Science.gov

Sample records for accelerator laboratory fnal

  1. 15 Years of R&D on High Field Accelerator Magnets at FNAL

    SciTech Connect

    Barzi, Emanuela; Zlobin, Alexander V.

    2015-12-10

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  2. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE PAGESBeta

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  3. FNAL-NICADD extruded scintillator

    SciTech Connect

    Beznosko, D.; Bross, A.; Dyshkant, A.; Pla-Dalmau, A.; Rykalin, V.; /Northern Illinois U.

    2005-09-01

    The possibility to produce a scintillator that satisfies the demands of physicists from different science areas has emerged with the installation of an extrusion line at Fermi National Accelerator Laboratory (FNAL). The extruder is the product of the fruitful collaboration between FNAL and Northern Illinois Center for Accelerator and Detector Development (NICADD) at Northern Illinois University (NIU). The results from the light output, light attenuation length and mechanical tolerance indicate that FNAL-NICADD scintillator is of high quality. Improvements in the extrusion die will yield better scintillator profiles and decrease the time needed for initial tuning. This paper will present the characteristics of the FNAL-NICADD scintillator based on the measurements performed. They include the response to MIPs from cosmic rays for individual extruded strips and irradiation studies where extruded samples were irradiated up to 1 Mrad. We will also discuss the results achieved with a new die design. The attractive perspective of using the extruded scintillator with MRS (Metal Resistive Semiconductor) photodetector readout will also be shown.

  4. The FNAL Injector Upgrade Status

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Karns, P.R.; Lackey, J.R.; Pellico, W.A; Scarpine, V.E.; Tomlin, R.E.; /Fermilab

    2012-05-14

    The new FNAL H{sup -} injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H{sup -} source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.

  5. An overview of the new test stand for H⁻ ion sources at FNAL.

    PubMed

    Sosa, A; Bollinger, D S; Duel, K; Karns, P R; Pellico, W; Tan, C Y

    2016-02-01

    A new test stand at Fermi National Accelerator Laboratory (FNAL) is being constructed to carry out experiments to develop and upgrade the present magnetron-type sources of H(-) ions of up to 80 mA at 35 keV in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. The technical details of the construction and layout of this test stand are presented, along with a prospective set of diagnostics to monitor the sources. PMID:26931987

  6. ATLAS accelerator laboratory report

    SciTech Connect

    Den Hartog, P.

    1986-01-01

    The operation of the ATLAS Accelerator is reported. Modifications are reported, including the installation of conductive tires for the Pelletron chain pulleys, installation of a new high frequency sweeper system at the entrance to the linac, and improvements to the rf drive ports of eight resonators to correct failures in the thermally conductive ceramic insulators. Progress is reported on the positive-ion injector upgrade for ATLAS. Also reported are building modifications and possible new uses for the tandem injector. (LEW)

  7. FNAL system patching design

    SciTech Connect

    Schmidt, Jack; Lilianstrom, Al; Romero, Andy; Dawson, Troy; Sieh, Connie; /Fermilab

    2004-01-01

    FNAL has over 5000 PCs running either Linux or Windows software. Protecting these systems efficiently against the latest vulnerabilities that arise has prompted FNAL to take a more central approach to patching systems. Due to different levels of existing support infrastructures, the patching solution for linux systems differs from that of windows systems. In either case, systems are checked for vulnerabilities by Computer Security using the Nessus tool.

  8. FNAL central email systems

    SciTech Connect

    Schmidt, Jack; Lilianstrom, Al; Pasetes, Ray; Hill, Kevin; /Fermilab

    2004-10-01

    The FNAL Email System is the primary point of entry for email destined for an employee or user at Fermilab. This centrally supported system is designed for reliability and availability. It uses multiple layers of protection to help ensure that: (1) SPAM messages are tagged properly; (2) All mail is inspected for viruses; and (3) Valid mail gets delivered. This system employs numerous redundant subsystems to accomplish these tasks.

  9. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  10. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  11. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  12. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  13. Laboratory Reconnection Experiments - heating and particle acceleration

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi

    Recent laboratory merging/ reconnection experiments have solved a number of key physics of magnetic reconnection: 1) reconnection heating/ acceleration, 2) fast reconnection mechanisms, 3) plasmoid reconnection, 4) non-steady reconnection and 5) non-thermal particle acceleration using new kinetic interpretations. Especially, significant ion temperatures 1.2keV were documented in the world-largest tokamak merging experiment: MAST after detailed 2D elucidation of ion and electron heating characteristics in TS-3 and 4 merging experiments. The measured 2D contours of ion and electron temperatures in TS-3, 4 and MAST reveal ion heating in the downstream by reconnection outflow and electron heating around the X-point by ohmic heating of current sheet. Their detailed heating mechanisms were further investigated by comparing those results with particle simulations developed by NIFS. The ion acceleration mechanism is mostly parallel acceleration by reconnection electric field and partly perpendicular acceleration by electrostatic potential. The fast shock and ion viscosity are the major dumping (heating) mechanisms for the accelerated ions. We successfully applied the reconnection heating - typically 10-50MW to the high-beta spherical tokamak formation and heating. This paper will review major progresses in those international and interdisciplinary merging tokamak experiments.

  14. Electropolishing at ANL/FNAL.

    SciTech Connect

    Kelly, M. P.; Gerbick, S. M.; Wu, G.; Bice, D.; Physics; FNAL

    2009-01-01

    A system for electropolishing of 1.3 GHz elliptical single- and nine-cell cavities is in operation at the joint ANL/FNAL cavity processing facility located at Argonne. The system is one peice of a larger 200 m2 complete single cavity processing and assembly facility which also includes clean rooms and high-pressure rinsing. Recently, the electropolishing system has been used to process a series of single and nine-cell cavities. For single cell cavities a good set of EP parameters has been demonstrated based on more than a half dozen complete processing and cold test cycles at ANL/FNAL. The lastest six single cell cavities each exceed EACC=35 MV/m and, at this gradient, have Q in the range 6 10{sup 9} - 1 10{sup 10}. The first nine cell cavities electropolished at ANL have not yet reached similar fields ({approx}23 MV/m-26 MV/m) and ongoing activities are focussed on demonstrating >30 MV/m in these cavities. Suitable nine cell EP parameters using the ANL/FNAL EP system including acid/water temperatures, flow rates, current, voltage, air flow etc. are all substantially different than for single-cell cavities and are discussed here.

  15. Observation of particle acceleration in laboratory magnetosphere

    SciTech Connect

    Kawazura, Y.; Yoshida, Z.; Nishiura, M.; Saitoh, H.; Yano, Y.; Nogami, T.; Sato, N.; Yamasaki, M.; Kashyap, A.; Mushiake, T.

    2015-11-15

    The self-organization of magnetospheric plasma is brought about by inward diffusion of magnetized particles. Not only creating a density gradient toward the center of a dipole magnetic field, the inward diffusion also accelerates particles and provides a planetary radiation belt with high energy particles. Here, we report the first experimental observation of a “laboratory radiation belt” created in the ring trap 1 device. By spectroscopic measurement, we found an appreciable anisotropy in the ion temperature, proving the betatron acceleration mechanism which heats particles in the perpendicular direction with respect to the magnetic field when particles move inward. The energy balance model, including the heating mechanism, explains the observed ion temperature profile.

  16. Status of FNAL SciBooNE experiment

    SciTech Connect

    Nakajima, Yasuhiro; /Kyoto U.

    2007-12-01

    SciBooNE is a new experiment at FNAL which will make precision neutrino-nucleus cross section measurements in the one GeV region. These measurements are essential for the future neutrino oscillation experiments. We started data taking in the antineutrino mode on June 8, 2007, and collected 5.19 x 10{sup 19} protons on target (POT) before the accelerator shutdown in August. The first data from SciBooNE are reported in this article.

  17. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2014-09-01

    Flat samples from various PMMA formulations subjected to accelerated laboratory weathering in an "Atlas Xenotest Alpha +" weathering device operating at 3 Sun irradiance remain transparent after 6.48GJ/m2 radiant exposure (300 - 400nm). Transmittance is reduced and yellowness index increases. However, the amount of change depends largely on the PMMA formulation. Higher UV absorber concentrations lead to smaller changes in optical properties. Based on a model of CPV efficiency for a particular power train, relative losses of efficiency are between 1 and 28%. Performance regarding these properties can be linked to the UV absorber type and concentrations used.

  18. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  19. A new solid state extractor pulser for the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S.; Lackey, J.; Larson, J.; Triplett, K.

    2015-10-05

    A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 μs due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 μs when installed in the operational system. This paper will discuss the pulser design and operational experience to date.

  20. A new solid state extractor pulser for the FNAL magnetron ion source

    NASA Astrophysics Data System (ADS)

    Bollinger, D. S.; Lackey, J.; Larson, J.; Triplett, K.

    2016-02-01

    A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 μs due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 μs when installed in the operational system. This paper will discuss the pulser design and operational experience to date.

  1. Operational experience on the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Babzien, M.; Ben-Zvi, I.

    1994-09-01

    Brookhaven National Laboratory Accelerator Test Facility is a laser-electron linear accelerator complex designed to provide high brightness beams for testing of advanced acceleration concepts and high power pulsed photon sources. Results of electron beam parameters attained during the commissioning of the nominally 45 MeV energy machine are presented.

  2. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory

    NASA Astrophysics Data System (ADS)

    Xia, G.; Nie, Y.; Mete, O.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.; Pacey, T.; Li, Y.; Wei, Y.; Welsch, C.

    2016-09-01

    A plasma accelerator research station (PARS) has been proposed to study the key issues in electron driven plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. In this paper, the quasi-nonlinear regime of beam driven plasma wakefield acceleration is analysed. The wakefield excited by various CLARA beam settings are simulated by using a 2D particle-in-cell (PIC) code. For a single drive beam, an accelerating gradient up to 3 GV/m can be achieved. For a two bunch acceleration scenario, simulation shows that a witness bunch can achieve a significant energy gain in a 10-50 cm long plasma cell.

  3. High luminosity muon scattering at FNAL

    SciTech Connect

    Bazizi, K. ); Conrad, J.; Fang, G. ); Erdmann, M. ); Geesaman, D.; Jackson, H. ); Guyot, C.; Virchaux, M. ); Holmgren, H. ); Malensek, A.; Melanson, H.; Morfin

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity {mu} scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity {mu} scattering experiment is evaluated. The CERN and FNAL {mu} beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs.

  4. Low energy [bar p] physics at FNAL

    SciTech Connect

    Hsueh, S.Y.

    1992-12-01

    The charmonium formation experiment is the only low energy [bar p] experiment at FNAL. This paper describes the performance of the Fermilab [bar p] Accumulator during fixed target run for the experiment and the planned upgrades. We also discuss the proposal for the direct CP violation search in [bar p] + p [yields] [bar [Lambda

  5. Commissioning and Operation of the FNAL Front end Injection Line and Ion Sources.

    SciTech Connect

    Karns, Patrick R.

    2015-09-01

    This thesis documents the efforts made in commissioning and operating the RFQ Injection Line (RIL) as a replacement for the Cockcroft Walton front end. The Low Energy Beam Transport (LEBT) was assembled and tested with multiwire position and emittance monitor measurements. The Radio Frequency Quadrupole (RFQ) commissioning was completed with the same measurements as well as output beam energy measurements that showed it initially accelerated beam only to 700 keV, which was 50 keV lower than the design energy. Working with the manufacturer solutions were found and instituted to continue testing. The Medium Energy Beam Transport (MEBT) was then connected as the RIL was installed as the new front end of Linac. Testing gave way to operation when the new front end was used as the source of all High Energy Physics (HEP) beam for Fermi National Accelerator Laboratory (FNAL). The magnetron ion source that provides the H- beam for the front end required several changes and eventual upgrades to operate well; such as new source operating points for vacuum pressure and cesium admixture, and new materials for critical source components. Further research was conducted on the cathode geometry and nitrogen doping of the hydrogen gas as well as using solid state switches for the extractor system high voltage.

  6. Commissioning and operation of the FNAL front end injection line and ion sources

    NASA Astrophysics Data System (ADS)

    Karns, Patrick R.

    This thesis documents the efforts made in commissioning and operating the RFQ Injection Line (RIL) as a replacement for the Cockcroft Walton front end. The Low Energy Beam Transport (LEBT) was assembled and tested with multiwire position and emittance monitor measurements. The Radio Frequency Quadrupole (RFQ) commissioning was completed with the same measurements as well as output beam energy measurements that showed it initially accelerated beam only to 700 keV, which was 50 keV lower than the design energy. Working with the manufacturer solutions were found and instituted to continue testing. The Medium Energy Beam Transport (MEBT) was then connected as the RIL was installed as the new front end of Linac. Testing gave way to operation when the new front end was used as the source of all High Energy Physics (HEP) beam for Fermi National Accelerator Laboratory (FNAL). The magnetron ion source that provides the H- beam for the front end required several changes and eventual upgrades to operate well; such as new source operating points for vacuum pressure and cesium admixture, and new materials for critical source components. Further research was conducted on the cathode geometry and nitrogen doping of the hydrogen gas as well as using solid state switches for the extractor system high voltage.

  7. The target laboratory of the Pelletron Accelerator's facilities

    NASA Astrophysics Data System (ADS)

    Ueta, Nobuko; Pereira Engel, Wanda Gabriel

    2013-05-01

    A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40th year of the Pelletron Accelerator.

  8. The target laboratory of the Pelletron Accelerator's facilities

    SciTech Connect

    Ueta, Nobuko; Pereira Engel, Wanda Gabriel

    2013-05-06

    A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

  9. Magnetic septa for the Saskatchewan Accelerator Laboratory (SAL)

    SciTech Connect

    Figley, C.B. )

    1990-12-01

    A design was investigated for two magnets now in permanent use at the Saskatchewan Accelerator Laboratory (SAL). The compact septa incorporated a novel cooling technique for the thin aluminum sheets forming the coils. These magnets have operated successfully for several years. Concepts for improving the duty factor and peak field of the septa by using power modulators are considered.

  10. Reproduction of natural corrosion by accelerated laboratory testing methods

    SciTech Connect

    Luo, J.S.; Wronkiewicz, D.J.; Mazer, J.J.; Bates, J.K.

    1996-05-01

    Various laboratory corrosion tests have been developed to study the behavior of glass waste forms under conditions similar to those expected in an engineered repository. The data generated by laboratory experiments are useful for understanding corrosion mechanisms and for developing chemical models to predict the long-term behavior of glass. However, it is challenging to demonstrate that these test methods produce results that can be directly related to projecting the behavior of glass waste forms over time periods of thousands of years. One method to build confidence in the applicability of the test methods is to study the natural processes that have been taking place over very long periods in environments similar to those of the repository. In this paper, we discuss whether accelerated testing methods alter the fundamental mechanisms of glass corrosion by comparing the alteration patterns that occur in naturally altered glasses with those that occur in accelerated laboratory environments. This comparison is done by (1) describing the alteration of glasses reacted in nature over long periods of time and in accelerated laboratory environments and (2) establishing the reaction kinetics of naturally altered glass and laboratory reacted glass waste forms.

  11. Modeling laser-plasma acceleration in the laboratory frame

    SciTech Connect

    2011-01-01

    A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame."

  12. The Brookhaven National Laboratory (BNL) Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1990-01-01

    The design of the Brookhaven National Laboratory Accelerator Test Facility is presented including the design goals and computational results. The heart of the system is a radiofrequency electron gun utilizing a photo-excited metal cathode followed by a conventional electron linac. The Nd:YAG laser used to drive the cathode with 6 ps long pulses can be synchronized to a high peak power CO{sub 2} laser in order to study laser acceleration of electrons. Current operational status of the project will be presented along with early beam tests.

  13. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  14. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  15. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  16. The cyclotron laboratory and the RFQ accelerator in Bern

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  17. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  18. Improvement of Digital Filter for the FNAL Booster Transverse Dampers

    SciTech Connect

    Zolkin, Timofey; Eddy, N.; Lebedev, V.

    2013-09-26

    Fermilab Booster has two transverse dampers which independently suppress beam instabilities in the horizontal and vertical planes. A suppression of the common mode signal is achieved by digital notch filter which is based on subtracting beam positions for two consecutive turns. Such system operates well if the orbit position changes sufficiently slow. Unfortunately it is not the case for FNAL Booster where the entire accelerating cycle consists of about 20000 turns, and successful transition crossing requires the orbit drifts up to about 10 μm/turn, resulting in excessive power, power amplifier saturation and loss of stability. To suppress this effect we suggest an improvement of the digital filter which can take into account fast orbit changes by using bunch positions of a few previous turns. To take into account the orbit change up toN-th order polynomial in time the system requires (N + 3) turns of “prehistory”. In the case of sufficiently small gain the damping rate and the optimal digital filter coefficients are obtained analytically. Numerical simulations verify analytical theory for the small gain and predict a system performance with gain increase.

