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  11. Vegetation effects on soil water erosion rates and nutrient losses at Santa Catarina highlands, south Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.

    2009-04-01

    Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under

  12. Understanding the Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-01-14

    The electric power grid has been rightly celebrated as the single most important engineering feat of the 20th century. The grid powers our homes, offices, hospitals, and schools; and, increasingly, it powers our favorite devices from smartphones to HDTVs. With those and other modern innovations and challenges, our grid will need to evolve. Grid modernization efforts will help the grid make full use of today’s advanced technologies and serve our needs in the 21st century. While the vast majority of upgrades are implemented by private sector energy companies that own and operate the grid, DOE has been investing in technologiesmore » that are revolutionizing the way we generate, store and transmit power.« less

  13. Are catchment-wide erosion rates really "Catchment-Wide"? Effects of grain size on erosion rates determined from 10Be

    NASA Astrophysics Data System (ADS)

    Reitz, M. A.; Seeber, L.; Schaefer, J. M.; Ferguson, E. K.

    2012-12-01

    Early studies pioneering the method for catchment wide erosion rates by measuring 10Be in alluvial sediment were taken at river mouths and used the sand size grain fraction from the riverbeds in order to average upstream erosion rates and measure erosion patterns. Finer particles (<0.0625 mm) were excluded to reduce the possibility of a wind-blown component of sediment and coarser particles (>2 mm) were excluded to better approximate erosion from the entire upstream catchment area (coarse grains are generally found near the source). Now that the sensitivity of 10Be measurements is rapidly increasing, we can precisely measure erosion rates from rivers eroding active tectonic regions. These active regions create higher energy drainage systems that erode faster and carry coarser sediment. In these settings, does the sand-sized fraction fully capture the average erosion of the upstream drainage area? Or does a different grain size fraction provide a more accurate measure of upstream erosion? During a study of the Neto River in Calabria, southern Italy, we took 8 samples along the length of the river, focusing on collecting samples just below confluences with major tributaries, in order to use the high-resolution erosion rate data to constrain tectonic motion. The samples we measured were sieved to either a 0.125 mm - 0.710 mm fraction or the 0.125 mm - 4 mm fraction (depending on how much of the former was available). After measuring these 8 samples for 10Be and determining erosion rates, we used the approach by Granger et al. [1996] to calculate the subcatchment erosion rates between each sample point. In the subcatchments of the river where we used grain sizes up to 4 mm, we measured very low 10Be concentrations (corresponding to high erosion rates) and calculated nonsensical subcatchment erosion rates (i.e. negative rates). We, therefore, hypothesize that the coarser grain sizes we included are preferentially sampling a smaller upstream area, and not the entire

  14. Dental erosion among 12 year-old Libyan schoolchildren.

    PubMed

    Huew, R; Waterhouse, P J; Moynihan, P J; Maguire, A

    2012-12-01

    As there are limited data on dental erosion in Libya, the aim of this study was to assess the prevalence and severity of dental erosion in a sample of 12 year-old children in Benghazi, Libya. Cross-sectional observational study. Elementary schools in Benghazi, Libya. A random sample of 791 12 year-old children (397 boys and 394 girls) attending 36 schools. Clinical dental examination for erosion using UK National Diet and Nutrition Survey (2000) criteria and self-completion questionnaire. The area and depth of dental erosion affecting the labial and palatal surfaces of the upper permanent incisors and occlusal surfaces of the first permanent molars. Dental erosion was observed in 40.8% of subjects; into enamel affecting 32.5%, into dentine affecting 8.0% and into pulp affecting 0.3% of subjects. Based on area affected, 323 subjects (40.8%) exhibited dental erosion (code > 0), with 32.6% of these subjects having erosion affecting more than two thirds of one or more surfaces examined. Mean total scores for dental erosion for all surfaces per mouth by area and by depth were both 2.69 (sd 3.81). Of the 9492 tooth surfaces examined, 2128 surfaces (22.4%) had dental erosion. Girls had more experience of erosion than boys at all levels of severity (p = 0.001). In a cohort of 12 year-old Libyan schoolchildren, more than one third of children examined showed dental erosion, requiring clinical preventive counselling. Significantly more erosion occurred in girls than boys.

  15. High Voltage TAL Erosion Characterization

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.

    2003-01-01

    Extended operation of a D-80 anode layer thruster at high voltage was investigated. The thruster was operated for 1200 hours at 700 Volts and 4 Amperes. Laser profilometry was employed to quantify the erosion of the thruster's graphite guard rings and electrodes at 0, 300, 600, 900, and 1200 hours. Thruster performance and electrical characteristics were monitored over the duration of the investigation. The guard rings exhibited asymmetric erosion that was greatest in the region of the cathode. Erosion of the guard rings exposed the magnet poles between 600 to 900 hours of operation.

  16. Current erosion indices—flawed or valid? Summary

    PubMed Central

    Amaechi, Bennett T.; Dugmore, Christopher; Holbrook, Peter; Nunn, June; Schiffner, Ulrich; Lussi, Adrian; Ganss, Carolina

    2008-01-01

    The problem of erosive tooth wear appears increasingly to be encountered by clinicians and researchers. An adequate way of defining and recording erosive tooth wear is essential in order to assess the extent of this clinical phenomenon, both on an individual level and in the population, and for the adequate provision of preventive and therapeutic measures. Well-established erosion indices have been used in most of these studies, although in many cases modifications have been made to suit the different research aims. This use of different indices is one reason why it still cannot be claimed that there is enough current knowledge on this clinical phenomenon. This article summarises the proceedings of a workshop to discuss the topic of dental erosion indices. The result of the workshop is the proposal for a new scoring system (Basic Erosive Wear Examination, BEWE) designed for use both within the research field and for dental clinicians, with the aims of standardising assessment of erosion for international comparisons, raising awareness and providing guidelines for treatment of erosive tooth wear in dental practice. PMID:18228058

  17. [Recurrent Corneal Erosions in Epithelial Corneal Dystrophies].

