Sample records for accelerator radiation stray

  1. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  2. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  3. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    NASA Astrophysics Data System (ADS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-10-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.

  4. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Honecker, F.; Monaco, F.; Schmid-Lorch, D.; Schütz, H.; Stober, J.; Wagner, D.

    2012-09-01

    Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG) is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  5. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    PubMed

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  6. Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams

    PubMed Central

    Taddei, Phillip J; Mirkovic, Dragan; Fontenot, Jonas D; Giebeler, Annelise; Zheng, Yuanshui; Kornguth, David; Mohan, Radhe; Newhauser, Wayne D

    2014-01-01

    Proton beam radiotherapy unavoidably exposes healthy tissue to stray radiation emanating from the treatment unit and secondary radiation produced within the patient. These exposures provide no known benefit and may increase a patient's risk of developing a radiogenic cancer. The aims of this study were to calculate doses to major organs and tissues and to estimate second cancer risk from stray radiation following craniospinal irradiation (CSI) with proton therapy. This was accomplished using detailed Monte Carlo simulations of a passive-scattering proton treatment unit and a voxelized phantom to represent the patient. Equivalent doses, effective dose and corresponding risk for developing a fatal second cancer were calculated for a 10-year-old boy who received proton therapy. The proton treatment comprised CSI at 30.6 Gy plus a boost of 23.4 Gy to the clinical target volume. The predicted effective dose from stray radiation was 418 mSv, of which 344 mSv was from neutrons originating outside the patient; the remaining 74 mSv was caused by neutrons originating within the patient. This effective dose corresponds to an attributable lifetime risk of a fatal second cancer of 3.4%. The equivalent doses that predominated the effective dose from stray radiation were in the lungs, stomach and colon. These results establish a baseline estimate of the stray radiation dose and corresponding risk for a pediatric patient undergoing proton CSI and support the suitability of passively-scattered proton beams for the treatment of central nervous system tumors in pediatric patients. PMID:19305045

  7. Measurement of stray EC radiation on W7-AS

    NASA Astrophysics Data System (ADS)

    Gandini, F.; Hirsch, M.; Cirant, S.; Erckmann, V.; Granucci, G.; Kasparek, W.; Laqua, H. P.; Muzzini, V.; Nowak, S.; Radau, S.

    2001-10-01

    In the framework of a collaboration between IFP-CNR Milano, IPP Garching/Greifswald and IPF Stuttgart, a set of four millimeterwave probes has been installed in W7-AS stellarator at selected positions of the inner vessel wall. Their purpose is to observe RF stray radiation during operation in presence of strong level of Electron Cyclotron (EC) waves, used for plasma start-up, heating and current drive. The aim of these measurements is to benchmark two complementary theoretical models for the distribution of the stray radiation in the vessel. From these codes, quantitative predictions are expected for the spatial distribution of the RF wall load and the RF-impact on in-vessel components in large future devices such as W7-X and, possibly, ITER. This input is important to optimize the wall armour and select rf-compatible in-vessel materials. We present first measurements from different heating and startup scenarios, with up to 800 kW of injected power at 140 GHz and different launching geometries. An analysis of measurements performed on FTU using a previous version of sniffer probe is also presented.

  8. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    NASA Astrophysics Data System (ADS)

    DeMarco, M.; Maggi, S.

    2006-07-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m-1 (E-field 400 V m-1). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy.

  9. Analysis of stray radiation for infrared optical system

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Tingcheng; Liao, Zhibo; Mu, Shengbo; Du, Jianxiang; Wang, Xiangdong

    2016-10-01

    Based on the theory of radiation energy transfer in the infrared optical system, two methods for stray radiation analysis caused by interior thermal radiation in infrared optical system are proposed, one of which is important sampling method technique using forward ray trace, another of which is integral computation method using reverse ray trace. The two methods are discussed in detail. A concrete infrared optical system is provided. Light-tools is used to simulate the passage of radiation from the mirrors and mounts. Absolute values of internal irradiance on the detector are received. The results shows that the main part of the energy on the detector is due to the critical objects which were consistent with critical objects obtained by reverse ray trace, where mirror self-emission contribution is about 87.5% of the total energy. Corresponding to the results, the irradiance on the detector calculated by the two methods are in good agreement. So the validity and rationality of the two methods are proved.

  10. Stray light correction on array spectroradiometers for optical radiation risk assessment in the workplace.

    PubMed

    Barlier-Salsi, A

    2014-12-01

    The European directive 2006/25/EC requires the employer to assess and, if necessary, measure the levels of exposure to optical radiation in the workplace. Array spectroradiometers can measure optical radiation from various types of sources; however poor stray light rejection affects their accuracy. A stray light correction matrix, using a tunable laser, was developed at the National Institute of Standards and Technology (NIST). As tunable lasers are very expensive, the purpose of this study was to implement this method using only nine low power lasers; other elements of the correction matrix being completed by interpolation and extrapolation. The correction efficiency was evaluated by comparing CCD spectroradiometers with and without correction and a scanning double monochromator device as reference. Similar to findings recorded by NIST, these experiments show that it is possible to reduce the spectral stray light by one or two orders of magnitude. In terms of workplace risk assessment, this spectral stray light correction method helps determine exposure levels, with an acceptable degree of uncertainty, for the majority of workplace situations. The level of uncertainty depends upon the model of spectroradiometers used; the best results are obtained with CCD detectors having an enhanced spectral sensitivity in the UV range. Thus corrected spectroradiometers require a validation against a scanning double monochromator spectroradiometer before using them for risk assessment in the workplace.

  11. Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, Dmitry; Laqua, Heinrich; Marsen, Stefan; Stange, Torsten; Braune, Harald; Erckmann, Volker; Gellert, Florian; Oosterbeek, Johann Wilhelm; Wenzel, Uwe

    2017-07-01

    Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes.

  12. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne

    2008-03-01

    Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.

  13. Stray Light Analyis With The HP-41C/CV Calculator

    NASA Astrophysics Data System (ADS)

    Bamberg, Jack A.

    1983-10-01

    A stray radiation analysis program (nicknamed MINI-APART after its namesake: APART) suitable for use on the HP-41C/CV calculator is described. The program is ideally suited for quick estimates of stray light performance in well-baffled optical systems, which are limited by scatter from the first optical element. Critical path models are described, including single scatter, double scatter, diffraction-scatter, and thermal emission-scatter. Program use is illustrated, and several comparisons are made with the results obtained by the large stray radiation programs, GUERAP-3 and APART/PADE.

  14. A general model for stray dose calculation of static and intensity-modulated photon radiation.

    PubMed

    Hauri, Pascal; Hälg, Roger A; Besserer, Jürgen; Schneider, Uwe

    2016-04-01

    There is an increasing number of cancer survivors who are at risk of developing late effects caused by ionizing radiation such as induction of second tumors. Hence, the determination of out-of-field dose for a particular treatment plan in the patient's anatomy is of great importance. The purpose of this study was to analytically model the stray dose according to its three major components. For patient scatter, a mechanistic model was developed. For collimator scatter and head leakage, an empirical approach was used. The models utilize a nominal beam energy of 6 MeV to describe two linear accelerator types of a single vendor. The parameters of the models were adjusted using ionization chamber measurements registering total absorbed dose in simple geometries. Whole-body dose measurements using thermoluminescent dosimeters in an anthropomorphic phantom for static and intensity-modulated treatment plans were compared to the 3D out-of-field dose distributions calculated by a combined model. The absolute mean difference between the whole-body predicted and the measured out-of-field dose of four different plans was 11% with a maximum difference below 44%. Computation time of 36 000 dose points for one field was around 30 s. By combining the model-calculated stray dose with the treatment planning system dose, the whole-body dose distribution can be viewed in the treatment planning system. The results suggest that the model is accurate, fast and can be used for a wide range of treatment modalities to calculate the whole-body dose distribution for clinical analysis. For similar energy spectra, the mechanistic patient scatter model can be used independently of treatment machine or beam orientation.

  15. Development of a neutron spectrometer using multi-wire spark chambers for the measurement of the spectra of stray neutrons in the vicinity of high energy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chun Bin

    A method of neutron spectrometry which measures the energy spectra of the stray neutrons around the high energy accelerators, roughly between 50 MeV and 300 MeV has been developed using a series of multi-wire spark chambers and polyethylene n-p converters.

  16. Interaction between Stray Electrostatic Fields and a Charged Free-Falling Test Mass

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Cavalleri, A.; Dolesi, R.; Hueller, M.; Nicolodi, D.; Tu, H. B.; Vitale, S.; Weber, W. J.

    2012-05-01

    We present an experimental analysis of force noise caused by stray electrostatic fields acting on a charged test mass inside a conducting enclosure, a key problem for precise gravitational experiments. Measurement of the average field that couples to the test mass charge, and its fluctuations, is performed with two independent torsion pendulum techniques, including direct measurement of the forces caused by a change in electrostatic charge. We analyze the problem with an improved electrostatic model that, coupled with the experimental data, also indicates how to correctly measure and null the stray field that interacts with the test mass charge. Our measurements allow a conservative upper limit on acceleration noise, of 2(fm/s2)/Hz1/2 for frequencies above 0.1 mHz, for the interaction between stray fields and charge in the LISA gravitational wave mission.

  17. Interaction between stray electrostatic fields and a charged free-falling test mass.

    PubMed

    Antonucci, F; Cavalleri, A; Dolesi, R; Hueller, M; Nicolodi, D; Tu, H B; Vitale, S; Weber, W J

    2012-05-04

    We present an experimental analysis of force noise caused by stray electrostatic fields acting on a charged test mass inside a conducting enclosure, a key problem for precise gravitational experiments. Measurement of the average field that couples to the test mass charge, and its fluctuations, is performed with two independent torsion pendulum techniques, including direct measurement of the forces caused by a change in electrostatic charge. We analyze the problem with an improved electrostatic model that, coupled with the experimental data, also indicates how to correctly measure and null the stray field that interacts with the test mass charge. Our measurements allow a conservative upper limit on acceleration noise, of 2  (fm/s2)/Hz(1/2) for frequencies above 0.1 mHz, for the interaction between stray fields and charge in the LISA gravitational wave mission.

  18. Radiation from violently accelerated bodies

    NASA Astrophysics Data System (ADS)

    Gerlach, Ulrich H.

    2001-11-01

    A determination is made of the radiation emitted by a linearly uniformly accelerated uncharged dipole transmitter. It is found that, first of all, the radiation rate is given by the familiar Larmor formula, but it is augmented by an amount which becomes dominant for sufficiently high acceleration. For an accelerated dipole oscillator, the criterion is that the center of mass motion become relativistic within one oscillation period. The augmented formula and the measurements which it summarizes presuppose an expanding inertial observation frame. A static inertial reference frame will not do. Secondly, it is found that the radiation measured in the expanding inertial frame is received with 100% fidelity. There is no blueshift or redshift due to the accelerative motion of the transmitter. Finally, it is found that a pair of coherently radiating oscillators accelerating (into opposite directions) in their respective causally disjoint Rindler-coordinatized sectors produces an interference pattern in the expanding inertial frame. Like the pattern of a Young double slit interferometer, this Rindler interferometer pattern has a fringe spacing which is inversely proportional to the proper separation and the proper frequency of the accelerated sources. The interferometer, as well as the augmented Larmor formula, provide a unifying perspective. It joins adjacent Rindler-coordinatized neighborhoods into a single spacetime arena for scattering and radiation from accelerated bodies.

  19. Rabies Vaccination Targets for Stray Dog Populations

    PubMed Central

    Leung, Tiffany; Davis, Stephen A.

    2017-01-01

    The role of stray dogs in the persistence of domestic dog rabies, and whether removal of such dogs is beneficial, remains contentious issues for control programs seeking to eliminate rabies. While a community might reach the WHO vaccination target of 70% for dogs that can be handled, the stray or neighborhood dogs that are too wary of humans to be held are a more problematic population to vaccinate. Here, we present a method to estimate vaccination targets for stray dogs when the dog population is made up of stray, free-roaming, and confined dogs, where the latter two types are considered to have an identifiable owner. The control effort required for stray dogs is determined by the type-reproduction number, T1, the number of stray dogs infected by one rabid stray dog either directly or via any chain of infection involving owned dogs. Like the basic reproduction number R0 for single host populations, T1 determines the vaccination effort required to control the spread of disease when control is targeted at one host type, and there is a mix of host types. The application of T1 to rabies in mixed populations of stray and owned dogs is novel. We show that the outcome is sensitive to the vaccination coverage in the owned dog population, such that if vaccination rates of owned dogs were too low then no control effort targeting stray dogs is able to control or eliminate rabies. The required vaccination level also depends on the composition of the dog population, where a high proportion of either stray or free-roaming dogs implies unrealistically high vaccination levels are required to prevent rabies. We find that the required control effort is less sensitive to continuous culling that increases the death rate of stray dogs than to changes in the carrying capacity of the stray dog population. PMID:28451589

  20. A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy

    PubMed Central

    Wilson, Lydia J; Newhauser, Wayne D

    2015-01-01

    State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833

  1. A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy.

    PubMed

    Jagetic, Lydia J; Newhauser, Wayne D

    2015-06-21

    State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.

  2. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Freesland, Douglas C.; Tadikonda, Sivakumara K.; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields or stray fields are a problem for magnetometer systems. While constant fields can be removed with zero offset calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can be a good idea, but this gradiometer solution is even more susceptible to noise than a single magnetometer. Unless the stray fields are larger than the magnetometer noise, simply averaging the two measurements is a more accurate approach. If averaging is used, it may be worthwhile to explicitly estimate and remove stray fields. Models and estimation algorithms are provided for solar array, arcjet and reaction wheel fields.

  3. Stray-light suppression in a reflecting white-light coronagraph

    NASA Technical Reports Server (NTRS)

    Romoli, Marco; Weiser, Heinz; Gardner, Larry D.; Kohl, John L.

    1993-01-01

    An analysis of stray-light suppression in the white-light channel of the Ultraviolet Coronagraph Spectrometer experiment for the Solar and Heliospheric Observatory is reported. The white-light channel consists of a reflecting telescope with external and internal occultation and a polarimeter section. Laboratory tests and analytical methods are used to perform the analysis. The various stray-light contributions are classified in two main categories: the contribution from sunlight that passes directly through the entrance aperture and the contribution of sunlight that is diffracted by the edges of the entrance aperture. Values of the stray-light contributions from various sources and the total stray-light level for observations at heliocentric heights from 1.4 to 5 solar radii are derived. Anticipated signal-to-stray-light ratios are presented together with the effective stray-light rejection by the polarimeter, demonstrating the efficacy of the stray-light suppression design.

  4. Contemporary Proton Therapy Systems Adequately Protect Patients from Exposure to Stray Radiation

    NASA Astrophysics Data System (ADS)

    Newhauser, Wayne D.; Fontenot, Jonas D.; Taddei, Phillip J.; Mirkovic, Dragan; Giebeler, Annelise; Zhang, Rui; Mahajan, Anita; Kornguth, David; Stovall, Marilyn; Yepes, Pablo; Woo, Shiao; Mohan, Radhe

    2009-03-01

    Proton beam therapy has provided safe and effective treatments for a variety of adult cancers. In recent years, there has been increasing interest in utilizing proton therapy for pediatric cancers because it allows better sparing of healthy tissues. Minimizing exposures of normal tissues is especially important in children because they are highly susceptible to consequential late effects, including the development of a radiogenic second cancer, which may occur years or even decades after treatment of the first cancer. While the dosimetric advantage of therapeutic proton beams is well understood, relatively little attention has been paid to the whole-body exposure to stray neutron radiation that is inherent in proton therapy. In this report, we review the physical processes that lead to neutron exposures, discuss the potential for mitigating these exposures using advanced proton beam delivery systems, and present a comparative analysis of predicted second cancer incidence following various external beam therapies. In addition, we discuss uncertainties in the relative biological effectiveness of neutrons for carcinogenesis and the impact that these uncertainties have on second-cancer risk predictions for survivors of adult and childhood cancer who receive proton therapy.

  5. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano; Freesland, Douglas; Tadikonda, Sivakumar; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields, i.e. stray fields, are a problem for magnetometer systems. While constant fields can be removed by calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can help, but this gradiometer solution is more sensitive to noise than a single magnetometer. As shown here for the R-series Geostationary Operational Environmental Satellites (GOES-R), unless the stray fields are larger than the noise, simply averaging the two magnetometer readings gives a more accurate solution. If averaging is used, it may be worthwhile to estimate and remove stray fields explicitly. Models and estimation algorithms to do so are provided for solar array, arcjet and reaction wheel fields.

  6. Stray light characteristics of the diffractive telescope system

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  7. Stray light correction of array spectroradiometer measurement in ultraviolet

    NASA Astrophysics Data System (ADS)

    Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Li, Ling

    2018-02-01

    For most of the array spectroradiometer, stray light is significant in UV band. Stray light correction of a UV array spectroradiometer is investigated using optical filters. If a group of filters with continuous bandpass are chosen, stray light contribution due to all the bands can be obtained using a numerical algorithm. The array spectroradiometer with the stray light corrected is used to measure the spectral irradiance of several UV lamps. The measurement results are compared to a double monochromator spectroradiometer. When xenon lamp is the array spectroradiometer calibration lamp, after stray light correction, the difference can be improved from nearly 10% to 2.0% in UVC band. When tungsten lamp is the calibration lamp, the difference can be improved from around 90% to less than 20%.

  8. The changing role of accelerators in radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, W.F.

    Conventional low energy x-rays have been used in radiation therapy since the turn of the century. Van de Graaff and Betatron accelerators changed the complexion of radiation therapy in the mid 1940's by providing significantly deeper penetrating photon beams and also providing therapeutic quality electron beams. The development of Cobalt-60 teletherapy in the mid 1950's suppressed the role of accelerators in radiation therapy for nearly 20 years. However, with the development of reliable isocentric rotating linear accelerators, accelerators are rapidly becoming the most popular conventional therapy devices. Following unfavorable clinical results with fast neutron therapy in the late 1930's andmore » early 1940's, the role of cyclotron produced fast neutrons is presently experiencing a renewal in radiation therapy. Several facilities are also experimenting with heavy charged particle beams for therapy.« less

  9. Stray Light Analysis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Based on a Small Business Innovation Research contract from the Jet Propulsion Laboratory, TracePro is state-of-the-art interactive software created by Lambda Research Corporation to detect stray light in optical systems. An image can be ruined by incidental light in an optical system. To maintain image excellence from an optical system, stray light must be detected and eliminated. TracePro accounts for absorption, specular reflection and refraction, scattering and aperture diffraction of light. Output from the software consists of spatial irradiance plots and angular radiance plots. Results can be viewed as contour maps or as ray histories in tabular form. TracePro is adept at modeling solids such as lenses, baffles, light pipes, integrating spheres, non-imaging concentrators, and complete illumination systems. The firm's customer base includes Lockheed Martin, Samsung Electronics and other manufacturing, optical, aerospace, and educational companies worldwide.

  10. Double-pulse THz radiation bursts from laser-plasma acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, R. A.

    2006-11-15

    A model is presented for coherent THz radiation produced when an electron bunch undergoes laser-plasma acceleration and then exits axially from a plasma column. Radiation produced when the bunch is accelerated is superimposed with transition radiation from the bunch exiting the plasma. Computations give a double-pulse burst of radiation comparable to recent observations. The duration of each pulse very nearly equals the electron bunch length, while the time separation between pulses is proportional to the distance between the points where the bunch is accelerated and where it exits the plasma. The relative magnitude of the two pulses depends upon bymore » the radius of the plasma column. Thus, the radiation bursts may be useful in diagnosing the electron bunch length, the location of the bunch's acceleration, and the plasma radius.« less

  11. Simulation and Measurement of Stray Light in the CLASP

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Tsuzuki, Toshihiro; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Giono, Gabriel; Suematsu, Yoshinori; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman Alpha line polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly?? lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For total flux of the sun visible light overwhelmingly larger and about 200 000 times the Ly?? line wavelength region, also hinder to 0.1% of the polarization photometric accuracy achieved in the stray light of slight visible light. Therefore we were first carried out using the illumination design analysis software called stray light simulation CLASP Light Tools. Feature of this simulation, using optical design file (ZEMAX format) and structural design file (STEP format), to reproduce realistic CLASP as possible to calculate machine is that it was stray study. And, at the stage in the actual equipment that made the provisional set of CLASP, actually put sunlight into CLASP using coelostat of National Astronomical Observatory of Japan, was subjected to measurement of stray light (San test). Pattern was not observed in the simulation is observed in the stray light measurement results need arise that measures. However, thanks to the stray light measurement and simulation was performed by adding, it was found this pattern is due to the diffracted light at the slit. Currently, the simulation results is where you have taken steps to reference. In this presentation, we report the stray light simulation and stray light measurement results that we have implemented

  12. Design and stray light analysis of ultra-thin geometrical waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Qiwei; Cheng, Dewen; Hou, Qichao; Hu, Yuan; Wang, Yongtian

    2015-08-01

    Nowadays, the waveguide has the advantages of small thickness and light weight so that it attracts more and more attention in the field of near-eye display. However, as a major problem, stray lights generated in the waveguide seriously degrade the display quality. In this paper, a geometrical waveguide with a beam-splitting mirror array (BSMA) is designed by using the non-sequential ray-tracing software LightTools, and great efforts are paid to study the causes and solutions of the stray light. With mass calculation and optimization based on the criterion of stray light/useful light ratio, an optimum design with the least amount of stray lights is found. To further eliminate the stray light, a novel structure that couples the rays into the waveguide is designed. The optimized waveguide has a FOV of 36° in the pupil-expanding direction of the waveguide, with stray light energy reduced to 1% over the useful light, the exit pupil diameter is 11.6mm at an eye relief of 20mm and the thickness is 2.4mm.

  13. Spirocercosis in owned and stray dogs in Grenada.

    PubMed

    Chikweto, A; Bhaiyat, M I; Tiwari, K P; de Allie, C; Sharma, R N

    2012-12-21

    The aim of this retrospective study was to estimate the prevalence of Spirocerca lupi and its associated lesions in owned and stray dogs in Grenada. During 2001-2011 necropsies were carried out on 1022 owned and 450 stray dogs at the pathology diagnostic laboratory, School of Veterinary Medicine, St. George's University, Grenada. Lesions due to S. lupi characterized by focal to multifocal granulomatous esophagitis with aneurysms, mineralized plaques and nodules in the adjacent thoracic aorta were found in 90 (8.8%; 95% confidence interval, 7.1-10.5%) of owned dogs and 64 (14.2%; 95% CI, 11.2-17.6%) of stray dogs. Stray dogs were significantly more affected by spirocercosis than owned dogs (p=0.0022). Of the 90 owned dogs with spirocercosis, 3 dogs had aberrant migration to the thoracic vertebral column with resultant spondylitis; 1 dog each had aberrant migration involving the stomach and the lung. Two dogs had ruptured aorta with hemothorax. Among the 64 stray dogs with spirocercosis, one dog had an esophageal granuloma that transformed into a fibroblastic osteosarcoma; spondylitis due to aberrant migration of S. lupi and hypertrophic osteopathy. We report spirocercosis for the first time in the dogs from a tropical island of Grenada. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    NASA Astrophysics Data System (ADS)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  15. Prevalence of external ear disorders in Belgian stray cats.