  19. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect

    Not Available

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  20. Los Alamos National Laboratory accelerated tru waste workoff strategies

    SciTech Connect

    Kosiewicz, S.T.; Triay, I.R.; Rogers, P.Z.; Christensen, D.V.

    1997-03-01

    During 1996, the Los Alamos National Laboratory (LANL) developed two transuranic (TRU) waste workoff strategies that were estimated to save $270 - 340M through accelerated waste workoff and the elimination of a facility. The planning effort included a strategy to assure that LANL would have a significant quantity (3000+ drums) of TRU waste certified for shipment to the Waste Isolation Pilot Plant (WIPP) beginning in April of 1998, when WIPP was projected to open. One of the accelerated strategies can be completed in less than ten years through a Total Optimization of Parameters Scenario ({open_quotes}TOPS{close_quotes}). {open_quotes}TOPS{close_quotes} fully utilizes existing LANL facilities and capabilities. For this scenario, funding was estimated to be unconstrained at $23M annually to certify and ship the legacy inventory of TRU waste at LANL. With {open_quotes}TOPS{close_quotes} the inventory is worked off in about 8.5 years while shipping 5,000 drums per year at a total cost of $196M. This workoff includes retrieval from earthen cover and interim storage costs. The other scenario envisioned funding at the current level with some increase for TRUPACT II loading costs, which total $16M annually. At this funding level, LANL estimates it will require about 17 years to work off the LANL TRU legacy waste while shipping 2,500 drums per year to WIPP. The total cost will be $277M. This latter scenario decreases the time for workoff by about 19 years from previous estimates and saves an estimated $190M. In addition, the planning showed that a $70M facility for TRU waste characterization was not needed. After the first draft of the LANL strategies was written, Congress amended the WIPP Land Withdrawal Act (LWA) to accelerate the opening of WIPP to November 1997. Further, the No Migration Variance requirement for the WIPP was removed. This paper discusses the LANL strategies as they were originally developed. 1 ref., 3 figs., 2 tabs.

  1. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    SciTech Connect

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  2. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    SciTech Connect

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE`s Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES&H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES&H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES&H requirements, root causes for noncompliance, adequacy of DOE and contractor ES&H management programs, response actions to address the identified problem areas, and DOE-wide ES&H compliance trends and root causes.

  3. Laboratory Simulation of Ion Acceleration Mechanisms in the Suprauroral Region.

    NASA Astrophysics Data System (ADS)

    Koslover, Robert Avner

    1987-09-01

    We report the results of a series of laboratory experiments intended to simulate particular aspects of ion acceleration processes that have been observed or are believed to occur in the suprauroral region of the Earth's magnetosphere. Beam-generated lower hybrid waves (LHW) and current-driven electrostatic ion cyclotron waves (EICW) have both been proposed as responsible for low-altitude perpendicular ion acceleration, leading to the formation of ion conics at higher altitudes (after mirroring in the geomagnetic field). We model, by experiments in the laboratory, the mechanisms generating the ion velocity distributions and radio frequency waves observed in the suprauroral region. Experiments were performed in two linear plasma devices: the UCI Q -machine and UCI Magnetic Mirror. RF waves were launched by antennas or excited by electron currents or beams. Laser induced fluorescence (LIF) provided a sensitive non-perturbing diagnostic for ion velocity distributions. RF and Langmuir probes were used for electrical measurements. Antenna launched LHW produced considerable perpendicular ion heating, generating 'tail' formation followed by a bulk 'maxwellian' heating. Both broadband and narrowband LHW produced similar effects. Frequency spectra displayed multiple harmonics of the input antenna signal and also signals of lower frequency, the latter identified as due to parametric decay. Operating the UCI Magnetic Mirror as a double plasma device, a low energy, low density electron beam was shown to generate very broadband noise above the LH resonance frequency. Two-probe correlation studies indicated the existence of a wide band of k values as well. The noise has been tentatively identified as beam-generated LHW. In order to study the formation of ion conics, a new diagnostic method making use of LIF and computed tomography was developed. A description is given of this new technique, which we call optical tomography. Using this approach, we successfully observed the

  4. Status of LCLS - II QA Systems Collaboration for Cyromodule Construction at TJNAF and FNAL

    SciTech Connect

    McEwen, E. A.; Leung, J.; Bookwalter, V.; Blowers, J.; Szal, J.

    2015-09-25

    At the Thomas Jefferson National Accelerator Facility (Jefferson Lab), we are supporting the LCLS-II Project at SLAC. The plan is to build thirty-five 1.3 GHz continuous wave cryomodules, production to be split between JLab and FNAL (Fermilab). This has required a close collaboration between the partner labs, including enhancing our existing quality systems to include this collaboration. This overview describes the current status of the Quality System development as of August 2015, when the partner labs start the assembly of the prototype cryomodules.

  5. Laboratory test of Newton's second law for small accelerations.

    PubMed

    Gundlach, J H; Schlamminger, S; Spitzer, C D; Choi, K-Y; Woodahl, B A; Coy, J J; Fischbach, E

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10(-14) m/s(2). PMID:17501332

  6. Laboratory Test of Newton's Second Law for Small Accelerations

    SciTech Connect

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10{sup -14} m/s{sup 2}.

  7. Dust accelerator tests of the LDEX laboratory model

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Hofmann, B.; Horanyi, M.; Sternovsky, Z.; Srama, R.

    2015-10-01

    The LDEX (Lunar Dust EXperiment) sensor onboard lunar orbiter LADEE (Lunar Atmosphere and Dust Environment Explorer) was designed to characterize the size and spatial distributions of micron and sub-micron sized dust grains. Recent results of the data analysis showed strong evidence for the existence of a dust cloud around the moon. LDEX performs in situ measurements of dust impacts along the LADEE or-bit. The impact speed of the observed dust grains is close to 1.7 km/s (the speed of the spacecraft), since the dust grains are considered on bound orbits close to the maximum height of their ballistic motion. LDEX is an impact ionization dust detector for in situ measurements. The detection of a dust grains is based on measuring the charge generated by high speed impacts (>1km/s) on a rhodium coated target. The impact charge Q is a function of both the speed v and the mass m of the impacting dust particle. The characteristic values are dependent on the instrument geometry, the impact surface properties (material), the impact geometry (impact angle) and the particle properties (material, density, speed, mass, shape). In our tests we used PPy-coated olivine and PPy-coated ortho-pyroxene with impact speeds around 1.7 km/s. A LDEX laboratory model was designed and manufactured by the University of Stuttgart. The model is used to support calibration activities of the Univ. of Colorado and to perform special tests (impact angle and impact location variations) at the dust accelerator facility at MPI-K (Heidelberg) which is operated by the IRS of the University of Stuttgart.

  8. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements.

  9. Resonance control in SRF cavities at FNAL

    SciTech Connect

    Schappert, W.; Pischalnikov, Y.; Scorrano, M.; /INFN, Pisa

    2011-03-01

    The Lorentz force can dynamically detune pulsed Superconducting RF cavities. Considerable additional RF power can be required to maintain the accelerating gradient if no effort is made to compensate for this detuning. Compensation systems using piezo actuators have been used successfully at DESY and elsewhere to control Lorentz Force Detuning (LFD). Recently, Fermilab has developed an adaptive compensation system for cavities in the Horizontal Test Stand, in the SRF Accelerator Test Facility, and for the proposed Project X.

  10. Numerical Investigation and Experimental Reproduction of Fermi Acceleration in Laboratory Scale

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Zhai, C.

    2015-12-01

    Fermi acceleration is widely accepted as the mechanism to explain power law of cosmic ray spectrum. Now this mechanism has been developed to first order Fermi acceleration and second order Fermi acceleration. In first order Fermi acceleration, also known as diffusive shock acceleration, particles are confined around the shock through scattering and accelerated by repeatedly crossing shock front. In second order Fermi acceleration, particles gain energy through statistical collisions with interstellar clouds. In this proposed work, we plan to carefully study these two kinds of acceleration numerically and experimentally. We first consider a single relativistic particle and investigate how it gains energy in Fermi-Ulam model and shock wave acceleration model respectively. We investigate collective behavior of particles with different kinds of wall-oscillation functions and try to find an optimal one in terms of efficiency of acceleration. Then, we plan to go further and consider a group of particles statistically, during which we borrow the correct generalization of Maxwell's velocity distribution in special relativity and compare the results with those in cases where we simply use Maxwell-Boltzmann distribution. To this end, we try to provide a scheme to build an accelerator applying both laser technology and mirror effect in Laboratory to reproduce Fermi acceleration, which might be a promising source to obtain high energy particles and further study the mechanism of cosmic rays acceleration.

  11. Capture cavity II results at FNAL

    SciTech Connect

    Branlard, Julien; Chase, Brian; Cancelo, G.; Carcagno, R.; Edwards, H.; Fliller, R.; Hanna, B.; Harms, Elvan; Hocker, A.; Koeth, T.; Kucera, M.; /Fermilab

    2007-06-01

    As part of the research and development towards the International Linear Collider (ILC), several test facilities have been developed at Fermilab. This paper presents the latest Low Level RF (LLRF) results obtained with Capture Cavity II (CCII) at the ILC Test Accelerator (ILCTA) test facility. The main focus will be on controls and RF operations using the SIMCON based LLRF system developed in DESY [1]. Details about hardware upgrades and future work will be discussed.

  12. Implementation of the beamline controls at the Florence accelerator laboratory

    NASA Astrophysics Data System (ADS)

    Carraresi, L.; Mirto, F. A.

    2008-05-01

    The new Tandetron accelerator in Florence, with many different beamlines, has required a new organization of all the control signals of the used equipment (slow control). We present our solution, which allows us the control of all the employed instruments simultaneously from a number of different workplaces. All of our equipment has been designed to be Ethernet based and this is the key to accomplish two very important requirements: simultaneous remote control from many computers and electrical isolation to achieve a lower noise level. The control of the instruments requires only one Ethernet network and no particular interfaces or drivers on the computers.

  13. Control system for BCP processing facility at FNAL

    SciTech Connect

    Cristian Boffo et al.

    2003-09-11

    The surface processing is one of the key elements of superconducting RF cavity fabrication. Safety and reliability are the main requirements for the chemical surface treatment facility being developed at FNAL. Accepting the Buffered Chemical Polishing (BCP) as the baseline process, a ''gravity feed and open etching tank'' approach has been chosen at this stage. This choice resulted in the introduction of a control system with a strong automation since the number of elements to be controlled at different steps of the process is rather big. In order to allow for maximum flexibility, two operational modes were defined within the control system: semi-automatic, which requires an operator's decision to move from one stage to another, and manual. This paper describes the main features of the control system for the BCP facility that is under development at FNAL.

  14. Fermi National Accelerator Laboratory Annual Program Review 1991

    SciTech Connect

    Appel, Jeffrey A.; Jovanovic, Drasko; Pordes, Stephen

    1991-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for April 10-12, 1991. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  15. Fermi National Accelerator Laboratory Annual Program Review 1993

    SciTech Connect

    1993-01-01

    This book is submitted as a written adjunct to the 1993 Annual DOE High Energy Physics Program Review of Fermilab, scheduled for March 31-April 3. In it are described the functions and activities of the various Laboratory Divisions and Sections plus statements of plans and goals for the coming year. The Review Committee, as this goes to press, consists of·

  16. Fermi National Accelerator Laboratory Annual Program Review 2000

    SciTech Connect

    2000-03-01

    This book is submitted as one written part of the 2000 Annual DOE High Energy Physics Program Review of Fermilab, scheduled March 22-24, 2000. In it are Director's Overview, some experimental highlights, discussions of several projects, and descriptions of the functions and activities of the four laboratory divisions. This book should be read in conjunction with the 2000 Fermilab Workbook and the review presentations (both in formal sessions and at the poster session).

  17. Chemical depth profiling of photovoltaic backsheets after accelerated laboratory weathering

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Chi; Krommenhoek, Peter J.; Watson, Stephanie S.; Gu, Xiaohong

    2014-10-01

    Polymeric multilayer backsheets provide protection for the backside of photovoltaic (PV) module from the damage of moisture and ultraviolet (UV). Due to the nature of multilayer films, certain material property characterization of a backsheet could only be studied by examining its cross-section parallel to the thickness direction of the film. In this study, commercial PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet films were aged on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) with UV irradiance at 170 W/m2 (300 nm to 400 nm) under accelerated weathering conditions of 85°C and two relative humidity (R.H.) levels of 5% (low) and 60% (high). Cryo-microtomy was used to obtain cross-sectional PPE samples with a flat surface parallel to the thickness direction, and chemical depth profiling of multilayers was conducted by Raman microscopic mapping. Atomic force microscopy with peak force tapping mode was used complementarily for cross-sectional imaging. The results revealed that the PPE backsheet films were comprised of five main layers, including pigmented-PET, core PET, inner EVA, pigmented-EVA and outer EVA, along with their interfacial regions and two adhesive layers. UV and moisture degradation on the outer pigmented PET layer was clearly observed; while the damage on the core PET layer was less significance, indicating that the outer pigmented PET layer effectively reduced the damage from UV. In high R.H. exposure, both adhesive layers were severely deteriorated. It was found that the EVA layers were susceptible to moisture at elevated temperature, especially for the pigmented-EVA. Based on the results of accelerated weathering, this depth profiling study brings new understanding to the mechanisms of failure observed in polymeric multilayer backsheets during field exposure.

  18. Neutron Scattering Simulations at the University of Kentucky Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Nguyen, Thienan; Jackson, Daniel; Hicks, S. F.; Rice, Ben; Vanhoy, J. R.

    2015-10-01

    The Monte-Carlo N-Particle Transport code (MCNP) has many applications ranging from radiography to reactor design. It has particle interaction capabilities, making it useful for simulating neutron collisions on surfaces of varying compositions. The neutron flux within the accelerator complex at the University of Kentucky was simulated using MCNP. With it, the complex's capabilities to contain and thermalize 7 MeV neutrons produced via 2H(d,n)3He source reaction to an acceptable level inside the neutron hall and adjoining rooms were analyzed. This will aid in confirming the safety of researchers who are working in the adjacent control room. Additionally, the neutron transport simulation was used to analyze the impact of the collimator copper shielding on various detectors located around the neutron scattering hall. The purpose of this was to attempt to explain any background neutrons that are observed at these detectors. The simulation shows that the complex performs very well with regards to neutron containment and thermalization. Also, the tracking information for the paths taken by the neutrons show that most of the neutrons' lives are spent inside the neutron hall. Finally, the neutron counts were analyzed at the positions of the neutron monitor detectors located at 90 and 45 degrees relative to the incident beam direction. This project was supported in part by the DOE NEUP Grant NU-12-KY-UK-0201-05 and the Donald A. Cowan Physics Institute at the University of Dallas.

  19. Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma

    SciTech Connect

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E.

    2012-12-10

    The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high pressure downstream region.

  20. Early operating experience with the Brookhaven National Laboratory radio frequency quadrupole accelerator

    SciTech Connect

    Brown, H.; Clifford, T.; Giordano, S.; Khiari, F.; McKenzie-Wilson, R.; Puglisi, M.; Warner, P.

    1984-05-01

    The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole (RFQ) for acceleration between the polarized H/sup -/ source and the Alvarez Linac. The RFQ accelerator is now in operation with low beam currents. The results of low and high power rf testing will be reported together with initial results of operation in the polarized H/sup -/ beam line.

  1. System tests with electric thruster beam and accelerator directly powered from laboratory solar arrays

    NASA Technical Reports Server (NTRS)

    Stover, J. B.

    1976-01-01

    Laboratory high voltage solar arrays were operated directly connected to power the beam and accelerator loads of an 8-centimeter ion thruster. The beam array comprised conventional 2 by 2 centimeter solar cells; the accelerator array comprised multiple junction edge-illuminated solar cells. Conventional laboratory power supplies powered the thruster's other loads. Tests were made to evaluate thruster performance and to investigate possible electrical interactions between the solar arrays and the thruster. Thruster performance was the same as with conventional laboratory beam and accelerator power supplies. Most of the thruster beam short circuits that occurred during solar array operation were cleared spontaneously without automatic or manual intervention. No spontaneous clearing occurred during conventional power supply operation.

  2. AmeriFlux US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site)

    SciTech Connect

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. The agricultural site has likely been farmed for more than 100 years, but the first documented instance of agricultural activity dates back to a picture taken in 1952.