    PubMed

    Geerling, Gerd; Lisch, Walter; Finis, David

    2018-06-01

    The corneal epithelium is the most important structure of the ocular optical system. Recurrent corneal erosions can result from inflammation, trauma, degeneration and dystrophies. Epithelial basement membrane dystrophy (EBMD), epithelial recurrent erosion dystrophy (ERED) and Francheschetti and Meesmann's epithelial corneal dystrophy (MECD) can all - besides other signs and symptoms - result in more or less frequent corneal erosions. The pathomechanisms involved however are different. In EBMD, corneal erosions are facultative and clinical signs are often subtle. Aberrant basement membrane structures are associated with thinning of the epithelium and can be clinically identified as maps or fingerprints. In ERED, recurrent corneal erosions are - predominantly in the first decades of life - always present. A defect in the COL17A1 gene results in a dysfunctional hemidesmosome. In MECD, punctate corneal erosions are less frequent and result from intraepithelial microcysts which open spontaneously onto the ocular surface. Usually lubricants, therapeutic contact lenses and sometimes epithelial debridement and phototherapeutic keratectomy are the mainstay for treating corneal erosions in these three dystrophies. Georg Thieme Verlag KG Stuttgart · New York.

  18. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    ScienceCinema

    None

    2018-01-16

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.

  19. Comparison of erosion and channel characteristics

    USGS Publications Warehouse

    Parker, Gene W.

    1998-01-01

    Erosion was observed at 33 percent of 22,495 bridge sites in nine States. Among sites with erosion, 56 percent were associated with skewed flows, curved channels, or a combination of these two conditions, and at 18 percent of the sites, channels were straight with steep bank angles. The remaining 26 percent are sites with observable erosion at piers or abutments on straight channels. Comparison of the sites with erosion to channel bed-material indicate that 44 percent of the single-span sites had gravel-size or smaller bed material and 70 percent of the multiple-span sites had gravel-size or smaller bed material.

  20. Mercury ion thruster research, 1977. [plasma acceleration

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1977-01-01

    The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.

  1. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  2. Economic valuation of erosion

    NASA Astrophysics Data System (ADS)

    Marupah; Zubair, H.; Rukmana, D.; Baja, S.

    2018-05-01

    Various results of erosion research on highland vegetable farming land indicate that the erosion level is classified as dangerous. This condition cannot be tolerated, because it will cause economic problems in the future both society and government. For farmers who are actively processing potatoes, the longer the farming the greater the cost of production so that the rate of profit gained tends to decrease. For the government, environmental degradation will reduce the possible use of the budget for the development of social welfare because the available funds are used to finance the prevention and handling of environmental disasters such as floods and landslides. The purpose of this study is to find out how many profit opportunities are lost due to erosion occurring in potato farming, using the method of analysis of agricultural systems and then calculate the opportunity price of potato farming system. The results of this study indicate that the value needed to reduce erosion by 0.54 t.ha-1 in one harvest season was IDR. 5,605,556.-. The opportunity to earn a profit of IDR. 5,600,000.- will be lost if farmers do not apply conservation techniques to potato farming in sub-districts Tinggimoncong.

  3. Controlled Ultrasound Tissue Erosion

    PubMed Central

    Xu, Zhen; Ludomirsky, Achiau; Eun, Lucy Y.; Hall, Timothy L.; Tran, Binh C.; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    The ability of ultrasound to produce highly controlled tissue erosion was investigated. This study is motivated by the need to develop a noninvasive procedure to perforate the neonatal atrial septum as the first step in treatment of hypoplastic left heart syndrome. A total of 232 holes were generated in 40 pieces of excised porcine atrial wall by a 788 kHz single-element transducer. The effects of various parameters [e.g., pulse repetition frequency (PRF), pulse duration (PD), and gas content of liquid] on the erosion rate and energy efficiency were explored. An Isppa of 9000 W/cm2, PDs of 3, 6, 12, and 24 cycles; PRFs between 1.34 kHz and 66.7 kHz; and gas saturation of 40–55% and 79–85% were used. The results show that very short pulses delivered at certain PRFs could maximize the erosion rate and energy efficiency. We show that well-defined perforations can be precisely located in the atrial wall through the controlled ultrasound tissue erosion (CUTE) process. A preliminary in vivo experiment was conducted on a canine subject, and the atrial septum was perforated using CUTE. PMID:15244286

  4. Accurate Grid-based Clustering Algorithm with Diagonal Grid Searching and Merging

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Ye, Chengcheng; Zhu, Erzhou

    2017-09-01

    Due to the advent of big data, data mining technology has attracted more and more attentions. As an important data analysis method, grid clustering algorithm is fast but with relatively lower accuracy. This paper presents an improved clustering algorithm combined with grid and density parameters. The algorithm first divides the data space into the valid meshes and invalid meshes through grid parameters. Secondly, from the starting point located at the first point of the diagonal of the grids, the algorithm takes the direction of “horizontal right, vertical down” to merge the valid meshes. Furthermore, by the boundary grid processing, the invalid grids are searched and merged when the adjacent left, above, and diagonal-direction grids are all the valid ones. By doing this, the accuracy of clustering is improved. The experimental results have shown that the proposed algorithm is accuracy and relatively faster when compared with some popularly used algorithms.

  5. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  6. Rainfall erosivity in Central Chile

    NASA Astrophysics Data System (ADS)

    Bonilla, Carlos A.; Vidal, Karim L.

    2011-11-01

    SummaryOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor ( R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy ( E) and its maximum 30-min intensity ( I30), known as the EI30. The original method used to calculate EI30 requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr -1. More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha -1 h -1 yr -1 in the north up to 7375 MJ mm ha -1 h -1 yr -1 in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by

  7. Probabilistic soil erosion modeling using the Erosion Risk Management Tool (ERMIT) after wildfires

    Treesearch

    P. R. Robichaud; W. J. Elliot; J. W. Wagenbrenner

    2011-01-01

    The decision of whether or not to apply post-fire hillslope erosion mitigation treatments, and if so, where these treatments are most needed, is a multi-step process. Land managers must assess the risk of damaging runoff and sediment delivery events occurring on the unrecovered burned hillslope. We developed the Erosion Risk Management Tool (ERMiT) to address this need...