    PubMed

    Bollez, Anouck; de Rooster, Hilde; Furcas, Alessandra; Vandenabeele, Sophie

    2018-02-01

    Objectives Feline otitis externa is a multifactorial dermatological disorder about which very little is known. The objective of this study was to map the prevalence of external ear canal disorders and the pathogens causing otitis externa in stray cats roaming around the region of Ghent, Belgium. Methods One hundred and thirty stray cats were randomly selected during a local trap-neuter-return programme. All cats were European Shorthairs. This study included clinical, otoscopic and cytological evaluation of both external ears of each cat. Prospective data used as parameters in this study included the sex, age and body condition score of each cat, as well as the presence of nasal and/or ocular discharge, and the results of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) Snap tests. Results Remarkably, very few (sub)clinical problems of the external ear canal were found in the stray cat population. Malassezia species was by far the most common organism found in the external ear canals of the 130 stray cats. A total of 96/130 (74%) cats were found to have Malassezia species organisms present in one or both ears based on the cytological examination. No correlation was found between the parameters of sex, age, body condition score, the presence of nasal and/or ocular discharge and FIV and FeLV status, and the presence of parasites, bacteria or yeasts. Conclusions and relevance This study provides more information about the normal state of the external ear canal of stray cats. The ears of most stray cats are relatively healthy. The presence of Malassezia species organisms in the external ear canal is not rare among stray cats.

  16. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  17. Stray energy transfer during endoscopy.

    PubMed

    Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N

    2017-10-01

    Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p < 0.001 vs. all others), 2.1 ± 0.8 °C nearest the light lens, and 1.7 ± 0.4 °C nearest the working channel. Measuring temperature at the camera lens, reducing power to 30 W (9.5 ± 0.8 °C) and 15 W (8.0 ± 0.8 °C) decreased stray energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p < 0.001). An impedance-monitoring generator significantly decreased the energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p < 0.001). Stray energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance

  18. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; hide

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  19. GASS: the Parkes Galactic all-sky survey. II. Stray-radiation correction and second data release

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; McClure-Griffiths, N. M.; Pisano, D. J.; Calabretta, M. R.; Ford, H. Alyson; Lockman, F. J.; Staveley-Smith, L.; Kerp, J.; Winkel, B.; Murphy, T.; Newton-McGee, K.

    2010-10-01

    Context. The Parkes Galactic all-sky survey (GASS) is a survey of Galactic atomic hydrogen (H i) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release was published by McClure-Griffiths et al. (2009). Aims: We remove instrumental effects that affect the GASS and present the second data release. Methods: We calculate the stray-radiation by convolving the all-sky response of the Parkes antenna with the brightness temperature distribution from the Leiden/Argentine/Bonn (LAB) all sky 21-cm line survey, with major contributions from the 30-m dish of the Instituto Argentino de Radioastronomía (IAR) in the southern sky. Remaining instrumental baselines are corrected using the LAB data for a first guess of emission-free baseline regions. Radio frequency interference is removed by median filtering. Results: After applying these corrections to the GASS we find an excellent agreement with the Leiden/Argentine/Bonn (LAB) survey. The GASS is the highest spatial resolution, most sensitive, and is currently the most accurate H i survey of the Galactic H i emission in the southern sky. We provide a web interface for generation and download of FITS cubes.

  20. Stray light suppression of optical and mechanical system for telescope detection

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ma, Wenli

    2013-09-01

    During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.

  1. Stray light calibration of the Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo

    2013-10-01

    Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.

  2. Stray light field dependence for large astronomical space telescopes

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the

  3. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  4. Novel ray tracing method for stray light suppression from ocean remote sensing measurements.

    PubMed

    Oh, Eunsong; Hong, Jinsuk; Kim, Sug-Whan; Park, Young-Je; Cho, Seong-Ick

    2016-05-16

    We developed a new integrated ray tracing (IRT) technique to analyze the stray light effect in remotely sensed images. Images acquired with the Geostationary Ocean Color Imager show a radiance level discrepancy at the slot boundary, which is suspected to be a stray light effect. To determine its cause, we developed and adjusted a novel in-orbit stray light analysis method, which consists of three simulated phases (source, target, and instrument). Each phase simulation was performed in a way that used ray information generated from the Sun and reaching the instrument detector plane efficiently. This simulation scheme enabled the construction of the real environment from the remote sensing data, with a focus on realistic phenomena. In the results, even in a cloud-free environment, a background stray light pattern was identified at the bottom of each slot. Variations in the stray light effect and its pattern according to bright target movement were simulated, with a maximum stray light ratio of 8.5841% in band 2 images. To verify the proposed method and simulation results, we compared the results with the real acquired remotely sensed image. In addition, after correcting for abnormal phenomena in specific cases, we confirmed that the stray light ratio decreased from 2.38% to 1.02% in a band 6 case, and from 1.09% to 0.35% in a band 8 case. IRT-based stray light analysis enabled clear determination of the stray light path and candidates in in-orbit circumstances, and the correction process aided recovery of the radiometric discrepancy.

  5. Radiation from Accelerating Electric Charges: The Third Derivative of Position

    NASA Astrophysics Data System (ADS)

    Butterworth, Edward

    2010-03-01

    While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.

  6. Fast and accurate modeling of stray light in optical systems

    NASA Astrophysics Data System (ADS)

    Perrin, Jean-Claude

    2017-11-01

    The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.

  7. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.

    2016-03-15

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less

  8. The Disturbing Effect of the Stray Magnetic Fields on Magnetoimpedance Sensors

    PubMed Central

    Wang, Tao; Zhou, Yong; Lei, Chong; Zhi, Shaotao; Guo, Lei; Li, Hengyu; Wu, Zhizheng; Xie, Shaorong; Luo, Jun; Pu, Huayan

    2016-01-01

    The disturbing effect of the stray magnetic fields of Fe-based amorphous ribbons on the giant magnetoimpedance (GMI) sensor has been investigated systematically in this paper. Two simple methods were used for examining the disturbing effect of the stray magnetic fields of ribbons on the GMI sensor. In order to study the influence of the stray magnetic fields on the GMI effect, the square-shaped amorphous ribbons were tested in front, at the back, on the left and on the top of a meander-line GMI sensor made up of soft ferromagnetic films, respectively. Experimental results show that the presence of ribbons in front or at the back of GMI sensor shifts the GMI curve to a lower external magnetic field. On the contrary, the presence of ribbons on the left or on the top of the GMI sensor shifts the GMI curve to a higher external magnetic field, which is related to the coupling effect of the external magnetic field and the stray magnetic fields. The influence of the area and angle of ribbons on GMI was also studied in this work. The GMI sensor exhibits high linearity for detection of the stray magnetic fields, which has made it feasible to construct a sensitive magnetometer for detecting the typical stray magnetic fields of general soft ferromagnetic materials. PMID:27763498

  9. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  10. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.

    PubMed

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M

    2016-06-07

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H (*)(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H (*)(10) value of 2.7 μSv Gy(-1) was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H (*)(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy(-1) at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to

  11. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  12. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  13. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  14. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contributemore » to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.« less

  15. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  16. Urban stray cats infested by ectoparasites with zoonotic potential in Greece.

    PubMed

    Lefkaditis, Menelaos A; Sossidou, Anna V; Panorias, Alexandros H; Koukeri, Smaragda E; Paştiu, Anamaria I; Athanasiou, Labrini V

    2015-10-01

    A large population of stray cats is encountered in many urban areas sharing the same environment with people, usually being in a close direct contact with them. A variety of ectoparasites can infest such cats, causing mild dermatological abnormalities to more severe systemic disorders. In order to determine the extent of which stray cats carry ectoparasites, particularly those of zoonotic potential, 341 stray cats originating from the urban area of Thessaloniki, Greece, were examined between 2012 and 2014. The signalment of each cat such as gender, hair length, and roughly estimated age were recorded. From a total of 341 examined stray cats, 127 (37.24%; 95% confidence interval (CI) 32.14-42.64) were infested with at least one of the following ectoparasites: mites-Otodectes cynotis (15.8%), Notoedres cati (2.35%), Cheyletiella blakei (2.05%); fleas-Ctenocephalides felis (24.3%); ticks-Rhipicephalus sanguineus (0.88%); and lice-Felicola subrostratus (0.59%). A significantly higher prevalence of ectoparasites was observed in long-haired individuals (p < 0.00001). The above ectoparasites may either cause or transmit diseases not only in cats but also in humans Therefore, antiparasitic control should be included in stray cat neutering campaigns while public health education for taking preventive measures will decrease the risk of transmission to humans.

  17. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Kan, J. R.; Wu, C. S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.

  18. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    ERIC Educational Resources Information Center

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  19. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST).

    PubMed

    Jacobson, C M; Borchardt, M T; Den Hartog, D J; Falkowski, A F; Morton, L A; Thomas, M A

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  20. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  1. Stray light effects in above-water remote-sensing reflectance from hyperspectral radiometers.

    PubMed

    Talone, Marco; Zibordi, Giuseppe; Ansko, Ilmar; Banks, Andrew Clive; Kuusk, Joel

    2016-05-20

    Stray light perturbations are unwanted distortions of the measured spectrum due to the nonideal performance of optical radiometers. Because of this, stray light characterization and correction is essential when accurate radiometric measurements are a necessity. In agreement with such a need, this study focused on stray light correction of hyperspectral radiometers widely applied for above-water measurements to determine the remote-sensing reflectance (RRS). Stray light of sample radiometers was experimentally characterized and a correction algorithm was developed and applied to field measurements performed in the Mediterranean Sea. Results indicate that mean stray light corrections are appreciable, with values generally varying from -1% to +1% in the 400-700 nm spectral region for downward irradiance and sky radiance, and from -1% to +4% for total radiance from the sea. Mean corrections for data products such as RRS exhibit values that depend on water type varying between -0.5% and +1% in the blue-green spectral region, with peaks up to 9% in the red in eutrophic waters. The possibility of using one common stray light correction matrix for the analyzed class of radiometers was also investigated. Results centered on RRS support such a feasibility at the expense of an increment of the uncertainty typically well below 0.5% in the blue-green and up to 1% in the red, assuming sensors are based on spectrographs from the same production batch.

  2. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  3. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The modelmore » of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.« less

  4. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  5. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  6. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  7. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  8. Development of the CSNS Lambertson magnet with very low stray field

    NASA Astrophysics Data System (ADS)

    Wu, Yuwen; Kang, Wen; Chen, Yuan; Wu, Xi; Li, Shuai; Wang, Lei; Deng, Changdong; Li, Li; Zhou, Jianxin; Liu, Yiqin

    2018-02-01

    In this paper, the magnetic and mechanical design of Lambertson are studied, and then magnetic field measurements are introduced. The results show that the integral field uniformity and effective length meet the physical requirements. The shielding measures shield the stray field effectively and the stray field along the circulating beam orbit is at a very low level.

  9. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  10. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  11. Entropy bounds, acceleration radiation, and the generalized second law

    NASA Astrophysics Data System (ADS)

    Unruh, William G.; Wald, Robert M.

    1983-05-01

    We calculate the net change in generalized entropy occurring when one attempts to empty the contents of a thin box into a black hole in the manner proposed recently by Bekenstein. The case of a "thick" box also is treated. It is shown that, as in our previous analysis, the effects of acceleration radiation prevent a violation of the generalized second law of thermodynamics. Thus, in this example, the validity of the generalized second law is shown to rest only on the validity of the ordinary second law and the existence of acceleration radiation. No additional assumptions concerning entropy bounds on the contents of the box need to be made.

  12. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  13. White Light Stray Light Test of the SOHO UVCS

    NASA Technical Reports Server (NTRS)

    Gardner, L. N.; Gardner, L. N.; Fineschi, S.

    1998-01-01

    During the late stages of the integration phase of the Ultraviolet Coronagraph Spectrometer (UVCS) instrument for the Solar and Heliospheric Observatory (SOHO) at MATRA-Marconi in Toulouse, France, SOHO Project management at Goddard Space Flight Center (GSFC) became concerned that the elaborate stray light rejection system for the instrument had not been tested and might possibly be misaligned such that the instrument could not deliver promised scientific returns. A white light stray light test, which would place an upper bound on the value of UVCS's stray light rejection capability, was commissioned, conceived, and carried out. This upper bound value would be indicative of the weakest coronal features the spectrometer would be capable of discerning. The test was rapidly developed at GSFC in coordination with science team members from Harvard-Smithsonian Center for Astrophysics (CFA) and was carried out at MATRA in late February 1995. The outcome of this test helped to justify similar, much desired tests with visible and far ultraviolet light at CFA in a facility specifically designed to perform such testing.

  14. Vacuum electron acceleration by coherent dipole radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a planemore » wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}« less

  15. [Influence of different multifocal intraocular lens concepts on retinal stray light parameters].

    PubMed

    Ehmer, A; Rabsilber, T M; Mannsfeld, A; Sanchez, M J; Holzer, M P; Auffarth, G U

    2011-10-01

    Multifocal intraocular lenses (MIOL) are known to induce various photic phenomena depending on the optical principle. The aim of this study was to investigate the correlation between stray light measurements performed with the C-Quant (Oculus, Germany) and the results of a subjective patient questionnaire. In this study three different MIOLs were compared: AMO ReZoom (refractive design, n=10), AMO ZM900 (diffractive design, n=10) and Oculentis Mplus (near segment design, n=10). Cataract and refractive patients were enrolled in the study. Functional results were evaluated at least 3 months postoperatively followed by stray light measurements and a subjective questionnaire. Surgery was performed for all patients without complications. The three groups were matched for age, IOL power and corrected distance visual acuity (CDVA). Significantly different stray light (median) values log(s) were found (Kruskal-Wallis test, p<0.05): 1.12 log (refractive), 1.13 log (segment) and 1.28 log (diffractive). The subjective questionnaire did not show differences in glare perception but refractive MIOL patients noticed more halos surrounding light sources than the diffractive and segment MIOL patients. Stray light and subjective photopic phenomena do not show any basic correlation. Measurements in patients with refractive MIOLs showed less stray light than near segment or diffractive MIOLs. However, refractive MIOLs induced more halos compared to the other groups analyzed.

  16. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  17. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; ...

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  18. A system for monitoring the radiation effects of a proton linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  19. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shumei; Zang, Qing, E-mail: zangq@ipp.ac.cn; Han, Xiaofeng

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump systemmore » can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.« less

  20. Enhanced-Adhesion Multi-Walled Carbon Nanotubes on Titanium Substrates for Stray Light Control

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2012-01-01

    Carbon nanotubes previously grown on silicon have extremely low reflectance, making them a good candidate for stray light suppression. Silicon, however, is not a good structural material for stray light components such as tubes, stops, and baffles. Titanium is a good structural material and can tolerate the 700 C nanotube growth process. The ability to grow carbon nanotubes on a titanium substrate that are ten times blacker than the current NASA state-of-the-art paints in the visible to near infrared spectra has been achieved. This innovation will allow significant improvement of stray light performance in scientific instruments or any other optical system. This innovation is a refinement of the utilization of multiwalled carbon nano tubes for stray light suppression in spaceflight instruments. The innovation is a process to make the surface darker and improve the adhesion to the substrate, improving robustness for spaceflight use. Bright objects such as clouds or ice scatter light off of instrument structures and components and make it difficult to see dim objects in Earth observations. A darker material to suppress this stray light has multiple benefits to these observations, including enabling scientific observations not currently possible, increasing observational efficiencies in high-contrast scenes, and simplifying instruments and lowering their cost by utilizing fewer stray light components and achieving equivalent performance. The prior art was to use commercially available black paint, which resulted in approximately 4% of the light being reflected (hemispherical reflectance or total integrated scatter, or TIS). Use of multiwalled carbon nanotubes on titanium components such as baffles, entrance aperture, tubes, and stops, can decrease this scattered light by a factor of ten per bounce over the 200-nm to 2,500-nm wavelength range. This can improve system stray light performance by orders of magnitude. The purpose of the innovation is to provide an enhanced

  1. Salmon restoration in the Umatilla River: A study of straying and risk containment

    USGS Publications Warehouse

    Hayes, M.C.; Carmichael, R.W.

    2002-01-01

    The use of artificial propagation may produce unexpected results and the need for risk containment. Stray chinook salmon (Oncorhynchus tshawytscha) from Umatilla River releases put the threatened Snake River stock at risk, caused conflict between two plans, altered management, and greatly increased the costs for hatchery-based restoration. Stray Umatilla returns captured or observed in the Snake River averaged more than 200 fish annually and comprised up to 26% of the escapement. The risk to the threatened population stimulated a series of containment actions, including wire tagging 2-3 million fish annually, use of acclimation ponds, altering release locations, flow enhancement, and broodstock management changes. Actions for the use of artificial propagation where straying or unexpected results are a concern include marking or tagging most or all fish, limiting the number of fish initially released, recognizing environmental variables that influence straying, ensuring that funding for risk containment is available when undesirable results occur, and recognizing that unexpected results may not be manifested or identified immediately.

  2. Quality control methods for linear accelerator radiation and mechanical axes alignment.

    PubMed

    Létourneau, Daniel; Keller, Harald; Becker, Nathan; Amin, Md Nurul; Norrlinger, Bernhard; Jaffray, David A

    2018-06-01

    The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy. In this work, an automated test suite based on an analytical model of the linear accelerator motions was developed to streamline the QC of radiation and mechanical axes alignment. The proposed method used the automated analysis of megavoltage images of two simple task-specific phantoms acquired at different linear accelerator settings to determine the coincidence of the radiation and mechanical isocenters. The sensitivity and accuracy of the test suite were validated by introducing actual misalignments on a linear accelerator between the radiation axis and the mechanical axes using both beam steering and mechanical adjustments of the gantry and couch. The validation demonstrated that the new QC method can detect sub-millimeter misalignment between the radiation axis and the three mechanical axes of rotation. A displacement of the radiation source of 0.2 mm using beam steering parameters was easily detectable with the proposed collimator rotation axis test. Mechanical misalignments of the gantry and couch rotation axes of the same magnitude (0.2 mm) were also detectable using the new gantry and couch rotation axis tests. For the couch rotation axis, the phantom and test design allow detection of both translational and tilt misalignments with the radiation beam axis. For the collimator rotation axis, the test can isolate the misalignment between the beam radiation axis

  3. Using parentage analysis to estimate rates of straying and homing in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Ford, Michael J; Murdoch, Andrew; Hughes, Michael

    2015-03-01

    We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural-origin and 11594 hatchery-origin fish, we estimated that the rate of homing to natal tributaries by natural-origin fish ranged from 0% to 99% depending on the tributary. Hatchery-origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural-origin fish (71% compared to 96%). For hatchery-released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural-origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery-produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural-origin fish strayed from their natal tributary. Indirect estimates of gene flow based on FST statistics were correlated with but higher than the estimates from the parentage data. Tributary-specific estimates of effective population size were also correlated with the number of spawners in each tributary. Published [2015]. This article is a U.S. Government work and is in the public domain in the USA.

  4. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  5. Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, J.M.; Liu, J.C.; Prinz, A.

    2009-12-11

    As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests.more » They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.« less

  6. Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Committee Task Group No. 72.

    PubMed

    Beddar, A Sam; Biggs, Peter J; Chang, Sha; Ezzell, Gary A; Faddegon, Bruce A; Hensley, Frank W; Mills, Michael D

    2006-05-01

    Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

  7. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera

    NASA Astrophysics Data System (ADS)

    Lowman, Andrew E.; Stauder, John L.

    2004-10-01

    The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.

  8. Hawking radiation of scalar particles from accelerating and rotating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K., E-mail: mani_precious2001@yahoo.com, E-mail: mudassar051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  9. Multiwalled carbon nanotubes for stray light suppression in space flight instruments

    NASA Astrophysics Data System (ADS)

    Hagopian, John G.; Getty, Stephanie A.; Quijada, Manuel; Tveekrem, June; Shiri, Ron; Roman, Patrick; Butler, James; Georgiev, Georgi; Livas, Jeff; Hunt, Cleophus; Maldonado, Alejandro; Talapatra, Saikat; Zhang, Xianfeng; Papadakis, Stergios J.; Monica, Andrew H.; Deglau, David

    2010-08-01

    Observations of the Earth are extremely challenging; its large angular extent floods scientific instruments with high flux within and adjacent to the desired field of view. This bright light diffracts from instrument structures, rattles around and invariably contaminates measurements. Astrophysical observations also are impacted by stray light that obscures very dim objects and degrades signal to noise in spectroscopic measurements. Stray light is controlled by utilizing low reflectance structural surface treatments and by using baffles and stops to limit this background noise. In 2007 GSFC researchers discovered that Multiwalled Carbon Nanotubes (MWCNTs) are exceptionally good absorbers, with potential to provide order-of-magnitude improvement over current surface treatments and a resulting factor of 10,000 reduction in stray light when applied to an entire optical train. Development of this technology will provide numerous benefits including: a.) simplification of instrument stray light controls to achieve equivalent performance, b.) increasing observational efficiencies by recovering currently unusable scenes in high contrast regions, and c.) enabling low-noise observations that are beyond current capabilities. Our objective was to develop and apply MWCNTs to instrument components to realize these benefits. We have addressed the technical challenges to advance the technology by tuning the MWCNT geometry using a variety of methods to provide a factor of 10 improvement over current surface treatments used in space flight hardware. Techniques are being developed to apply the optimized geometry to typical instrument components such as spiders, baffles and tubes. Application of the nanostructures to alternate materials (or by contact transfer) is also being investigated. In addition, candidate geometries have been tested and optimized for robustness to survive integration, testing, launch and operations associated with space flight hardware. The benefits of this

  10. Cherenkov Radiation Control via Self-accelerating Wave-packets.

    PubMed

    Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun

    2017-08-18

    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.

  11. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  12. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  13. Electron acceleration and radiation signatures in loop coronal transients

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Gergely, T. E.; Papadopoulos, K.

    1982-01-01

    It is proposed that in loop coronal transients an erupting loop moves away from the solar surface, with a velocity exceeding the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. Lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field that exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. The manner in which the accelerated electrons are trapped in the moving loop are discussed, and their radiation signature is estimated. It is suggested that plasma radiation can explain the power observed in stationary and moving type IV bursts.