  3. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    SciTech Connect

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  4. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of

  5. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  6. Beam dynamics studies of the 8 GeV Linac at FNAL

    SciTech Connect

    Ostroumov, P.N.; Mustapha, B.; Carneiro, J.-P.; /Fermilab

    2008-11-01

    The proposed 8-GeV proton driver (PD) linac at FNAL includes a front end up to {approx}420 MeV operating at 325 MHz and a high energy section at 1300 MHz. A normal conducting RFQ and short CH type resonators are being developed for the initial acceleration of the H-minus or proton beam up to 10 MeV. From 10 MeV to {approx}420 MeV, the voltage gain is provided by superconducting (SC) spoke-loaded cavities. In the high-energy section, the acceleration will be provided by the International Linear Collider (ILC)-style SC elliptical cell cavities. To employ existing, readily available klystrons, an RF power fan out from high-power klystrons to multiple cavities is being developed. The beam dynamics simulation code TRACK, available in both serial and parallel versions, has been updated to include all known H-minus stripping mechanisms to predict the exact location of beam losses. An iterative simulation procedure is being developed to interact with a transient beam loading model taking into account RF feedback and feedforward systems.

  7. Collisionless shocks and particle acceleration in laser-driven laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2012-10-01

    Collisionless shocks are pervasive in space and astrophysical plasmas, from the Earth's bow shock to Gamma Ray Bursters; however, the microphysics underlying shock formation and particle acceleration in these distant sites is not yet fully understood. Mimicking these extreme conditions in laboratory is a grand challenge that would allow for a better understanding of the physical processes involved. Using ab initio multi-dimensional particle-in-cell simulations, shock formation and particle acceleration are investigated for realistic laboratory conditions associated with the interaction of intense lasers with high-energy-density plasmas. Weibel-instability-mediated shocks are shown to be driven by the interaction of an ultraintense laser with overcritical plasmas. In this piston regime, the laser generates a relativistic flow that is Weibel unstable. The strong Weibel magnetic fields deflect the incoming flow, compressing it, and forming a shock. The resulting shock structure is consistent with previous simulations of relativistic astrophysical shocks, demonstrating for the first time the possibility of recreating these structures in laboratory. As the laser intensity is decreased and near-critical density plasmas are used, electron heating dominates over radiation pressure and electrostatic shocks can be formed. The electric field associated with the shock front can reflect ions from the background accelerating them to high energies. It is shown that high quality 200 MeV proton beams, required for tumor therapy, can be generated by using an exponentially decaying plasma profile to control competing accelerating fields. These results pave the way for the experimental exploration of space and astrophysical relevant shocks and particle acceleration with current laser systems.

  8. Application of the EXPERT consultation system to accelerated laboratory testing and interpretation.

    PubMed

    Van Lente, F; Castellani, W; Chou, D; Matzen, R N; Galen, R S

    1986-09-01

    The EXPERT consultation system-building tool, a knowledge-based artificial intelligence program developed at Rutgers University, has been applied to the development of a laboratory consultation system facilitating sequential laboratory testing and interpretation. Depending on the results of a basic panel of laboratory tests, the system requests that specific secondary tests be performed. Input of these secondary findings can result in requests for tertiary testing, to complete the database necessary for interpretation. Interpretation of all results is based upon final inferences from the collected findings through a series of rules, a hierarchical network that yields an efficient production system not easily obtained through conventional programming. The rules included in this model are based upon initial results for total protein, calcium, glucose, total bilirubin, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase, thyroxin, hemoglobin, mean corpuscular volume, and the concentrations of four drugs. Pertinent clinical history items included are jaundice, diabetes, thyroid disease, medications, and ethanol. Implementing this system in a laboratory-based accelerated testing program involving outpatients maximized the effective use of laboratory resources, eliminated useless testing, and provided the patient with low-cost laboratory information. PMID:3527478

  9. An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory

    SciTech Connect

    Syphers, M.J.

    1987-06-01

    A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron.

  10. Installation of a cw radiofrequency quadrupole accelerator at Los Alamos National Laboratory

    SciTech Connect

    Schneider, J.D.; Bolme, J.; Brown, V.

    1994-09-01

    Chalk River Laboratories (CRL) has had a long history of cw proton beam development for production of intense neutron sources and fissile fuel breeders. In 1986 CRL and Los Alamos National Laboratory (LANL) entered into a collaborative effort to establish a base technologies program for the development of a cw radiofrequency quadrupole (RFQ). The initial cw RFQ design had 50-keV proton injection energy with 600-keV output energy. The 75-mA design current at 600-keV beam energy was obtained in 1990. Subsequently, the RFQ output energy was increased to 1250 keV by replacing the RFQ vanes, still maintaining the 75-m A design current. A new 250-kW cw klystrode rf power source at 267-MHz was installed at CRL. By April of 1993, 55-mA proton beams had been accelerated to 1250 keV. Concurrent developments were taking place on proton source development and on 50-keV low-energy beam transport (LEBT) systems. Development of a dc, high-proton fraction ({ge} 70%) microwave ion source led to utilization of a single-solenoid RFQ direct injection scheme. It was decided to continue this cw RFQ demonstration project at Los Alamos when the CRL project was terminated in April 1993. The LANL goals are to find the current limit of the 1250-keV RFQ, better understand the beam transport properties through the single-solenoid focusing LEBT, continue the application of the cw klystrode tube technology to accelerators, and develop a two-solenoid LEBT which could be the front end of an Accelerator-Driven Transmutation Technologies (ADTT) linear accelerator.

  11. The UNAM sets up the first Laboratory on Accelerator Mass Spectrometry (LEMA) in Mexico

    NASA Astrophysics Data System (ADS)

    Solís, C.; Chávez, E.; Ortíz, M. E.; Andrade, E.

    2013-05-01

    A new Accelerator Mass Spectrometry system is being installed at the Institute of Physics of the National Autonomous University of Mexico (IFUNAM) with support of CONACYT and UNAM. The AMS system is based on a tandetron accelerator of 1MV purchased from the High Voltage Engineering Europe B.V., Amersfoort, the Netherlands. Mass spectrometry experiments will be conducted at the AMS laboratory (LEMA), for analysis of 14 C and other isotopes as the 10Be, 26Al, 129I and Pu. This is a highly sensitive technique that allows to measure concentrations up to one part in 1015 from different nuclei. LEMA is the first laboratory in Mexico of its kind and the second in Latin America, after Brazil. The first research line of LEMA is to apply AMS for dating with 14C. Once the dating methodologies will be implemented, we will incorporate the analysis of other radioisotopes in research projects in different areas such as the Geophysical and Environmental sciences. In this presentation, the AMS system as well as details on the sample preparation will be described. Also, results from installation and acceptance tests will be presented.

  12. MCNP Neutron Simulations: The Effectiveness of the University of Kentucky Accelerator Laboratory Pit

    NASA Astrophysics Data System (ADS)

    Jackson, Daniel; Nguyen, Thien An; Hicks, S. F.; Rice, Ben; Vanhoy, J. R.

    2015-10-01

    The design of the Van de Graaff Particle Accelerator complex at the University of Kentucky is marked by the unique addition of a pit in the main neutron scattering room underneath the neutron source and detection shielding assembly. This pit was constructed as a neutron trap in order to decrease the amount of neutron flux within the laboratory. Such a decrease of background neutron flux effectively reduces as much noise as possible in detection of neutrons scattering off of desired samples to be studied. This project uses the Monte-Carlo N-Particle Transport Code (MCNP) to model the structure of the accelerator complex, gas cell, and the detector's collimator and shielding apparatus to calculate the neutron flux in various sections of the laboratory. Simulations were completed with baseline runs of 107 neutrons of energies 4 MeV and 17 MeV, produced respectively by 3H(p,n)3He and 3H(d,n)4He source reactions. In addition, a comparison model of the complex with simply a floor and no pit was designed, and the respective neutron fluxes of both models were calculated and compared. The results of the simulations seem to affirm the validity of the pit design in significantly reducing the overall neutron flux throughout the accelerator complex, which could be used in future designs to increase the precision and reliability of data. This project was supported in part by the DOE NEUP Grant NU-12-KY-UK-0201-05 and the Donald A. Cowan Physics Institute at the University of Dallas.

  13. Brighter H/sup -/ source for the intense pulsed neutron source accelerator system

    SciTech Connect

    Stipp, V.; DeWitt, A.; Madsen, J.

    1983-01-01

    Further increases in the beam intensity of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory required the replacement of the H/sup -/ source with a higher current source. A magnetron ion source of Fermi National Accelerator Laboratory (FNAL) design was adapted with a grooved cathode to provide a stable 40 to 50 mA of beam operating at 30 Hz for up to a 90 ..mu..s pulse duration. Problems of space charge blowup due to the lack of neutralization of the H/sup -/ beam were solved by injecting additional gs into the 20 keV transport system. The source has recently been installed in the machine and the available input to the accelerator has more than doubled.

  14. Laboratory Measurements of Linear Electron Acceleration by Inertial Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.

    2015-11-01

    Alfvén waves occur in conjunction with a significant fraction of auroral electron acceleration. Inertial mode Alfvén waves (vA >vte) in the auroral magnetosphere (2 - 4RE) with perpendicular scales on the order of the electron skin depth (c /ωpe) have a parallel electric field that, according to theory, is capable of nonlinearly accelerating suprathermal electrons to auroral energies. Unfortunately, due to space-time ambiguities of rocket and satellite measurements, it has not yet been possible to fully verify how Alfvén waves contribute to the production of accelerated electrons. To overcome the limitations of in situ spacecraft data, laboratory experiments have been carried out using the Large Plasma Device (LaPD), an NSF/DOE user facility at UCLA. An Electron Cyclotron Absorption (ECA) diagnostic has been developed to record the suprathermal parallel electron distribution function with 0.1% precision. The diagnostic records the electron distribution while inertial Alfvén waves simultaneously propagate through the plasma. Recent measurements have isolated oscillations of suprathermal electrons at the Alfvén wave frequency. Despite complications from boundary effects and the finite size of the experiment, a linear kinetic model has been produced that describes the experimental results. To our knowledge this is the first quantitative agreement between the measured and modeled linear response of suprathermal electrons to an inertial Alfvén wave. This verification of the linear physics is a necessary step before the nonlinear acceleration process can be isolated in future experiments. Presently, nonlinear effects cannot be detected because of limited Alfvén wave amplitudes. Ongoing work is focused on designing a higher-power antenna capable of efficiently launching larger-amplitude Alfvén waves with tunable perpendicular wavenumber and developing a theoretical understanding of the nonlinear acceleration process in LaPD plasma conditions. This material is

  15. On the effect of accelerated winds on the wave growth through detailed laboratory measurements.

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Hernández, Aldo

    2013-04-01

    The possible influence of accelerated winds on air-water momentum fluxes is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide information corresponding to rather short non-dimensional fetch not previously reported. Wave evolution along the tank is determined through a series of wave gauges, and the wind-induced surface drift is obtained at one of the first measuring stations at the beginning of the tank. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Data from the constant high winds provided us with reference equilibrium conditions for at least 3 different wind speed. We, nevertheless, focus in the recordings while wind was being constantly accelerated expecting some contribution to the understanding of gustiness, the implied wind wave growth and the onset of surface drift. Wind-wave growth is observed to lag behind the wind stress signal, and furthermore, a two regime wind stress is noticed, apparently well correlated with a) the incipient growth and appearance of the first waves and b) the arrival of waves from the up-wind section of the tank. Results of non-dimensional wave energy as a function of non-dimensional fetch represent an extension of at least 2 decades shorter non-dimensional fetch to the wave growth curves typically found in the literature. The linear tendency of wave growth compares very well only when wind is reaching its maximum, while during the accelerated wind

  16. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  17. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability. PMID:26233391

  18. Proposed low-level radioactive waste handling building at Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Low-Level Radioactive Waste Building at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. As a result of the high energy physics program at Fermilab, small quantities of low-level radioactive wastes are generated. These wastes are collected, sorted and packaged for shipment to an off-site disposal facility in Hanford, Washington. The proposed project includes the construction of a new building to house, all low-level radioactive waste handling operations. The building would provide workspace for five full-time workers. The proposed project would improve the efficiency and safety of the low-level radioactive waste handling at Fermilab by upgrading equipment and consolidating operations into one facility.

  19. Proposed Casey`s Pond Improvement Project, Fermi National Accelerator Laboratory

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Casey`s Pond Improvement Project at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The improvement project would maximize the efficiency of the Fermilab Industrial Cooling Water (ICW) distribution system, which removes (via evaporation) the thermal load from experimental and other support equipment supporting the high energy physics program at Fermilab. The project would eliminate the risk of overheating during fixed target experiments, ensure that the Illinois Water Quality Standards are consistently achieved and provide needed additional water storage for fire protection. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  20. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K. Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  1. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    SciTech Connect

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  2. A strategy for residual acceleration data reduction and dissemination. [from orbiting space laboratories

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.

    1991-01-01

    A data reduction plan is being developed to efficiently process residual acceleration data from orbiting space laboratories. Implementation of the reduction plan will result in a useful, manageable accelerometer data base which can be readily employed by principal investigators during post-flight analysis of experimental results. The data reduction plan will also assist in the characterization of the acceleration environment of orbiters, which is important for the planning of future experimental missions. Prototype versions of the reduction plan are being tested using accelerometer data recorded during the Spacelab 3 (SL3) mission. Transient disturbances caused by shuttle and experiment operations and crew activities are being cataloged. The magnitudes of such disturbances can be as much as 0.01 g, but are rarely sustained for more than a fraction of a second and tend to vary greatly in orientation. It is found that the recorded frequency components of the SL3 disturbances do not exceed tolerance limits determined from modeling for a selected experiment set.

  3. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  4. Advocacy for the Archives and History Office of the SLAC National Accelerator Laboratory: Stages and Methods

    SciTech Connect

    Deken, Jean Marie; /SLAC

    2009-06-19

    Advocating for the good of the SLAC Archives and History Office (AHO) has not been a one-time affair, nor has it been a one-method procedure. It has required taking time to ascertain the current and perhaps predict the future climate of the Laboratory, and it has required developing and implementing a portfolio of approaches to the goal of building a stronger archive program by strengthening and appropriately expanding its resources. Among the successful tools in the AHO advocacy portfolio, the Archives Program Review Committee has been the most visible. The Committee and the role it serves as well as other formal and informal advocacy efforts are the focus of this case study My remarks today will begin with a brief introduction to advocacy and outreach as I understand them, and with a description of the Archives and History Office's efforts to understand and work within the corporate culture of the SLAC National Accelerator Laboratory. I will then share with you some of the tools we have employed to advocate for the Archives and History Office programs and activities; and finally, I will talk about how well - or badly - those tools have served us over the past decade.

  5. Radio frequency systems for present and future accelerators

    SciTech Connect

    Raka, E.C.

    1987-01-01

    Rf systems are described for the FNAL Main Ring and Tevatron Ring, CERN SPS and LEP, and HERA proton acceleration system, CERN PS e/sup +/e/sup minus/ acceleration system, and CERN EPA monochromatic cavity. Low impedance rf systems in CERN ISR, the Brookhaven CBA, and SSC are also discussed.

  6. Application of the National Ignition Facility distinguishable-from-background program to accelerator facilities at Lawrence Livermore National Laboratory.

    PubMed

    Packard, Eric D; Mac Kenzie, Carolyn

    2013-06-01

    Lawrence Livermore National Laboratory must control potentially activated materials and equipment in accordance with U.S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment, which requires DOE approval of the process used to release volumetrically contaminated personal property and establishes a dose constraint of 10 µSv y(-1) (1 mrem y(-1)) for clearance of such property. The National Ignition Facility at Lawrence Livermore National Laboratory developed a technical basis document and protocol for determining the radiological status of property that is potentially activated from exposure to neutron radiation produced via fusion of tritium and deuterium. The technical basis included assessment of the neutron energy, the type of materials potentially exposed and the likely activation products, and the sensitivity of radiation detectors used to survey the property. This paper evaluates the National Ignition Facility technical basis document for applicability to the release of property from Lawrence Livermore National Laboratory's various accelerator facilities considering the different types of particles accelerated, radiations produced, and resultant activation products. Extensive process knowledge regarding the accelerators' operations, accompanied by years of routine surveys, provides an excellent characterization of these facilities. Activation studies conducted at the Stanford Linear Accelerator and the High Energy Accelerator Research Organization in Japan corroborate that the long-lived radionuclides produced at accelerator facilities are of the same variety produced at the National Ignition Facility. Consequently, Lawrence Livermore National Laboratory concludes that the release protocol developed for the National Ignition Facility can be used appropriately at all its accelerator facilities. PMID:23629069

  7. Physico-Mechanical Characteristics of Freeze-Thaw Weathered Gneiss based on Accelerated Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Um, J. G.