  8. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  9. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance

    PubMed Central

    Cortés, Enrique; Sánchez, Fernando; Madramany, Borja

    2017-01-01

    Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs) are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating) applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP). The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER). The materials, specifically the coating–laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC), pull-off testing, peeling–adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case study compares

  10. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating-Laminate Adhesion on Rain Erosion Performance.

    PubMed

    Cortés, Enrique; Sánchez, Fernando; O'Carroll, Anthony; Madramany, Borja; Hardiman, Mark; Young, Trevor M

    2017-09-28

    Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs) are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating) applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP). The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER). The materials, specifically the coating-laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC), pull-off testing, peeling-adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case study compares two

  11. Spatial bedrock erosion distribution in a natural gorge

    NASA Astrophysics Data System (ADS)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half

  12. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  13. Cavitation erosion - scale effect and model investigations

    NASA Astrophysics Data System (ADS)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  14. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after groove penetration.

  15. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after

  16. A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.

    This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  17. Grid Architecture 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taft, Jeffrey D.

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  18. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.

    PubMed

    Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas

    2013-10-01

    In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of

  19. Wind erosion processes and control

    USDA-ARS?s Scientific Manuscript database

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  20. Rainfall erosivity: An historical review

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity is the capability of rainfall to cause soil loss from hillslopes by water. Modern definitions of rainfall erosivity began with the development of the Universal Soil Loss Equation (USLE), where rainfall characteristics were statistically related to soil loss from thousands of plot...

  1. Anthropogenic Increase Of Soil Erosion In The Gangetic Plain Revealed By Geochemical Budget Of Erosion

    NASA Astrophysics Data System (ADS)

    Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.

    2007-12-01

    Tectonic and climatic factors are the key natural variables controlling the erosion through complex interactions. Nonetheless, over the last few hundred years, human activity also exerts a dominant control in response to extensive land use. The geochemical budget of erosion allows the balance between the different erosion processes to be quantified. The chemical composition of river sediment results from the chemical composition of the source rock modified by (1) weathering reactions occurring during erosion and (2) physical segregation during transport. If erosion is at steady state, the difference between the chemical composition of source rocks and that of river sediments must therefore be counterbalanced by the dissolved flux. However, climatic variations or anthropic impact can induce changes in the erosion distribution in a given basin resulting in non steady state erosion. Using a mass balance approach, the comparison of detailed geochemical data on river sediments with the current flux of dissolved elements allows the steady state hypothesis to be tested. In this study, we present a geochemical budget of weathering for the Ganga basin, one of the most densely populated basin in the world, based on detailed sampling of Himalayan rivers and of the Ganga in the delta. Sampling includes depth profile in the river, to assess the variability generated by transport processes. Himalayan river sediments are described by the dilution of an aluminous component (micas + clays + feldspars) by quartz. Ganga sediments on the other hand correspond to the mixing of bedload, similar to coarse Himalayan sediments, with an aluminous component highly depleted in alkaline elements. Compared with the dissolved flux, the depletion of alkaline elements in Ganga sediments shows that the alkaline weathering budget is imbalanced. This imbalance results from an overabundance of fine soil material in the Ganga sediment relative to other less weathered material directly derived from

  2. Arc Voltage Between Deion Grid Affected by Division of Arc in Magnetic Driven Arc

    NASA Astrophysics Data System (ADS)

    Inuzuka, Yutaro; Yamato, Takashi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Magnetic driven arc has been applied to DC breaker and fault current limiters. However, it has not been researched, especially stagnation and re-strike of the arc. In this paper, the arc voltage between deion grid affected by division of arc in magnetic driven arc and arc behavior are measured by using the oscilloscope and HSVC (High Speed Video Camera). As a result, arc voltage increased because of division of the arc. The arc mean moving speed increases with increasing the external magnetic field. However, when the arc was not stalemate, the arc moving speed does not change so much. The arc re-strike time increases and stalemate time decreases with increasing the external magnetic field. Therefore, the anode spot moving speed increases 8 times because arc re-strike occurs easily with the external magnetic field. Thus, the erosion of electrodes decreases and the arc movement becomes the smooth. When the arc is divided, the arc voltage increased because of the electrode fall voltage. Therefore, the arc voltage increases with increasing the number of deion grid.

  3. Repeated erosion of cohesive sediments with biofilms

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Mariotti, G.; Fagherazzi, S.

    2014-04-01

    This study aims to explore the interplay between biofilms and erodability of cohesive sediments. Erosion experiments were run in four laboratory annular flumes with natural sediments. After each erosion the sediment was allowed to settle, mimicking intermittent physical processes like tidal currents and waves. The time between consecutive erosion events ranged from 1 to 12 days. Turbidity of the water column caused by sediment resuspension was used to determine the erodability of the sediments with respect to small and moderate shear stresses. Erodability was also compared on the basis of the presence of benthic biofilms, which were quantified using a Pulse-Amplitude Modulation (PAM) Underwater Fluorometer. We found that frequent erosion lead to the establishment of a weak biofilm, which reduced sediment erosion at small shear stresses (around 0.1 Pa). If prolonged periods without erosion were present, the biofilm fully established, resulting in lower erosion at moderate shear stresses (around 0.4 Pa). We conclude that an unstructured extracellular polymeric substances (EPS) matrix always affect sediment erodability at low shear stresses, while only a fully developed biofilm mat can reduce sediment erodability at moderate shear stresses.

  4. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known

  5. Restorative Rehabilitation of a Patient with Dental Erosion

    PubMed Central

    AlShahrani, Mohammed Thamer; Alqarni, Mohammed

    2017-01-01

    Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition. PMID:28828189

  6. Restorative Rehabilitation of a Patient with Dental Erosion.

    PubMed

    AlShahrani, Mohammed Thamer; Haralur, Satheesh B; Alqarni, Mohammed

    2017-01-01

    Dental erosion is the chemical dissolution of the tooth structure. Factors like eating disorders and gastrointestinal diseases are recognized as intrinsic factors for dental erosion. Advanced stages of dental erosion extensively damage the tooth morphology, consequently affecting both esthetics and functions. Reports indicate the growing prevalence of erosion, and hence knowledge of restorative rehabilitation of tooth erosion is an integral part of the contemporary dental practice. This clinical report describes an adult patient with gastroesophageal reflux induced dental erosion involving the palatal surface of the maxillary anterior teeth. The extensive involvement of the palatal surfaces compromised the esthetics, incisal guidance, and functional occlusal efficiency. Indirect all-ceramic restorations were utilized to restore the esthetics and occlusal reconstruction. In conclusion, patients affected by severe dental erosion require prosthetic rehabilitation besides the management of the associated medical condition.