  14. Multi-dimensional effects in radiation pressure acceleration of ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, V. K., E-mail: tripathivipin@yahoo.co.in

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-monomore » energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.« less

  15. Seroepidemiological survey of helminthic parasites of stray dogs in Sari City, northern Iran.

    PubMed

    Gholami, Ishirzad; Daryani, Ahmad; Sharif, Mehdi; Amouei, Afsaneh; Mobedi, Iraj

    2011-01-15

    The objective of this study was to determine the prevalence rate of helminthic parasites in stray dogs' population especially zoonotic infections and to identify potential risk factors in the different areas of Sari city in Caspian area, north of Iran. During the period from April to September 2007, 50 stray dogs were collected from urban areas of Sari city. Recovered parasites were fixed in alcohol and stained by carmine then observed by microscope. The taxonomic study was carried out by measuring different parts of the body of helminthes and statistical tests were performed using the Chi-square test. A total of 27 adult and 23 juvenile stray dogs were collected and the overall prevalence rate of infection was 90%. The three most common helminthes were Toxocara canis (60%), Ancylostoma caninum (46%) and Dipylidium caninum (36%). Other parasites were Uncinaria stenocephala (12%), Taenia hydatigena (6%), Spirocerca lupi (6%), Dirofilaria immitis (6%), Toxascaris leonina (2%), Rictularia sp. (2%), Taenia ovis (2%) and Taenia taeniformis (2%). Five species of zoonotic helminthes recovered were T. canis, A. caninum, U. stenocephala, D. caninum and D. immitis. Hookworm infections (58%) were more common significantly in the young stray dogs (p < 0.01). In regard to prevalence ofA. caninum, T. canis and U. stenocephala, there was significant difference between juvenile and adult dogs (p < 0.05). The results highlight the potential role of stray dogs for transmission of helminthic parasites particularly zoonotic parasites that are a significant risk to human health.

  16. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  17. Testing for Stray Current Corrosion in Earth Covered Magazines with EOP

    DTIC Science & Technology

    2010-02-01

    potential for Stray Current Corrosion BUILDING STRONG® Plot of Current Measurements 0 0.2 0.4 0.6 0.8 1 1.2 0 10 20 30 40 50 60 70 80 90 100 % I to Rebar m...magnitude as more current was directed to the reinforcing steel.  Corrosion current was measured to the rebar probe placed above the location of...US Army Corps of Engineers BUILDING STRONG® Testing for Stray Current Corrosion in Earth Covered Magazines with EOP O. S. Marshall US Army

  18. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    DTIC Science & Technology

    2017-03-14

    and was published in Nuclear Instruments and Methods A [11]. For similar targets, it was found that by monitoring the divergence of a low- energy ...AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration

  19. The influence of the earth radiation on space target detection system

    NASA Astrophysics Data System (ADS)

    Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .

    2017-05-01

    In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.

  20. Skyshine radiation resulting from 6 MV and 10 MV photon beams from a medical accelerator.

    PubMed

    Elder, Deirdre H; Harmon, Joseph F; Borak, Thomas B

    2010-07-01

    Skyshine radiation scattered in the atmosphere above a radiation therapy accelerator facility can result in measurable dose rates at locations near the facility on the ground and at roof level. A Reuter Stokes RSS-120 pressurized ion chamber was used to measure exposure rates in the vicinity of a Varian Trilogy Linear Accelerator at the Colorado State University Veterinary Medical Center. The linear accelerator was used to deliver bremsstrahlung photons from 6 MeV and 10 MeV electron beams with several combinations of field sizes and gantry angles. An equation for modeling skyshine radiation in the vicinity of medical accelerators was published by the National Council on Radiation Protection and Measurements in 2005. However, this model did not provide a good fit to the observed dose rates at ground level or on the roof. A more accurate method of estimating skyshine may be to measure the exposure rate of the radiation exiting the roof of the facility and to scale the results using the graphs presented in this paper.

  1. Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs

    NASA Astrophysics Data System (ADS)

    Chhotray, Atul; Lazzati, Davide

    2018-05-01

    We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph < Rsat regime. Our results reveal new phases of fireball evolution: a transition phase with a radial extent of several orders of magnitude - the fireball transitions from Γ ∝ R to Γ ∝ R0, a post-photospheric acceleration phase - where fireballs accelerate beyond the photosphere and a Thomson-dominated acceleration phase - characterized by slow acceleration of optically thick, matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.

  2. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  3. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system.

    PubMed

    Mojżeszek, N; Farah, J; Kłodowska, M; Ploc, O; Stolarczyk, L; Waligórski, M P R; Olko, P

    2017-02-01

    To measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique. Measurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100-220MeV), field sizes ((2×2)-(20×20)cm 2 ) and modulation widths (0-15cm). For pristine proton peak irradiations, large variations of neutron H ∗ (10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H ∗ (10)/D for pristine proton pencil beams varied between 0.04μSvGy -1 at beam energy 100MeV and a (2×2)cm 2 field at 2.25m distance and 90° angle with respect to the beam axis, and 72.3μSvGy -1 at beam energy 200MeV and a (20×20) cm 2 field at 1m distance along the beam axis. The obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Application of Peterson's stray light model to complex optical instruments

    NASA Astrophysics Data System (ADS)

    Fray, S.; Goepel, M.; Kroneberger, M.

    2016-07-01

    Gary L. Peterson (Breault Research Organization) presented a simple analytical model for in- field stray light evaluation of axial optical systems. We exploited this idea for more complex optical instruments of the Meteosat Third Generation (MTG) mission. For the Flexible Combined Imager (FCI) we evaluated the in-field stray light of its three-mirroranastigmat telescope, while for the Infrared Sounder (IRS) we performed an end-to-end analysis including the front telescope, interferometer and back telescope assembly and the cold optics. A comparison to simulations will be presented. The authors acknowledge the support by ESA and Thales Alenia Space through the MTG satellites program.

  5. First genetic characterization of Toxoplasma gondii in stray cats from Algeria.

    PubMed

    Yekkour, Feriel; Aubert, Dominique; Mercier, Aurélien; Murat, Jean-Benjamin; Khames, Mammar; Nguewa, Paul; Ait-Oudhia, Khatima; Villena, Isabelle; Bouchene, Zahida

    2017-05-30

    Toxoplasmosis is a parasitic disease with worldwide distribution and a major public health problem. In Algeria, no data are currently available about genotypes of Toxoplasma gondii isolated from animals or humans. The present study assesses for the first time the seroprevalence of toxoplasmosis in stray cats, and provides molecular characterization of T. gondii strains circulating in this feline population in Algiers, the capital city of Algeria. Sera from 96 stray cats were tested for the presence of antibodies against T. gondii using the modified agglutination test. The seroprevalence was 50% (48/96) using 1:6 as the positivity cut-off. Different organs samples from stray cats, including heart samples, were tested for the presence of Toxoplasma DNA using real-time PCR. T. Gondii DNA was detected in 90.6% (87/96) of hearts. Of these parasitic DNAs, 22 were submitted to genotyping through the analysis of 15 microsatellite markers. The identified genotypes (12 of 22) mainly belonged to the type II lineage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prevalence of filarial parasites in domestic and stray cats in Selangor State, Malaysia.

    PubMed

    Al-Abd, Nazeh M; Nor, Zurainee Mohamed; Kassim, Mustafa; Mansor, Marzida; Al-Adhroey, Abdulelah H; Ngui, Romano; Sivanandam, Sinnadurai

    2015-09-01

    To determine the prevalence of the filarial parasites,ie.,Brugia malayi, Brugia, Brugia pahangi(B. pahangi), Dirofilaria immitisandDirofilaria repens (D. repens) in domestic and stray cats. A total of 170 blood sample were collected from domestic and stray cats and examined for filarial worm parasites in two localities, Pulau Carey and Bukit Gasing, Selangor State, Malaysia. The overall prevalence of infection was 23.5% (40/170; 95% CI = 17.4-30.6). Of this, 35% (14/40; 95% CI = 22.1-50.5) and 50% (20/40; 95% CI = 35.2-64.8) were positive for single B. pahangi nd D. repens, respectively. The remaining of 15% (6/40; 95% CI = 7.1-29.1) were positive for mixed B. pahangi and D. repens. In addition, 75% of the infected cats were domestic, and 25% were strays. No Brugia malayi and Dirofilaria immitis was detected. Eighty-four cats were captured at Pulau Carey, of which 35.7% (30/84) were infected. Among the cats determined to be infected, 93% (28/30; 95% CI = 78.7-98.2) were domestic, and only 6.7% (2/30; 95% CI = 19.0-21.3) were strays. Conversely, the number of infected cats was three times lower in Bukit Gasing than in Pulau Carey, and most of the cats were stray. B. pahangi and D. repens could be the major parasites underlying filariasis in the study area. Adequate prophylactic plans should be administrated in the cat population in study area. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  7. Radiation Safety System for SPIDER Neutral Beam Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandri, S.; Poggi, C.; Coniglio, A.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less

  8. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  9. The Multi-Dimensional Structure of Radiative Shocks: Suppressed Thermal X-rays and Relativistic Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Metzger, Brian D.

    2018-06-01

    Radiative shocks, behind which gas cools faster than the dynamical time, play a key role in many astrophysical transients, including classical novae and young supernovae interacting with circumstellar material. The dense layer behind high Mach number M ≫ 1 radiative shocks is susceptible to thin-shell instabilities, creating a "corrugated" shock interface. We present two and three-dimensional hydrodynamical simulations of optically-thin radiative shocks to study their thermal radiation and acceleration of non-thermal relativistic ions. We employ a moving-mesh code and a specialized numerical technique to eliminate artificial heat conduction across grid cells. The fraction of the shock's luminosity Ltot radiated at X-ray temperatures kT_sh ≈ (3/16)μ m_p v_sh2 expected from a one-dimensional analysis is suppressed by a factor L(>T_sh/3)/L_tot ≈ 4.5/M^{4/3} for M ≈ 4-36. This suppression results in part from weak shocks driven into under-pressured cold filaments by hot shocked gas, which sap thermal energy from the latter faster than it is radiated. Combining particle-in-cell simulation results for diffusive shock acceleration with the inclination angle distribution across the shock (relative to an upstream magnetic field in the shock plane-the expected geometry for transient outflows), we predict the efficiency and energy spectrum of ion acceleration. Though negligible acceleration is predicted for adiabatic shocks, the corrugated shock front enables local regions to satisfy the quasi-parallel magnetic field geometry required for efficient acceleration, resulting in an average acceleration efficiency of ɛnth ˜ 0.005 - 0.02 for M ≈ 12-36, in agreement with modeling of the gamma-ray nova ASASSN-16ma.

  10. Convergence of highly parallel stray field calculation using the fast multipole method on irregular meshes

    NASA Astrophysics Data System (ADS)

    Palmesi, P.; Abert, C.; Bruckner, F.; Suess, D.

    2018-05-01

    Fast stray field calculation is commonly considered of great importance for micromagnetic simulations, since it is the most time consuming part of the simulation. The Fast Multipole Method (FMM) has displayed linear O(N) parallelization behavior on many cores. This article investigates the error of a recent FMM approach approximating sources using linear—instead of constant—finite elements in the singular integral for calculating the stray field and the corresponding potential. After measuring performance in an earlier manuscript, this manuscript investigates the convergence of the relative L2 error for several FMM simulation parameters. Various scenarios either calculating the stray field directly or via potential are discussed.

  11. The use of accelerated radiation testing for avionics

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2013-04-01

    In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.

  12. Evaluation of Delamination of X80 Pipeline Steel Coating Under Alternating Stray Current Via Scanning Electrochemical Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xinhua; Liu, Qiang; Chun, Yingchun; Li, Yingchao; Wang, Zuquan

    2018-04-01

    The delamination of epoxy coating on X80 pipeline steel was evaluated under various stray alternating current (AC) interferences (0-300 A/m2). Qualitative and quantitative analyses were carried out using scanning electrochemical microscopy (SECM), electrochemical impedance spectroscopy (EIS), and three-dimensional digital microscopy. The results show that the SECM current is directly proportional to the soaking time and applied current density. The variation in SECM current curve shape indicates the delamination distance of epoxy coatings at the defect area. The depths of corrosion pits at 50, 100, and 300 A/m2 stray currents were 140, 160, and 240 μm, respectively. The corrosion pits also became wider with increasing current densities. With increasing stray AC densities, both the coating delamination and pit depth became more severe at the same soaking time. The EIS results show that the change in impedance was not significant without stray current, whereas the impedance first decreased and then increased when stray current was applied. These results are consistent with the SECM measurements.

  13. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  14. Radiative accelerations in stellar envelopes

    NASA Astrophysics Data System (ADS)

    Seaton, M. J.

    1997-08-01

    In stars which are sufficiently quiescent, changes in the relative abundances of the chemical elements can result from gravitational settling and from levitation produced by radiation pressure forces, usually expressed as radiative accelerations g_rad. Those changes can affect the structure of such stars, due to modifications in opacities, and can lead to marked peculiarities in observed atmospheric abundances. It is necessary to consider diffusive movements both in the atmospheres and in much deeper layers of the stellar envelopes. For the envelopes the equation of radiative transfer can be solved in a diffusion approximation and, for an element k in ionization stage j, one obtains expressions for g_rad(j, k) proportional to the total radiative flux, to the Rosseland-mean opacity kappa_R (which may depend on the abundance of k), and to a dimensionless quantity gamma(j, k) which, due to saturation effects, can be sensitive to the abundance of k. The radiative accelerations are required for each ionization stage, because the diffusion coefficients depend on j. Using atomic data obtained in the course of the work of the Opacity Project (OP), we calculate kappa_R and gamma(j, k) for the chemical elements C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni. We start from standard Solar system abundances, and then vary the abundance of one element at a time (element k) by a factor chi. The following results are obtained and are available at the Centre de Donnees astronomiques de Strasbourg (CDS). (1) Files stages.zz (where zz specifies the nuclear charge of the selected element k) containing values of kappa_R and gamma(j, k) on a mesh of values of (T, N_e, chi), where T is temperature, and N_e is electron density. We include derivatives of kappa_R and gamma(j, k) with respect to chi, which are used for making interpolations. (2) A code add.f which reads a file stages.zz and writes a file acc.zz containing values of gamma(k) obtained on summing the gamma(j, k

  15. Stray Current Corrosion in Electrified Rail Systems - Final Report

    DOT National Transportation Integrated Search

    1995-05-01

    The objectives of this study were (1)to assess the scope of stray-current corrosion on electrified rail systems based upon information in the literature and from interviews with selected transit system operators, and (2)to determine whether new or ad...

  16. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  17. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  18. Barnett Shale or Strawn Group: Identifying the Source of Stray Gas through Noble Gases in the Trinity Aquifer, North-Central Texas

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Nicot, J. P.; Hall, C. M.; Pinti, D. L.; Mickler, P. J.; Darvari, R.; Larson, T. E.

    2017-12-01

    The complete set of stable noble gases (He, Ne, Ar, Kr, Xe) is presented for Barnett Shale and Strawn Group production gas together with that of stray flowing gas present in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like Trinity Aquifer stray gas, Strawn gas is significantly more enriched in crustal 4He*, 21Ne*, and 40Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22Ne/36Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  19. Detection of Hepatozoon canis in stray dogs and cats in Bangkok, Thailand.

    PubMed

    Jittapalapong, Sathaporn; Rungphisutthipongse, Opart; Maruyama, Soichi; Schaefer, John J; Stich, Roger W

    2006-10-01

    A rapidly increasing stray animal population in Bangkok has caused concern regarding transmission of vector-borne and zoonotic diseases. The purpose of this study was to determine if stray animals in Bangkok are a potential reservoir of Hepatozoon, a genus of tick-borne parasites that has received little attention in Thailand. Blood samples were collected from stray companion animals near monasteries in 42 Bangkok metropolitan districts. Both dogs and cats were sampled from 26 districts, dogs alone from 4 districts and cats alone from 12 districts. Samples were collected from a total of 308 dogs and 300 cats. Light microscopy and an 18 S rRNA gene-based PCR assay were used to test these samples for evidence of Hepatozoon infection. Gamonts were observed in blood smears for 2.6% of dogs and 0.7% of cats by microscopy. The PCR assay detected Hepatozoon in buffy coats from 11.4% of dogs and 32.3% of cats tested. The prevalence of infection was the same between male and female dogs or cats, and PCR-positive dogs and cats were found in 36.6% and 36.8% of the districts surveyed, respectively. There was an association between the percentages of PCR-positive dogs and cats in districts where both host species were sampled. Sequences of representative amplicons were closest to those reported for H. canis. These results represent the first molecular confirmation that H. canis is indigenous to Thailand. The unexpectedly high prevalence of Hepatozoon among stray cats indicates that their role in the epizootiology of hepatozoonosis should be investigated.

  20. Vector-Borne Pathogens in Stray Dogs in Northeastern Turkey.

    PubMed

    Guven, Esin; Avcioglu, Hamza; Cengiz, Seyda; Hayirli, Armagan

    2017-08-01

    This experiment was carried out to attain prevalence and molecular characterization of pathogens causing canine vector-borne diseases (CVBDs) including babesiosis, hepatozoonosis, leishmaniasis, filariosis (Dirofilaria immitis, Dirofilaria repens, and Acanthocheilonema reconditum), ehrlichiosis (Ehrlichia canis), and anaplasmosis (Anaplasma platys) in stray dogs. The study material consisted of 133 asymptomatic female (n = 96) and male (n = 37) stray dogs (≤1 year old, n = 16 and 1-6 years old, n = 117) housed in the Animal Care and Rehabilitation Center, Erzurum, Northeastern Turkey. Conventional and nested PCR were performed on blood samples to detect Babesia spp., Leishmania spp., Hepatozoon spp., D. immitis, D. repens, A. reconditum, E. canis, and A. platys. Sex and age association with the pathogen prevalence was determined using X 2 statistics. The positivity rate for at least one CVBD pathogen was 48.9% (65/133). DNA of B. canis, Hepatozoon spp., H. canis, D. immitis, and E. canis were detected in 5.3% (7/133), 27.1% (36/133), 5.3% (7/133), 1.5% (2/133), and 9.8% (13/133) of the dogs, respectively. Leishmania spp., D. repens, A. reconditum, and A. platys DNA were not detected. Mixed pathogens were determined in seven (10.8%) of the infected dogs, with predominant involvement of Hepatozoon spp. or H. canis. The pathogen prevalence did not vary by sex or age. Nucleotide blast analysis of Erzurum isolates showed 99.8-100% identities with the corresponding reference isolates. This study indicates presence of five CVB pathogens, including the first report of E. canis, in stray dogs in Erzurum, Turkey.

  1. Radiation reaction effect on laser driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particlemore » which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.« less

  2. Undulator radiation from laser-plasma-accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Shaw, B.; van Tilborg, J.; Gonsalves, A.; Nakamura, K.; Sokollik, T.; Shiraishi, S.; Mittal, R.; Esarey, E.; Schroeder, C.; Toth, C.; Leemans, W. P.

    2012-12-01

    Recent experiments coupled electron beams from the LOASIS TREX laser plasma accelerator (LPA) [1, 2, 3] to the Tapered Hybrid Undulator (THUNDER). Using the 1.5m, 66 period undulator, followed by an XUV spectrometer, spontaneous radiation was observed at photon energies extending to 100 eV. Previous experiments have reported visible [4] and soft-x-ray [5] radiation. The purpose of our experiments is to do highly precise, single shot diagnostics of the energy spread and emittance for each electron beam. We present recent results including measurements of electron beam transport through the undulator with and without the use of permanent magnetic quadrapoles, and measurements of XUV spectra up to 100 eV from LPA produced e-beams.

  3. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  4. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  5. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  6. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Relativistic astrophysical plasma environments routinely produce intense high-energy emission, which is often observed to be nonthermal and rapidly flaring. The recently discovered gamma-ray (> 100 MeV) flares in Crab Pulsar Wind Nebula (PWN) provide a quintessential illustration of this, but other notable examples include relativistic active galactic nuclei (AGN) jets, including blazars, and Gamma-ray Bursts (GRBs). Understanding the processes responsible for the very efficient and rapid relativistic particle acceleration and subsequent emission that occurs in these sources poses a strong challenge to modern high-energy astrophysics, especially in light of the necessity to overcome radiation reaction during the acceleration process. Magnetic reconnection and collisionless shocks have been invoked as possible mechanisms. However, the inferred extreme particle acceleration requires the presence of coherent electric-field structures. How such large-scale accelerating structures (such as reconnecting current sheets) can spontaneously arise in turbulent astrophysical environments still remains a mystery. The proposed project will conduct a first-principles computational and theoretical study of kinetic turbulence in relativistic collisionless plasmas with a special focus on nonthermal particle acceleration and radiation emission. The main computational tool employed in this study will be the relativistic radiative particle-in-cell (PIC) code Zeltron, developed by the team members at the Univ. of Colorado. This code has a unique capability to self-consistently include the synchrotron and inverse-Compton radiation reaction force on the relativistic particles, while simultaneously computing the resulting observable radiative signatures. This proposal envisions performing massively parallel, large-scale three-dimensional simulations of driven and decaying kinetic turbulence in physical regimes relevant to real astrophysical systems (such as the Crab PWN), including the

  7. Accelerated radiation damage testing of x-ray mask membrane materials

    NASA Astrophysics Data System (ADS)

    Seese, Philip A.; Cummings, Kevin D.; Resnick, Douglas J.; Yanof, Arnold W.; Johnson, William A.; Wells, Gregory M.; Wallace, John P.

    1993-06-01

    An accelerated test method and resulting metrology data are presented to show the effects of x- ray radiation on various x-ray mask membrane materials. A focused x-ray beam effectively reduces the radiation time to 1/5 of that required by normal exposure beam flux. Absolute image displacement results determined by this method indicate imperceptible movement for boron-doped silicon and silicon carbide membranes at a total incident dose of 500 KJ/cm2, while image displacement for diamond is 50 nm at 150 KJ/cm2 and silicon nitride is 70 nm at 36 KJ/cm2. Studies of temperature rise during the radiation test and effects of the high flux radiation, i.e., reciprocity tests, demonstrate the validity of this test method.