    2014-12-01

    An experimental study of physical weathering was performed on fresh and slightly weathered gneiss samples from the Wonju area of South Korea. The study investigated changes in the physico-mechanical properties of these samples during accelerated laboratory-based weathering, including analyses of microfracture formation. The deteriorated samples used in the study were subjected to 100-150 freeze-thaw cycles, with index properties and microfracture geometries measured between each cycle. Each complete freeze-thaw cycle lasted 24 hours, and consisted of 2 hours of saturation in a vacuum chamber, 8 hours of freezing at -21°C ±1°C, and 14 hours of thawing at room temperature. Specific gravity and seismic velocity values were negatively correlated with the number of freeze-thaw cycles, whereas absorption values tended to increase. The amount of deterioration of the rock samples was dependent on the degree of weathering of the rock prior to the start of the analysis. Absorption, specific gravity, and seismic velocity values can be used to infer the amount of physical weathering experienced by a gneiss in the study area. The sizes and density of microfracture in the rock specimens varied with the number of freeze-thaw cycles. It was found that box fractal dimensions can be used to quantify the formation and propagation of microfracture in the samples. In addition, these box fractal dimensions can be used as a weathering index for the mid- and long-term prediction of rock weathering. The present results indicate that accelerated-weathering analysis can provide a detailed overview of the weathering characteristics of deteriorated rocks.

  8. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    SciTech Connect

    Nath, Subrata

    2010-09-07

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer {approx}1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  9. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    SciTech Connect

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptly accelerated particles in these high energy astrophysical phenomena.

  10. Earthquake Dynamics in Laboratory Model and Simulation - Accelerated Creep as Precursor of Instabilities

    NASA Astrophysics Data System (ADS)

    Grzemba, B.; Popov, V. L.; Starcevic, J.; Popov, M.

    2012-04-01

    Shallow earthquakes can be considered as a result of tribological instabilities, so called stick-slip behaviour [1,2], meaning that sudden slip occurs at already existing rupture zones. From a contact mechanics point of view it is clear, that no motion can arise completely sudden, the material will always creep in an existing contact in the load direction before breaking loose. If there is a measureable creep before the instability, this could serve as a precursor. To examine this theory in detail, we built up an elementary laboratory model with pronounced stick-slip behaviour. Different material pairings, such as steel-steel, steel-glass and marble-granite, were analysed at different driving force rates. The displacement was measured with a resolution of 8 nm. We were able to show that a measureable accelerated creep precedes the instability. Near the instability, this creep is sufficiently regular to serve as a basis for a highly accurate prediction of the onset of macroscopic slip [3]. In our model a prediction is possible within the last few percents of the preceding stick time. We are hopeful to extend this period. Furthermore, we showed that the slow creep as well as the fast slip can be described very well by the Dieterich-Ruina-friction law, if we include the contribution of local contact rigidity. The simulation meets the experimental curves over five orders of magnitude. This friction law was originally formulated for rocks [4,5] and takes into account the dependency of the coefficient of friction on the sliding velocity and on the contact history. The simulations using the Dieterich-Ruina-friction law back up the observation of a universal behaviour of the creep's acceleration. We are working on several extensions of our model to more dimensions in order to move closer towards representing a full three-dimensional continuum. The first step will be an extension to two degrees of freedom to analyse the interdependencies of the instabilities. We also plan

  11. Laboratory and accelerator test of the charge particle detectors for a satellite instrument "STEP-F"

    NASA Astrophysics Data System (ADS)

    Dudnik, O. V.; Goka, T.; Matsumoto, H.; Fujii, M.; Golovash, O. S.; Malykhina, T. V.

    2003-04-01

    The spectrometer-telescope "STEP-F" is aimed for the registration of high-energy charged particle fluxes in the near Earth space. It is planned to install the instrument on board of Russian spacecraft "Coronas-Photon" to study solar cosmic rays and dynamics of the Earth' radiation belts. Its detector system consists of two position-sensitive silicon matrices to determine the direction of the primary particles and two layers of the scintillation detectors that serve for the energy determining of these particles. First laboratory tests of detectors were made with the help of various radioactive sources and imitating signals. Radiophysical characteristics as well as temperature dependence of the energy resolution for silicon matrix element and CsI(Tl) scintillation detector are presented. In order to check the reaction extent of the detectors in high energy range the tests was carried out on the ion cyclotron accelerator of the Institute of Physical and Chemical Research (RIKEN, Japan). We have used a-particle and hydrogen ion H2 beams to determine the response level and real energy range of particles registered by each layer of detectors. Simultaneously a computer simulation of deposited energies and stopping ranges for electrons, protons and alpha-particles has been done. The simulation by Monte Carlo method is made using the Cern GEANT4.2 Code under OS LINUX6.2. The experimental data obtained is in well agreement with results of Monte-Carlo simulation. It has been found, both experimentally and by simulation, that the signals coming from neighboring elements of the position-sensitive silicon matrix are not affected by secondary particles. In particular, the number of albedo secondary particles generated in the scintillator is rather small as compared to the primary particles, so that secondaries do not significantly contribute to the total intensity of recorded primary particles.

  12. Test of a coaxial blade tuner at HTS FNAL

    SciTech Connect

    Pischalnikov, Y.; Barbanotti, S.; Harms, E.; Hocker, A.; Khabiboulline, T.; Schappert, W.; Bosotti, A.; Pagani, C.; Paparella, R.; /LASA, Segrate

    2011-03-01

    A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. The stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.

  13. LLNL/UC (Lawrence Livermore National Laboratory)/(University of California) AMS (accelerator mass spectrometry) facility and research program

    SciTech Connect

    Davis, J.C.; Proctor, I.D.; Southon, J.R.; Caffee, M.W.; Heikkinen, D.W.; Roberts, M.L.; Moore, T.L.; Turteltaub, K.W.; Nelson, D.E.; Loyd, D.H.; Vogel, J.S.

    1990-04-18

    The Lawrence Livermore National Laboratory (LLNL) and the University of California (UC) now have in operation a large AMS spectrometer built as part of a new multiuser laboratory centered on an FN tandem. AMS measurements are expected to use half of the beam time of the accelerator. LLNL use of AMS is in research on consequences of energy usage. Examples include global warming, geophysical site characterization, radiation biology and dosimetry, and study of mutagenic and carcinogenic processes. UC research activities are in clinical applications, archaeology and anthropology, oceanography, and geophysical and geochemical research. Access is also possible for researchers outside the UC system. The technological focus of the laboratory is on achieving high rates of sample through-put, unattended operation, and advances in sample preparation methods. Because of the expected growth in the research programs and the other obligations of the present accelerator, we are designing a follow-on dedicated facility for only AMS and microprobe analysis that will contain at least two accelerators with multiple spectrometers. 10 refs., 1 fig.

  14. Overview of coupled bunch active damper systems at FNAL

    SciTech Connect

    Steimel, J.; Crisp, J.; Ma, Hengjie; Marriner, J.; McGinnis, D.

    1996-05-01

    Beam intensities in all of the accelerators at Fermilab will increase significantly when the Main Injector becomes operational and will cause unstable oscillations in transverse position and energy. Places where the coupled bunch oscillations could dilute emittances include the Booster, Main Injector, and Tevatron. This paper provides an overview of the active feedback system upgrades which will be used to counteract the problem. It will explain the similarities between all the systems and will also explain design differences between longitudinal and transverse systems, fast sweeping systems, and systems for partially filled machines. Results from operational systems will also be shown. 7 refs., 4 figs., 1 tab.

  15. Overview of coupled-bunch active damper systems at FNAL

    SciTech Connect

    Steimel, J.; Crisp, J.; Ma, H.; Marriner, J.; McGinnis, D.

    1997-01-01

    Beam intensities in all of the accelerators at Fermilab will increase significantly when the Main Injector becomes operational and will cause unstable oscillations in transverse position and energy. Places where the coupled bunch oscillations could dilute emittances include the Booster, Main Injector, and Tevatron. This paper provides an overview of the active feedback system upgrades which will be used to counteract the problem. It will explain the similarities between all the systems and will also explain design differences between longitudinal and transverse systems, fast sweeping systems, and systems for partially filled machines. Results from operational systems will also be shown. {copyright} {ital 1997 American Institute of Physics.}

  16. Material Procurement Report for the FNAL pp Forward Detector's Toroids and Cos8 Dipole Magnets

    SciTech Connect

    Cline, D.; Morse, R.; Orosz, I.; Thomas, L.C.

    1980-10-27

    We outline the possibilities of starting construction of the {bar p}p forward detector toroids and cos{theta} dipole magnets described in CDP Note 64 as soon as possible using material that already exists on the FNAL site. Personal inspection of the steel supplies indicates that as much as 2000 tons of steel or over 50% of all the steel needed for the toroids is now available at the FNAL boneyard. Copper inventories indicate that there is enough copper on the FNAL site to construct both the toroid magnets and the cos{theta} dipole magnets. A construction schedule of one toroid in FY81, two toroids in FY82, and the final toroid in FY83 is shown to be feasible. Floor space and loading requirements for the IR Hall housing the forward detector are examined and finally, budgets for the initial FY8l phase and the completed project are given. The FY81 costs are $393K and to-completion costs are $1506K.

  17. Design of a Marx-Topology Modulator for FNAL Linac

    SciTech Connect

    Butler, T. A.; Garcia, F. G.; Kufer, M. R.; Pfeffer, H.; Wolff, D.

    2015-04-28

    The Fermilab Proton Improvement Plan (PIP) was formed in late 2011 to address important and necessary upgrades to the Proton Source machines (Injector line, Linac and Booster). The goal is to increase the proton flux by doubling the Booster beam cycle rate while maintaining the same intensity per cycle, the same uptime, and the same residual activation in the enclosure. For the Linac, the main focus within PIP is to address reliability. One of the main tasks is to replace the present hard-tube modulator used on the 200 MHz RF system. Plans to replace this high power system with a Marx-topology modulator, capable of providing the required waveform shaping to stabilize the accelerating gradient and compensate for beam loading, will be presented, along with development data from the prototype unit.

  18. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    PubMed

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices. PMID:25618819

  19. The MIT Accelerator Laboratory for Diagnostic Development for OMEGA, Z and the NIF

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Orozco, D.; Rinderknecht, H. G.; Rojas Herrera, J.; Rosenberg, M.; Sio, H.; Zylstra, A.; Frenje, J.; Li, C. K.; Seguin, F. H.; Hahn, K.; Jones, B.; Ruiz, C. L.; Sangster, T. C.

    2014-10-01

    The MIT Linear Electrostatic Ion Accelerator generates D-D and D-3He fusion products, which are used for development of nuclear diagnostics for OMEGA, Z, and the NIF. Fusion reaction rates around 106 s-1 are routinely achieved with this accelerator, and fluence and energy of the fusion products are accurately characterized. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) CVD-diamond-based bang time detector. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  20. Focusing solenoid for the front end of a linear RF accelerator

    SciTech Connect

    Terechkine, I.; Kashikhin, V.V.; Page, T.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2007-06-01

    A prototype of a superconducting focusing solenoid for use in an RF linac has been built and tested at Fermi National Accelerator Laboratory (FNAL). The solenoid is comprised of the main coil, two bucking coils, two dipole corrector windings, and a low carbon steel flux return. At the excitation current of 250 A, the magnetic field reaches 7.2 T in the center of the solenoid and is less than 5 G on the axis at a distance of 150 mm from the center. The length of the solenoid is 150 mm; the length of a cryovessel for the solenoid with a 20 mm diameter 'warm' bore is 270 mm. This paper presents the main design features of the focusing solenoid and discusses results from tests of the solenoid.

  1. Simulation of Multipacting in SC Low Beta Cavities at FNAL

    SciTech Connect

    Romanov, Gennady; Berrutti, Paolo; Khabiboulline, Timergali

    2015-06-01

    Proton Improvement Plan-II at Fermilab is a plan for improvements to the accelerator complex aimed at providing a beam power capability of at least 1 MW on target at the initiation of LBNE (Long Base Neutrino Experiment) operations. The central element of the PIP-II is a new 800 MeV superconducting linac, injecting into the existing Booster. Multipacting affects superconducting RF cavities in the entire range from high energy elliptical cavities to coaxial resonators for low-beta applications. This work is focused on multipacting study in the low-beta 325 MHz spoke cavities; namely SSR1 and SSR2, which are especially susceptible to the phenomena. The extensive simulations of multipacting in the cavities with updated material properties and comparison of the results with experimental data helped us to improve overall reliability and accuracy of these simulations. Our practical approach to the simulations is described in details. For SSR2, which has a high multipacting barrier right at the operating power level, some changes of the cavity shape to mitigate this harmful phenomenon are proposed.

  2. Future Development Of The Flerov Laboratory Accelerator Complex (Project DRIBs-III)

    NASA Astrophysics Data System (ADS)

    Gulbekian, G. G.; Dmitriev, S. N.; Itkis, M. G.; Oganessian, Yu. Ts.; Popeko, A. G.

    2010-04-01

    Future development of the FLNR accelerator complex (project DRIBs-III) includes modernization of existing cyclotrons, construction of a new experimental hall, creation of a new high current cyclotron and of next generation experimental set-ups. Realization of the project is planned for 2010-2016.

  3. Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma

    SciTech Connect

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E.

    2014-05-15

    Bulk ion acceleration and particle heating during magnetic reconnection are studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). The plasma is in the two-fluid regime, where the motion of the ions is decoupled from that of the electrons within the ion diffusion region. The reconnection process studied here is quasi-symmetric since plasma parameters such as the magnitude of the reconnecting magnetic field, the plasma density, and temperature are compatible on each side of the current sheet. Our experimental data show that the in-plane (Hall) electric field plays a key role in ion heating and acceleration. The electrostatic potential that produces the in-plane electric field is established by electrons that are accelerated near the electron diffusion region. The in-plane profile of this electrostatic potential shows a “well” structure along the direction normal to the reconnection current sheet. This well becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. Since the in-plane electric field is 3–4 times larger than the out-of-plane reconnection electric field, it is the primary source of energy for the unmagnetized ions. With regard to ion acceleration, the Hall electric field causes ions near separatrices to be ballistically accelerated toward the outflow direction. Ion heating occurs as the accelerated ions travel into the high pressure downstream region. This downstream ion heating cannot be explained by classical, unmagnetized transport theory; instead, we conclude that ions are heated by re-magnetization of ions in the reconnection exhaust and collisions. Two-dimensional (2-D) simulations with the global geometry similar to MRX demonstrate downstream ion thermalization by the above mechanisms. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the

  4. Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory

    SciTech Connect

    Saveliev, Y M; Buckley, R K; Buckley, S R; Clarke, J A; Corlett, P A; Dunning, D J; Goulden, A R; Hill, S F; Jackson, F; Jamison, S P; Jones, J K; Jones, L B; Leonard, S; McIntosh, P A; McKenzie, J W; Middleman, K J; Militsyn, B L; Moss, A J; Muratori, B D; Orrett, J F; Pattalwar, S M; Phillips, P J; Scott, D J; Seddon, E A; Shepherd, B.J.A.; Smith, S L; Thompson, N; Wheelhouse, A E; Williams, P H; Harrison, P; Holder, D J; Holder, G M; Schofield, A L; Weightman, P; Williams, R L; Laundry, D; Powers, T; Priebe, G; Surman, M

    2010-05-01

    Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

  5. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense

  6. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    USGS Publications Warehouse

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  7. Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-10-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  8. Laboratory simulation of ion acceleration in the presence of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    McWilliams, R.; Koslover, R.; Boehmer, H.; Rynn, N.

    Ion acceleration perpendicular to the geomagnetic field has been observed by satellites and rockets in the suprauroral region. Also found are broadband lower-hybrid waves, and, at higher altitudes, conical upward-flowing ion distributions. The UCI Q-machine has been used to simulate the effect of lower hybrid waves on ion acceleration. Laser induced fluorescence was used for high resolution, non-perturbing measurements of the ion velocity distribution function. The plasma consisted of a 1 m long, 5 cm diameter barium plasma of densities on the order of 1010 per cm3 contained by a 3 kG magnetic field. Substantial changes in the perpendicular ion distribution were found. Main-body ion heating occurred along with non-maxwellian tail production. Over a 10 dB change in input wave power we observed up to a factor of 3 enhancement in main-body ion temperature.

  9. Performance of the accelerator driver of Jefferson Laboratory's Free-Electron Laser

    SciTech Connect

    Bohn, C L

    1998-09-01

    The driver for Jefferson Lab's infrared free-electron laser is a superconducting, recirculating accelerator that recovers about 75% of the electron-beam energy and converts it to radiofrequency power. It is designed to lase continuous-wave at 3--6 {mu}m at kW-level power. In achieving first light, the accelerator operated straight ahead to deliver 38 MeV, 1.1 mA cw current through the wiggler for lasing at wavelengths in the vicinity of 5 {mu}m. The waste beam was then sent directly to a dump, bypassing the recirculation loop. Stable operation at power levels up to 311 W cw have thus far been achieved in this mode. The accelerator has recently recirculated up to 0.6 mA cw current with energy recovery. In this mode it has lased pulsed and cw at low-power. It remains to clean up the transport for high-power cw lasing.

  10. Particle optics and accelerator modeling software for industrial and laboratory beamline design

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.