  7. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  8. Cropping system effects on wind erosion potential

    USDA-ARS?s Scientific Manuscript database

    Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...

  9. Protection From Dental Erosion: All Fluorides are Not Equal.

    PubMed

    Faller, Robert V; Noble, Warden H

    2018-03-01

    All fluoride sources help strengthen teeth against bacterial acids that cause caries. However, excessive exposure to dietary acids, which can result in dental erosion, presents a more aggressive level of challenge compared to caries. Despite the fact that almost all toothpastes contain fluoride, both the incidence and prevalence of dental erosion appear to be on the rise. This article: (1) describes key differences between caries and dental erosion and the ability of different fluoride sources to help prevent erosion; (2) discusses the importance of the evaluation of patients for dental erosion at the earliest stages using the Basic Erosive Wear Examination scoring system to help assess and educate patients; and (3) provides evidence-based information for making specific recommendations to patients with dental erosion. The objective of this article is to assess the comparative ability of fluoride agents to protect against dental erosion. Though all fluorides are able to help strengthen teeth against cariogenic acids, not all available sources of fluoride provide the same level of erosion protection. Daily use of a stabilized stannous fluoride dentifrice has been shown to provide the most effective means of protecting teeth against the increasing risk of dental erosion and erosive tooth wear.

  10. Restorative therapy for erosive lesions.

    PubMed

    Lambrechts, P; Van Meerbeek, B; Perdigão, J; Gladys, S; Braem, M; Vanherle, G

    1996-04-01

    More needs to be learned about the etiology of erosion lesions before they can be accurately diagnosed, confidently treated and, more importantly, prevented. The treatment is dependent on the location and the degree of erosion. The decision to treat an erosion lesion should be based on careful consideration of the etiology and progression of the condition. Reasons for restoring noncarious enamel/dentin lesions are discussed and various therapeutic measures are provided. Preventive and restorative therapeutic measures for noncarious abrasive/ erosive lesions are proposed such as: a change of dietary or behavior patterns; application of desensitization products; intensive fluoride therapy with or without iontophoresis; brushing with desensitizing dentifrices; adhesive penetration with dentin bonding agents; glass ionomers and compomers; resin composites; composite or porcelain veneers; crown and bridge work; occlusal adjustments and nightguard fabrication if the abfraction factor coincides. The clinical durability of restorative therapy and important clinical factors related to the restoration of multifactorial defects are discussed.

  11. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  12. Natural and anthropogenic rates of soil erosion

    USDA-ARS?s Scientific Manuscript database

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  13. Glass ionomer cements: chemistry of erosion.

    PubMed

    Crisp, S; Lewis, B G; Wilson, A D

    1976-01-01

    A three-month study of the chemistry of the water erosion of two forms of ASPA cement has been made. The effect of varying cement consistency and cure time was investigated. The results are discussed in terms of the known chemistry and structure of the cement. The erosion behavior is compared to that of silicate, silicophosphate, and zinc polycarboxylate dental cements. The state of absorbed water and the mechanism of erosion is discussed.

  14. Spatial distribution level of land erosion disposition based on the analysis of slope on Central Lematang sub basin

    NASA Astrophysics Data System (ADS)

    Putranto, Dinar Dwi Anugerah; Sarino, Yuono, Agus Lestari

    2017-11-01

    Soil erosion is a natural process that is influenced by the magnitude of rainfall intensity, land cover, slope, soil type and soil processing system. However, it is often accelerated by human activities, such as improper cultivation of agricultural land, clearing of forest land for mining activities, and changes in topographic area due to use for other purposes such as pile materials, mined pits and so on. The Central Lematang sub-basin is part of the Lematang sub basin, at the Musi River Region Unit, South Sumatra Province, in Indonesia, which has a topographic shape with varying types of slope and altitude. The critical condition of Central Lematang sub basin has been at an alarming rate, as more than 47.5% of topographic and land use changes are dominated by coal mining activities and forest encroachment by communities. The method used in predicting erosion is by USPED (Unit Stream Power Erosion and Disposition). This is because the USPED [1] method can predict not only sediment transport but also the value of peeling (detachment) and sediment deposition. From slope analysis result, it is found that the highest erosion potential value is found on slope (8-15%) and the sediment is carried on a steep slope (15-25%). Meanwhile, the high sediment deposition area is found in the waters of 5.226 tons / ha / year, the steeper area of 2.12 tons / ha / year.

  15. Tolerable soil erosion in Europe

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  16. Dietary assessment and counseling for dental erosion.

    PubMed

    Marshall, Teresa A

    2018-02-01

    Dental erosion occurs after exposure to intrinsic or extrinsic acids. Exposure to intrinsic gastrointestinal acids is associated with anorexia nervosa, bulimia nervosa, rumination syndrome, or gastroesophageal reflux. Extrinsic dietary acids from foods or beverages also can cause erosion, particularly when exposure is prolonged by holding or swishing behaviors. Clinicians should screen patients exhibiting dental erosion for anorexia nervosa, bulimia nervosa, rumination syndrome, and gastroesophageal reflux disease. Clinicians should screen patients without a medical explanation for their erosion for exposure to acidic foods and beverages, particularly for habits that prolong exposure. Identification of intrinsic and extrinsic acid exposures and recommendations to minimize exposures are important to prevent erosion and maintain oral health. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  17. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    NASA Astrophysics Data System (ADS)

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  18. An Approach for Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.

    1994-01-01

    An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.

  19. Implementing Production Grids

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Ziobarth, John (Technical Monitor)

    2002-01-01

    We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.

  20. Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion

    PubMed Central

    Campbell, Ian C.; Timmins, Lucas H.; Giddens, Don P.; Virmani, Renu; Veneziani, Alessandro; Rab, S. Tanveer; Samady, Habib; McDaniel, Michael C.; Finn, Aloke V.; Taylor, W. Robert; Oshinski, John N.