  8. Study on radiation production in the charge stripping section of the RISP linear accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Oranj, Leila Mokhtari; Lee, Hee-Seock; Ko, Seung-Kook

    2015-02-01

    The linear accelerator of the Rare Isotope Science Project (RISP) accelerates 200 MeV/nucleon 238U ions in a multi-charge states. Many kinds of radiations are generated while the primary beam is transported along the beam line. The stripping process using thin carbon foil leads to complicated radiation environments at the 90-degree bending section. The charge distribution of 238U ions after the carbon charge stripper was calculated by using the LISE++ program. The estimates of the radiation environments were carried out by using the well-proved Monte Carlo codes PHITS and FLUKA. The tracks of 238U ions in various charge states were identified using the magnetic field subroutine of the PHITS code. The dose distribution caused by U beam losses for those tracks was obtained over the accelerator tunnel. A modified calculation was applied for tracking the multi-charged U beams because the fundamental idea of PHITS and FLUKA was to transport fully-ionized ion beam. In this study, the beam loss pattern after a stripping section was observed, and the radiation production by heavy ions was studied. Finally, the performance of the PHITS and the FLUKA codes was validated for estimating the radiation production at the stripping section by applying a modified method.

  9. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.

  10. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    NASA Astrophysics Data System (ADS)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  11. Potential Zoonotic Trematodes Recovered in Stray Cats from Kuwait Municipality, Kuwait

    PubMed Central

    El-Azazy, Osama Mohamed ElShfei; Abdou, Nadra-Elwgoud Mohamed Ibrahim; Khalil, Amal Iskander; Al-Batel, Maha Khaled; Majeed, Qais Abdulrazak Habeeb; Henedi, Adawia Abdul-Ruhman; Tahrani, Laila Mohamed Azad

    2015-01-01

    Stray cats are a common feature roaming the streets and alleys of Kuwait; they could be a source of parasites, including trematodes, that affect humans. A survey was conducted to identify feline trematodes and throw the light on their public health significance in Kuwait. Out of 240 stray cats trapped from different localities of Kuwait from June 2011 to May 2012, 59 (24.6%) were found to be infected with 14 species of trematodes. The most common were trematodes of the genus Heterophyes, particularly H. heterophyes and H. dispar that were found in respectively 15.8% and 10.8% of the cats examined. Other trematodes recorded, with lower prevalences, were Heterophyes nocens (2.9%), Haplorchis taichui (3.8%), Stictodora sawakinensis (2.1%), Stellantchasmus falcatus (1.6%), Echinochasmus japonicus (1.6%), and Mesostephanus dottrensi (1.3%). Centrocestus cuspidatus, Galactosomum fregatae, Ascocotyle sp., Mesostephanus appendiculatus, Haplorchis yokogawai, and Pygidiopsis genata showed the lowest prevalence (0.4%) and intensity. The majority of the trematodes are recorded for the first time in Kuwait and even in the Gulf region. The study reveals that stray cats are good indicators of fish-borne trematodes in the environment. As all trematodes recovered are zoonotic, their significance to public health should be considred. PMID:26174821

  12. Betatron x-ray radiation in the self-modulated wakefield acceleration regime (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2017-05-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation in the self modulated regime of laser wakefield acceleration. We observed multi keV Betatron x-rays from a self-modulated laser wakefield accelerator. The experiment was performed at the Jupiter Laser Facility, LLNL, by focusing the Titan short pulse beam (4-150 J, 1 ps) onto the edge of a Helium gas jet at electronic densities around 1019 cm-3. For the first time on this laser system, we used a long focal length optic, which produced a laser normalized potential a0 in the range 1-3. Under these conditions, electrons are accelerated by the plasma wave created in the wake of the light pulse. As a result, intense Raman satellites, which measured shifts depend on the electron plasma density, were observed on the laser spectrum transmitted through the target. Electrons with energies up to 200 MeV, as well as Betatron x-rays with critical energies around 20 keV, were measured. OSIRIS 2D PIC simulations confirm that the electrons gain energy both from the plasma wave and from their interaction with the laser field.

  13. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    NASA Astrophysics Data System (ADS)

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method

  14. Design, simulation and experimental analysis of an anti-stray-light illumination system of fundus camera

    NASA Astrophysics Data System (ADS)

    Ma, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2014-11-01

    Fundus camera is a complex optical system for retinal photography, involving illumination and imaging of the retina. Stray light is one of the most significant problems of fundus camera because the retina is so minimally reflective that back reflections from the cornea and any other optical surface are likely to be significantly greater than the light reflected from the retina. To provide maximum illumination to the retina while eliminating back reflections, a novel design of illumination system used in portable fundus camera is proposed. Internal illumination, in which eyepiece is shared by both the illumination system and the imaging system but the condenser and the objective are separated by a beam splitter, is adopted for its high efficiency. To eliminate the strong stray light caused by corneal center and make full use of light energy, the annular stop in conventional illumination systems is replaced by a fiber-coupled, ring-shaped light source that forms an annular beam. Parameters including size and divergence angle of the light source are specially designed. To weaken the stray light, a polarized light source is used, and an analyzer plate is placed after beam splitter in the imaging system. Simulation results show that the illumination uniformity at the fundus exceeds 90%, and the stray light is within 1%. Finally, a proof-of-concept prototype is developed and retinal photos of an ophthalmophantom are captured. The experimental results show that ghost images and stray light have been greatly reduced to a level that professional diagnostic will not be interfered with.

  15. Carbon Nanotubes on Titanium Substrates for Stray Light Suppression

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2011-01-01

    A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.

  16. Bartonella and Toxoplasma Infections in Stray Cats from Iraq

    PubMed Central

    Switzer, Alexandra D.; McMillan-Cole, Audrey C.; Kasten, Rickie W.; Stuckey, Matthew J.; Kass, Philip H.; Chomel, Bruno B.

    2013-01-01

    Because of overpopulation, stray/feral cats were captured on military bases in Iraq as part of the US Army Zoonotic Disease Surveillance Program. Blood samples were collected from 207 cats, mainly in Baghdad but also in North and West Iraq, to determine the prevalence of Bartonella and Toxoplasma infections. Nine (4.3%) cats, all from Baghdad, were bacteremic with B. henselae type I. Seroprevalence was 30.4% for T. gondii, 15% for B. henselae, and 12.6% for B. clarridgeiae. Differences in Bartonella prevalence by location were statistically significant, because most of the seropositive cats were from Baghdad. There was no association between T. gondii seropositivity and either of the two Bartonella species surveyed. This report is the first report on the prevalence of Bartonella and T. gondii among stray cats in Iraq, which allows for better evaluation of the zoonotic risk potential to the Iraqi people and deployed military personnel by feral cat colonies. PMID:24062480

  17. Accelerated Radiation-Damping for Increased Spin Equilibrium (ARISE)

    PubMed Central

    Huang, Susie Y.; Witzel, Thomas; Wald, Lawrence L.

    2008-01-01

    Control of the longitudinal magnetization in fast gradient echo sequences is an important factor enabling the high efficiency of balanced Steady State Free Precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The Accelerated Radiation damping for Increased Spin Equilibrium (ARISE) method uses an external feedback circuit to strengthen the Radiation Damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T1 relaxation. The method is characterized in gradient echo phantom imaging at 3T as a function of feedback gain, phase, and duration and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10ms) during a refocused interval of a crushed gradient echo sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T2 relaxation has time to occur. Appropriate applications might include improving navigated sequences. Unlike conventional flip-back schemes, the ARISE “flip-back” is generated by the spins themselves, thereby offering a potentially useful building block for enhancing gradient echo sequences. PMID:18956463

  18. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2016-04-15

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case,more » finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.« less

  19. A gas-dynamical approach to radiation pressure acceleration

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Boine-Frankenheim, Oliver

    2016-06-01

    The study of high intensity ion beams driven by high power pulsed lasers is an active field of research. Of particular interest is the radiation pressure acceleration, for which simulations predict narrow band ion energies up to GeV. We derive a laser-piston model by applying techniques for non-relativistic gas-dynamics. The model reveals a laser intensity limit, below which sufficient laser-piston acceleration is impossible. The relation between target thickness and piston velocity as a function of the laser pulse length yields an approximation for the permissible target thickness. We performed one-dimensional Particle-In-Cell simulations to confirm the predictions of the analytical model. These simulations also reveal the importance of electromagnetic energy transport. We find that this energy transport limits the achievable compression and rarefies the plasma.

  20. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    PubMed Central

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-01-01

    Simple Summary Microchip identification has become an important tool to reunite stray dogs and cats with their owners, and is now compulsory in most states of Australia. Improvement of the microchipping system in Australia is limited by a lack of published Australian data documenting the problems experienced by shelter staff when using microchip data to contact the owner of a stray animal. In this study we determine the character and frequency of inaccurate microchip data to identify weaknesses in the current microchipping system. This information could be used to develop strategies that increase the accuracy of microchip data that will increase the reclaiming of stray animals. Abstract A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of

  1. Efficient injection of radiation-pressure-accelerated sub-relativistic protons into laser wakefield acceleration based on 10 PW lasers

    NASA Astrophysics Data System (ADS)

    Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.

    2018-06-01

    We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.

  2. The Impact of the Method of Gunshot Injury: War Injuries vs. Stray Bullets vs. Civilian Fighting.

    PubMed

    Mansor, Salah; Bodalal, Zuhir

    2015-04-01

    To analyze the impact of the method of Gunshot Injury (GSI) (i.e. war injuries, stray bullets, and civilian fighting) on patient morbidity and mortality. An observational study. Biostatistics Department of Al-Jalaa Hospital in Benghazi, Libya, from January to December 2011. Patients' records were analyzed with the method of gunshot injury as a classifying/comparative parameter. Age, gender, site of injury, receiving department, ICU admission, city of origin, length of stay, morbidity and mortality were determined and compared between the different methods of GSI. During the conflict, 1761 gunshot injuries were treated at the hospital. The method of injury was recorded for 62% (n=1096) of the cases and were classified under war injuries (72.2%, n=791), stray bullets (14.1%, n=155), and civilian fighting (13.7%, n=150). Nearly all the patients being treated for civilian fighting (98%, n=147) were males, (stray bullets, 82.6%, n=128, and war injuries 98.4%, n=778). Women were significantly less involved in a war injury (1.6%, n=13, p < 0.001). Stray bullets affected the younger age groups i.e. ² 19 years (26.5%, n=41) more than either fighting injuries (8%, n=12) or war injuries (11.8%, n=93, p < 0.001). Civilian fighting injuries (83.3%, n=125) mostly involved the 20-39 years age group (p < 0.001). Fighting wounds and stray bullets were more common in an urban (82.7%, n=124) rather than rural setting (p < 0.001); the same was true for stray bullets (76.8%, n = 119). The number of GSI's showed a close relationship with major events in society (i.e. military campaigns, celebration and civilian unrest). Significantly higher mortality rates were observed in civilian fighting injuries (7.7%, n=12, p=0.003) and stray bullets (10%, n=15, p=0.003) compared to general GSI's (5.2%, n=91) and war injuries (4.4%, n=35). Surgeons and general physicians need to be aware that GSI's differ in their salient features and outcome based on the method of injury.

  3. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  4. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  5. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  6. Accelerated aging and stabilization of radiation-vulcanized EPDM rubber

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.

    2000-03-01

    The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.

  7. Simulation of the Focal Spot of the Accelerator Bremsstrahlung Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, V.; Bespalov, V.

    2016-06-01

    Testing of thick-walled objects by bremsstrahlung radiation (BR) is primarily performed via high-energy quanta. The testing parameters are specified by the focal spot size of the high-energy bremsstrahlung radiation. In determining the focal spot size, the high- energy BR portion cannot be experimentally separated from the low-energy BR to use high- energy quanta only. The patterns of BR focal spot formation have been investigated via statistical modeling of the radiation transfer in the target material. The distributions of BR quanta emitted by the target for different energies and emission angles under normal distribution of the accelerated electrons bombarding the target have been obtained, and the ratio of the distribution parameters has been determined.

  8. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (<10° half-angle), high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  9. Experimental Determination of Ultra-Sharp Stray Field Distribution from a Magnetic Vortex Core Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Zhu, Y.; Zhong, H.

    2009-08-01

    The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less

  10. Gastrointestinal parasites in stray and shelter cats in the municipality of Rio de Janeiro, Brazil.

    PubMed

    Pereira, Pâmela Figueiredo; Barbosa, Alynne da Silva; Moura, Ana Paula Pereira de; Vasconcellos, Marcelo Leitão; Uchôa, Claudia Maria Antunes; Bastos, Otílio Machado Pereira; Amendoeira, Maria Regina Reis

    2017-01-01

    The increasingly urban nature of the population has led many people to choose independent pets, such as cats. This situation has also made it possible for these animals to be abandoned, thus increasing the numbers of cats on the streets and in shelters. These animals can act as a source of infection for other hosts. Between 2014 and 2015, the frequency of gastrointestinal parasites in captive and stray cats in the municipality of Rio de Janeiro was analyzed. Ninety-one fecal samples were collected from captive cats and 172 from stray cats. Centrifugal sedimentation and flotation techniques were used. The frequency of parasites among the stray cats was 77.3%, and this was significantly higher than the frequency observed in captive cats (49.5%). Helminths were detected more frequently, and hookworms were the parasites most detected. Toxocara cati, Cystoisospora sp. and Dipylidium caninum were also detected. No statistical difference in the frequency of parasites was observed between the sexes among the captive cats. However, among the stray cats, males (85.5%) presented higher positivity than females (71.8%). The high frequency of hookworms, which are the agent for "cutaneous larva migrans" in humans, shows the need to control parasitic infections among the cats studied.

  11. PCR-Based Molecular Characterization of Toxocara spp. Using Feces of Stray Cats: A Study from Southwest Iran

    PubMed Central

    Tavalla, Mahdi; Abdizadeh, Rahman; Hashemitabar, Mahmoud

    2013-01-01

    Feces of stray cat are potential sources of gastrointestinal parasites and play a crucial role in spreading and transmitting parasite eggs, larvae, and oocysts through contamination of soil, food, or water. In this study, we investigated the prevalence of Toxocara spp. infection in stray cats in Ahvaz city, southwest Iran. Eggs of Toxocara spp. in feces of stray cats were detected by the sucrose flotation method, and identification was conducted by polymerase chain reaction (PCR) and DNA sequencing. Of the 140 fecal samples that were randomly collected from public environments during the months of January to May 2012, 45% were found to harbour Toxocara spp. eggs. The highest prevalence of Toxocara spp. eggs was found in the central area of Ahvaz city (28.6%). T. canis eggs were found in 4 (6.34%) of the 63 positive samples. Stray cats are found in parks, playgrounds, and other public places and may be a potential contamination risk. Identification of Toxocara spp. using molecular methods is sufficiently sensitive to detect low levels of parasites and identify the different Toxocara spp. in feces. The relatively high prevalence of Toxocara spp. infection may continue to increase due to lack of effective environmental hygiene control in Iran. Consequently, there is a need to plan adequate programs to detect, identify, and control this infection as well as stray cats in the region. PMID:23755213

  12. PCR-based molecular characterization of Toxocara spp. using feces of stray cats: a study from Southwest Iran.

    PubMed

    Khademvatan, Shahram; Rahim, Fakher; Tavalla, Mahdi; Abdizadeh, Rahman; Hashemitabar, Mahmoud

    2013-01-01

    Feces of stray cat are potential sources of gastrointestinal parasites and play a crucial role in spreading and transmitting parasite eggs, larvae, and oocysts through contamination of soil, food, or water. In this study, we investigated the prevalence of Toxocara spp. infection in stray cats in Ahvaz city, southwest Iran. Eggs of Toxocara spp. in feces of stray cats were detected by the sucrose flotation method, and identification was conducted by polymerase chain reaction (PCR) and DNA sequencing. Of the 140 fecal samples that were randomly collected from public environments during the months of January to May 2012, 45% were found to harbour Toxocara spp. eggs. The highest prevalence of Toxocara spp. eggs was found in the central area of Ahvaz city (28.6%). T. canis eggs were found in 4 (6.34%) of the 63 positive samples. Stray cats are found in parks, playgrounds, and other public places and may be a potential contamination risk. Identification of Toxocara spp. using molecular methods is sufficiently sensitive to detect low levels of parasites and identify the different Toxocara spp. in feces. The relatively high prevalence of Toxocara spp. infection may continue to increase due to lack of effective environmental hygiene control in Iran. Consequently, there is a need to plan adequate programs to detect, identify, and control this infection as well as stray cats in the region.

  13. WE-D-17A-05: Measurement of Stray Radiation Within An Active Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farah, J; Trompier, F; Stolarczyk, L

    2014-06-15

    Purpose: Intercomparison of active dosemeters in the measurement of stray radiation at the Trento active-scanning proton therapy facility. Methods: EURADOS WG9 carried out a large intercomparison exercise to test different dosemeters while measuring secondary neutrons within a 230 MeV scanned proton therapy facility. Detectors included two Bonner Sphere Spectrometers (BSS), three tissue equivalent proportional counters (TEPCHawk) and six rem-counters (Wendi II, Berthold, RadEye, a regular and an extended-range Anderson and Braun NM2B counters). Measurements of neutron ambient dose equivalents, H*(10), were done at several positions inside (8 positions) and outside (3 positions) the treatment room while irradiating a water tankmore » phantom with a 10 × 10 × 10 cc field. Results: A generally good agreement on H*(10) values was observed for the tested detectors. At distance of 2.25 m and angles 45°, 90° and 180° with respect to the beam axis, BSS and proportional counters agreed within 30%. Higher differences (up to 60%) were observed at the closest and farthest distances, i.e. at positions where detectors sensitivity, energy, fluence and angular response are highly dependent on neutron spectra (flux and energy). The highest neutron H*(10) value, ∼60 microSv/Gy, was measured at 1.15 m along the beam axis. H*(10) decreased significantly with the distance from the isocenter dropping to 1.1 microSv/Gy at 4.25 m and 90° from beam axis, ∼2 nanoSv/Gy at the entrance of the maze, 0.2 nanoSv/Gy at the door outside the room and below detection limit in the gantry control room and at an adjacent room. These values remain considerately lower than those of passively scattered proton beams. BSS and Hawk unfolded spectra provide valuable inputs when studying the response of each detector. Conclusion: TEPCs and BSS enable accurate measurements of stray neutrons while other rem-meters also give satisfactory results but require further improvements to reduce uncertainties.« less

  14. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M. L.; Liu, B.; Hu, R. H.

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less

  15. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  16. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  17. Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.

    2017-03-01

    A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.

  18. What's in a name? Perceptions of stray and feral cat welfare and control in Aotearoa, New Zealand.

    PubMed

    Farnworth, Mark J; Campbell, Joanna; Adams, Nigel J

    2011-01-01

    New Zealanders (n = 354) rated the acceptability of lethal and nonlethal cat control methods and the importance of conservation and welfare. Lethal control was more acceptable for feral cats than strays; for nonlethal control, the inverse was true. More than concern for the welfare of cats subjected to control, perceived conservation benefits, risk of disease transfer, and companion cat welfare dictated the acceptability of control measures. Similarly, the welfare consideration for groups of cats differed, transitioning from companion (highest) to feral (lowest). Differences in attitudes toward acceptability of control methods were evident. In particular, nonhuman animal professionals ranked lethal control as more acceptable than did nonanimal professionals. Cat caregivers (owners) considered both conservation and welfare issues of greater importance than did nonowners. Owners ranked the acceptability of nonlethal control methods higher for stray cats, but not feral, than did nonowners. This research indicates that the use of the terms stray and feral may have significant impact on cats in New Zealand. There is also a greater consideration of conservation values than of welfare in stray and feral cat control.

  19. SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.

    1995-01-01

    Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be

  20. A rare case of acute toxoplasmosis in a stray dog due to infection of T. gondii clonal type I: public health concern in urban settings with stray animals?

    PubMed

    Migliore, Sergio; La Marca, Salvatore; Stabile, Cristian; Di Marco Lo Presti, Vincenzo; Vitale, Maria

    2017-08-17

    Typing of Toxoplasma gondii strains is important in epidemiological surveys, to understand the distribution and virulence of different clones of the parasite among human and animal populations. Stray dogs can be consider sentinel animals for contaminated environments playing an important but probably under- evaluated role in the epidemiology of T. gondii. We reported a rare case of acute toxoplasmosis in a stray dog due to clonal type I infection. The clonal type I, sporadic in Europe, is frequently associated with severe toxoplasmosis in humans and the control of its circulation is particularly relevant for public health. The symptomatology suggested a potential infection with the high similar parasite Neospora caninum but differential diagnosis showed that only T. gondii was involved highlighting the importance of multiple diagnostic methods beyond the clinical signs. A female stray dog approximately six-month of age presented muscular atrophy of the femoral region and hyperextension of hind limbs. Body condition score (BCS) was 20% below ideal weight, ribs had almost no fat and the sensor state was depressed. Haematological values were normal and the dog did not show any neurological abnormalities. Serological analysis showed a positive response for T. gondii immunoglobulin G (IgG) antibodies and exclude N. caninum infection. To confirm T. gondii infection, a muscle biopsy was performed and genomic DNA was extracted. PCR analysis resulted positive to T. gondii and strain genotyping reveals clonal type I infection. The dog recovered after 4 weeks of treatment with clindamycin hydrochloride and aquatic physiotherapy. Our study reports a rare and severe case of T. gondii clonal type I infection in a stray dog feeding in garbage containers. The data confirm the importance of an in vivo early diagnosis for toxoplasmosis in dog. Clinical signs are often related to specific T. gondii genotype and parasite genotyping is important in the epidemiological survey of

  1. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  2. Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems

    NASA Astrophysics Data System (ADS)

    Albert, F.; Lemos, N.; Shaw, J. L.; King, P. M.; Pollock, B. B.; Goyon, C.; Schumaker, W.; Saunders, A. M.; Marsh, K. A.; Pak, A.; Ralph, J. E.; Martins, J. L.; Amorim, L. D.; Falcone, R. W.; Glenzer, S. H.; Moody, J. D.; Joshi, C.

    2018-05-01

    A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019 cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108 and 1010 photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.