    1998-04-01

    The expanding variety of accelerator applications in research and industry places increased demands upon scientists and engineers involved in developing new accelerator and beamline designs. Computer codes for particle optics simulation have always played an important role in the design process and enhanced software tools offer the promise of improved productivity for beamline designers. This paper summarizes recent work on the development of advanced graphic user interface (GUI) software components, that can be linked directly to many of the standard particle optics programs used in the accelerator community, and which are aimed at turning that promise of improved productivity into a reality. An object oriented programming (OOP) approach has been adopted and a number of GUI components have been developed that run on several different operating systems. The emphasis is on assisting users in the setup and running of the optics programs without requiring any knowledge of the format, syntax, or similar requirements of the input. The components are being linked with several popular optics programs, including TRANSPORT, TURTLE, TRACE 3-D and PARMILA, to form integrated easy-to-use applications. Several advanced applications linking the GUI components with Lie algebra and other high-order simulation codes, as well as system level and facility modeling codes, are also under development. An overview of the work completed to date is presented, and examples of the new tools running on the Windows 95 operating system are illustrated.

  11. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. Cosmetic corrosion of painted aluminum and steel automotive body sheet: Results from outdoor and accelerated laboratory test methods

    SciTech Connect

    Moran, J.P.; Ziman, P.R.; Egbert, M.W.

    1995-11-01

    In recent years, increasing attention has been given to the need to develop an accelerated laboratory test method(s) for cosmetic corrosion of painted panels that realistically simulate in-service exposure. Much of that work has focused on steel substrates. The purpose of this research is to compare the corrosion performance of painted aluminum and steel sheet as determined om various laboratory methods and in-service exposure, and to develop a realistic accelerated test method for evaluation of the cosmetic corrosion of painted aluminum. Several aluminum sheet products from the 2xxx, 5xxx, and 6xxx alloy series have been tested. The steel substrates are similar to those used in other programs. The test methods chosen represent a cross-section of methods common to the automotive and aluminum industries for evaluation of painted sheet metal products. The results indicate that there is considerable difference in the relative correlation of various test methods to in-service exposure. In addition, there is considerable difference in the relative magnitudes and morphologies of corrosion, and occasionally in the relative rankings, as a function of test method. The influence of alloy composition and zinc phosphate coating weight are also discussed.

  13. Observation of transverse instabilities in the FNAL 200 MeV Linac

    SciTech Connect

    McCrory, E.; Lee, G.; Webber, R.C.

    1988-10-01

    Using newly installed Beam Position Monitors in the downstream half of the FNAL Linac, we have observed significant transverse beam instabilities within the 30 ..mu..s beam pulse. We can affect the instability so that the peak-to-peak amplitude is as small as 0.5 mm or as large as 8 mm. The effect is largely due to a beam-plasma instability in the ten-meter 750-keV transport line. Other causes are being investigated. Using these instabilities as an analysis tool, the betatron amplitude of the beam has been reduced. 7 refs., 4 figs.

  14. A 2 MeV, 100 mA electron accelerator for a small laboratory environment

    NASA Astrophysics Data System (ADS)

    Clayton, C. E.; Marsh, K. A.

    1993-03-01

    A small, high performance electron linear accelerator is described. It is a modified version of a commercially available portable x-ray source. The 9.3 GHz rf linac and beamline deliver a 3 ns train of approximately 15 ps pulses with a peak current, limited by beam loading of the rf structure, of more than 100 mA and a beam energy of around 2 MeV with a 5% full width at half maximum energy spread. The beam emittance is 6π mm mrad and the final spot size is 250 μm diam for f/10 focusing.

  15. Laboratory simulation of ion acceleration in the presence of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    McWilliams, R.; Koslover, R.; Boehmer, H.; Rynn, N.

    The UCI Q-machine has been used to simulate the effect of lower hybrid waves on ion acceleration. Laser induced fluorescence was used for high resolution, nonperturbing measurements of the ion velocity distribution function. The plasma consisted of a 1 m long, 5 cm diameter barium plasma of densities on the order of 10 to the 10th per cu cm contained by a 3 kG magnetic field. Substantial changes in the perpendicular ion distribution were found. Main-body ion heating occurred along with non-Maxwellian tail production.

  16. Laboratory Experiments with the Concordia College High-Speed Dust Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Manning, H. L.

    2011-12-01

    During the Apollo Era, NASA's Goddard Space Flight Center built a 2MeV high-speed, dust particle accelerator. This facility was used to test and calibrate the LEAM instrument which was flown to the lunar surface by Apollo 17. As the Apollo project wound down, NASA no longer had need of the dust particle accelerator, and in 1975, it was move to Concordia College in Moorhead, MN. Through the years, it has been maintained and some modifications and improvements have been made to it. In the past decade, the facility has been revived and used by several collaborating institutions to study dust detector instrumentation as well as the effects of dust impacts on various materials. We have tested a prototype, space-flight dust particle detector. Also, piezoelectric pins which can be used as dust detectors were studied to learn the pin's response to single particle impacts of different energies and momenta, and then those measured responses were compared with theoretical models. The effects of high speed impacts on ultra-high temperature ceramics, aerogel, and several different thin films have also been studied at our facility. The results of these experiments will be presented.

  17. Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing models

    NASA Astrophysics Data System (ADS)

    Manandhar, Chandra Bahadur

    The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration. To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels Ndesign gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids Ndesign (2%) level performed very poorly in the HWTD test. HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids Ndesign of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22. Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of

  18. Stunt Barbie - A Laboratory Practicum Combining Constant Velocity and Constant Acceleration

    NASA Astrophysics Data System (ADS)

    Hertting, Scott

    2011-04-01

    In preparing to teach the advanced physics course at my high school, I found it useful to work through the end-of-chapter problems in the book used by the advanced class. A problem on motion in one dimension involved a stunt woman in free fall from a tree limb onto a horse running beneath her.2 The problem presents a connected learning opportunity for students because it requires the use of the constant velocity model xf = v*t + xi and the constant acceleration model yf = ½* g* t2 + vyi* t + yi (where g = 9.8 m/s/s) to solve it. I named the stunt woman Barbie and created an activity titled "Stunt Barbie."

  19. Characteristics of a veteran acrylic lens relative to acrylic lens materials after accelerated laboratory weathering

    NASA Astrophysics Data System (ADS)

    Miller, David C.; Arndt, Thomas; Kogler, René

    2015-09-01

    The durability of poly(methyl methacrylate) is examined using veteran lenses obtained from CPV modules fielded for 27 years in Phoenix. The lens facets were milled from the lens interior, followed by depth-specific toming to characterize variation at four depths through the thickness. Optical transmittance was measured using a spectrophotometer, both with and without an integrating sphere. Diffuse transmittance (the optical haze) and yellowness index were determined from the transmittance. Molecular weight was characterized using size exclusion chromatography, also in conjunction with the toming. The veteran lens material is compared to contemporary PMMA formulations, aged in an indoor chamber. The modest reductions in transmittance and molecular weight for the lenses were generally similar to those of the contemporary materials, suggesting an indoor accelerated aging test might be used; additional tests must, however, be applied to invoke the haze, uniquely observed for the lens specimen.

  20. Future directions in controlling the LAMPF-PSR Accelerator Complex at Los Alamos National Laboratory

    SciTech Connect

    Stuewe, R.; Schaller, S.; Bjorklund, E.; Burns, M.; Callaway, T.; Carr, G.; Cohen, S.; Kubicek, D.; Harrington, M.; Poore, R.; Schultz, D.

    1991-01-01

    Four interrelated projects are underway whose purpose is to migrate the LAMPF-PSR Accelerator Complex control systems to a system with a common set of hardware and software components. Project goals address problems in performance, maintenance and growth potential. Front-end hardware, operator interface hardware and software, computer systems, network systems and data system software are being simultaneously upgraded as part of these efforts. The efforts are being coordinated to provide for a smooth and timely migration to a client-sever model-based data acquisition and control system. An increased use of the distributed intelligence at both the front-end and operator interface is a key element of the projects. 2 refs., 2 figs.

  1. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    SciTech Connect

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  2. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Romain; Zhang, Xiuwen; Hu, Linhua; Yu, Liping; Lin, Yuyuan; Sunde, Tor O. L.; Chon, Danbee; Poeppelmeier, Kenneth R.; Zunger, Alex

    2015-04-01

    Chemists and material scientists have often focused on the properties of previously reported compounds, but neglect numerous unreported but chemically plausible compounds that could have interesting properties. For example, the 18-valence electron ABX family of compounds features examples of topological insulators, thermoelectrics and piezoelectrics, but only 83 out of 483 of these possible compounds have been made. Using first-principles thermodynamics we examined the theoretical stability of the 400 unreported members and predict that 54 should be stable. Of those previously unreported ‘missing’ materials now predicted to be stable, 15 were grown in this study; X-ray studies agreed with the predicted crystal structure in all 15 cases. Among the predicted and characterized properties of the missing compounds are potential transparent conductors, thermoelectric materials and topological semimetals. This integrated process—prediction of functionality in unreported compounds followed by laboratory synthesis and characterization—could be a route to the systematic discovery of hitherto missing, realizable functional materials.

  3. Cracking and delamination behaviors of photovoltaic backsheet after accelerated laboratory weathering

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Chi; Lyu, Yadong; Hunston, Donald L.; Kim, Jae Hyun; Wan, Kai-Tak; Stanley, Deborah L.; Gu, Xiaohong

    2015-09-01

    The channel crack and delamination phenomena that occurred during tensile tests were utilized to study surface cracking and delamination properties of a multilayered backsheet. A model sample of commercial PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet was studied. Fragmentation testing was performed after accelerated aging with and without ultraviolet (UV) irradiation in two relative humidity (RH) levels (5 % RH and 60 % RH) at elevated temperature (85 °C) conditions for 11 days and 22 days. Results suggest that the embrittled surface layer resulting from the UV photo-degradation is responsible for surface cracking when the strain applied on the sample is far below the yielding strain (2.2 %) of the PPE sample. There was no surface cracking observed on the un-aged sample and samples aged without UV irradiation. According to the fragmentation testing results, the calculated fracture toughness (KIC) values of the embrittled surface layer are as low as 0.027 MPa·m1/2 to 0.104 MPa·m1/2, depending on the humidity levels and aging times. Surface analysis using attenuated total reflectance Fourier transform infrared and atomic force microscopy shows the degradation mechanism of the embrittled surface layer is a combination of the photodegradation within a certain degradation depth and the moisture erosion effect depending on the moisture levels. Specifically, UV irradiation provides a chemical degradation effect while moisture plays a synergistic effect on surface erosion, which influences surface roughness after aging. Finally, there was no delamination observed during tensile testing in this study, suggesting the surface cracking problem is more significant than the delamination for the PPE backsheet material and conditions tested here.

  4. The André E. Lalonde AMS Laboratory - The new accelerator mass spectrometry facility at the University of Ottawa

    NASA Astrophysics Data System (ADS)

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.; Cornett, R. J.; Litherland, A. E.; Klein, M.; Mous, D. J. W.; Alary, J.-F.

    2015-10-01

    The University of Ottawa, Canada, has installed a multi-element, 3 MV tandem AMS system as the cornerstone of their new Advanced Research Complex and the principal analytical instrument of the André E. Lalonde Accelerator Mass Spectrometry Laboratory. Manufactured by High Voltage Engineering Europa B.V., the Netherlands, it is equipped with a 200 sample ion source, a high resolution, 120° injection magnet, a 90° high energy analysis magnet (mass-energy product 350 MeV-AMU), a 65°, 1.7 m radius electric analyzer and a 2 channel gas ionization detector. It is designed to analyze isotopes ranging from tritium to the actinides and to accommodate the use of fluoride target materials. This system is being extended with a second injection line, consisting of selected components from the IsoTrace Laboratory, University of Toronto. This line will contain a pre-commercial version of the Isobar Separator for Anions, manufactured by Isobarex Corp., Bolton, Ontario, Canada. This instrument uses selective ion-gas reactions in a radio-frequency quadrupole cell to attenuate both atomic and molecular isobars. This paper discusses the specifications of the new AMS equipment, reports on the acceptance test results for 10Be, 14C, 26Al and 127I and presents typical spectra for 10Be and actinide analyses.

  5. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  6. Accelerator development for the NRL (Naval Research Laboratory) free-electron-laser program. Final report, July 1981-April 1986

    SciTech Connect

    Lucey, R.; Putnam, S.

    1988-06-01

    Included in the report are descriptions of the final assembly and operation of the Linear Induction Accelerator(LIA), installation and testing of a new accelerating gap in the five-core stage of the accelerator to operate at 150 kV, and the moving of and modifications of the charging and firing controls for remote operation of the accelerator.

  7. Proposal for Drell-Yan Measurements of Nucleon and Nuclear Structure with the FNAL Main Injector

    SciTech Connect

    Isenhower, L.D.; Sadler, M.E.; Arrinton, J.; Geesamn, D.F.; Holt, R.J.; Jackson, H.E.; Reimer, P.E.; Potterveld, D.H.; Brown, C.N.; Garvey, G.T.; Leitch, M.J.; /Los Alamos /Rutgers U. /Texas A-M /Valparaiso U.

    2001-04-01

    We propose measuring the fractional momentum (x) dependence of the ratio of the anti-down to anti-up quark distributions in the proton, {bar d}(x)/{bar u}(x), using proton induced Drell-Yan reactions at 120 GeV. Recent measurements by FNAL E866 unexpectedly show considerable x dependence in this ratio for x > 0.2. A lower energy primary proton beam from the Main Injector makes it possible to extend the E866 measurements to larger x with much higher precision. The apparatus will also be used with nuclear targets to measure parton energy loss and modifications to anti-quark distributions in nuclear targets at large x (x > 0.2).

  8. The FNAL e938 Experiment: The Mexican Contribution to the MINER{nu}A Collaboration

    SciTech Connect

    Felix, J.; Castorena, J.; Higuera, A.; Gutierrez, M. R.; Moreno, G.; Reyes, M. A.; Urrutia, Z.; Zavala, G.; Morfin, J. G.

    2009-04-20

    The MINER{nu}A (Main INjector ExpeRiment for {nu}A) collaboration (http://minerva.fnal.gov//) is a neutrino scattering experiment which uses the NuMI beam-line at Fermilab. It seeks to measure low energy neutrino interactions both to support neutrino oscillation experiments and to study the strong dynamics of the nucleon and nucleus that affect these interactions. It is currently in its final prototyping stage and is preparing for full-scale construction. The first detector module was completed in early 2006 and it is planned to begin taking data in 2009. We present an overview of this experiment, emphasizing the Mexican contribution, and giving the potential physics results that this collaboration can contribute to the physics of neutrino.

  9. Electron-Cloud Build-up in the FNAL Main Injector

    SciTech Connect

    Furman, M.A.

    2007-06-04

    We present a summary on ongoing simulation results for the electron-cloud buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade [1] in a fieldfree region at the location of the RFA electron detector [2]. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding measurements obtained with the RFA we infer that the peak secondary electron yield (SEY) {delta}{sub max} is {approx}> 1.4, and the average electron density is n{sub e} {approx}> 10{sup 10} m{sup -3} at transition energy for the specific fill pattern and beam intensities defined below. The sensitivity of our results to several variables remains to be explored in order to reach more definitive results. Effects from the electron cloud on the beam are being investigated separately [3].

  10. Design of 325 MHz single and triple spoke resonators at FNAL

    SciTech Connect

    Lanfranco, G.; Apollinari, G.; Gonin, I.; Khabiboulline, T.; McConologue, F.; Romanov, G.; Wagner, R.; /Fermilab

    2006-08-01

    The proposed 8-GeV driver at FNAL is based on approximately 400 independently phased SC resonators. In this paper the design of 325 MHz Spoke Resonators, two single spoke resonators ({beta}=0.22 and {beta}=0.4) and a triple spoke resonator ({beta}=0.62), for the High Intensity Neutrino Source (HINS) front end is presented. We describe the optimization of the spoke resonators geometry, the goal being to minimize the E{sub peak}/E{sub acc} and B{sub peak}/E{sub acc} ratios. We report on the coupled ANSYS-MWS analysis on the resonators mechanical properties and power coupler RF design. The current status of mechanical design, slow tuning mechanism and cryostat are also presented.

  11. Reduction of beam current noise in the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S. Karns, P. R. Tan, C. Y.

    2015-04-08

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  12. Representing Value as Digital Object: A Discussion of Transferability and Anonymity; Digital Library Initiatives of the Deutsche Forschungsgemeinschaft; CrossRef Turns One; Fermi National Accelerator Laboratory (Fermilab).

    ERIC Educational Resources Information Center

    Kahn, Robert E.; Lyons, Patrice A.; Brahms, Ewald; Brand, Amy; van den Bergen, Mieke

    2001-01-01

    Includes four articles that discuss the use of digital objects to represent value in a network environment; digital library initiatives at the central public funding organization for academic research in Germany; an application of the Digital Object Identifier System; and the Web site of the Fermi National Accelerator Laboratory. (LRW)

  13. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory.

    SciTech Connect

    Paris, E.