    2013-01-01

    Purpose We investigated whether local hemodynamics were associated with sites of plaque erosion and hypothesized that patients with plaque erosion have locally elevated WSS magnitude in regions where erosion has occurred. Methods We generated 3D, patient-specific models of coronary arteries from biplane angiographic images in 3 human patients with plaque erosion diagnosed by optical coherence tomography (OCT). Using computational fluid dynamics, we simulated pulsatile blood flow and calculated both wall shear stress (WSS) and oscillatory shear index (OSI). We also investigated anatomic features of plaque erosion sites by examining branching and local curvature in x-ray angiograms of barium-perfused autopsy hearts. Results Neither high nor low magnitudes of mean WSS were associated with sites of plaque erosion. OSI and local curvature were also not associated with erosion. Anatomically, 8 of 13 hearts had a nearby bifurcation upstream of the site of plaque erosion. Conclusions This study provides preliminary evidence that neither hemodynamics nor anatomy are predictors of plaque erosion, based upon a very unique dataset. Our sample sizes are small, but this dataset suggests that high magnitudes of wall shear stress, one potential mechanism for inducing plaque erosion, are not necessary for erosion to occur. PMID:24223678

  1. Aeolian Induced Erosion and Particle Entrainment

    NASA Technical Reports Server (NTRS)

    Saint, Brandon

    2007-01-01

    The Granular Physics Department at The Kennedy Space Center is addressing the problem of erosion on the lunar surface. The early stages of research required an instrument that would produce erosion at a specific rate with a specific sample variation. This paper focuses on the development and experimental procedures to measure and record erosion rates. This was done with the construction of an open air wind tunnel, and examining the relationship between airflow and particle motion.

  2. Biogeochemistry: The soil carbon erosion paradox

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Berhe, Asmeret Asefaw

    2017-04-01

    Erosion is typically thought to degrade soil resources. However, the redistribution of soil carbon across the landscape, caused by erosion, can actually lead to a substantial sink for atmospheric CO2.

  3. Ligand-accelerated enantioselective methylene C(sp3)-H bond activation.

    PubMed

    Chen, Gang; Gong, Wei; Zhuang, Zhe; Andrä, Michal S; Chen, Yan-Qiao; Hong, Xin; Yang, Yun-Fang; Liu, Tao; Houk, K N; Yu, Jin-Quan

    2016-09-02

    Effective differentiation of prochiral carbon-hydrogen (C-H) bonds on a single methylene carbon via asymmetric metal insertion remains a challenge. Here, we report the discovery of chiral acetyl-protected aminoethyl quinoline ligands that enable asymmetric palladium insertion into prochiral C-H bonds on a single methylene carbon center. We apply these palladium complexes to catalytic enantioselective functionalization of β-methylene C-H bonds in aliphatic amides. Using bidentate ligands to accelerate C-H activation of otherwise unreactive monodentate substrates is crucial for outcompeting the background reaction driven by substrate-directed cyclopalladation, thereby avoiding erosion of enantioselectivity. The potential of ligand acceleration in C-H activation is also demonstrated by enantioselective β-C-H arylation of simple carboxylic acids without installing directing groups. Copyright © 2016, American Association for the Advancement of Science.

  4. Design of an ion thruster movable grid thrust vectoring system

    NASA Astrophysics Data System (ADS)

    Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr

    2004-08-01

    Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.

  5. Soil erosion in humid regions: a review

    Treesearch

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  6. Advances in wind erosion modelling in Europe

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Lugato, Emanuele; Alewell, Christine; Montanarella, Luca; Panagos, Panos

    2017-04-01

    Soil erosion by wind is a serious environmental problem often resulting in severe forms of soil degradation. Wind erosion is also a phenomenon relevant for Europe, although this land degradation process has been overlooked until very recently. The state-of-the-art literature presents wind erosion as a process that locally affects the semi-arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Actual observations, field measurements and modelling assessments, however, are all extremely limited and highly unequally distributed across Europe. As a result, we currently lack comprehensive understanding about where and when wind erosion occurs in Europe, and the intensity of erosion that poses a threat to agricultural productivity. Today's challenge is to integrate the insights of local experiments and field-scale models into a new generation of large-scale wind erosion models. While naturally being less accurate than field-scale models, these large-scale modelling approaches still provide essential knowledge about where and when wind erosion occurs and can disclose the level of risk for agricultural productivity in specific areas. Here, we present a geographic information system (GIS) version of the RWEQ (named GIS-RWEQ) to quantitatively assess soil loss by wind over large study areas (Land Degradation & Development, DOI: 10.1002/ldr.2588). The model designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution shows high consistency with local measurements reported in literature. The average soil loss predicted by GIS-RWEQ for the European arable land totals 62 million Mg yr-1, with an average area-specific soil loss of 0.53 Mg yr-1. The JRC model RUSLE2015, for the same area estimates 295 million Mg yr-1 of soil loss due to water erosion. Notably, soil loss by wind erosion in the European arable land could be as high as 20% of water erosion, even though the areas affected are mainly

  7. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  8. Importance of Grid Center Arrangement

    NASA Astrophysics Data System (ADS)

    Pasaogullari, O.; Usul, N.

    2012-12-01

    In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs

  9. Evaluating Approaches to a Coupled Model for Arctic Coastal Erosion, Infrastructure Risk, and Associated Coastal Hazards

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Bull, D. L.; Jones, C.; Roberts, J.; Thomas, M. A.