  3. Studies of Particle Acceleration, Transport and Radiation in Impulsive Phase of Solar Flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe

    2005-01-01

    Solar activity and its most prominent aspect, the solar flares, have considerable influence on terrestrial and space weather. Solar flares also provide a suitable laboratory for the investigation of many plasma and high energy processes important in the magnetosphere of the Earth and many other space and astrophysical situations. Hence, progress in understanding of flares will have considerable scientific and societal impact. The primary goal of this grant is the understanding of two of the most important problems of solar flare physics, namely the determination of the energy release mechanism and how this energy accelerates particles. This is done through comparison of the observations with theoretical models, starting from observations and gradually proceeding to theoretically more complex situations as the lower foundations of our understanding are secured. It is generally agreed that the source of the flare energy is the annihilation of magnetic fields by the reconnection process. Exactly how this energy is released or how it is dissipated remains controversial. Moreover, the exact mechanism of the acceleration of the particles is still a matter of debate. Data from many spacecrafts and ground based instruments obtained over the past decades have given us some clues. Theoretical analyses of these data have led to the standard thick target model (STT) where most of the released energy goes into an (assumed) power law spectrum of accelerated particles, and where all the observed radiations are the consequence of the interaction of these particles with the flare plasma. However, some theoretical arguments, and more importantly some new observations, have led us to believe that the above picture is not complete. It appears that plasma turbulence plays a more prominent role than suspected previously, and that it is the most likely agent for accelerating particles. The model we have developed is based on production of a high level of plasma waves and turbulence in

  4. Stray electrical currents in laparoscopic instruments used in da Vinci® robot-assisted surgery: an in vitro study.

    PubMed

    Mendez-Probst, Carlos E; Vilos, George; Fuller, Andrew; Fernandez, Alfonso; Borg, Paul; Galloway, David; Pautler, Stephen E

    2011-09-01

    The da Vinci(®) surgical system requires the use of electrosurgical instruments. The re-use of such instruments creates the potential for stray electrical currents from capacitive coupling and/or insulation failure. We used objective measures to report the prevalence and magnitude of such stray currents. Thirty-seven robotic instruments were tested using an electrosurgical unit (ESU) at pure coagulation and cut waveforms at four different settings. Conductive gel-coated instruments were tested at 40W, 80W, and maximum ESU output (coagulation 120W, cut 300W). The magnitude of stray currents was measured by an electrosurgical analyzer. At coagulation waveform in open air, 86% of instruments leaked a mean of 0.4W. In the presence of gel-coated instruments, stray currents were detected in all instruments with means (and standard deviation) of 3.4W (± 2), 4.1W (± 2.3), and 4.1W (± 2.3) at 40W, 80W, and 120W, respectively. At cut waveform in open air, none of the instruments leaked current, while gel-coated instruments leaked a mean of 2.2W (± 1.3), 2.2W (± 1.9) and 3.2W (± 1.9) at 40W, 80W, and 300W, respectively. All tested instruments in our study demonstrated energy leakage. Stray currents were higher during coagulation (high voltage) waveforms, and the magnitude was not always proportionate to the ESU settings. Stray currents have the potential to cause electrical burns. We support the programmed end of life of da Vinci instruments on the basis of safety. Consideration should be given to alternate energy sources or the adoption of active electrode monitoring technology to all monopolar instruments.

  5. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    DOE PAGES

    Dugan, G.; Sagan, D.

    2017-02-24

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less

  6. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  7. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  8. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  9. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  10. 43 CFR 4720.2-1 - Removal of strayed animals from private lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2-1 Removal of strayed animals from private...

  11. ASPIICS/PROBA-3 formation flying solar coronagraph: Stray light analysis and optimization of the occulter

    NASA Astrophysics Data System (ADS)

    Landini, F.; Mazzoli, A.; Venet, M.; Vivès, S.; Romoli, M.; Lamy, P.; Massone, G.

    2017-11-01

    The "Association de Satellites Pour l'Imagerie et l'Interferometrie de la Couronne Solaire", ASPIICS, selected by ESA for the PROBA-3 mission, heralds the next generation of coronagraph for solar research, exploiting formation flying to gain access to the inner corona under eclipse-like conditions for long periods of time. A detailed description of the ASPIICS instrument and of its scientific objectives can be found in [1]. ASPIICS is distributed on the two PROBA 3 spacecrafts (S/C) separated by 150 m. The coronagraph optical assembly is hosted by the "coronagraph S/C" protected from direct solar disk light by the occulting disk on the "occulter S/C". The most critical issue in the design of a solar coronagraph is the reduction of the stray light due to the diffraction and scattering of the solar disk light by the occulter, the aperture and the optics. In the present article, we deal with two of these issues: - The analysis of the stray light inside the telescope. - The optimization of the external occulter edge, in order to eliminate the Poisson spot behind the occulter and to lower the stray light level going through the entrance pupil of the telescope. This work was performed in the framework of the ESA STARTIGER program which took place at the Laboratoire d'Astrophysique de Marseille (LAM) during a 6-month period from September 2009 to March 2010. In general, it is a very complicated task to combine the above two stray light issues together in the simulation and design phase as it requires to consider the propagation inside the telescope of the light diffracted by the external occulter. Actually, the present literature only reports diffraction calculations performed for simple occulting systems (i.e., two disks and serrated disk). A more pragmatic approach, also driven by the tight schedule of the STARTIGER program, is to separate the two contributions, and perform two different stray light analyses. This paper is dedicated to the description of both analyses

  12. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  13. Quasi-monoenergetic protons accelerated by laser radiation pressure and shocks in thin gaseous targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Minqing; Shao Xi; Liu Chuansheng

    Recent experiments and simulations have demonstrated effective CO{sub 2} laser acceleration of quasi-monoenergetic protons from thick gaseous hydrogen target (of thickness tens of laser wavelengths) via hole boring and shock accelerations. We present here an alternative novel acceleration scheme by combining laser radiation pressure acceleration with shock acceleration of protons in a thin gaseous target of thickness several laser wavelengths. The laser pushes the thin gaseous plasma forward while compressing it with protons trapped in it. We demonstrated the combined acceleration with two-dimensional particle-in-cell simulation and obtained quasi-monoenergetic protons {approx}44 MeV in a gas target of thickness twice of themore » laser wavelength irradiated by circularly polarized CO{sub 2} laser with normalized laser amplitude a{sub 0}=10.« less

  14. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  15. Feline immunodeficiency virus testing in stray, feral, and client-owned cats of Ottawa

    PubMed Central

    2005-01-01

    Abstract Feline immunodeficiency virus (FIV) seroprevalence is evaluated in 3 groups of cats. Seventy-four unowned urban strays were tested, as well as 20 cats from a small feral cat colony, and 152 client-owned cats. Of the 246 cats tested, 161 (65%) were male and 85 (35%) were female. Seroprevalence for FIV was 23% in the urban strays, 5% in the feral cat colony, and 5.9% in the client-owned cats. Ten cats (4%) were also positive for Feline leukemia virus (FeLV) antigen, including 2 cats coinfected with FeLV and FIV. Seroprevalence for FIV in cats from Ottawa is similar to that found in other nonrandom studies of cats in North America. PMID:16454381

  16. Feline immunodeficiency virus testing in stray, feral, and client-owned cats of Ottawa.

    PubMed

    Little, Susan E

    2005-10-01

    Feline immunodeficiency virus (FIV) seroprevalence is evaluated in 3 groups of cats. Seventy-four unowned urban strays were tested, as well as 20 cats from a small feral cat colony, and 152 client-owned cats. Of the 246 cats tested, 161 (65%) were male and 85 (35%) were female. Seroprevalence for FIV was 23% in the urban strays, 5% in the feral cat colony, and 5.9% in the client-owned cats. Ten cats (4%) were also positive for Feline leukemia virus (FeLV) antigen, including 2 cats coinfected with FeLV and FIV. Seroprevalence for FIV in cats from Ottawa is similar to that found in other nonrandom studies of cats in North America.

  17. Genetic characterization of Toxoplasma gondii isolates and toxoplasmosis seroprevalence in stray cats of İzmir, Turkey.

    PubMed

    Can, Hüseyin; Döşkaya, Mert; Ajzenberg, Daniel; Özdemir, H Gökhan; Caner, Ayşe; İz, Sultan Gülce; Döşkaya, Aysu Değirmenci; Atalay, Esra; Çetinkaya, Çağdaş; Ürgen, Saygun; Karaçalı, Sabire; Ün, Cemal; Dardé, Marie-Laure; Gürüz, Yüksel

    2014-01-01

    Currently, some Toxoplasma gondii genotypes are being associated with serious clinical presentations. A recent report showing the Africa 1 genotype in two local congenital toxoplasmosis cases acquired in Turkey formed the basis of this study because atypical Africa 1 genotype is most frequently detected in animals and patients from sub-Saharan Africa. Since stray cats are considered as the linkage between wild life and urban life in T. gondii transmission, the present study aimed to isolate and characterize T. gondii strains circulating in stray cats of İzmir (Western Turkey). A secondary objective was to determine toxoplasmosis seroprevalence in this cat population. Tissues obtained from 100 deceased stray cats were bioassayed and isolated strains were genotyped using 15 microsatellite markers. In addition, toxoplasmosis seroprevalence was analyzed in 1121 cat sera collected from several large veterinary clinics in İzmir. Among the 22 isolates, 19 were Type II (86.3%), two were Type III (9%) and one was Africa 1 genotype (4.5%). The overall seropositivity rates in cats were 42-48% and 33.4-34.4% according to IFA and ELISA, respectively. Seroprevalence in deceased cats was significantly higher than in healthy cats (P = 0.0033). Finding both the major clonal Type II lineage together with the Type III lineage also found in Middle East, and an atypical genotype, Africa 1 appears consistent with the specific geographic location of Turkey between three continents and raises the possibility of transportation of these strains between continents through trade routes or long distance migratory birds. In addition, the first large study of toxoplasma seroprevalence in a stray cat population was also reported. The relatively high seropositivity rates and the variety of T. gondii genotypes confirm the local stray cat population as a risk factor for human toxoplasmosis in İzmir.

  18. Genetic Characterization of Toxoplasma gondii Isolates and Toxoplasmosis Seroprevalence in Stray Cats of İzmir, Turkey

    PubMed Central

    Can, Hüseyin; Döşkaya, Mert; Ajzenberg, Daniel; Özdemir, H. Gökhan; Caner, Ayşe; İz, Sultan Gülce; Döşkaya, Aysu Değirmenci; Atalay, Esra; Çetinkaya, Çağdaş; Ürgen, Saygun; Karaçalı, Sabire; Ün, Cemal; Dardé, Marie-Laure; Gürüz, Yüksel

    2014-01-01

    Currently, some Toxoplasma gondii genotypes are being associated with serious clinical presentations. A recent report showing the Africa 1 genotype in two local congenital toxoplasmosis cases acquired in Turkey formed the basis of this study because atypical Africa 1 genotype is most frequently detected in animals and patients from sub-Saharan Africa. Since stray cats are considered as the linkage between wild life and urban life in T. gondii transmission, the present study aimed to isolate and characterize T. gondii strains circulating in stray cats of İzmir (Western Turkey). A secondary objective was to determine toxoplasmosis seroprevalence in this cat population. Tissues obtained from 100 deceased stray cats were bioassayed and isolated strains were genotyped using 15 microsatellite markers. In addition, toxoplasmosis seroprevalence was analyzed in 1121 cat sera collected from several large veterinary clinics in İzmir. Among the 22 isolates, 19 were Type II (86.3%), two were Type III (9%) and one was Africa 1 genotype (4.5%). The overall seropositivity rates in cats were 42–48% and 33.4–34.4% according to IFA and ELISA, respectively. Seroprevalence in deceased cats was significantly higher than in healthy cats (P = 0.0033). Finding both the major clonal Type II lineage together with the Type III lineage also found in Middle East, and an atypical genotype, Africa 1 appears consistent with the specific geographic location of Turkey between three continents and raises the possibility of transportation of these strains between continents through trade routes or long distance migratory birds. In addition, the first large study of toxoplasma seroprevalence in a stray cat population was also reported. The relatively high seropositivity rates and the variety of T. gondii genotypes confirm the local stray cat population as a risk factor for human toxoplasmosis in İzmir. PMID:25127360

  19. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  20. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    PubMed

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Co thickness dependence of structural and magnetic properties in spin quantum cross devices utilizing stray magnetic fields

    NASA Astrophysics Data System (ADS)

    Kaiju, H.; Kasa, H.; Komine, T.; Mori, S.; Misawa, T.; Abe, T.; Nishii, J.

    2015-05-01

    We investigate the Co thickness dependence of the structural and magnetic properties of Co thin-film electrodes sandwiched between borate glasses in spin quantum cross (SQC) devices that utilize stray magnetic fields. We also calculate the Co thickness dependence of the stray field between the two edges of Co thin-film electrodes in SQC devices using micromagnetic simulation. The surface roughness of Co thin films with a thickness of less than 20 nm on borate glasses is shown to be as small as 0.18 nm, at the same scanning scale as the Co film thickness, and the squareness of the hysteresis loop is shown to be as large as 0.96-1.0. As a result of the establishment of polishing techniques for Co thin-film electrodes sandwiched between borate glasses, we successfully demonstrate the formation of smooth Co edges and the generation of stray magnetic fields from Co edges. Theoretical calculation reveals that a strong stray field beyond 6 kOe is generated when the Co thickness is greater than 10 nm at a junction gap distance of 5 nm. From these experimental and calculation results, it can be concluded that SQC devices with a Co thickness of 10-20 nm can be expected to function as spin-filter devices.

  2. Health and Ecological Aspects of Stray Cats in Old San Juan, Puerto Rico: Baseline Information to Develop an Effective Control Program.

    PubMed

    Castro-Prieto, Jessica; Andrade-Núñez, Maria José

    2018-06-01

    The overpopulation of stray cats in urban areas represents a potential risk for humans, as stray cats may carry diseases, such as toxoplasmosis, and virus such as rabies, the feline immunodeficiency, and the feline leukemia. In Old San Juan, a historic neighborhood and one of the most touristic places in Puerto Rico, there is an overpopulation of stray cats. In this study, we generated baseline information fundamental to developing a successful control program by estimating the stray cat population size, density, and spatial distribution. Furthermore, we quantified the number of neutered cats and developed a spatial database to include information about the external physical condition of each individual. We estimated a population of 178 (±21) cats, with a density of 3.6 cats/ha. Overall, we observed 209 cats, from which 149 (71%) were identified as new and 60 (29%) were recaptured. We found stray cats had a significant non-random and clustered spatial distribution (z-score = -19.39 SD; ratio = 0.29; p<0.0001), with an observable larger abundance in residential zones where food was provided. A total of 105 (70%) cats were neutered, and 32 (21%) individuals exhibited very poor physical conditions, including skin problems, scars, underweight, and blindness. We concluded that the ecological and descriptive data generated in this study are essential for an effective control of stray cats and their potential impacts on humans living in this neighborhood.

  3. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less

  4. Detection of Helminth Eggs and Identification of Hookworm Species in Stray Cats, Dogs and Soil from Klang Valley, Malaysia

    PubMed Central

    Mahmud, Rohela; Samsudin, Nur Izyan; Kek Heng, Chua; Ling, Lau Yee

    2015-01-01

    The present study was conducted to determine the prevalence of helminth eggs excreted in the faeces of stray cats, dogs and in soil samples. A total of 505 fresh samples of faeces (from 227 dogs and 152 cats) and soil were collected. The egg stage was detected via microscopy after the application of formalin–ether concentration technique. Genomic DNA was extracted from the samples containing hookworm eggs and used for further identification to the species level using real-time polymerase chain reaction coupled with high resolution melting analysis. Microscopic observation showed that the overall prevalence of helminth eggs among stray cats and dogs was 75.7% (95% CI = 71.2%–79.9%), in which 87.7% of dogs and 57.9% of cats were infected with at least one parasite genus. Five genera of heliminth eggs were detected in the faecal samples, including hookworms (46.4%), Toxocara (11.1%), Trichuris (8.4%), Spirometra (7.4%) and Ascaris (2.4%). The prevalence of helminth infections among stray dogs was significantly higher than that among stray cats (p < 0.001). Only three genera of helminths were detected in soil samples with the prevalence of 23% (95% CI = 15.1%–31%), consisting of hookworms (16.6%), Ascaris (4%) and Toxocara (2.4%). The molecular identification of hookworm species revealed that Ancylostoma ceylanicum was dominant in both faecal and soil samples. The dog hookworm, Ancylostoma caninum, was also detected among cats, which is the first such occurrence reported in Malaysia till date. This finding indicated that there was a cross-infection of A. caninum between stray cats and dogs because of their coexistent within human communities. Taken together, these data suggest the potential role of stray cats and dogs as being the main sources of environmental contamination as well as for human infections. PMID:26671680

  5. Characterizing the Noble Gas Isotopic Composition of the Barnett Shale and Strawn Group and Constraining the Source of Stray Gas in the Trinity Aquifer, North-Central Texas.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Pinti, Daniele L; Mickler, Patrick; Darvari, Roxana; Larson, Toti

    2017-06-06

    This study presents the complete set of stable noble gases for Barnett Shale and Strawn Group production gas together with stray flowing gas in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like stray gas, Strawn gas is significantly more enriched in crustal 4 He*, 21 Ne*, and 40 Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22 Ne/ 36 Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  6. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Astrophysics Data System (ADS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  7. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  8. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  9. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  10. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  11. 43 CFR 4720.2 - Removal of strayed or excess animals from private lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Removal § 4720.2 Removal of strayed or excess...

  12. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  13. Size and spatial distribution of stray dog population in the University of São Paulo campus, Brazil.

    PubMed

    Dias, Ricardo Augusto; Guilloux, Aline Gil Alves; Borba, Mauro Riegert; Guarnieri, Maria Cristina de Lourdes; Prist, Ricardo; Ferreira, Fernando; Amaku, Marcos; Neto, José Soares Ferreira; Stevenson, Mark

    2013-06-01

    A longitudinal study was carried out to describe the size and spatial distribution of the stray dog population in the University of São Paulo campus, Brazil from November 2010 to November 2011. The campus is located within the urban area of São Paulo, the largest city of Brazil, with a population over 11 million. The 4.2 km(2) that comprise the university grounds are walled, with 10 access gates, allowing stray dogs to move in and out freely. Over 100,000 people and 50,000 vehicles circulate in the campus daily. Five observations were made during the study period, using a mark-resight method. The same route was performed in all observations, being traveled twice on each observation day. Observed animals were photographed and the sight coordinates were obtained using a GPS device. The estimated size of the stray dog population varied from 32 (CI 95% 23-56) to 56 (CI 95% 45-77) individuals. Differences between in- and outward dog movements influenced dog population estimates. Overlapping home ranges of docile dogs were observed in areas where most people circulate. An elusive group was observed close to a protected rain forest area and the estimated home range for this group did not overlap with the home ranges for other dogs within the campus. A kernel density map showed that higher densities of stray dog sighting is associated with large organic matter generators, such as university restaurants. We conclude that the preferred source of food of the stray dogs on the University of São Paulo campus was leftover food deliberately offered by restaurant users. The population was stable during the study period and the constant source of food was the main reason to retain this population within the campus. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    NASA Astrophysics Data System (ADS)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  15. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  16. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGES

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; ...

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  17. KINETIC STUDY OF RADIATION-REACTION-LIMITED PARTICLE ACCELERATION DURING THE RELAXATION OF UNSTABLE FORCE-FREE EQUILIBRIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan

    2016-09-10

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.« less

  18. Rapid optimization method of the strong stray light elimination for extremely weak light signal detection.

    PubMed

    Wang, Geng; Xing, Fei; Wei, Minsong; You, Zheng

    2017-10-16

    The strong stray light has huge interference on the detection of weak and small optical signals, and is difficult to suppress. In this paper, a miniaturized baffle with angled vanes was proposed and a rapid optimization model of strong light elimination was built, which has better suppression of the stray lights than the conventional vanes and can optimize the positions of the vanes efficiently and accurately. Furthermore, the light energy distribution model was built based on the light projection at a specific angle, and the light propagation models of the vanes and sidewalls were built based on the Lambert scattering, both of which act as the bias of a calculation method of stray light. Moreover, the Monte-Carlo method was employed to realize the Point Source Transmittance (PST) simulation, and the simulation result indicated that it was consistent with the calculation result based on our models, and the PST could be improved by 2-3 times at the small incident angles for the baffle designed by the new method. Meanwhile, the simulation result was verified by laboratory tests, and the new model with derived analytical expressions which can reduce the simulation time significantly.

  19. Effects of media stray field on electromigration characteristics in current-perpendicular-to-plane giant magnetoresistance spin-valve read sensors

    NASA Astrophysics Data System (ADS)

    Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae

    2012-05-01

    Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.

  20. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  1. Stray cats are more frequently infected with zoonotic protists than pet cats.

    PubMed

    Kvac, Martin; Hofmannova, Lada; Ortega, Ynes; Holubova, Nikola; Horcickova, Michaela; Kicia, Marta; Hlaskova, Lenka; Kvetonova, Dana; Sak, Bohumil; McEvoy, John

    2017-12-06

    Faecal samples were collected from cats kept as pets (n = 120) and stray cats (n = 135) in Central Europe (Czech Republic, Poland and Slovakia) and screened for the presence of Cryptosporidium spp., Giardia intestinalis (Kunstler, 1882), Encephalitozoon spp. and Enterocytozoon bieneusi Desportes, Le Charpentier, Galian, Bernard, Cochand-Priollet, Lavergne, Ravisse et Modigliani, 1985 by PCR analysis of the small-subunit of rRNA (Cryptosporidium spp. and G. intestinalis) and ITS (microsporidia) genes. Sequence analysis of targeted genes revealed the presence of C. felis Iseki, 1979, G. intestinalis assemblage F, E. cuniculi Levaditi, Nicolau et Schoen, 1923 genotype II, and E. bieneusi genotype D. There was no correlation between the occurrence of detected parasites and sex, presence of diarrhoea or drug treatment (drug containing pyrantel and praziquantel). Compared to pet cats (7%), stray cats (30%) were statistically more frequently infected with protist parasites and overall may present a greater risk to human health.

  2. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  3. Stray Cats Gastrointestinal Parasites and its Association With Public Health in Ahvaz City, South Western of Iran

    PubMed Central

    Khademvatan, Shahram; Abdizadeh, Rahman; Rahim, Fakher; Hashemitabar, Mahamoud; Ghasemi, Mohammad; Tavalla, Mahdi

    2014-01-01

    Background: Cats are the hosts for some zoonotic parasites such as Toxoplasma gondii and Toxocara spp. which are important in medicine and veterinary. Studies on the prevalence of intestinal parasites of cats have received little attention in south west of Iran. Objectives: The current study aimed to investigate the prevalence of parasites in stray cats in Ahvaz. Materials and Methods: Random sampling was carried out from January to May 2012. One hundred and forty fecal samples from stray cats were examined using sucrose flotation method. Results: Gastrointestinal parasites were found in 121 of the 140 (86.4%) examined samples. The parasites detected in stray cats were Toxocara spp. (45%, 63/140), Isospora spp. (21.4%, 30/140), nematode larvae (21.4%, 30/140), Taenia spp. (18.6%, 26/140), Sarcocystis spp. (17.1%, 24/140), Eimeria spp. (15%, 21/140), Blastocystis spp. (14.3%, 20/140), Giardia spp, (10.7%, 15/140), Physaloptera spp. (7.1%, 10/140), and amoeba cyst (5.7%, 8/140) respectively. The prevalence of infection by Joyexiella spp. and hook worms (4.3%, 6/140), for example, Dipylidium caninum (2.9%, 4/140) was similar; and the prevalence of infection by T. gondii and Dicrocoelium dendriticum was similar (1.4%, 2/140). Conclusions: Since the prevalence of zoonotic gastrointestinal parasites such as Toxocara spp. in stray cats is high, there is a need to plan adequate programs to control these zoonotic parasites. PMID:25485047

  4. Radiation from an accelerating neutral body: The case of rotation

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.