    2004-04-05

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather more broadly--at certain points--with the explicit ''struggle for the hearts and minds of

  14. GLADE Global Liquid Argon Detector Experiment: a letter of intent to FNAL

    SciTech Connect

    Thomas, Jennifer

    2012-05-13

    The recent measurements of the {theta}{sub 13} mixing angle, which controls the observable size of any CP violation effects, open a window of opportunity to take advantage of the world's most powerful existing neutrino beam together with recent successes in development of the ultimate detector technology for the detection of electron neutrinos : a liquid argon (LAr) time projection chamber. During this proposed project a 5kt LAr detector (GLADE) will be developed by European groups to be put in a cryostat in the NuMI neutrino beam at Fermi National Accelerator Laboratory in the US and will start taking data in 3-5 years time to address the neutrino mass ordering. The successful fruition of this project, along with nominal exposure at NO{nu}A and T2K, together with information from double beta decay experiments could ascertain that neutrinos are Dirac particles in the next decade.

  15. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    SciTech Connect

    Jernigan, J.G.; Arens, J.; Vezie, D. . Space Sciences Lab.); Shapiro, S.L. ); Collins, T. ); Krider, J. ); Skubic, P. )

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 [times] 2.56 pixels 30 [mu]m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45[degrees]. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions are presented. Preliminary calculations show spatial resolution of less than 5 [mu]m in two dimensions.

  16. Preliminary test results from a telescope of Hughes pixel arrays at FNAL

    SciTech Connect

    Jernigan, J.G.; Arens, J.; Vezie, D.; Shapiro, S.L.; Collins, T.; Krider, J.; Skubic, P.

    1992-09-01

    In December of 1991 three silicon hybrid pixel detectors each having 2.56 {times} 2.56 pixels 30 {mu}m square, made by the Hughes Aircraft Company, were placed in a high energy muon beam at the Fermi National Accelerator Laboratory. Straight tracks were recorded in these detectors at angles to the normal to the plane of the silicon ranging from 0 to 45{degrees}. In this note, preliminary results are presented on the straight through tracks, i.e., those passing through the telescope at normal incidence. Pulse height data, signal-to-noise data, and preliminary straight line fits to the data resulting in residual distributions are presented. Preliminary calculations show spatial resolution of less than 5 {mu}m in two dimensions.

  17. Recent experience in the fabrication and brazing of ceramic beam tubes for kicker magnets at FNAL

    SciTech Connect

    Ader, C.R.; Jensen, C.; Reilly, R.; Snee, D.; Wilson, J.H.; /Fermilab

    2008-06-01

    Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil (titanium/incusil) alloy brazing material are stacked in the furnace and then brazed in the furnace at 1000 C. The ceramic specified is 99.8% Alumina, Al{sub 2}O{sub 3}, a strong recrystallized high-alumina fabricated by slip casting. Recent experience at Fermilab with the fabrication and brazing of these tubes has brought to light numerous problems including tube breakage and cracking and also the difficulty of brazing the tube to produce a leak-tight joint. These problems may be due to the ceramic quality, voids in the ceramic, thinness of the wall, and micro-cracks in the ends which make it difficult to braze because it cannot fill tiny surface cracks which are caused by grain pullout during the cutting process. Solutions which are being investigated include lapping the ends of the tubes before brazing to eliminate the micro-cracks and also metallization of the tubes.

  18. Data Plots from FNAL-E907: Main Injector Particle Production Experiment (MIPP)

    DOE Data Explorer

    The Main Injector Particle Production Experiment (FNAL E-907, MIPP), situated in the Meson Center beamline at Fermilab, took data during the first half of 2005. MIPP was designed primarily as an experiment to measure and study in detail the dynamics associated with non-perturbative strong interactions. The primary physics motivation behind MIPP was to restart the study of non-perturbative QCD interactions, which constitute over 99% of the strong interaction cross section. The available data of that time were of poor quality and old and were not in easily accessible form. The Time Projection Chamber (TPC) [6] that was at the heart of the MIPP experiment represented the electronic equivalent of the bubble chamber with vastly superior data acquisition rates. It also digitized the charged tracks in three dimensions, obviating the need for track matching across stereo views. Coupled with the particle identification capability of MIPP, the data from MIPP was intended to add significantly to the knowledge base of non-perturbative QCD. One of the primary goals of MIPP was to verify a general scaling law of inclusive particle production that states that the ratio of a semi-inclusive cross section to an inclusive cross section involving the same particles is a function only of the missing mass squared (M2) of the system and not of the other two Mandelstam variables s and t, the center of mass energy squared and the momentum transfer squared, respectively. [Copied and edited from the following publication: The Main Injector Particle Production Experiment (MIPP) at Fermilab, Rajendran Raja, Institute of Physics (IOP) Publishing, Journal of Physics: Conference Series 9 (2005) 303 û 308, doi:10.1088/1742-6596/9/1/058 at www.iop.org/EJ/article/1742-6596/9/1/058/jpconf5_9_058.pdf] There are approximately 40 data plots available to the public from E907. A proposal to upgrade the MIPP experiment (E-P-960) has been deferred. See the MIPP homepage at http://ppd.fnal

  19. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  20. High Power Beam Test and Measurement of Emittance Evolution of a 1.6-Cell Photocathode RF Gun at Pohang Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ho; Park, Sung-Ju; Kim, Changbum; Parc, Yong-Woon; Hong, Ju-Ho; Huang, Jung-Yun; Xiang, Dao; Wang, Xijie; Ko, In Soo

    2007-04-01

    A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femtosecond electron diffraction (FED), femtosecond far infrared radiation (fs-FIR) facility, and X-ray free electron laser (XFEL) facilities at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic components and auxiliary systems. We report here the measurement of the basic beam parameters which confirm a successful fabrication of the photocathode RF gun system. The emittance evolution is measured by an emittance meter and compared with the PARMELA simulation, which shows a good agreement.

  1. Electron-Cloud Build-Up Simulations for the FNAL Main Injector

    SciTech Connect

    Furman, Miguel .A.

    2008-08-25

    We present a summary on ongoing simulation results for the electron-cloud (EC) buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade effort [1]. Most of the results presented here are for the field-free region at the location of the retarding field analyzer (RFA) electron detector [2-4]. The primary input variable we exercise is the peak secondary electron yield (SEY) {delta}{sub max}, which we let vary in the range 1.2 {le} {delta}{sub max} {le} 1.7. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding RFA measurements we infer that 1.25 {approx}< {delta}{sub max} {approx}< 1.35 at this location. From this piece of information we estimate features of the EC distribution for various fill patterns, including the average electron number density n{sub e}. We then compare the behavior of the EC for a hypothetical RF frequency f{sub RF} = 212 MHz with the current 53 MHz for a given total beam population N{sub tot}. The density n{sub e} goes through a clear threshold as a function of N{sub tot} in a field-free region. As expected, the higher frequency leads to a weaker EC effect: the threshold in N{sub tot} is a factor {approx} 2 higher for f{sub RF} = 212 MHz than for 53 MHz, and ne is correspondingly lower by a factor {approx} 2 when N{sub tot} is above threshold. We briefly describe further work that needs to be carried out, sensitivities in the calculation, and puzzles in the results that remain to be addressed.

  2. Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC

    SciTech Connect

    Oleg A. Grachov et al.

    2004-05-04

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  3. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE PAGESBeta

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  4. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    SciTech Connect

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg from Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.

  5. World Pendulum--A Distributed Remotely Controlled Laboratory (RCL) to Measure the Earth's Gravitational Acceleration Depending on Geographical Latitude

    ERIC Educational Resources Information Center

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.

    2007-01-01

    We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy [delta]g is approximately equal to 0.01 m s[superscript -2]). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes…

  6. Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model

    SciTech Connect

    LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

    2000-04-13

    Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

  7. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  8. Relativistic electron acceleration by compressional-mode ULF waves: Evidence from correlated Cluster, Los Alamos National Laboratory spacecraft, and ground-based magnetometer measurements

    NASA Astrophysics Data System (ADS)

    Tan, Lun C.; Shao, X.; Sharma, A. S.; Fung, Shing F.

    2011-07-01

    Simultaneous observations by Cluster and Los Alamos National Laboratory (LANL) spacecraft and Canadian Array for Real-Time Investigations of Magnetic Activity and International Monitor for Auroral Geomagnetic Effects magnetometer arrays during a sudden storm commencement on 25 September 2001 show evidence of relativistic electron acceleration by compressional-mode ULF waves. The waves are driven by the quasiperiodic solar wind dynamical pressure fluctuations that continuously buffet the magnetosphere for ˜3 h. The compressional-mode ULF waves are identified by comparing the power of magnetic field magnitude fluctuations with the total magnetic field power. The radial distribution and azimuthal propagation of both toroidal and poloidal-mode ULF waves are derived from ground-based magnetometer data. The energetic electron fluxes measured by LANL show modulation of low-energy electrons and acceleration of high-energy electrons by the compressional poloidal-mode electric field oscillations. The energy threshold of accelerated electrons at the geosynchronous orbit is ˜0.4 MeV, which is roughly consistent with drift-resonant interaction of magnetospheric electrons with compressional-mode ULF waves.

  9. Statistical correlation of the soil incubation and the accelerated laboratory extraction methods to estimate nitrogen release rates of slow- and controlled-release fertilizers.

    PubMed

    Medina, L Carolina; Sartain, Jerry; Obreza, Thomas; Hall, William L; Thiex, Nancy J

    2014-01-01

    Several technologies have been proposed to characterize the nutrient release patterns of enhanced-efficiency fertilizers (EEFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product-specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize nutrient release of slow-release fertilizer (SRF) and controlled-release fertilizer (CRF) materials, no official method exists to assess their nutrient release patterns. However, the increased production and distribution of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. Nonlinear regression was used to establish a correlation between the data generated from a 180-day soil incubation-column leaching procedure and 74 h accelerated lab extraction method, and to develop a model that can predict the 180-day nitrogen (N) release curve for a specific SRF and CRF product based on the data from the accelerated laboratory extraction method. Based on the R2 > 0.90 obtained for most materials, results indicated that the data generated from the 74 h accelerated lab extraction method could be used to predict N release from the selected materials during 180 days, including those fertilizers that require biological activity for N release. PMID:25051612

  10. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    PubMed

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion. PMID:27220096

  11. Accelerator mass spectrometry of 63Ni using a gas-filled magnet at the Munich Tandem Laboratory

    NASA Astrophysics Data System (ADS)

    Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Marchetti, A. A.; McAninch, J. E.; Rühm, W.; Straume, T.; Wallner, C.

    2000-10-01

    The detection of 63Ni ( T1/2=100.1 yr) by means of accelerator mass spectrometry (AMS) using a gas-filled magnet (GFM) is described. The experimental setup includes a dedicated ion source, a 14 MV MP tandem, a GFM and a multi-anode ionization chamber. First results indicate a background level of 63Ni/Ni ratios as low as 2×10 -14. This sensitivity will allow - for the first time ever - to detect 63Ni induced by fast neutrons in copper samples from Hiroshima and Nagasaki, even for distances beyond 1500 m from the hypocenters. Thus, it will be possible to reconstruct experimentally the neutron doses of the A-bomb survivors from Hiroshima and Nagasaki.

  12. Evaluation of a commercial system for CAMAC-based control of the Chalk River Laboratories tandem-accelerator-superconducting-cyclotron complexcomplex

    SciTech Connect

    Greiner, B.F.; Caswell, D.J.; Slater, W.R. )

    1992-04-01

    This paper discusses the control system of the Tandem Accelerator Superconducting Cyclotron (TASCC) of AECL Research at its Chalk River Laboratories which is presently based on a PDP-11 computer and the IAS operating system. The estimated expense of a custom conversion of the system to a current, equivalent operating system is prohibitive. The authors have evaluated a commercial control package from VISTA Control Systems based on VAX microcomputers and the VMS operating system. Vsystem offers a modern, graphical operator interface, an extensive software toolkit for configuration of the system and a multi-feature data-logging capability, all of which far surpass the functionality of the present control system. However, the implementation of some familiar, practical features that TASCC operators find to be essential has proven to be challenging. The assessment of Vsystem, which is described in terms of presently perceived strengths and weaknesses, is, on balance, very positive.

  13. Design of a hard X-ray beamline and end-station for pump and probe experiments at Pohang Accelerator Laboratory X-ray Free Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Park, Jaeku; Eom, Intae; Kang, Tai-Hee; Rah, Seungyu; Nam, Ki Hyun; Park, Jaehyun; Kim, Sangsoo; Kwon, Soonam; Park, Sang Han; Kim, Kyung Sook; Hyun, Hyojung; Kim, Seung Nam; Lee, Eun Hee; Shin, Hocheol; Kim, Seonghan; Kim, Myong-jin; Shin, Hyun-Joon; Ahn, Docheon; Lim, Jun; Yu, Chung-Jong; Song, Changyong; Kim, Hyunjung; Noh, Do Young; Kang, Heung Sik; Kim, Bongsoo; Kim, Kwang-Woo; Ko, In Soo; Cho, Moo-Hyun; Kim, Sunam

    2016-02-01

    The Pohang Accelerator Laboratory X-ray Free Electron Laser project, a new worldwide-user facility to deliver ultrashort, laser-like x-ray photon pulses, will begin user operation in 2017 after one year of commissioning. Initially, it will provide two beamlines for hard and soft x-rays, respectively, and two experimental end-stations for the hard x-ray beamline will be constructed by the end of 2015. This article introduces one of the two hard x-ray end-stations, which is for hard x-ray pump-probe experiments, and primarily outlines the overall design of this end-station and its critical components. The content of this article will provide useful guidelines for the planning of experiments conducted at the new facility.

  14. The new external microbeam facility at the 5 MV Tandetron accelerator laboratory in Madrid: beam characterisation and first results

    NASA Astrophysics Data System (ADS)

    Enguita, Olga; Fernández-Jiménez, M. T.; García, G.; Climent-Font, A.; Calderón, T.; Grime, G. W.

    2004-06-01

    This paper describes the new external microbeam on the 15° beamline of the 5 MV Tandetron accelerator recently installed at the CMAM in Madrid. The focusing and beam extraction system was supplied by Oxford Microbeams Ltd. and consists of a high precision quadrupole doublet with an interchangeable Kapton window exit nozzle and front-viewing video microscope. The sample is positioned in the beam using a stepper motor stage. The beam current and beam profile have been determined under different experimental conditions. A simple method based on the signal processing of ion-induced luminescence from quartz targets has been used to determine the beam profile in two dimensions simultaneously, without scanning. This is the first step in the development of a real time beam profile monitoring system, which could be used as part of an automated beam focusing procedure. The beam line will be primarily devoted to archaeometry and cultural heritage studies. As an example we report the characterisation of two Tang appearance antique porcelains.

  15. Tests of an environmental and personnel safe cleaning process for Brookhaven National Laboratory accelerator and storage ring components

    SciTech Connect

    Foerster, C.L.; Lanni, C.; Lee, R.; Mitchell, G.; Quade, W.

    1997-05-01

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its ultrahigh vacuum (UHV) components during and after construction. A new UHV cleaning process, which has to be environmentally and personnel safe, is needed to replace the harsh, unfriendly process which is still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on photon stimulated desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel, and oxygen-free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 eV. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils, and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 10{sup 22} and 10{sup 23} photons per meter for a PSD measurement. Desorption yields for H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and H{sub 2}O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories. After modification, the new UHV cleaning process was accepted by BNL.

  16. Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory

    NASA Astrophysics Data System (ADS)

    Xie, Shaodong; Qi, Li; Zhou, Ding

    Deterioration of cement concrete specimens caused by simulated acid rain was investigated by laboratory tests. Before and after cement concrete specimens were exposed to simulated acid rain, the neutralized depth, the compressive strength and the chemical compositions in the hardened cement paste were measured. The mineralogical composition of the concrete specimens was analyzed with XRD. The results lead to the following conclusions: the neutralized depth of the concrete specimens of all experiments can be described as a power function of exposure duration, CaO loss and the reduction rate of strength increased with H + and decreased with SO 42- concentration in simulated acid rain. The original mineral compounds such as [Na K]AlSi 3O 8 and [Ca Na][SiAl] 4O 8 in the hardened cement paste are converted to CaSO 4·2H 2O, CaAl 2Si 2O 8 and Ca 3Al 6O 12·CaSO 4. And these are larger in volume so that the reaction with SO 42- ions result in volume expansion and strength decrease. The reduction rate of strength has a binary linear relation to the CaO loss rate and the ratio of SO 3 content to CaO content in the hardened cement paste. So the deterioration of acid rain on the concrete specimen is caused by both H + dissolution and SO 42- expansion.