    2016-12-01

    Arctic coastlines are receding at accelerated rates, putting existing and future activities in the developing coastal Arctic environment at extreme risk. For example, at Oliktok Long Range Radar Site, erosion that was not expected until 2040 was reached as of 2014 (Alaska Public Media). As the Arctic Ocean becomes increasingly ice-free, rates of coastal erosion will likely continue to increase as (a) increased ice-free waters generate larger waves, (b) sea levels rise, and (c) coastal permafrost soils warm and lose strength/cohesion. Due to the complex and rapidly varying nature of the Arctic region, little is known about the increasing waves, changing circulation, permafrost soil degradation, and the response of the coastline to changes in these combined conditions. However, as scientific focus has been shifting towards the polar regions, Arctic science is rapidly advancing, increasing our understanding of complex Arctic processes. Our present understanding allows us to begin to develop and evaluate the coupled models necessary for the prediction of coastal erosion in support of Arctic risk assessments. What are the best steps towards the development of a coupled model for Arctic coastal erosion? This work focuses on our current understanding of Arctic conditions and identifying the tools and methods required to develop an integrated framework capable of accurately predicting Arctic coastline erosion and assessing coastal risk and hazards. We will present a summary of the state-of-the-science, and identify existing tools and methods required to develop an integrated diagnostic and monitoring framework capable of accurately predicting and assessing Arctic coastline erosion, infrastructure risk, and coastal hazards. The summary will describe the key coastal processes to simulate, appropriate models to use, effective methods to couple existing models, and identify gaps in knowledge that require further attention to make progress in our understanding of Arctic coastal

  10. Modelling rainfall erosion resulting from climate change

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  11. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  12. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  13. Modeling erosion from forest roads with WEPP

    Treesearch

    J. McFero Grace

    2007-01-01

    Forest roads can be major sources of soil erosion from forest watersheds. Sediments from forest roads are a concern due to their potential delivery to stream systems resulting in degradation of water quality. The Water Erosion Prediction Project (WEPP) was used to predict erosion from forest road components under different management practices. WEPP estimates are...

  14. Materials erosion and redeposition studies at the PISCES-facility: net erosion under redeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirooka, Y.; Goebel, D.M.; Conn, R.W.

    1986-05-01

    Simultaneous erosion and redeposition of copper and 304 stainless steel under controlled and continuous plasma (D,He,Ar) bombardment has been investigated in the PISCES-facility, which generates typical edge-plasma conditions of magnetic fusion devices. The plasma bombardment conditions are: incident ion flux in the range from 10/sup 17/ to 10/sup 18/ ions/sec/cm/sup 2/, ion bombarding energy of 100 eV, electron temperature in the range from 5 to 15 eV, plasma density in the range from 10/sup 11/ to 10/sup 13/ cm/sup -3/, target temperature in the range from 300 to 900K, and the total ion fluence in the range from 10/sup 20/more » to 10/sup 22/ ions/cm/sup 2/. The net erosion yield under redeposition is found to be significantly smaller than the classical sputtering yield data. A first-order modeling is attempted to interpret the erosion and redeposition behavior of materials under plasma bombardment. It is pointed out both theoretically and experimentally that the mean free path for electron impact ionization of the sputtered material is the key parameter to control the overall mechanism of erosion and redeposition. Strongly modified surface morphologies of bombarded targets are observed and indicate a retrapping effect.« less

  15. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  16. Rainfall erosivity factor estimation in Republic of Moldova

    NASA Astrophysics Data System (ADS)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  17. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes

    USGS Publications Warehouse

    Allen, Craig D.

    2007-01-01

    -linear increases in bare patch connectivity and thereby accelerated runoff and erosion at hillslope and watershed scales. Vegetation dieback, grazing, and fire can change land surface properties and cross-scale hydrologic connectivities, directly altering ecohydrological patterns of runoff and erosion. The interactions among disturbance processes across spatial scales can be key drivers in ecosystem dynamics, as illustrated by these studies of recent landscape changes in northern New Mexico. To better anticipate and mitigate accelerating human impacts to the planetary ecosystem at all spatial scales, improvements are needed in our conceptual and quantitative understanding of cross-scale interactions among disturbance processes.

  18. The Rangeland Hydrology and Erosion Model

    NASA Astrophysics Data System (ADS)

    Nearing, M. A.

    2016-12-01

    The Rangeland Hydrology and Erosion Model (RHEM) is a process-based model that was designed to address rangelands conditions. RHEM is designed for government agencies, land managers and conservationists who need sound, science-based technology to model, assess, and predict runoff and erosion rates on rangelands and to assist in evaluating rangeland conservation practices effects. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of as single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions. Moreover, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant community by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. A dynamic partial differential sediment continuity equation is used to model the total detachment rate of concentrated flow and rain splash and sheet flow. RHEM is also designed to be used as a calculator, or "engine", within other watershed scale models. From the research perspective RHEM acts as a vehicle for incorporating new scientific findings from rangeland infiltration, runoff, and erosion studies. Current applications of the model include: 1) a web site for general use (conservation planning, research, etc.), 2) National Resource Inventory reports to Congress, 3) as a computational engine within watershed scale models (e.g., KINEROS, HEC), 4) Ecological Site & State and Transition Descriptions, 5) proposed in 2015 to become part of the NRCS Desktop applications for field offices.

  19. Restorative Management of Intrinsic and Extrinsic Dental Erosion.

    PubMed

    Al-Salehi, Samira Kathryn

    2014-12-01

    The restorative management of tooth surface loss is highlighted through the presentation of two advanced cases of dental erosion. On presentation, the causes of the dental erosion in both patients had been previously diagnosed and stopped. The first patient was a 67 year old with intrinsic erosion and an element of attrition where a multidisciplinary approach was used. The other, a 17 year old patient with extrinsic erosion managed via adhesive restorations. Adhesive techniques are a relatively simple, effective and conservative method for the treatment of dental erosion. The two treatment modalities (conventional versus contemporary) are compared and discussed.

  20. An Upwind Multigrid Algorithm for Calculating Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Bonhaus, Daryl L.

    1993-01-01

    An algorithm is described that calculates inviscid, laminar, and turbulent flows on triangular meshes with an upwind discretization. A brief description of the base solver and the multigrid implementation is given, followed by results that consist mainly of convergence rates for inviscid and viscous flows over a NACA four-digit airfoil section. The results show that multigrid does accelerate convergence when the same relaxation parameters that yield good single-grid performance are used; however, larger gains in performance can be realized by doing less work in the relaxation scheme.