    2013-11-01

    When an object is bound at rest to an attractional field, its rest mass (owing to the law of energy conservation, including the mass and energy equivalence of the Special Theory of Relativity) must decrease. The mass deficiency coming into play indicates a corresponding rest energy discharge. Thus, bringing an object to a rotational motion means that the energy transferred for this purpose serves to extract just as much rest mass (or similarly "rest energy", were the speed of light in empty space taken to be unity) out of it. Here, it is shown that during angular acceleration, photons of fundamental energy are emitted, while the object is kept on being delivered to a more and more intense rotational accelerational field, being the instantaneous angular velocity of the rotating object. This fundamental energy, as seen, does not depend on anything else (such as the mass or charge of the object), and it is in harmony with Bohr's Principle of Correspondence. This means at the same time, that emission will be achieved, as long as the angular velocity keeps on increasing, and will cease right after the object reaches a stationary rotational motion (a constant centrifugal acceleration), but if the object were brought to rotation in vacuum with no friction. By the same token, one can affirm that even the rotation at a macroscopic level is quantized, and can only take on "given angular velocities" (which can only be increased, bit by bit). The rate of emission of photons of concern is, on the other hand, proportional to the angular acceleration of the object, similarly to the derivative of the tangential acceleration with respect to time. It is thus constant for a "constant angular acceleration", although the energy of the emitted photons will increase with increasing , until the rotation reaches a stationary level, after which we expect no emission --let us stress-- if the object is in rotation in vacuum, along with no whatsoever friction (such as the case of a rotating

  5. OPserver: opacities and radiative accelerations on demand

    NASA Astrophysics Data System (ADS)

    Mendoza, C.; González, J.; Seaton, M. J.; Buerger, P.; Bellorín, A.; Meléndez, M.; Rodríguez, L. S.; Delahaye, F.; Zeippen, C. J.; Palacios, E.; Pradhan, A. K.

    2009-05-01

    We report on developments carried out within the Opacity Project (OP) to upgrade atomic database services to comply with e-infrastructure requirements. We give a detailed description of an interactive, online server for astrophysical opacities, referred to as OPserver, to be used in sophisticated stellar modelling where Rosseland mean opacities and radiative accelerations are computed at every depth point and each evolution cycle. This is crucial, for instance, in chemically peculiar stars and in the exploitation of the new asteroseismological data. OPserver, downloadable with the new OPCD_3.0 release from the Centre de Données Astronomiques de Strasbourg, France, computes mean opacities and radiative data for arbitrary chemical mixtures from the OP monochromatic opacities. It is essentially a client-server network restructuring and optimization of the suite of codes included in the earlier OPCD_2.0 release. The server can be installed locally or, alternatively, accessed remotely from the Ohio Supercomputer Center, Columbus, Ohio, USA. The client is an interactive web page or a subroutine library that can be linked to the user code. The suitability of this scheme in grid computing environments is emphasized, and its extension to other atomic database services for astrophysical purposes is discussed.

  6. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE PAGES

    Li, W.; Ma, Q.; Thorne, R. M.; ...

    2016-06-10

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  7. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Ma, Q.; Thorne, R. M.

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  8. Gastrointestinal and ectoparasites from urban stray dogs in Fortaleza (Brazil): high infection risk for humans?

    PubMed

    Klimpel, Sven; Heukelbach, Jörg; Pothmann, David; Rückert, Sonja

    2010-08-01

    Dogs are important definite or reservoir hosts for zoonotic parasites. However, only few studies on the prevalence of intestinal parasites in urban areas in Brazil are available. We performed a comprehensive study on parasites of stray dogs in a Brazilian metropolitan area. We included 46 stray dogs caught in the urban areas of Fortaleza (northeast Brazil). After euthanization, dogs were autopsied. Ectoparasites were collected, and the intestinal content of dogs were examined for the presence of parasites. Faecal samples were collected and analysed using merthiolate iodine formaldehyde concentration method. A total of nine different parasite species were found, including five endoparasite (one protozoan, one cestode and three nematode species) and four ectoparasite species (two flea, one louse and one tick species). In the intestinal content, 3,162 specimens of four helminth species were found: Ancylostoma caninum (prevalence, 95.7%), Dipylidium caninum (45.7%), Toxocara canis (8.7%) and Trichuris vulpis (4.3%). A total of 394 ectoparasite specimens were identified, including Rhipicephalus sanguineus (prevalence, 100.0%), Heterodoxus spiniger (67.4%), Ctenocephalides canis (39.1%) and Ctenocephalides felis (17.4%). In the faeces, intestinal parasites were detected in 38 stray dogs (82.6%), including oocysts of Giardia sp. (2.2%) and eggs of the nematode A. caninum (82.6%). Neither eggs nor larval stages of D. caninum, T. canis or T. vulpis were detected in dog faeces. Sensitivity of faecal examination for A. caninum was 86.4% (95% confidence interval, 72.0-94.3) but zero percentage for the other intestinal helminth species. Our data show that stray dogs in northeast Brazil carry a multitude of zoonotic ecto- and endoparasites, posing a considerable risk for humans. With the exception of A. caninum, sensitivity of faecal examination was negligible.

  9. Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis.

    PubMed

    Otranto, Domenico; Dantas-Torres, Filipe; Mihalca, Andrei D; Traub, Rebecca J; Lappin, Michael; Baneth, Gad

    2017-10-01

    Sheltered and stray dogs, exposed to zoonotic parasites, including protozoa, helminths, and arthropods, may represent a major threat to public health. Resources for addressing health problems in these animals are not on the priority list of veterinary and public health authorities. Thus, dogs continue to represent an important reservoir for zoonotic parasites. In this article, we review the importance of sheltered and stray dogs as reservoirs of zoonotic parasites in different parts of the world, especially in the context of the current global political and economic crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand.

    PubMed

    Piratae, Supawadee; Pimpjong, Kiattisak; Vaisusuk, Kotchaphon; Chatan, Wasupon

    2015-01-01

    Canine tick borne diseases showing distribution worldwide have caused morbidity and mortality in dogs. This study observed the mainly tick borne pathogens described for dogs in Thailand, Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli. From May to July 2014, blood samples were collected from 79 stray dogs from 7 districts of Mahasarakham province to molecular surveyed for 16s rRNA gene of E. canis and 18s rRNA gene of H. canis and B. canis vogeli. Twenty eight (35.44%) of stray dogs showed the infection with tick borne pathogens. The prevalence of E. canis infection was the highest with 21.5% (17/79). DNA of H. canis and B. canis vogeli were detected at the prevalence of 10.1% (8/79) and 6.3% (5/79), respectively. Co-infection between E. canis and B. canis vogeli were identified in 2 (2.5%) dogs. The results indicated that a wide range of tick borne pathogens are circulation in the canine population in Mahasarakham province. This study is the first report on prevalence of E. canis, H. canis and B. canis vogeli in stray dogs in Mahasarakham, a province in northern part of Thailand. This data providing is important to understand the prevalence of E. canis, H. canis and B. canis vogeli infection in stray dogs in this region, which will assist in the management of these blood parasite.

  11. Van Allen Probes Observations of Radiation Belt Acceleration associated with Solar Wind Shocks

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Wygant, J. R.; Baker, D. N.

    2017-12-01

    During a moderate solar wind shock event on 8 October 2013 the twin Van Allen Probes spacecraft observed the shock-induced electric field in the dayside magnetosphere and the response of the electron populations across a broad range of energies. Whereas other mechanisms populating the radiation belts close to Earth (L 3-5) take place on time scales of months (diffusion) or hours (storm and substorm effects), acceleration during shock events occurs on a much faster ( 1 minute) time scale. During this event the dayside equatorial magnetosphere experienced a strong dusk-dawn/azimuthal component of the electric field of 1 min duration. This shock-induced pulse accelerates radiation belt electrons for the length of time they are exposed to it creating "quasi-periodic pulse-like" enhancements in the relativistic (2 - 6 MeV) electron flux. Electron acceleration occurs on a time scale that is a fraction of their orbital drift period around the Earth. Those electrons whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse stay in the accelerating wave as it propagates tailward and receive the largest increase in energy. Relativistic electron gradient drift velocities are energy-dependent, selecting a preferred range of energies (3-4 MeV) for the strongest enhancement. The time scale for shock acceleration is short with respect to the electron drift period ( 5 min), but long with respect to bounce and gyro periodicities. As a result, the third invariant is broken and the affected electron populations are displaced earthward experiencing an adiabatic energy gain. At radial distances tailward of the peak in phase space density, the impulsive inward displacement of the electron population produces a decrease in electron flux and a sequence of gradient drifting "negative holes".Dual spacecraft coverage of the 8 October 2013 event provided a before/after time sequence documenting shock effects.

  12. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle

  13. QALMA: A computational toolkit for the analysis of quality protocols for medical linear accelerators in radiation therapy

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios

    2018-01-01

    Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.

  14. Gastrointestinal Helminths and Ectoparasites in the Stray Cats (Felidae: Felis catus) of Ahar Municipality, Northwestern Iran

    PubMed Central

    YAKHCHALI, Mohammad; HAJIPOUR, Nasser; MALEKZADEH-VIAYEH, Reza; ESMAEILNEJAD, Bijan; NEMATI-HARAVANI, Taher; FATHOLLAHZADEH, Mohammad; JAFARI, Rasool

    2017-01-01

    Background: The stray cats are considered as the sources of emerging humans and domestic livestock pathogens and the zoonoses of public health importance. The present study was aimed to elucidate intestinal helminth infections and infestation with ectoparasites of the stray cats of Ahar City, northwestern Iran. Methods: Totally, 51 stray cats were randomly trapped from different parts of the city between Mar and Nov 2013. The cats were assessed for ectoparasites by hair brushing, skin scraping, acetate tape preparation and othic swabs. They were euthanized and inspected for helminths infection. Results: Overall prevalence of helminths and flea were 44/51 (86.3%) and 31/51 (60.78%), respectively. The infection rates were significantly different among different age groups (P<0.05). Of the 282 isolated helminths, three species of nematodes (Toxocara cati (86.3%), T. leonina (11.77%), Ancylostoma tubaeforme (5.9%)) and four species of cestodes (Taenia taeniaeformis (64.7%), Mesocestoides lineatus (49.02%), Dipylidium caninum (29.41%), T. hydatigena (19.6%)) were identified. The predominant infectious helminths in all the infected cats were T. cati (86.3% with egg per gram of feces 27.75±9). Of the 270 collected fleas, two species of Ctenocephalides felis (80%) and C. canis (20%) were notably frequent in the cats aged 2-3-year-old. The average number of fleas per each infected cat was recorded as 5.29, with no incidence of cross-infection. Conclusion: The results indicated the high rate of helminths infections and flea infestation in the urban stray cats of which Toxocara cati and Ctenocephalides felis may play important roles as zoonotic agents in the region. PMID:28761492

  15. Effect of stray electric fields on cooling of center of mass motion of levitated graphite flakes

    NASA Astrophysics Data System (ADS)

    Nagornykh, Pavel; Coppock, Joyce; Kane, Bruce

    2015-03-01

    Levitation of charged multilayer graphene flakes in a quadrupole ion trap provides a unique way to study graphene in isolated conditions. Cooling of a flake in such a setup is necessary for high vacuum measurements of the flake and is achieved by using a parametric feedback scheme. We present data showing the strong dependence of the cooling of the flake's center of mass motion on the stray electric fields. We achieve this by using auxiliary electrodes to shift the position of the trap center in space. Once the point of minimum interaction between the stray fields and the particle is found (leading to cooling of the flake motion to temperatures below 20K at pressure of 10-7 Torr), we can estimate charge and mass of the flake by observing quantized discharge of the particle and measure transient dynamics of the center of mass motion by turning the cooling off and on. As an additional benefit, the behavior of the flake away from the optimum trap position can be used to quantify stray fields' effect on the particle motion by measuring its spinning orientation and frequency dependence on offset from the optimum position.

  16. Microtextured metals for stray-light suppression in the Clementine startracker

    NASA Technical Reports Server (NTRS)

    Johnson, E. A.

    1993-01-01

    Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.

  17. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  18. Influence of beam incidence and irradiation parameters on stray neutron doses to healthy organs of pediatric patients treated for an intracranial tumor with passive scattering proton therapy.

    PubMed

    Bonfrate, A; Farah, J; De Marzi, L; Delacroix, S; Hérault, J; Sayah, R; Lee, C; Bolch, W E; Clairand, I

    2016-04-01

    In scattering proton therapy, the beam incidence, i.e. the patient's orientation with respect to the beam axis, can significantly influence stray neutron doses although it is almost not documented in the literature. MCNPX calculations were carried out to estimate stray neutron doses to 25 healthy organs of a 10-year-old female phantom treated for an intracranial tumor. Two beam incidences were considered in this article, namely a superior (SUP) field and a right lateral (RLAT) field. For both fields, a parametric study was performed varying proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and air gap size. Using a standard beam line configuration for a craniopharyngioma treatment, neutron absorbed doses per therapeutic dose of 63μGyGy(-1) and 149μGyGy(-1) were found at the heart for the SUP and the RLAT fields, respectively. This dose discrepancy was explained by the different patient's orientations leading to changes in the distance between organs and the final collimator where external neutrons are mainly produced. Moreover, investigations on neutron spectral fluence at the heart showed that the number of neutrons was 2.5times higher for the RLAT field compared against the SUP field. Finally, the influence of some irradiation parameters on neutron doses was found to be different according to the beam incidence. Beam incidence was thus found to induce large variations in stray neutron doses, proving that this parameter could be optimized to enhance the radiation protection of the patient. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  20. Radiation Pressure Forces, the Anomalous Acceleration, and Center of Mass Motion for the TOPEX/POSEIDON Spacecraft

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Born, George H.

    2000-01-01

    Shortly after launch of the TOPEX/POSEIDON (T/P) spacecraft (s/c), the Precision Orbit Determination (POD) Team at NASA's Goddard Space Flight Center (GSFC) and the Center for Space Research at the University of Texas, discovered residual along-track accelerations, which were unexpected. Here, we describe the analysis of radiation pressure forces acting on the T/P s/c for the purpose of understanding and providing an explanation for the anomalous accelerations. The radiation forces acting on the T/P solar army, which experiences warping due to temperature gradients between the front and back surfaces, are analyzed and the resulting along-track accelerations are determined. Characteristics similar to those of the anomalous acceleration are seen. This analysis led to the development of a new radiation form model, which includes solar array warping and a solar array deployment deflection of as large as 2 deg. As a result of this new model estimates of the empirical along-track acceleration are reduced in magnitude when compared to the GSFC tuned macromodel and are less dependent upon beta(prime), the location of the Sun relative to the orbit plane. If these results we believed to reflect the actual orientation of the T/P solar array then motion of the solar array must influence the location of the s/c center of mass. Preliminary estimates indicate that the center of mass can vary by as much as 3 cm in the radial component of the s/c's position due to rotation of the deflected, warped solar array panel .The altimeter measurements rely upon accurate knowledge of the center of mass location relative to the s/c frame of reference. Any radial motion of the center of mass directly affects the altimeter measurements.

  1. Stray light modeling of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Astrophysics Data System (ADS)

    Rohrbach, Scott O.; Irvin, Ryan G.; Seals, Lenward T.; Skelton, Dennis L.

    2016-09-01

    This paper describes an integrated stray light model of each Science Instrument (SI) in the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) and the Optical Telescope Element Simulator (OSIM), the light source used to characterize the performance of ISIM in cryogenic-vacuum tests at the Goddard Space Flight Center (GSFC). We present three cases where this stray light model was integral to solving questions that arose during the testing campaign - 1) ghosting and coherent diffraction from hardware surfaces in the Near Infrared Imager and Slitless Spectrograph (NIRISS) GR700XD grism mode, 2) ghost spots in the Near Infrared Camera (NIRCam) GRISM modes, and 3) scattering from knife edges of the NIRCam focal plane array masks.

  2. Extremely low frequency (ELF) stray magnetic fields of laboratory equipment: a possible co-exposure conducting experiments on cell cultures.

    PubMed

    Gresits, Iván; Necz, Péter Pál; Jánossy, Gábor; Thuróczy, György

    2015-09-01

    Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.

  3. A procedure to determine the radiation isocenter size in a linear accelerator.

    PubMed

    González, A; Castro, I; Martínez, J A

    2004-06-01

    Measurement of radiation isocenter is a fundamental part of commissioning and quality assurance (QA) for a linear accelerator (linac). In this work we present an automated procedure for the analysis of the stars-shots employed in the radiation isocenter determination. Once the star-shot film has been developed and digitized, the resulting image is analyzed by scanning concentric circles centered around the intersection of the lasers that had been previously marked on the film. The center and the radius of the minimum circle intersecting the central rays are determined with an accuracy and precision better than 1% of the pixel size. The procedure is applied to the position and size determination of the radiation isocenter by means of the analysis of star-shots, placed in different planes with respect to the gantry, couch and collimator rotation axes.

  4. Effective suppression of stray light in rotational coherent anti-stokes Raman spectroscopy using an angle-tuned short-wave-pass filter.

    PubMed

    Bohlin, Alexis; Bengtsson, Per-Erik

    2010-08-01

    Stray light interference is a common problem in spontaneous rotational Raman spectroscopy and rotational coherent anti-Stokes Raman spectropscopy (CARS). The reason is that the detected spectrum appears in the spectral vicinity of the probe beam wavelength, and stray light at this wavelength from optics and surfaces is hard to suppress. In this Note, efficient suppression of stray light is demonstrated for rotational CARS measurements using a commercially available short-wave-pass filter. By angle-tuning this filter with a specified cut-off wavelength at 561 nm, the cut-off wavelength could be tuned to a desired spectral position so that more than 80% transmission is achieved as close as 15 cm(-1) (approximately 0.4 nm) from the probe beam wavelength of 532.0 nm, while the intensity at this wavelength is suppressed by two orders of magnitude.

  5. An epidemiological survey on intestinal helminths of stray dogs in Mashhad, North-east of Iran.

    PubMed

    Emamapour, Seyed Rasoul; Borji, Hassan; Nagibi, Abolghasem

    2015-06-01

    This research was conducted to determine the prevalence of gastrointestinal helminths in stray dogs in the northeast of Iran, with special attention to those parasites that can be transmitted to human. In this experiment, a total of 72 adult and 18 juvenile stray dogs were collected and necropsied for the presence of helminth parasites from October 2011 to August 2012. The overall prevalence of gastrointestinal helminths was 86 % (95 % CI: 79.2-92.8 %). The observed helminths of the gastrointestinal tract were listed as follows: Toxocara canis (29 %), Toxascaris leonina (7 %), Ancylostoma caninum (2 %), Taenia hydatigena (43 %), Dipylidium caninum (39 %), Echinococcus granulosus (38 %), Mesocestoides lineatus (16 %), Taenia multiceps (11 %), Taenia ovis (3 %). There were no significant differences for the prevalence of gastrointestinal helminths between female (83.6 %) and male (89.7 %) and between young (89 %) and adult (72.2 %) animals. However, the prevalence of E. granulosus, T. hydatigena and D. caninum showed an increasing trend with increasing host age, significantly. Based on our data, it is important to point out the presence of zoonotic agents, namely E. granulosus and T. canis in stray dogs in the investigated area. Due to its impact on public health, appropriate control measures should be taken and it is recommended to determine the most appropriate preventive methods.

  6. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  7. An assessment of the stray-light in 25 years Dobson total ozone data at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-02-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray-light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for airmass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray-light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the Athens Dobson instrument appears to have an insignificant stray-light error. The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south eastern Europe, may be assumed as a ground-truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  8. Toxoplasmosis, leptospirosis and brucellosis in stray dogs housed at the shelter in Umuarama municipality, Paraná, Brazil

    PubMed Central

    2013-01-01

    Background Leptospirosis, toxoplasmosis and brucellosis are diseases with worldwide distribution. Among stray dogs, these zoonoses are facilitated by direct contact with other animal species, by the habit of scavenging garbage and hunting in search of food, drinking standing water, smelling other animals’ urine, licking female genitalia and the sexual act itself. The objective of this study was to detect antibodies anti-Toxoplasma gondii, anti-Leptospira spp., anti-Brucella canis and anti-Brucella abortus in stray dogs housed in shelters at Umuarama city, Paraná, Brazil. In order to detect toxoplasmosis, indirect immunofluorescence assay (IFA) was performed, agglutination microscopic (MAT) test for leptospirosis and agar gel immunodiffusion (AGID) and buffered acidified antigen (BAA) tests for brucellosis. Results Of the 175 serum samples analyzed, 70.85% were considered positive for toxoplasmosis by IFA, 20% by MAT for leptospirosis and 2.85% by AGID for Brucella canis. Conclusions The serological results of this study showed that stray dogs housed at the private shelter are potential carriers of these three different zoonoses and contribute to the spread and maintenance of these etiologic agents in the urban area of Umuarama (PR), Brazil. PMID:24066949

  9. Terahertz radiation source using a high-power industrial electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  10. Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Godoy, William F.; Liu, Xu

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.

  11. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    NASA Astrophysics Data System (ADS)

    Karlica, Mile

    2015-12-01

    In this talk we present the sponge" model and its possible implications on the GRB afterglow light curves. "Sponge" model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  12. Proton radiation effects on the optical properties of vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kuhnhenn, J.; Khavrus, V.; Leonhardt, A.; Eversheim, D.; Noll, C.; Hinderlich, S.; Dahl, A.

    2017-11-01

    This paper discusses proton-induced radiation effects in vertically aligned carbon nanotubes (VA-CNT). VACNTs exhibit extremely low optical reflectivity which makes them interesting candidates for use in spacecraft stray light suppression. Investigating their behavior in space environment is a precondition for the implementation on a satellite.

  13. Symptomatic Radiation Pneumonitis After Accelerated Partial Breast Irradiation Using Three-dimensional Conformal Radiotherapy.