  17. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    SciTech Connect

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research site in Canada that was commissioned in 1964 by Atomic Energy of Canada Limited. It covers a total area of approximately 4,375 hectares (10,800 acres) and includes the main campus site, the Waste Management Area (WMA) and outer areas of land identified as not used for or impacted by nuclear development or operations. The WL site employed up to 1100 staff. Site activities included the successful operation of a 60 MW organic liquid-cooled research reactor from 1965 to 1985, and various research programs including reactor safety research, small reactor development, fuel development, biophysics and radiation applications, as well as work under the Canadian Nuclear Fuel Waste Management Program. In 1997, AECL made a business decision to discontinue research programs and operations at WL, and obtained government concurrence in 1998. The Nuclear Legacy Liabilities Program (NLLP) was established in 2006 by the Canadian Government to remediate nuclear legacy liabilities in a safe and cost effective manner, including the WL site. The NLLP is being implemented by AECL under the governance of a Natural Resources Canada (NRCan)/AECL Joint Oversight Committee (JOC). Significant progress has since been made, and the WL site currently holds the only Canadian Nuclear Safety Commission (CNSC) nuclear research site decommissioning license in Canada. The current decommissioning license is in place until the end of 2018. The present schedule planned for main campus decommissioning is 30 years (to 2037), followed by institutional control of the WMA until a National plan is implemented for the long-term management of nuclear waste. There is an impetus to advance work and complete decommissioning sooner. To accomplish this, AECL has added significant resources, reorganized and moved to a projectized environment. This presentation outlines changes made to the organization, the tools implemented to foster projectization, and the benefits

  18. Calculation of Transactinide Homolog Isotope Production Reactions Possible with the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory

    SciTech Connect

    Moody, K J; Shaughnessy, D A; Gostic, J M

    2011-11-29

    The LLNL heavy element group has been investigating the chemical properties of the heaviest elements over the past several years. The properties of the transactinides (elements with Z > 103) are often unknown due to their low production rates and short half-lives, which require lengthy cyclotron irradiations in order to make enough atoms for statistically significant evaluations of their chemistry. In addition, automated chemical methods are often required to perform consistent and rapid chemical separations on the order of minutes for the duration of the experiment, which can last from weeks to months. Separation methods can include extraction chromatography, liquid-liquid extraction, or gas-phase chromatography. Before a lengthy transactinide experiment can be performed at an accelerator, a large amount of preparatory work must be done both to ensure the successful application of the chosen chemical system to the transactinide chemistry problem being addressed, and to evaluate the behavior of the lighter elemental homologs in the same chemical system. Since transactinide chemistry is literally performed on one single atom, its chemical properties cannot be determined from bulk chemical matrices, but instead must be inferred from the behavior of the lighter elements that occur in its chemical group and in those of its neighboring elements. By first studying the lighter group homologs in a particular chemical system, when the same system is applied to the transactinide element under investigation, its decay properties can be directly compared to those of the homologues, thereby allowing an inference of its own chemistry. The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) includes a 1 MV Tandem accelerator, capable of accelerating light ions such as protons to energies of roughly 15 MeV. By using the CAMS beamline, tracers of transactinide homolog elements can be produced both for development of chemical systems and

  19. Accelerator mass spectrometry of 63Ni at the Munich Tandem Laboratory for estimating fast neutron fluences from the Hiroshima atomic bomb.

    PubMed

    Rühm, W; Knie, K; Rugel, G; Marchetti, A A; Faestermann, T; Wallner, C; McAninch, J E; Straume, T; Korschinek, G

    2000-10-01

    After the release of the present dosimetry system DS86 in 1987, measurements have shown that DS86 may substantially underestimate thermal neutron fluences at large distances (>1,000 m) from the hypocenter in Hiroshima. This discrepancy casts doubts on the DS86 neutron source term and, consequently, the survivors' estimated neutron doses. However, the doses were caused mainly by fast neutrons. To determine retrospectively fast neutron fluences in Hiroshima, the reaction 63Cu(n, p)63Ni can be used, if adequate copper samples can be found. Measuring 63Ni (half life 100 y) in Hiroshima samples requires a very sensitive technique, such as accelerator mass spectrometry (AMS), because of the relatively small amounts of 63Ni expected (approximately 10(5)-10(6) atoms per gram of copper). Experiments performed at Lawrence Livermore National Laboratory have demonstrated in 1996 that AMS can be used to measure 63Ni in Hiroshima copper samples. Subsequently, a collaboration was established with the Technical University of Munich in view of its potential to perform more sensitive measurements of 63Ni than the Livermore facility and in the interest of interlaboratory validation. This paper presents the progress made at the Munich facility in the measurement of 63Ni by AMS. The Munich accelerator mass spectrometry facility is a combination of a high energy tandem accelerator and a detection system featuring a gas-filled magnet. It is designed for high sensitivity measurements of long-lived radioisotopes. Optimization of the ion source setup has further improved the sensitivity for 63Ni by reducing the background level of the 63Cu isobar interference by about two orders of magnitude. Current background levels correspond to a ratio of 63Ni/Ni<2x10(-14) and suggest that, with adequate copper samples, the assessment of fast neutron fluences in Hiroshima and Nagasaki is possible for ground distances of up to 1500 m, and--under favorable conditions--even beyond. To demonstrate this

  20. Design study for a hard X-ray source with a femto-second length by using Compton scattering at the Pohang Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San; Kim, KyungRyul

    2016-02-01

    X-ray generation based on laser-electron Compton scattering is a method to generate a compact high-flux X-ray source. At the Pohang Accelerator Laboratory's (PAL's) fs-THz facility, 3-THz radiation has been achieved using an electron beam of 150 fs rms. To further enhance the radiation bandwidth, we present design results on X-ray generation by using Compton scattering at the facility. We show the design performance for the Compton source by using a 75-MeV electron linac with a 800-nm laser system. The Compton scattering X-ray source will be a compact facility that produces 3.1 × 107 photons in a single shot and a maximum photon energy of 130 keV. In this paper, we show the system layout and the design parameters that offers an ultra-short, high-flux hard X-ray source. We present the simulation studies to optimize the parameters of the electron beam and the X-ray pulse that was given by code CAIN.

  1. Studies of E-Cloud Build up for the FNAL Main Injector and for theLHC

    SciTech Connect

    Furman, M.A.

    2006-06-14

    We present a summary of recent simulation studies of the electron-cloud (EC) build-up for the FNAL MI and for the LHC. In the first case we pay particular attention to the dependence on bunch intensity N{sub b} at injection energy assuming the nominal bunch spacing t{sub b} = 19 ns, and we focus on the dipole magnets and field-free regions. The saturated value of the average EC density shows a clear threshold in N{sub b} beyond which the beam will be approximately neutralized on average. For the case of the LHC we limit our discussion to arc dipoles at collision energy, and bunch spacings t{sub b} = 25 ns or t{sub b} = 75 ns. The main variables exercised in this study are N{sub b} and the peak value of the secondary emission yield (SEY) {delta}{sub max}. For t{sub b} = 25 ns we conclude that the EC power deposition is comfortably below the available cooling capacity of the cryogenic system if {delta}{sub max} is below {approx} 1.2 at nominal N{sub b}. For t{sub b} = 75 ns, the EC power deposition is insignificant. As a byproduct of this exercise, we reach a detailed understanding of the significant role played by the backscattered secondary electrons. This article summarizes the results, an slightly extends the discussions, presented in Refs. 1 and 2.

  2. Mitigation Plans for the Microbunching-Instability-Related COTR at ASTA/FNAL

    SciTech Connect

    Lumpkin, A. H.; Johnson, A. M.

    2013-05-01

    At the Advanced Superconducting Test Accelerator (ASTA) now under construction at Fermilab, we anticipate the appearance of the microbunching instability related to the longitudinal space charge (LSC) impedances. With a photoinjector source and up to two chicane compressors planned, the conditions should result in the shift of some microbunched features into the visible light regime. The presence of longitudinal microstructures (microbunching) in the electron beam or the leading edge spikes can result in strong, spatially localized coherent enhancements of optical transition radiation (COTR) that mask the actual beam profile. Several efforts on mitigation of the effects in the diagnostics task have been identified. At ASTA we have designed the beam profiling stations to have mitigation features based on spectral filtering, scintillator choice, and the timing of the trigger to the digital camera's CCD chip. Since the COTR is more intense in the NIR than UV we have selectable bandpass filters centered at 420 nm which also overlap the spectral emissions of the LYSO:Ce scintillators. By delaying the CCD trigger timing of the integration window by 40-50 ns, we can reject the prompt OTR signal and integrate on the delayed scintillator light predominately. This combination of options should allow mitigation of COTR enhancements of order 100-1000 in the distribution.

  3. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  4. Optimization and validation of an accelerated laboratory extraction method to estimate nitrogen release patterns of slow- and controlled-release fertilizers.

    PubMed

    Medina, L Carolina; Sartain, Jerry B; Obreza, Thomas A; Hall, William L; Thiex, Nancy J

    2014-01-01

    Several technologies have been proposed to characterize the nutrient release and availability patterns of enhanced-efficiency fertilizers (EEFs), especially slow-release fertilizers (SRFs) and controlled-release fertilizers (CRFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product-specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize EEF materials, no validated method exists to assess their nutrient release patterns. However, the increased use of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. A series of experiments were conducted to evaluate the effect of temperature, fertilizer test portion size, and extraction time on the performance of a 74 h accelerated laboratory extraction method to measure SRF and CRF nutrient release profiles. Temperature was the only factor that influenced nutrient release rate, with a highly marked effect for phosphorus and to a lesser extent for nitrogen (N) and potassium. Based on the results, the optimal extraction temperature set was: Extraction No. 1-2:00 h at 25 degrees C; Extraction No. 2-2:00 h at 50 degrees C; Extraction No. 3-20:00 h at 55 degrees C; and Extraction No. 4-50:00 h at 60 degrees C. Ruggedness of the method was tested by evaluating the effect of small changes in seven selected factors on method behavior using a fractional multifactorial design. Overall, the method showed ruggedness for measuring N release rates of coated CRFs. PMID:25051611

  5. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  6. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  8. Performance of Conduction Cooled Splittable Superconducting Magnet Package for Linear Accelerators

    SciTech Connect

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; DiMarco, J.; Kimura, N.; Makarov, A.; Orlov, Y.; Poloubotko. V., Poloubotko. V.; Tartaglia, M.; Yamamoto, A.

    2015-01-01

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. The effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.

  9. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  10. Overview of accelerators in medicine

    SciTech Connect

    Lennox, A.J. |

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field.

  11. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  12. Breakthrough: Fermilab Accelerator Technology

    SciTech Connect

    2012-04-23

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  13. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  14. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  15. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  16. Inverse free electron laser accelerator

    SciTech Connect

    Fisher, A.; Gallardo, J.; Sandweiss, J.; van Steenbergen, A. )

    1992-07-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e[sup [minus

  17. Inverse Free Electron Laser accelerator

    SciTech Connect

    Fisher, A.; Gallardo, J.; van Steenbergen, A. ); Sandweiss, J. )

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e[sup [minus

  18. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  19. First charge breeding of a rare-isotope beam with the electron-beam ion trap of the ReA post-accelerator at the National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Lapierre, A.; Schwarz, S.; Baumann, T. M.; Cooper, K.; Kittimanapun, K.; Rodriguez, A. J.; Sumithrarachchi, C.; Williams, S. J.; Wittmer, W.; Leitner, D.; Bollen, G.

    2014-02-01

    An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, 76Ga24 +, 25 +.

  20. Review of Activities using the Pulsed Neutron Facility and 2.5-GeV Electron Linac at Pohang Accelerator Laboratory

    SciTech Connect

    Kim, Guinyun; Lee, Manwoo; Kim, Kyung Sook; Yang, Sungchul; Kim, Eunae; Shvetshov, Valery; Cho, Moo-Hyun; Naik, Haladhara

    2011-12-13

    We report on activities using a pulsed neutron facility consisting of an electron linear accelerator, a water-cooled Ta target with a water moderator, and a 12 m time-of-flight path. It is possible to measure neutron total cross sections in the neutron energy range from 0.01 eV to a few hundred eV by using the neutron time-of-flight method; photo-neutron cross sections can also measure by using the bremsstrahlung from the electron linac. A {sup 6}LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. In this paper, we report total cross sections of Nb and also resonance parameters obtained using the SAMMY fitting program. The present results are compared with the previous experimental results and the evaluated data in ENDF/B-VII. We also report on the mass-yield distribution of fission products in the 2.5-GeV bremsstrahlung-induced fission of {sup nat}Pb and {sup 209}Bi measured at the 2.5-GeV electron linac using a recoil catcher and an off-line {gamma}-ray spectrometric technique.

  1. Accelerator and electrodynamics capability review

    SciTech Connect

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  2. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  3. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  4. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    SciTech Connect

    Furman, M. A.

    2010-12-11

    We present simulation results of the build-up of the electron-cloud density n{sub e} in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N{sub t} = (2-5) x 10{sup 13}, and the beam kinetic energy in the range E{sub k} = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) {delta}{sub max} vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N{sub t} there is a clear threshold behavior of n{sub e} as a function of {delta}{sub max} in the range {approx} 1.1-1.3. (2) At fixed {delta}{sub max}, there is a threshold behavior of n{sub e} as a function of N{sub t} provided {delta}{sub max} is sufficiently high; the threshold value of N{sub t} is a function of the characteristics of the region being simulated. (3) The dependence on E{sub k} is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  5. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  6. Microwave inverse Cerenkov accelerator

    SciTech Connect

    Zhang, T.B.; Marshall, T.C.; LaPointe, M.A.; Hirshfield, J.L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM{sub 01} fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5{pi}mm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM{sub 01} mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line. {copyright} {ital 1997 American Institute of Physics.}

  7. Accelerator simulation of astrophysical processes

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1983-01-01

    Phenomena that involve accelerated ions in stellar processes that can be simulated with laboratory accelerators are described. Stellar evolutionary phases, such as the CNO cycle, have been partially explored with accelerators, up to the consumption of He by alpha particle radiative capture reactions. Further experimentation is indicated on reactions featuring N-13(p,gamma)O-14, O-15(alpha, gamma)Ne-19, and O-14(alpha,p)F-17. Accelerated beams interacting with thin foils produce reaction products that permit a determination of possible elemental abundances in stellar objects. Additionally, isotopic ratios observed in chondrites can be duplicated with accelerator beam interactions and thus constraints can be set on the conditions producing the meteorites. Data from isotopic fractionation from sputtering, i.e., blasting surface atoms from a material using a low energy ion beam, leads to possible models for processes occurring in supernova explosions. Finally, molecules can be synthesized with accelerators and compared with spectroscopic observations of stellar winds.

  8. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  9. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  10. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  11. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  12. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  13. LINAC for ADS application - accelerator technologies

    SciTech Connect

    Garnett, Robert W; Sheffreld, Richard L

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  14. SPEAR3 Accelerator Physics Update

    SciTech Connect

    Safranek, James A.; Corbett, W.Jeff; Gierman, S.; Hettel, R.O.; Huang, X.; Nosochkov, Yuri; Sebek, Jim; Terebilo, Andrei; /SLAC

    2007-11-02

    The SPEAR3 storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization and improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and MATLAB software. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance

  15. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  16. Imaging using accelerated heavy ions

    SciTech Connect

    Chu, W.T.

    1982-05-01

    Several methods for imaging using accelerated heavy ion beams are being investigated at Lawrence Berkeley Laboratory. Using the HILAC (Heavy-Ion Linear Accelerator) as an injector, the Bevalac can accelerate fully stripped atomic nuclei from carbon (Z = 6) to krypton (Z = 34), and partly stripped ions up to uranium (Z = 92). Radiographic studies to date have been conducted with helium (from 184-inch cyclotron), carbon, oxygen, and neon beams. Useful ranges in tissue of 40 cm or more are available. To investigate the potential of heavy-ion projection radiography and computed tomography (CT), several methods and instrumentation have been studied.

  17. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  18. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  19. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  20. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  1. UCLA Neptune Facility for Advanced Accelerator Studies

    SciTech Connect

    Tochitsky, Sergei Ya.; Clayton, Christopher E.; Marsh, Kenneth A.; Joshi, Chandrashekhar; Rosenzweig, James B.; Pellegrini, Claudio

    2004-12-07

    The Neptune Laboratory at UCLA is being used for exploring concepts useful for advanced accelerators. This facility hosts a TW-class CO2 laser system and a high-brightness photoinjector producing a 14 MeV electron beam. The goal for the laboratory is to carry out experiments on high-gradient acceleration of externally injected electrons in both laser-driven relativistic plasma waves and EM laser field in vacuum. Experiments on plasma beat-wave acceleration using a prebunched electron beam, a high-energy gain 10-{mu}m inverse free electron laser accelerator, longitudinal electron beam shaping and laser based light-sources are planned.

  2. Development of a 15 T $Nb_3Sn$ Accelerator Dipole Demonstrator at Fermilab

    SciTech Connect

    Novitski, I.; Andreev, N.; Barzi, E.; Carmichael, J.; Kashikhin, V. V.; Turrion, D.; Yu, M.; Zlobin, A. V.