  1. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion: Case studies from South Africa and Iran

    NASA Astrophysics Data System (ADS)

    Maerker, Michael; Sommer, Christian; Zakerinejad, Reza; Cama, Elena

    2017-04-01

    Soil erosion by water is a significant problem in arid and semi arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources. Especially in semiarid areas like in the Mazayjan watershed in the Southwestern Fars province as well as in the Mkomazi catchment in Kwa Zulu Natal, South Africa, gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area with a stochastic approach and to assess the process dynamics in an integrative way. Therefore, we applied GIS, and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a multiple years period by fieldwork and Google Earth high resolution images as well as with structure for motion algorithm. Finally, the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes in data scarce areas. The application of GIS and stochastic model approaches to spatialize the USPED model input yield valuable results for the prediction of soil erosion in the test areas. The results of this research help to develop an appropriate management of soil and water resources in the study areas.

  2. Forests and Soil Erosion across Europe

    NASA Astrophysics Data System (ADS)

    Bathurst, J. C.

    2012-04-01

    Land use and climate change threaten the ability of Europe's forests to provide a vital service in limiting soil erosion, e.g. from forest fires and landslides. However, our ability to define the threat and to propose mitigation measures suffers from two deficiencies concerning the forest/erosion interface: 1) While there have been a considerable number of field studies of the relationship between forest cover and erosion in different parts of Europe, the data sets are scattered among research groups and a range of literature outlets. There is no comprehensive overview of the forest/erosion interface at the European scale, essential for considering regional variations and investigating the effects of future changes in land use and climate. 2) Compared with forest/water studies, we have a poorer quantitative appreciation of forest/erosion interactions. In the forest/water area it is possible to make quantitative statements such as that a 20% change in forest cover across a river catchment is needed for the effect on annual water yield to be measurable or that a forested catchment in upland UK has an annual water yield around 15% lower than an otherwise comparable grassland catchment. Comparable statements are not yet possible for forest/erosion interactions and there are uncertainties in the mathematical representation of forest/erosion interactions which limit our ability to make predictions, for example of the impact of forest loss in a given area. This presentation therefore considers the next step in improving our predictive capability. It proposes the integration of existing research and data to construct the "big picture" across Europe, i.e. erosion rates and sediment yields associated with forest cover and its loss in a range of erosion regimes (e.g. post-forest fire erosion or post-logging landslides). This would provide a basis for generalizations at the European scale. However, such an overview would not form a predictive capability. Therefore it is also

  3. Dental erosion: understanding this pervasive condition.

    PubMed

    Almeida e Silva, Júnio S; Baratieri, Luiz Narciso; Araujo, Edson; Widmer, Nicolas

    2011-08-01

    Dental erosion is a contemporary disease, mostly because of the change of the eating patterns that currently exist in society. It is a "silent" and multifactorial disease, and is highly influenced by habits and lifestyles. The prevalence of dental erosion has considerably increased, with this condition currently standing as a great challenge for the clinician, regarding the diagnosis, identification of the etiological factors, prevention, and execution of an adequate treatment. This article presents a dental erosion review and a case report of a restorative treatment of dental erosion lesions using a combination of bonded ceramic overlays to reestablish vertical dimension and composite resin to restore the worn palatal and incisal surfaces of the anterior upper teeth. Adequate function and esthetics can be achieved with this approach. © 2011 Wiley Periodicals, Inc.

  4. Dental erosion in groups of Yemeni children and adolescents and the modification of an erosion partial recording system.

    PubMed

    Al-Ashtal, Amin; Johansson, Anders; Omar, Ridwaan; Johansson, Ann-Katrin

    2017-07-01

    The prevalence of dental erosion is rising especially among children and adolescents and its grading needs further investigation. To determine the prevalence and severity of dental erosion in groups of Yemeni children and adolescents, and to clinically compare an erosion partial recording system (EPRS) with a proposed modified-simplified version (EPRS-M). Of 6163 individuals aged 5-6, 13-14 and 18-19 years, 911 were randomly selected, of which 668 participated in the study. Dental erosion was graded using EPRS. EPRS-M was proposed, and its sensitivity and specificity was calculated in relation to EPRS. Prevalence of erosion extending into dentine on at least one tooth was 6.8% among 5- to 6-year-olds, 3.0% among 13- to 14-year-olds and 14.6% among 18- to 19-year olds. The highest prevalence was 19.2% among girls aged 18-19 years which was significantly higher than boys (10.4%) in the same age group (P = 0.044). Sensitivity and specificity for EPRS-M in relation to EPRS were 85.7% and 100% for primary teeth, and 84.1% and 100% for permanent teeth. Dental erosion was common among children and older teenagers and highest among older girls but less common among younger teenagers. The tested accuracy of EPRS-M qualifies it to be used as an initial quick detection tool in future dental erosion research. © 2016 The Authors. International Journal of Paediatric Dentistry published by BSPD, IAPD and John Wiley & Sons Ltd.

  5. Structured grid technology to enable flow simulation in an integrated system environment

    NASA Astrophysics Data System (ADS)

    Remotigue, Michael Gerard

    linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.

  6. A modified adjoint-based grid adaptation and error correction method for unstructured grid

    NASA Astrophysics Data System (ADS)

    Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi

    2018-05-01

    Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.

  7. Grid Modernization | NREL

    Science.gov Websites

    development to improve the nation's electrical grid infrastructure, making it more flexible, reliable Standard, IEEE 1547 Blue cover page of report with hexagon shapes over electric grid Basic Research Needs Controls Power Systems Design and Studies Security and Resilience Institutional Support NREL grid research

  8. Erosive Lichen Planus.

    PubMed

    Mauskar, Melissa

    2017-09-01

    Lichen planus is an inflammatory mucocutaneous condition with a myriad of clinical manifestations. There are 3 forms of lichen planus that effect the vulva: papulosquamous, hypertrophic, and erosive. Erosive lichen planus can progress to vulvar scaring, vaginal stenosis, and squamous cell carcinoma; these long-term sequelae cause sexual distress, depression, and decreased quality of life for patients. Diagnosis is often delayed because of patient embarrassment or clinician misdiagnosis. Early recognition and treatment is essential to decreasing the morbidity of this condition. Multimodal treatment, along with a multidisciplinary approach, will improve outcomes and further clinical advances in studying this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    PubMed Central

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm2 and 809 Ω.cm2, respectively. PMID:26561231

  10. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel.

    PubMed

    Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S

    2015-11-12

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.