    PubMed

    Shikama, Naoto; Kumazaki, Y U; Miyazawa, Kazunari; Miyaura, Kazunori; Kato, Shingo; Nakamura, Naoki; Kawamori, Jiro; Shimizuguchi, Takuya; Saito, Naoko; Saeki, Toshiaki

    2016-05-01

    To examine the relationship between symptomatic radiation pneumonitis and lung dose-volume parameters for patients receiving accelerated partial breast irradiation (APBI) using three dimensional-conformal radiotherapy (3D-CRT). The prescribed radiation dose was 30 Gy in 5 fractions over 10 days. Toxicity was graded according to the Common Terminology Criteria for Adverse Events (version 4.0). Fifty-five patients were enrolled from August 2010 to October 2013 and the median follow-up time was 30 months (range=18-46 months). Three patients (5%) developed grade 2 symptomatic radiation pneumonitis after 3D-CRT APBI. Among 16 patients with ILV10Gy (% ipsilateral lung receiving ≥10 Gy) of 10% or higher, three patients (19%) developed symptomatic radiation pneumonitis. This trend was not observed in any of the patients with ILV10Gy less than 10% (p=0.005). High ILV10Gy might be associated with symptomatic radiation pneumonitis after 3D-CRT APBI. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Machine and radiation protection challenges of high energy/intensity accelerators: the role of Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Cerutti, F.

    2017-09-01

    The role of Monte Carlo calculations in addressing machine protection and radiation protection challenges regarding accelerator design and operation is discussed, through an overview of different applications and validation examples especially referring to recent LHC measurements.

  15. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  16. Radiation pressure acceleration of corrugated thin foils by Gaussian and super-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adusumilli, K.; Goyal, D.; Tripathi, V. K.

    Rayleigh-Taylor instability of radiation pressure accelerated ultrathin foils by laser having Gaussian and super-Gaussian intensity distribution is investigated using a single fluid code. The foil is allowed to have ring shaped surface ripples. The radiation pressure force on such a foil is non-uniform with finite transverse component F{sub r}; F{sub r} varies periodically with r. Subsequently, the ripple grows as the foil moves ahead along z. With a Gaussian beam, the foil acquires an overall curvature due to non-uniformity in radiation pressure and gets thinner. In the process, the ripple perturbation is considerably washed off. With super-Gaussian beam, the ripplemore » is found to be more strongly washed out. In order to avoid transmission of the laser through the thinning foil, a criterion on the foil thickness is obtained.« less

  17. Accelerated hematopoietic toxicity by high energy (56)Fe radiation.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J

    2012-03-01

    There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.

  18. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  19. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity

  20. Helminth Infections of Stray Dogs from Garmsar, Semnan Province, Central Iran

    PubMed Central

    Eslami, A; Ranjbar-Bahadori, Sh; Meshgi, B; Dehghan, M; Bokaie, S

    2010-01-01

    Background The aim was to study the gastro-intestinal helminths of stray dogs of Garmsar, Semnan Province, Central Iran, and its impacts on human health and animal production. Methods During 2006, the alimentary tracts of 50 stray dogs at necropsy, selected from villages around Garmsar, were removed, and examined for helminth infections. Subsequently helminths were collected from the contents of each part and scraped sample of small intestines of washed materials in a 100-mesh sieve. To identify the species of helminths, the nematodes were cleared in lactophenol and cestodes were stained using carmine acid. Results Mixed infection was the rule and 40 dogs (80%) harbored more than one species of helminth. Taenia hydatigena was the most prevalent species (80%) followed by Echinococcus granulosus (64%), Toxocara canis (22%), Mesocestoides lineatus (12%), Taenia multiceps (10%) and Dipylidium caninum (4%). The mean intensity of worm infection was low (1–3) except for that of E. granulosus (645). No significant difference was noticed between sex, age and most helminth infections except for that of sex and T. hydatigena (P=0.001) as well as age and T. canis (P=0.001). Conclusion Although human infection with T. hydatigena is unlikely, but other helminths reported in this study are of zoonotic importance, and may pose a threat to community health, and reduce the productions of ruminants harboring taeniid metacestodes. PMID:22347264

  1. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    PubMed

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  2. [Distribution of corneal densitometry and its correlation with ocular stray light in healthy eyes].

    PubMed

    Wu, Zhiqing; Wang, Yan; Zhang, Lin; Wu, Di; Wei, Shengsheng; Su, Xiaolian

    2014-01-01

    To evaluate and investigate the distribution of corneal density and its Correlation with stray-light value in adult and healthy eyes. A prospective study. Human corneal specimens ranging in age between 20 and 49 years, 116 patients (232 eyes) in total, divided into three groups: 20-29, 30-39, 40-49. Pentacam was used to evaluate total corneal average density and corneal thickness at different diameter around the corneal apex, for corneal density were ≤ 2 mm, >2 mm and ≤ 6 mm, >6 mm and ≤ 10 mm, for corneal thickness were 2 mm, 6 mm and 10 mm, C-quant was used for the stray-light value. Software SPSS 17.0 was used for statistical analysis. Independent samples t testing method was applied to compare the corneal densitometry in different gender and between left eyes and right ones, One-way ANOVA was applied to analyze the differences of corneal density in different age groups and diameters. Pearson correlation analysis was applied to assess the correlation in corneal densitometry values of different diameters, between corneal density of different diameters and age, corneal density of different diameters and corneal thickness of different diameters, corneal density of different diameters and stray-light values. Corneal density for ≤ 2 mm, >2 mm and ≤ 6 mm, >6 mm and ≤ 10 mm diameter are 10.1 ± 1.5(8.2-16.7), 9.3 ± 1.3(7.9-14.2), 9.6 ± 1.7(7.3-16.2). Corneal density of >6 mm and ≤ 10 mm diameter in different age groups were 8.9 ± 1.1, 9.3 ± 1.2, 10.7 ± 2.1, there was a statistical difference in these values (F = 28.939, P = 0.000), and there was a positive correlation between corneal density of >6 mm and ≤ 10 mm diameter and age (r = 0.417, P = 0.000), There were no statistical differences in corneal density values of ≤ 2 mm and >2 mm and ≤ 6 mm in different age groups (F = 1.575, 1.436; P > 0.05), and they had no correlation with age (r = 0.002, 0.048; P > 0.05). There was no statistical difference in corneal density in different gender (t = 1

  3. Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse.

    PubMed

    Pegoraro, F; Bulanov, S V

    2007-08-10

    The stability of a thin plasma foil accelerated by the radiation pressure of a high intensity electromagnetic (e.m.) pulse is investigated analytically and with particle in cell numerical simulations. It is shown that the onset of a Rayleigh-Taylor-like instability can lead to transverse bunching of the foil and to broadening of the energy spectrum of fast ions. The use of a properly tailored e.m. pulse with a sharp intensity rise can stabilize the foil acceleration.

  4. A PARASITOLOGIC AND MOLECULAR SURVEY OF HEPATOZOON CANIS INFECTION IN STRAY DOGS IN NORTHEAST OF IRAN.

    PubMed

    Barati, Ali; Razmi, Gholamreza

    2018-05-15

    Canine hepatozoonosis, caused by H. canis, is a tick-borne disease in domestic and wild dogs that is transmitted by ingestion of Rhipicephalus sanguineus ticks. The aim of the study was to detect H. canis in stray dogs in Iran using blood smear examination and molecular techniques. From October 2014 to September 2015, 150 EDTA blood samples were collected from stray dogs in the northeast region of Iran. Blood smears were microscopically examined for the presence of Hepatozoon gamonts; whole blood was evaluated by PCR, with subsequent sequencing and phylogenetic analysis. Hepatozoon spp. Gamonts were observed in the neutrophils of 5/150 (3.3%) blood smears, whereas Hepatozoon spp. 18S rDNA was detected in 12/150 (8.0%) blood samples from stray dogs. There was a good agreement between microscopy and PCR methods. (Kappa= 0.756). The highest rate of infection was seasonally detected in the summer (p<0.05). The difference of frequency of Hepatozoon spp infection was not significant by gender and age factors (p>0.05). The alignment analysis of the sequenced samples showed ≥99% similarity with other nucleotide sequences of Hepatozoon spp. in GenBank. The phylogenetic tree also revealed that the nucleotide sequences in this study were clustered in the H. canis clade and different from the H. felis and H. americanum clades. According to the results, it is concluded that H. canis infection is present among dogs in northeastern region of Iran.

  5. Molecular and Serological Evidence of Leishmania Infection in Stray Dogs from Visceral Leishmaniasis-Endemic Areas of Bangladesh.

    PubMed

    Akter, Shirin; Alam, Mohammad Zahangir; Nakao, Ryo; Yasin, Golam; Kato, Hirotomo; Katakura, Ken

    2016-10-05

    Visceral leishmaniasis (VL), or kala-azar, is mainly caused by two closely related Leishmania species, Leishmania infantum and Leishmania donovani Leishmania infantum is responsible for zoonotic VL, with dogs as the main reservoir host in the Mediterranean, the Middle East, Asia, and South America. In the Indian subcontinent, VL is caused by L. donovani and is considered anthroponotic, although the only known vector, the sand fly, is zoophilic in nature. The role of domestic and stray dogs in VL transmission is still unclear in this area. We screened 50 stray dogs from VL-endemic areas of Bangladesh for serological and molecular evidence of Leishmania infection. We detected anti-Leishmania antibodies in six (12%) dog serum samples using rK39 immunochromatographic tests. We observed Leishmania kinetoplast DNA in 10 (20%) buffy coat DNA samples by real-time polymerase chain reaction (PCR), five of which were positive based on internal transcribed spacer 1-PCR. A sequencing analysis of the amplified products confirmed that the parasitic DNA was derived from L. donovani Our findings support the hypothesis that stray dogs are an animal reservoir for L. donovani in this endemic region. Further studies are required to determine the precise role of dogs in the epidemiology of VL in Bangladesh. © The American Society of Tropical Medicine and Hygiene.

  6. Prevalence of zoonotic intestinal parasites in household and stray dogs in rural areas of Hamadan, Western Iran.

    PubMed

    Sardarian, K; Maghsood, A H; Ghiasian, S A; Zahirnia, A H

    2015-06-01

    Zoonotic parasitic infections are a major global public and veterinary health problem and widespread among dogs. The objective of this study was to assess the prevalence of intestinal parasites in stray and household dogs in the rural areas of Hamadan district. During 2012, 1,500 fresh fecal samples from 243 household and 1,257 stray dogs were examined by using direct wet mount, simple zinc sulfate flotation, and Lugol's solution staining. Of 1,500 dogs, 20.4% were positive for intestinal parasites. Helminthes eggs were more frequently found in fecal samples than protozoan cysts or trophozoites (15.9% vs. 4.5%, respectively). Toxocara canis was the most frequently detected parasite, with a prevalence of 6.3%, followed by Taenia/Echinococcus spp. (2.9%), Isospora spp. (2.7%), and Toxascaris leonina (2.6%). Helminthes and protozoa were significantly more prevalent in household dogs than in stray dogs (P<0.001). There were significant differences in the prevalence of Isospora spp., T. canis and D. caninum among three age groups (P<0.05). The wide range of isolated parasites indicated that people residing in this area are at risk of exposure to these potentially hazardous zoonotic pathogens. Mass education of the general population is highly recommended to increase awareness of the potential for horizontal transmission of these parasitic infections from dogs to humans.

  7. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  8. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery.

    PubMed

    Trifiletti, Daniel M; Showalter, Timothy N

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of "big data," it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy.

  9. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  10. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  11. A Survey Study on Gastrointestinal Parasites of Stray Cats in Northern Region of Nile Delta, Egypt

    PubMed Central

    Khalafalla, Reda E.

    2011-01-01

    A survey study on gastrointestinal parasites in 113 faecal samples from stray cats collected randomly from Kafrelsheikh province, northern region of Nile delta of Egypt; was conducted in the period between January and May 2010. The overall prevalence was 91%. The results of this study reported seven helminth species: Toxocara cati (9%), Ancylostoma tubaeforme (4%), Toxascaris leonina (5%), Dipylidium caninum (5%), Capillaria spp. (3%), Taenia taeniformis (22%) and Heterophyes heterophyes (3%), four protozoal species: Toxoplasma gondii (9%), Sarcocyst spp. (1%), Isospora spp. (2%) and Giardia spp. (2%) and two arthropod species; Linguatula serrata (2%) and mites eggs (13%). The overall prevalence of intestinal parasites may continue to rise due to lack of functional veterinary clinics for cat care in Egypt. Therefore, there is a need to plan adequate control programs to diagnose, treat and control gastrointestinal parasites of companion as well as stray cats in the region. PMID:21760884

  12. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.

  13. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  14. Zoonotic Intestinal Trematodes in Stray Cats (Felis catus) from Riverside Areas of the Republic of Korea

    PubMed Central

    Shin, Sung-Shik; Oh, Dae-Sung; Ahn, Kyu-Sung; Cho, Shin-Hyeong; Lee, Won-Ja; Na, Byoung-Kuk; Sohn, Woon-Mok

    2015-01-01

    The present study was performed to survey the infection status of zoonotic intestinal trematode (ZIT) in stray cats from 5 major riverside areas in the Republic of Korea. Total 400 stray cats were captured with live-traps in riverside areas of Seomjingang (‘gang’ means river) (203 cats) from June to October 2010, and of Yeongsangang (41), Nakdonggang (57), Geumgang (38), and Hangang (61 cats) from June to October 2011, respectively. Small intestines resected from cats were opened with a pair of scissors in a beaker with 0.85% saline and examined with naked eyes and under a stereomicroscope. More than 16 ZIT species were detected in 188 (92.6%) cats from Seomjingang areas, and the number of worms recovered was 111 per cat infected. In cats from riverside areas of Yeongsangang, Nakdonggang, Geumgang, and Hangang, more than 9, 8, 3, and 5 ZIT species were recovered, and the worm burdens were 13, 42, 11, and 56 specimens per infected cat, respectively. As the members of family Heterophyidae, more than 10 species, i.e., Metagonimus spp., Pygidiopsis summa, Heterophyes nocens, Stellantchasmus falcatus, Heterophyopsis continua, Acanthotrema felis, Centrocestus armatus, Procerovum varium, Cryptocotyle concava, and Stictodora lari, were recovered. More than 5 species of echinostomes, i.e., Echinostoma hortense, Echinochasmus japonicus, Echinochasmus sp., Echinoparyphium sp., and unidentified larval echinostomes, were collected. Plagiorchis spp. were detected in cats from areas of Seomjin-gang and Yeongsangang. From the above results, it has been confirmed that stray cats in 5 major riverside areas of Korea are highly infected with various species of ZITs. PMID:25925180

  15. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less

  16. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  17. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  18. Investigation of radiative bow-shocks in magnetically accelerated plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bott-Suzuki, S. C., E-mail: sbottsuzuki@ucsd.edu; Caballero Bendixsen, L. S.; Cordaro, S. W.

    2015-05-15

    We present a study of the formation of bow shocks in radiatively cooled plasma flows. This work uses an inverse wire array to provide a quasi-uniform, large scale hydrodynamic flow accelerated by Lorentz forces to supersonic velocities. This flow impacts a stationary object placed in its path, forming a well-defined Mach cone. Interferogram data are used to determine a Mach number of ∼6, which may increase with radial position suggesting a strongly cooling flow. Self-emission imaging shows the formation of a thin (<60 μm) strongly emitting shock region, where T{sub e} ∼ 40–50 eV, and rapid cooling behind the shock. Emission is observed upstreammore » of the shock position which appears consistent with a radiation driven phenomenon. Data are compared to 2-dimensional simulations using the Gorgon MHD code, which show good agreement with the experiments. The simulations are also used to investigate the effect of magnetic field in the target, demonstrating that the bow-shocks have a high plasma β, and the influence of B-field at the shock is small. This consistent with experimental measurement with micro bdot probes.« less

  19. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  20. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints

    NASA Astrophysics Data System (ADS)

    Ptitsyna, Kseniya V.; Troitsky, Sergei V.

    2010-10-01

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely, the geometric (Hillas) criterion and the restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and find potential UHECR accelerators. For the acceleration in the central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, although acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  1. Frontier applications of electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  2. Experimental observation of direct particle acceleration by stimulated emission of radiation.

    PubMed

    Banna, Samer; Berezovsky, Valery; Schächter, Levi

    2006-09-29

    We report the first experimental evidence for direct particle acceleration by stimulated emission of radiation. In the framework of this proof-of-principle experiment, a 45 MeV electron macrobunch was modulated by a high-power CO2 laser and then injected into an excited CO2 gas mixture. The emerging microbunches experienced a 0.15% relative change in the kinetic energy, in a less than 40 cm long interaction region. According to our experimental results, a fraction of these electrons have gained more than 200 keV each, implying that such an electron has undergone an order of magnitude of 2 x 10(6) collisions of the second kind.

  3. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery

    PubMed Central

    Trifiletti, Daniel M.; Showalter, Timothy N.

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of “big data,” it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy. PMID:26697409

  4. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

    PubMed Central

    Rae, Joel; Hogan, Kate; Ejiama, Sarah; Girotti, Maria Romina; Cook, Martin; Dhomen, Nathalie; Marais, Richard

    2014-01-01

    Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear1,2. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event3. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a V600EBRAF mouse model. In mice expressing V600EBRAF in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. We show that sunscreen (UVA superior: UVB SPF50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours presented increased numbers of single nucleotide variants (SNVs) and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in ~40% of cases. TP53 is an accepted UVR target in non-melanoma skin cancer, but is not thought to play a major role in melanoma4. However, we show that mutant Trp53 accelerated V600EBRAF-driven melanomagenesis and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans5. We identify TP53/Trp53 as a UVR-target gene that cooperates with V600EBRAF to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma. PMID:24919155

  5. Application of linear multifrequency-grey acceleration to preconditioned Krylov iterations for thermal radiation transport

    DOE PAGES

    Till, Andrew T.; Warsa, James S.; Morel, Jim E.

    2018-06-15

    The thermal radiative transfer (TRT) equations comprise a radiation equation coupled to the material internal energy equation. Linearization of these equations produces effective, thermally-redistributed scattering through absorption-reemission. In this paper, we investigate the effectiveness and efficiency of Linear-Multi-Frequency-Grey (LMFG) acceleration that has been reformulated for use as a preconditioner to Krylov iterative solution methods. We introduce two general frameworks, the scalar flux formulation (SFF) and the absorption rate formulation (ARF), and investigate their iterative properties in the absence and presence of true scattering. SFF has a group-dependent state size but may be formulated without inner iterations in the presence ofmore » scattering, while ARF has a group-independent state size but requires inner iterations when scattering is present. We compare and evaluate the computational cost and efficiency of LMFG applied to these two formulations using a direct solver for the preconditioners. Finally, this work is novel because the use of LMFG for the radiation transport equation, in conjunction with Krylov methods, involves special considerations not required for radiation diffusion.« less

  6. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  7. On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation

    ERIC Educational Resources Information Center

    Eriksen, Erik; Gron, Oyvind

    2007-01-01

    We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…

  8. Bidirectional reflectance distribution function /BRDF/ measurements of stray light suppression coatings for the Space Telescope /ST/

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1979-01-01

    The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.

  9. Effects of stray lights on Faraday rotation measurement for polarimeter-interferometer system on EAST.

    PubMed

    Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X

    2018-01-01

    A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.

  10. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  11. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  12. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  13. Prevalence, risk factors and genetic characterization of Toxoplasma gondii in sick pigs and stray cats in Jiangsu Province, eastern China.

    PubMed

    Hou, Zhao-Feng; Su, Shi-Jie; Liu, Dan-Dan; Wang, Le-le; Jia, Chuan-Li; Zhao, Zhen-Xing; Ma, Yi-Fei; Li, Qiao-Qiao; Xu, Jin-Jun; Tao, Jian-Ping

    2018-06-01

    Toxoplasma gondii is an obligate intracellular parasitic protozoan with a worldwide distribution. The parasites in edible tissues of pigs and oocysts from cats are the major sources of T. gondii infection in humans. However, there are no data from sick pigs in veterinary clinics or from stray cats in Jiangsu Province, eastern China. In total, biological samples from 141 sick pigs and 64 stray cats were collected from this region. The rate of T. gondii infection in sick pigs was 46.81% using a polymerase chain reaction (PCR), and the overall prevalence of toxoplasmosis in stray cats was 34.38% by PCR and an enzyme-linked immunosorbent assay (ELISA). T. gondii was significantly more prevalent in lungs and heart than in liver and spleen (P < 0.05). Age and geographic region were considered to be the main risk factors associated with T. gondii infection in these pigs. The DNA samples from 17 sick pigs and seven stray cats, were successfully genotyped by multilocus PCR-restriction fragment length polymorphism (PCR-RFLP) with 10 genetic markers [SAG1, SAG2 (5'-3'SAG2, alt. SAG2), SAG3, GRA6, PK1, c22-8, c29-2, BTUB, L358 and Apico]. Six distinct genotypes were found, which were designated ToxoDB PCR-RFLP genotypes #9 (Chinese I), #10 (Type I), #213, and #89, and New 1 and New 2. Chinese I is the most prevalent T. gondii genotype in this region. The two new genotypes (designated New 1 and New 2) are reported and the ToxoDB PCR-RFLP genotype #89 is found for the first time in China. Such information will be useful for the prevention, diagnosis and treatment of porcine toxoplasmosis in Jiangsu Province, eastern China. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    NASA Astrophysics Data System (ADS)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  15. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system

    NASA Astrophysics Data System (ADS)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno

    2017-12-01

    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  16. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    PubMed

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  17. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  18. Toxocara nematodes in stray cats from shiraz, southern iran: intensity of infection and molecular identification of the isolates.

    PubMed

    Mikaeili, Fattaneh; Mirhendi, Hossein; Hosseini, Mostafa; Asgari, Qasem; Kia, Eshrat Beigom

    2013-10-01

    Toxocara is a common nematode of cats in different parts of Iran. Despite the close association of cats with human, no attempt has been done so far for molecular identification of this nematode in the country. Therefore, current study was performed on identification of some isolates of Toxocara from stray cats in Shiraz, Fars Province, Southern Iran, based on morphological and molecular approaches, and also determination of intensity of infection. This cross-sectional study was carried out on 30 stray cats trapped from different geographical areas of Shiraz in 2011. Adult male and female worms were recovered from digestive tract after dissection of cats. Morphological features using existing keys and PCR-sequencing of ITS-rDNA region and pcox1 mitochondrial l gene were applied for the delineating the species of the parasites. Eight out of 30 cats (26.7%) were found infected with Toxocara nematodes. All the isolates were confirmed as Toxocara cati based on morphological features and the sequence of ribosomal and mitochondrial targets. Intensity of infection ranged from one to a maximum of 39 worms per cat, with a mean of 10.25±12.36, and higher abundance of female nematodes. The most prevalent ascaridoid nematode of stray cats in the study area was T. cati and female nematodes were more abundant than that of males. This issue has important role in spreading of eggs in the environment and impact on human toxocariasis.

  19. Production of high energy protons with hole-boring radiation pressure acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, A. P. L.