    2015-01-01

    100 TeV scale Hadron Collider (HC) with a nominal operation field of at least 15 T is being considered for the post-LHC era, which requires using the $Nb_3Sn$ technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance and reduce the cost. The experience gained during the Nb3Sn magnet R&D is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb3Sn dipole and the steps towards the demonstration model fabrication.

  3. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGESBeta

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; DiMarco, J.; Kimura, N.; Makarov, A.; Orlov, Y.; V. Poloubotko; Tartaglia, M.; Yamamoto, A.

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  4. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  5. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  6. Plasma Wakefield Acceleration of Positrons

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer

    2016-03-01

    Recent particle beam and laser-driven plasma wakefield experiments have produced high-quality electron beams accelerated by a GeV or more in less than a meter. Efforts are underway to put these beams to work as sources for free-electron lasers. By contrast, little work has been done to demonstrate the tractability of plasma wakefield acceleration (PWFA) of positrons beams. The reasons for this are threefold: 1) positron beams are only useful for high-energy physics experiments, whereas electron beams are also useful as light sources, 2) there is a dearth of positron sources for PWFA experiments, and 3) the dynamics of accelerating positron beams in plasma is fundamentally different than that of electron beams. This talk will focus on the physics of accelerating positrons in plasma and contrast the dynamics of electron and positron beam-driven nonlinear plasma wakes. We describe recent experiments at the FACET test facility at SLAC National Accelerator Laboratory that for the first time demonstrate high-gradient acceleration of a positron beams in plasma. We also discuss an alternative acceleration technique called hollow channel acceleration that aims to symmetrize the dynamics of electron and positron beam-driven wakes.

  7. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  8. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  9. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  10. Independent Study Unit on Accelerated Reference Frames

    ERIC Educational Resources Information Center

    Poultney, S. K.

    1973-01-01

    Presents a list of topics, research areas, references, and laboratory equipment which is prepared to facilitate general-science students' understanding of physics aspects in accelerated reference frames after their study of circular motion and Galilean relativity in mechanics. (CC)

  11. Linear accelerator for tritium production

    SciTech Connect

    Garnett, R.W.; Billen, J.H.; Chan, K.C.; Genzlinger, R.; Gray, E.R.; Nath, S.; Rusnak, B.; Schrage, D.L.; Stovall, J.E.; Takeda, H.; Wood, R.; Wangler, T.P.; Young, L.M.

    1996-06-01

    For many years now, Los Alamos National Laboratory has been working to develop a conceptual design of a facility for accelerator production of tritium (APT). The APT accelerator will produce high energy protons which will bombard a heavy metal target, resulting in the production of large numbers of spallation neutrons. These neutrons will be captured by a low-{ital Z} target to produce tritium. This paper describes the latest design of a room-temperature, 1.0 GeV, 100 mA, cw proton accelerator for tritium production. The potential advantages of using superconducting cavities in the high-energy section of the linac are also discussed and a comparison is made with the baseline room-temperature accelerator. {copyright} {ital 1996 American Institute of Physics.}

  12. 25 MV tandem accelerator at Oak Ridge

    SciTech Connect

    Jones, C.M.

    1980-01-01

    A new heavy-ion accelerator facility is under construction at the Oak Ridge National Laboratory. A brief description of the scope and status of this project is presented with emphasis on the first operational experience with the 25 MV tandem accelerator.

  13. Measurement of Coriolis Acceleration with a Smartphone

    ERIC Educational Resources Information Center

    Shaku, Asif; Kraft, Jakob

    2016-01-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern…

  14. Accelerator mass spectrometry with heavy ions

    NASA Astrophysics Data System (ADS)

    Haberstock, Günther; Heinzl, Johann; Korschinek, Gunther; Morinaga, Haruhiko; Nolte, Eckehart; Ratzinger, Ulrich; Kato, Kazuo; Wolf, Manfred

    1986-11-01

    Accelerator mass spectrometry measurements with fully stripped 36Cl ions have been performed at the Munich accelerator laboratory in order to date groundwaters and palaeontological samples, to study anthropogenic 36Cl produced through nuclear tests and to determine the fast neutron flux of the Hiroshima A-bomb.

  15. The Echo Sounding Rocket Payloads as a Laboratory in Space to Study the Dynamics of the Natural Aurora Acceleration Mechanism and Other Important Contributions John Winckler has Made to the Field

    NASA Astrophysics Data System (ADS)

    Arnoldy, R. L.

    2001-12-01

    It is with great honor that I have the opportunity to talk about some of the contributions Prof. John Winckler has made to space science and auroral physics in particular. John's interest in the aurora began on the first day of the IGY during a balloon flight designed to be the start of a campaign to do a latitudinal survey of the cosmic ray cut-off during the IGY. The detectors of this flight unexpectedly measured 50-100 keV x-rays produced by auroral electrons bombarding the top of the atmosphere. After retiring from teaching, John's interest in the dynamics of low-latitude aurora came full circle from its starting point during that first day of the IGY almost thirty years earlier. With ground photometers, cameras and stereoscopic TV, he made extensive observations of the pulsation phase of auroras during the peak of solar cycle 22. Although pulsating aurora had been studied for decades at auroral zone latitudes, John's work at sub-auroral latitudes discovered new phenomena and made observations of known phenomena in greater detail. The intent of this talk is primarily to consider Winckler's pioneering work with electron beam injections into the magnetosphere from sounding rockets. The motivation for this work initially was to map auroral field lines and to study large scale magnetospheric electric fields. The aspect of the work that I was most intimately involved in was the mechanism of neutralizing the rocket after it had injected nearly a coulomb of negative charge into space. It was initially argued that the beams would become unstable and therefore be destroyed and useless as probes of the magnetosphere. This was not the case, hence the neutralization mechanism became a significant study of the program. Although not realized at the time, it turns out that the beam injections at rocket altitude in essence became a laboratory in space in which many of the features of the aurora itself were reproduced. It is accepted that the electrons of a discrete aurora are

  16. Inverse Free Electron Laser accelerator

    NASA Astrophysics Data System (ADS)

    Fisher, A.; Gallardo, J.; Vansteenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e(-) beam and the 10(exp 11) Watt CO2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a approximately 1.5 percent/cm tapered period configuration. The CO2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power CW CO2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented.

  17. Inverse free electron laser accelerator

    NASA Astrophysics Data System (ADS)

    Fisher, A.; Gallardo, J.; Sandweiss, J.; van Steenbergen, A.

    1992-07-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e- beam and the 1011 Watt CO2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP), and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ≊1.5%/cm tapered period configuration. The CO2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented.

  18. TRACKING ACCELERATOR SETTINGS.

    SciTech Connect

    D OTTAVIO,T.; FU, W.; OTTAVIO, D.P.

    2007-10-15

    Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year.

  19. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  20. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  1. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  2. Attention's Accelerator.

    PubMed

    Reinhart, Robert M G; McClenahan, Laura J; Woodman, Geoffrey F

    2016-06-01

    How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory representations used to control attention while performing visual search. We found that subjects used both types of memories to control attention when they performed the visual search task with a large reward at stake, or when they were cued to respond as fast as possible. However, under normal circumstances, one type of target memory was sufficient for slower task performance. The use of multiple types of memory representations appears to provide converging top-down control of attention, allowing people to step on the attentional accelerator in a variety of high-pressure situations. PMID:27056975

  3. Technology of magnetically driven accelerators

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-03-26

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab.

  4. Technology of magnetically driven accelerators

    SciTech Connect

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-10-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  5. Pulse Power Supply for Plasma Dynamic Accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xuanzong; Liu, Jian; Feng, Chunhua; Wang, Long

    2008-06-01

    A new concept of a coaxial plasma dynamic accelerator with a self-energized magnetic compressor coil to simulate the effects of space debris impact is demonstrated. A brief description is presented about the pulse power supply system including the charging circuit, start switch and current transfer system along with some of the key techniques for this kind of accelerator. Using this accelerator configuration, ceramic beads of 100 fim in diameter were accelerated to a speed as high as 18 km/sec. The facility can be used in a laboratory setting to study impact phenomena on solar array materials, potential structural materials for use in space.

  6. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.

  7. Argonne plasma wake-field acceleration experiments

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Gai, W.; Konecny, R.; Norem, J.; Schoessow, P.; Simpson, J.

    1989-03-14

    Four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These wake-fields are of interest both in the laboratory, for acceleration and focusing of electrons and positrons in future linear colliders, and in nature as a possible cosmic ray acceleration mechanism. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory. Some of the topics discussed are: the Argonne Advanced Accelerator Test Facility; linear plasma wake-field theory; measurement of linear plasma wake-fields; review of nonlinear plasma wave theory; and experimental measurement of nonlinear plasma wake-fields. 25 refs., 11 figs.

  8. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  9. Acceleration schedules for a recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  10. 2011 Dielectric Laser Acceleration Workshop (DLA2011)

    SciTech Connect

    Bermel, Peter; Byer, Robert L.; Colby, Eric R.; Cowan, Benjamin M.; Dawson, Jay; England, R.Joel; Noble, Robert J.; Qi, Ming-Hao; Yoder, Rodney B.; /Manhattanville Coll., Purchase

    2012-04-17

    The first ICFA Mini-workshop on Dielectric Laser Accelerators was held on September 15-16, 2011 at SLAC National Accelerator Laboratory. We present the results of the Workshop, and discuss the main conclusions of the Accelerator Applications, Photonics, and Laser Technologies working groups. Over 50 participants from 4 countries participated, discussing the state of the art in photonic structures, laser science, and nanofabrication as it pertains to laser-driven particle acceleration in dielectric structures. Applications of this new and promising acceleration concept to discovery science and industrial, medical, and basic energy sciences were explored. The DLA community is presently focused on making demonstrations of high gradient acceleration and a compatible attosecond injector source - two critical steps towards realizing the potential of this technology.

  11. FXR accelerator cavity impedance experiments

    SciTech Connect

    Avalle, C.A.

    1998-01-05

    One of the goals of the present Flash X-Ray (FXR) accelerator upgrade effort [1][2] at Lawrence Livermore National Laboratory (LLNL) is to reduce the cavity transverse impedance, since it has been shown that beam stability is significantly affected by this parameter [3]. Recently, we have evaluated various techniques and cell modifications to accomplish that, both through lab measurements and computer models. A spare cell, identical in every way to cells in the accelerator, was specially modified for the experiments. The impedance measurements were done without the beam, by applying twin-wire techniques. This report describes the results of these experiments and suggests possible cell modifications to improve their performance. The techniques and modifications which are suggested might also be applicable to AHF and DARHT-2 long-pulse accelerator development.

  12. The accelerating universe

    NASA Astrophysics Data System (ADS)

    Blandford, Roger

    2013-02-01

    From keV electrons in the aurorae to Ultra High Energy Cosmic Rays in unidentified "Zevatrons", the cosmos shows a perverse, yet pervasive, proclivity to select a tiny minority of particles and boost them to high energy. The mechanisms involved can be traced back to the ideas of Faraday, Fermi and Alfvén though we are learning that the details are idiosyncratic to the many environments that we have explored. Much can be learned from comparing and contrasting particle acceleration in laboratory, interplanetary, interstellar and intergalactic locations. As it celebrates its centenary, cosmic ray physics, has assumed a new importance in solving one of the greatest problems consuming its illustrious scion - elementary particle physics - namely the nature of dark matter.

  13. The Accelerating Universe

    SciTech Connect

    Blandford, Roger

    2013-05-15

    From keV electrons in terrestrial aurorae to Ultra High Energy Cosmic Rays from unidentified "Zevatrons", the cosmos shows a plutocratic proclivity to concentrate energy in a tiny minority of suprathermal particles. The mechanisms involved can be traced back to the ideas of Faraday, Fermi and Alfvén though we are learning that the details are idiosyncratic to the many environments that we have observed and that much can be learned from comparing and contrasting particle acceleration in laboratory and diverse astronomical locations. It will be argued that new mechanisms are required to account for recent observations of galactic nuclei, pulsar wind nebulae and interplanetary, interstellar and intergalactic media and some candidates will be discussed.

  14. Hadron accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  15. APT accelerator. Topical report

    SciTech Connect

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  16. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  17. Space Radiation Effects Laboratory

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The SREL User's Handbook is designed to provide information needed by those who plan experiments involving the accelerators at this laboratory. Thus the Handbook will contain information on the properties of the machines, the beam parameters, the facilities and services provided for experimenters, etc. This information will be brought up to date as new equipment is added and modifications accomplished. This Handbook is influenced by the many excellent models prepared at other accelerator laboratories. In particular, the CERN Synchrocyclotron User's Handbook (November 1967) is closely followed in some sections, since the SREL Synchrocyclotron is a duplicate of the CERN machine. We wish to thank Dr. E. G. Michaelis for permission to draw so heavily on his work, particularly in Section II of this Handbook. We hope that the Handbook will prove useful, and will welcome suggestions and criticism.

  18. Inverse Free Electron Laser accelerator

    SciTech Connect

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e{sup {minus}} beam and the 10{sup 11} Watt CO{sub 2} laser beam of BNL`s Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a {approximately} 1.5 %/cm tapered period configuration. The CO{sub 2} laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO{sub 2} laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented.

  19. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  20. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  1. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  2. PROPOSAL FOR AN EXPERIMENT PROGRAM IN NEUTRINO PHYSICS AND PROTON DECAY IN THE HOMESTAKE LABORATORY.

    SciTech Connect

    DIWAN, M.; KETTELL, S.; LITTENBERG, W.; MARIANO, W.; PARSA, Z.; SAMIOS, N.; WHITE, S.; ET AL.

    2006-07-24

    This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit with a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL. On the other hand the beam from BNL over the larger distance will produce very large matter effects, and consequently a hint of new physics (beyond CP violation) can be better tested with that configuration. In this proposal we focus on the CP violation physics. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. This presentation is not, however, to be taken as a technical design report with the extensive documentation and contingency costs that a TDR usually entails. Nevertheless, some contingency factors have been included in the estimates given here. The essential ideas expressed here were first laid out in a letter of intent to the interim director of the Homestake Laboratory on July 26, 2001. Since that time, the prospect of a laboratory in the Homestake Mine has been realized, and the design of a long baseline neutrino experiment has been refined. The extrapolation

  3. National accelerated coated conductor initiative

    NASA Astrophysics Data System (ADS)

    Hawsey, Robert A.; Peterson, Dean E.

    2002-01-01

    The national Accelerated Coated Conductor Initiative (ACCI) is committed to assuring continued U.S. leadership in the development of high-temperature superconducting (HTS) wire for electric power and other applications of national interest. Increased energy efficiency, power density, and power-to-weight ratio are just a few of the tangible benefits that will be possible if today's meter lengths of HTS wire based upon the compound yttrium-barium-copper-oxygen (YBCO) can be scaled up by U.S. industry to kilometer lengths. This paper presents an evaluation of the current state of the development of coated conductor technology and a vision for its future. The challenges that U.S. Department of Energy (DOE) laboratories and their industrial and university partners face will be presented against the backdrop of the history of superconductivity program achievements. It is the purpose of this initiative to accelerate the development, commercialization, and application of high temperature superconductors through joint efforts among DOE laboratories, American industry, and universities, so that future challenges of the electric power industry can be met. Based on their advances in HTS coated conductor development in a program funded by the DOE's Office of Power Technologies, Los Alamos and Oak Ridge National Laboratories lead and support this effort by improving their own capabilities, including equipment, facilities, and technical expertise. Each laboratory has, in 2001, acquired new laboratory space, new capital equipment, and new personnel with the goal of working closely with U.S. companies to take technologies invented in the labs and demonstrated in 1-m lengths and transfer these technologies to the commercial sector. The present status of the performance of the second-generation YBCO wires will be described, and the future plans of the national laboratories will be presented. Opportunities for collaboration are discussed, as well. .

  4. Non-dispersive, accelerated matter-waves

    NASA Astrophysics Data System (ADS)

    Saif, Farhan; Naseer, Khalid; Ayub, Muhammad

    2014-04-01

    It is shown that under certain dynamical conditions a material wave packet displays coherent, non-dispersive accelerated evolution in gravitational field over a modulated atomic mirror. The phenomenon takes place as a consequence of simultaneous presence of the dynamical localization and the coherent Fermi acceleration for the same modulation amplitude. It is purely a quantum mechanical effect as the windows of modulation strengths supporting dynamical localization and Fermi acceleration overlap for larger effective Planck constant. Present day experimental techniques make it feasible to realize the system in laboratory.

  5. Accelerated/abbreviated test methods for predicting life of solar cell encapsulants to Jet Propulsion Laboratory California Institute of Technology for the encapsulation task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.

    1978-01-01

    An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.

  6. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  7. Laboratory Tests

    MedlinePlus

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  8. A portable accelerator control toolkit

    SciTech Connect

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  9. Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  10. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.