  11. Effects of erosive, cariogenic or combined erosive/cariogenic challenges on human enamel: an in situ/ex vivo study.

    PubMed

    Honório, H M; Rios, D; Santos, C F; Magalhães, A C; Buzalaf, M A R; Machado, M A A M

    2008-01-01

    Individuals with cariogenic diet can also consume erosive beverages. Thus, it seems necessary to investigate a possible caries/erosion interaction. To test in situ/ex vivo a combination of these challenges, 11 subjects wore intraoral appliances containing four enamel blocks randomly assigned. In the first 2-week phase, the appliances were immersed in a cola drink 3 times/day. Two blocks were free of plaque (erosion only: EO) and two blocks were covered with plaque (erosion + plaque: EP). In the second 2-week phase, four new blocks were all covered with plaque and subjected to a sucrose solution 8 times/day. Among the four new blocks, two were also subjected to the cola drink 3 times/day (erosion + caries: EC) while the other two were not (caries only: CO). Thus, in EO, the specimens were fixed at the intraoral appliance level. In EP, EC and CO they were fixed 1.0 mm under the appliance level and covered with plastic meshes for dental plaque accumulation. Changes in wear and hardness were measured. Data were tested using ANOVA and Tukey's test (p < 0.05). Mean values of wear (microm) and change in hardness (kp/mm(2)) were: EO 4.82/310; EP 0.14/48; EC 0.34/245; CO 0.42/309. With respect to surface softening, EP and EC differed significantly from each other and from EO and CO, which did not differ significantly. EO presented significantly higher wear than the other groups. The data suggest that the presence of dental plaque can decrease the acid attack of an erosive drink and the association of erosive and cariogenic challenges showed less enamel alterations when compared to erosive or cariogenic challenges only. (c) 2008 S. Karger AG, Basel.

  12. Erosion Characteristics and Horizontal Variability for Small Erosion Depths in the Sacramento - San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, D. H.; Manning, A. J.; Work, P. A.

    2015-12-01

    Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.

  13. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  14. Erosion Effects

    NASA Image and Video Library

    2003-01-22

    The impact crater in this NASA Mars Odyssey image is a model illustration of the effects of erosion on Mars. The degraded crater rim and several landslides observed in crater walls are evidence of the mass wasting of materials.

  15. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  16. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  17. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.

    PubMed

    Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob

    2014-06-01

    Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition

  18. LIDAR data to support coastal erosion analysis: the Conero study case

    NASA Astrophysics Data System (ADS)

    Calligaro, Simone; Sofia, Giulia; Guarnieri, Alberto; Tarolli, Paolo

    2013-04-01

    In the last decades, the topic of coastal erosion and the derived risk have been subject of a growing interest for public authorities and researchers. Recent major natural events, such as hurricanes, tsunamis, and sea level rising, called the attention of media and society, underlining serious concerns about such problems. In a high-density populated country such as Italy, where tourism is one of the major economic activities, the coastal erosion is really a critical issue. In April 2010, along a reach of the coast of Ventotene Island, two young students tragically died, killed by a rock fall. This event dramatically stressed public authorities about the effectiveness of structural and non-structural measures for the mitigation of such phenomena. It is clear that an improving of the actual knowledge about coastal erosion is needed, especially to monitor such events and to set alert systems. In the last few years, airborne LIDAR technology led to a dramatic increase in terrain information. Airborne LiDAR and Terrestrial Laser Scanner (TLS) derived high-resolution Digital Terrain Models (DTMs) have opened avenues for hydrologic and geomorphologic studies (Tarolli et al., 2009). In general, all the main surface processes signatures are correctly recognized using a DTM with cell sizes of 1 m. Having said that, some sub-meter grid sizes may be more suitable in those situations where the analysis of micro topography related to micro changes due to slope failures is critical for risk assessment, and the Terrestrial Laser Scanner (TLS) has been proven to be a useful tool for such detailed field survey. The acquired elevation data with TLS allow to derive a centimeters high quality DTMs. The possibility to detect in detail the slope failures signatures results in a better understanding and mapping of the erosion susceptibility, and of those areas where slope failures are more likely to happen. In addition, these information can be also considered as the basis to develop

  19. Numerical study of impact erosion of multiple solid particle

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping

    2017-11-01

    Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.

  20. Preventive Effect of CPP-ACPF Paste and Fluoride Toothpastes Against Erosion and Erosion Plus Abrasion 
In Vitro - A 3D Profilometric Analysis.

    PubMed

    Soares, Genaina Guimarães; Magalhães, Pâmela Amorim; Fonseca, Ana Beatriz Monteiro; Tostes, Monica Almeida; Silva, Eduardo Moreira da; Coutinho, Thereza Christina Lopes

    To evaluate the effect of CPP-ACPF paste and fluoride toothpastes on enamel subjected to erosion and erosion plus abrasion in vitro. A total of 220 human enamel blocks were divided into eleven groups (n = 20): CPP-ACPF paste (MPP), potassium nitrate/sodium fluoride toothpaste (PE), sodium fluoride toothpaste (FD), fluoride-free toothpaste (SO) and control (erosion only with no paste or toothpastes; CO) according to the experimental design: erosion or erosion plus abrasion immediately after erosion (ERO+I-ABR) or 30 min after erosion (ERO+30min-ABR). For 5 days, the specimens were subjected to: (1) erosive challenge (EC) (cola drink, 4 x 5 min/day), topical application of the undiluted paste or diluted toothpastes (1:2 w/w) (4 x 1 min/ day) plus 1 h in artificial saliva (AS) between cycles and overnight; or (2) EC plus abrasion (4 x /60 s/day) performed with the diluted toothpastes (no MMP) plus 1 h in AS between cycles and overnight. Erosion depth was quantified through a 3D profilometer. Data were analysed using Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (p = 0.05). CPP-ACPF paste and NaF toothpaste showed lowest enamel wear among groups and reduced tissue loss by 89% in erosion challenge. Abrasion led to higher enamel wear than erosion only (p = 0.030). ERO+30min-ABR had no protective effect when compared to ERO+I-ABR (p > 0.05). A high frequency of CPP-ACPF paste application (4x daily) is effective in reducing the effects of erosion. A waiting period before performing toothbrushing does not protect enamel against erosion regardless the composition of the toothpastes.