    The possibility of producing energetic protons with energies in the range of 100-200 MeV via hole-boring (HB) radiation pressure acceleration (RPA) at intensities around 10{sup 21} W cm{sup -2} is reexamined. It is found that hole-boring RPA can occur well below the relativistically corrected critical density in numerical simulations, with average proton energies in good agreement with established formulas. This suggests that protons in this energy range can be produced via HB RPA at around 10{sup 21} W cm{sup -2}. It is also shown that the prospects of doing this could be improved by using lasers of the same intensitymore » but longer wavelength.« less

  20. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  1. Humoral immune response to Dipylidium caninum infection of stray dogs in Taiwan.

    PubMed

    Shin, J W; Liao, W T

    2002-04-02

    Two kinds of homogeneous proglottid, mature and gravid, of Dipylidium caninum were used as the antigens for immunodiagnosis of canine dipylidiosis in stray dogs in Tainan, Taiwan. The ELISA was performed on 30 serum samples; 24 from dipylidiosis, four from ancylostomosis and two from toxocariosis. The ELISA have specificity and sensitive of 100 and 50% for mature proglottid extract, and 75 and 100%, respectively, for gravid proglottid extract. EITB technique showed two major peptide bands of 94.8 and 97.9kDa were recognized in the sera pool of infected dogs.

  2. Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters like fire and flooding and its environmental impacts

    NASA Astrophysics Data System (ADS)

    Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.

    2018-06-01

    The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.

  3. SHEAR ACCELERATION IN EXPANDING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less

  4. Community perception regarding rabies prevention and stray dog control in urban slums in India.

    PubMed

    Herbert, Mrudu; Riyaz Basha, S; Thangaraj, Selvi

    2012-12-01

    The lack of community awareness about rabies control is a major issue that thwarts efforts to prevent human deaths caused by rabies. The objectives of this study were (1) to assess community knowledge and attitudes about rabies, rabies prevention and stray dog control in an urban slum community and (2) to determine the factors that influence rabies awareness in urban slums. Using a systematic random sampling strategy, 185 participants were selected from 8 urban slums. The data were collected by direct interview using a pre-tested, structured questionnaire. In the study population, 74.1% of the participants had heard about rabies, and 54.1% knew that rabies is a fatal disease. Only 33.5% of the interviewees felt that people in the community had a role to play in controlling the stray dog population. Gender, age and educational status were significantly associated with rabies awareness. Our study indicates that there are gaps in the knowledge and attitudes of individuals living in urban slums regarding rabies prevention and control. Efforts to promote awareness should be targeted at men, older people and uneducated individuals. Copyright © 2012 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  5. Optical design and stray light analysis for the JANUS camera of the JUICE space mission

    NASA Astrophysics Data System (ADS)

    Greggio, D.; Magrin, D.; Munari, M.; Zusi, M.; Ragazzoni, R.; Cremonese, G.; Debei, S.; Friso, E.; Della Corte, V.; Palumbo, P.; Hoffmann, H.; Jaumann, R.; Michaelis, H.; Schmitz, N.; Schipani, P.; Lara, L. M.

    2015-09-01

    The JUICE (JUpiter ICy moons Explorer) satellite of the European Space Agency (ESA) is dedicated to the detailed study of Jupiter and its moons. Among the whole instrument suite, JANUS (Jovis, Amorum ac Natorum Undique Scrutator) is the camera system of JUICE designed for imaging at visible wavelengths. It will conduct an in-depth study of Ganymede, Callisto and Europa, and explore most of the Jovian system and Jupiter itself, performing, in the case of Ganymede, a global mapping of the satellite with a resolution of 400 m/px. The optical design chosen to meet the scientific goals of JANUS is a three mirror anastigmatic system in an off-axis configuration. To ensure that the achieved contrast is high enough to observe the features on the surface of the satellites, we also performed a preliminary stray light analysis of the telescope. We provide here a short description of the optical design and we present the procedure adopted to evaluate the stray-light expected during the mapping phase of the surface of Ganymede. We also use the results obtained from the first run of simulations to optimize the baffle design.

  6. Stray-light analyses of the multielement telescope for imaging and spectroscopy coronagraph on Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sandri, Paolo; Fineschi, Silvano; Romoli, Marco; Taccola, Matteo; Landini, Federico; Da Deppo, Vania; Naletto, Giampiero; Morea, Danilo; Naughton, Denis; Antonucci, Ester

    2018-01-01

    The modeling of the scattering phenomena for the multielement telescope for imaging and spectroscopy (METIS) coronagraph on board the European Space Agency Solar Orbiter is reported. METIS is an inverted occultation coronagraph including two optical paths: the broadband imaging of the full corona in linearly polarized visible-light (580 to 640 nm) and the narrow-band imaging of the full corona in the ultraviolet Lyman-α (121.6 nm). METIS will have the unique opportunity of observing the solar outer atmosphere as close to the Sun as 0.28 AU and from up to 35 deg out-of-ecliptic. The stray-light simulations performed on the UV and VL channels of the METIS analyzing the contributors of surface microroughness, particulate contamination, cosmetic defects, and diffraction are reported. The results obtained with the nonsequential modality of Zemax OpticStudio are compared with two different approaches: the Monte Carlo ray trace with Advanced Systems Analysis Program (ASAP®) and a semianalytical model. The results obtained with the three independently developed approaches are in considerable agreement and show compliance to the requirement of stray-light level for both the UV and VL channels.

  7. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  8. Applications of Accelerators and Radiation Sources in the Field of Space Research and Industry.

    PubMed

    Campajola, Luigi; Di Capua, Francesco

    2016-12-01

    Beyond their important economic role in commercial communications, satellites in general are critical infrastructure because of the services they provide. In addition to satellites providing information which facilitates a better understanding of the space environment and improved performance of physics experiments, satellite observations are also used to actively monitor weather, geological processes, agricultural development and the evolution of natural and man-made hazards. Defence agencies depend on satellite services for communication in remote locations, as well as for reconnaissance and intelligence. Both commercial and government users rely on communication satellites to provide communication in the event of a disaster that damages ground-based communication systems, provide news, education and entertainment to remote areas and connect global businesses. The space radiation environment is an hazard to most satellite missions and can lead to extremely difficult operating conditions for all of the equipment travelling in space. Here, we first provide an overview of the main components of space radiation environment, followed by a description of the basic mechanism of the interaction of radiation with matter. This is followed by an introduction to the space radiation hardness assurance problem and the main effects of natural radiation to the microelectronics (total ionizing dose, displacement damage and the single-event effect and a description of how different effects occurring in the space can be tested in on-ground experiments by using particle accelerators and radiation sources. We also discuss standards and the recommended procedures to obtain reliable results.

  9. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  10. Beamlets from stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Carbone, Vincenzo

    2008-09-01

    We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.

  11. A study on leakage radiation dose at ELV-4 electron accelerator bunker

    NASA Astrophysics Data System (ADS)

    Chulan, Mohd Rizal Md; Yahaya, Redzuwan; Ghazali, Abu BakarMhd

    2014-09-01

    Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker's door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.

  12. On the matter of building high-frequency amplifiers minimally influenced by interstage stray reactances

    NASA Astrophysics Data System (ADS)

    A, Volkov Y.

    2017-01-01

    The expedience of building wideband multistage amplifiers, the stages of which are connected with each other so, that the “modes of impedance mismatch” are realized, is justified. Those modes allow us to reduce considerably the sensitivity of amplifier transfer factors to the stray (constructional) capacitances and inductances of interstage circuits. The procedure of synthesizing the schematics of such amplifiers is proposed, the efficiency and clarity of which are provided by using the method of signal graphs.

  13. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  14. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuan S.; Shao, Xi

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks onmore » our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.« less

  15. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Rule, D. W.; Downer, M. C.

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  16. Shielding analyses for repetitive high energy pulsed power accelerators

    NASA Astrophysics Data System (ADS)

    Jow, H. N.; Rao, D. V.

    Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.

  17. Radiation skyshine from a 6 MeV medical accelerator.

    PubMed

    Gossman, Michael S; McGinley, Patton H; Rising, Mary B; Pahikkala, A Jussi

    2010-05-06

    This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs.

  18. Genetic evidence of enzootic leishmaniasis in a stray canine and Texas mouse from sites in west and central Texas

    PubMed Central

    Kipp, Evan J; Mariscal, Jacqueline; Armijos, Rodrigo X; Weigel, Margaret; Waldrup, Kenneth

    2016-01-01

    We detected Leishmania mexicana in skin biopsies taken from a stray canine (Canis familiaris) and Texas mouse (Peromyscus attwateri) at two ecologically disparate sites in west and central Texas using polymerase chain reaction (PCR). A single PCR-positive dog was identified from a sample of 96 stray canines and was collected in a peri-urban area in El Paso County, Texas. The PCR-positive P. attwateri was trapped at a wildlife reserve in Mason County, Texas, from a convenience sample of 20 sylvatic mammals of different species. To our knowledge, this represents the first description of L. mexicana in west Texas and extends the known geographic range of the parasite to an area that includes the arid Chihuahuan Desert. Our finding of L. mexicana in P. attwateri represents a new host record and is the first description of the parasite in a wild peromyscid rodent in the United States. PMID:27759765

  19. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  20. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  1. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  2. Factors affecting the prevalence of mange-mite infestations in stray dogs of Yucatán, Mexico.

    PubMed

    Rodriguez-Vivas, R I; Ortega-Pacheco, A; Rosado-Aguilar, J A; Bolio, G M E

    2003-07-10

    The aim of the present study was to determine the factors affecting the prevalence of mange-mite infestations in stray dogs of Yucatán, Mexico. The study was carried out in 200 stray dogs of Mérida capital city of Yucatán, Mexico. Four samples (head, thoracic-abdominal area, extremities and ear) were taken from each animal by skin scraping and examined microscopically in 10% KOH solution to detect the presence of mites. Mites were also collected from the external ear canal of dogs using cotton-tipped swabs. The prevalence of different mite species was calculated. A primary screening was performed using 2xK contingency tables of exposure variables. All variables with P< or =0.20 were analyzed by a logistic-binomial regression. The overall prevalence was 34%. Demodex canis (23.0%) was the most frequent mite, followed by Sarcoptes scabei var. canis (7.0%) and Otodectes cynotis (3.5%). The following factors were found: body condition (bad, OR: 5.35, CI 95%: 1.66-17.3; regular, OR: 3.72, CI 95%: 1.39-9.99) and the presence of macroscopic lesions of dermatosis (OR: 42.80, CI 95%: 13.65-134.24).

  3. A survey of ectoparasite infestations in stray dogs of Gwang-ju City, Republic of Korea.

    PubMed

    Chee, Jeong Hyun; Kwon, Jung Kee; Cho, Ho Seong; Cho, Kyoung Oh; Lee, Yu Jin; Abd El-Aty, A M; Abdel-Aty, A M; Shin, Sung Shik

    2008-03-01

    This study was designed to investigate the incidence of ectoparasite infestation among stray dogs in Gwang-ju City, Republic of Korea. A total of 103 stray dogs collected in the Animal Shelter of Gwang-ju City from November 2003 to August 2005 were investigated in this study. Ectoparasites of one or more genera were detected in 45.6% (47 / 103) of the dogs examined for dermatologic lesions and/or skin scrapings (from 3-5 affected areas). Otodectes cynotis was found to be the most frequent parasite (22.3%, 23 / 103), followed by Sarcoptes scabiei var canis (19.4%, 20 / 103), Ctenocephalides canis (6.8%, 7 / 103), Demodex canis (4.9%, 5 / 103), and Trichodectes canis (1.0%, 1 / 103). Monospecific infestation was found in 83.0% (39 / 47) of the affected dogs, whereas concurrent infestations with 2 or more ectoparasites per animal were found in 17.0% (8 / 47) of the affected dogs. Trichodectes canis is reported for the first time in the Republic of Korea. Dogs less than 1 yr old were more heavily infected than other age groups (66.7%), and small-sized dogs of less than 3 kg body weight were more heavily infected than larger dogs (41.7%).

  4. A Survey of Ectoparasite Infestations in Stray Dogs of Gwang-ju City, Republic of Korea

    PubMed Central

    Chee, Jeong-Hyun; Kwon, Jung-Kee; Cho, Ho-Seong; Cho, Kyoung-Oh; Lee, Yu-Jin; Abd El-Aty, A. M.

    2008-01-01

    This study was designed to investigate the incidence of ectoparasite infestation among stray dogs in Gwang-ju City, Republic of Korea. A total of 103 stray dogs collected in the Animal Shelter of Gwang-ju City from November 2003 to August 2005 were investigated in this study. Ectoparasites of one or more genera were detected in 45.6% (47 / 103) of the dogs examined for dermatologic lesions and/or skin scrapings (from 3-5 affected areas). Otodectes cynotis was found to be the most frequent parasite (22.%, 23 / 103), followed by Sarcoptes scabiei var canis (19.4%, 20 / 103), Ctenocephalides canis (6.8%, 7 / 103), Demodex canis (4.9%, 5 / 103), and Trichodectes canis (1.0%, 1 / 103). Monospecific infestation was found in 83.0% (39 / 47) of the affected dogs, whereas concurrent infestations with 2 or more ectoparasites per animal were found in 17.0% (8 / 47) of the affected dogs. Trichodectes canis is reported for the first time in the Republic of Korea. Dogs less than 1 yr old were more heavily infected than other age groups (66.7%), and small-sized dogs of less than 3 kg body weight were more heavily infected than larger dogs (41.7%). PMID:18344673

  5. Radiation effects in accelerator components

    NASA Astrophysics Data System (ADS)

    Borden, M. J.

    1995-05-01

    A review of basic radiation effects is presented. The fundamental definitions of radioactivity are given for alpha, beta, positron decay, gamma-ray emission and electron capture. The interaction of neutrons with material is covered including: absorption through radiative capture, neutron-proton interaction, alpha particle emission, neutron-multi-neutron reactions and fission. Basic equations defining inelastic and elastic scattering are presented with examples of neutron energy loss per collision for several elements. Photon interactions are considered for gamma-rays and x-rays. Photoelectric collisions, the Compton effect and pair production are reviewed. Electron-proton interactions are discussed with emphasis placed on defect production. Basic displacement damage mechanisms for photon and particle interaction are presented. Several examples of radiation effects to plastics, electronics and ceramics are presented. Extended references are given for each example.

  6. The history and future of accelerator radiological protection.

    PubMed

    Thomas, R H

    2001-01-01

    The development of accelerator radiological protection from the mid-1930s, just after the invention of the cyclotron, to the present day is described. Three major themes--physics, personalities and politics--are developed. In the sections describing physics the development of shielding design though measurement, radiation transport calculations, the impact of accelerators on the environment and dosimetry in accelerator radiation fields are described. The discussion is limited to high-energy, high-intensity electron and proton accelerators. The impact of notable personalities on the development of both the basic science and on the accelerator health physics profession itself is described. The important role played by scholars and teachers is discussed. In the final section. which discusses the future of accelerator radiological protection, some emphasis is given to the social and political aspects that must he faced in the years ahead.

  7. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating.

    PubMed

    Shen, X F; Qiao, B; Zhang, H; Kar, S; Zhou, C T; Chang, H X; Borghesi, M; He, X T

    2017-05-19

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20  nC) can be obtained at intensity 10^{22}  W/cm^{2}.

  8. Seroprevalence of Leishmania infection and molecular detection of Leishmania tropica and Leishmania infantum in stray cats of İzmir, Turkey.

    PubMed

    Can, Hüseyin; Döşkaya, Mert; Özdemir, H Gökhan; Şahar, Esra Atalay; Karakavuk, Muhammet; Pektaş, Bayram; Karakuş, Mehmet; Töz, Seray; Caner, Ayşe; Döşkaya, Aysu Değirmenci; İz, Sultan Gülce; Özbel, Yusuf; Gürüz, Yüksel

    2016-08-01

    Leishmaniasis caused by more than 20 species of genus Leishmania is transmitted by the bite of infected phlebotomine sand flies. The studies on Leishmania infection in cats is very few in Turkey and therefore we aimed to screen stray cats living in city of İzmir located in western Turkey using nested PCR targeting kinetoplast DNA and serological techniques (ELISA and IFA). Leishmania DNA positive samples were also studied by ITS1 real time PCR. Whole blood and serum samples were obtained from stray cats (n: 1101) living in different counties of İzmir. In serological assays, a serum sample was considered positive in 1:40 dilution in IFA and for ELISA a serum sample was accepted positive when the absorbance value (AV) exceeded the mean AV + Standard Deviation (SD) of the negative control serum samples. According to the results, the seropositivity rates were 10.8% (119/1101) and 15.2% (167/1101) by in house ELISA and IFA, respectively. Among serology coherent samples, the seropositivity rate was 11.1% (116/1047) as detected by both assays after discordant samples (n: 54) were discarded. Of the 1101 stray cats, six (0.54%) were positive by nested PCR while only one of these six samples was positive by ITS1 real time PCR. During PCR, three controls designated as Leishmania infantum, Leishmania tropica, and Leishmania major were used for species identification. According to nested PCR results, L. tropica was identified in two cats (no.76 and 95). In another cat (no. 269), there were two bands in which one of them was well-matched with L. infantum and the other band had ∼850 bp size which does not match with any controls. Remaining three cats (no. 86, 514, and 622) also had the ∼850 bp atypical band size. ITS1 real time PCR detected L. tropica in only one cat (no. 622) which showed an atypical band size in nested PCR. These results indicated that three cats with only one atypical band (no. 86, 514, and 622) and the cat with mixed infection (no. 269) were

  9. Accelerated hematopoietic recovery with angiotensin-(1-7) after total body radiation.

    PubMed

    Rodgers, Kathleen E; Espinoza, Theresa; Roda, Norma; Meeks, Christopher J; Hill, Colin; Louie, Stan G; Dizerega, Gere S

    2012-06-01

    Angiotensin (1-7) [A(1-7)] is a component of the renin angiotensin system (RAS) that stimulates hematopoietic recovery after myelosuppression. In a Phase I/IIa clinical trial, thrombocytopenia after chemotherapy was reduced by A(1-7). In this study, the ability of A(1-7) to improve recovery after total body irradiation (TBI) is shown with specific attention to radiation-induced hematopoietic injury. Mice were exposed to TBI (doses of 2-7 Gray [Gy]) of cesium 137 gamma rays, followed by treatment with A(1-7), typical doses were 100-1000 μg/kg given once or once daily for a specified number of days depending on the study. Animals are injected subcutaneously via the nape of the neck with 0.1 ml drug in saline. The recovery of blood and bone marrow cells was determined. Effects of TBI and A(1-7) on survival and bleeding time was also evaluated. Daily administration of A(1-7) after radiation exposure improved survival (from 60% to 92-97%) and reduced bleeding time at day 30 after TBI. Further, A(1-7) increased early mixed progenitors (3- to 5-fold), megakaryocyte (2- to 3-fold), myeloid (3- to 6-fold) and erythroid (2- to 5-fold) progenitors in the bone marrow and reduced radiation-induced thrombocytopenia (RIT) (up to 2-fold). Reduction in the number of treatments to 3 per week also improved bone marrow recovery and reduced RIT. As emergency responder and healthcare systems in case of nuclear accident or/and terrorist attack may be overwhelmed, the consequence of delayed initiation of treatment was ascertained. Treatment with A(1-7) can be delayed up to 5 days and still be effective in the reduction of RIT or acceleration of bone marrow recovery. The data presented in this paper indicate that A(1-7) reduces the consequences of critical radiation exposure and can be initiated well after initial exposure with maximal effects on early responding hematopoietic progenitors when treatment is initiated 2 days after exposure and 5 days after exposure for the later responding

  10. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  11. Radiative acceleration in Schwarzschild space-times

    NASA Astrophysics Data System (ADS)

    Keane, A. J.; Barrett, R. K.; Simmons, J. F. L.

    2001-03-01

    We examine the radial motion of a material particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. This paper generalizes previous work which dealt with radial motion in the Thomson limit, where the radiation force is simply proportional to the radiative flux. In the general case the average time component of the 4-momentum transferred to the particle is not negligible compared with its rest mass. Consequently, we find that the frequency dependence of the radiation force owing to Compton scattering for highly energetic photons gives rise to an increase in the effective mass of the test particle. In this work we outline the effects of this frequency dependence and compare these with the results in the Thomson limit. We present the frequency dependent saturation velocity curves for a range of stellar luminosities and radiation frequencies and present the resulting phase-space diagrams corresponding to the radial test particle trajectories. In particular, the stable equilibrium points which exist in the Thomson limit are found to be absent in the general case.

  12. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  13. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.

    2016-02-15

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up tomore » 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.« less

  15. User's manual for University of Arizona APART program (Analysis Program - Arizona Radiation Trace)

    NASA Technical Reports Server (NTRS)

    Breault, R. P.

    1975-01-01

    A description and operating instructions for the Analysis Program Arizona Radiation Trace (APART) are given. This is a computer program that is able to efficiently and accurately predict the off-axis rejection characteristics of unwanted stray radiation for complex rotationally symmetric optical systems. The program first determines the critical objects or areas that scatter radiation to the image plane either directly or through imaging elements: this provides the opportunity to modify, if necessary, the design so that the number of critical areas seen by the image plane is reduced or the radiation to these critical areas is minimized. Next, the power distribution reaching the image plane and a sectional power map of all internal surfaces are computed. Angular information is also provided that relates the angle by which the radiation came into a surface to the angle by which the radiation is scattered out of the surface.

  16. Emulating RRTMG Radiation with Deep Neural Networks for the Accelerated Model for Climate and Energy

    NASA Astrophysics Data System (ADS)

    Pal, A.; Norman, M. R.

    2017-12-01

    The RRTMG radiation scheme in the Accelerated Model for Climate and Energy Multi-scale Model Framework (ACME-MMF), is a bottleneck and consumes approximately 50% of the computational time. To simulate a case using RRTMG radiation scheme in ACME-MMF with high throughput and high resolution will therefore require a speed-up of this calculation while retaining physical fidelity. In this study, RRTMG radiation is emulated with Deep Neural Networks (DNNs). The first step towards this goal is to run a case with ACME-MMF and generate input data sets for the DNNs. A principal component analysis of these input data sets are carried out. Artificial data sets are created using the previous data sets to cover a wider space. These artificial data sets are used in a standalone RRTMG radiation scheme to generate outputs in a cost effective manner. These input-output pairs are used to train multiple architectures DNNs(1). Another DNN(2) is trained using the inputs to predict the error. A reverse emulation is trained to map the output to input. An error controlled code is developed with the two DNNs (1 and 2) and will determine when/if the original parameterization needs to be used.

  17. Fundamentals of Radiation Physics

    DTIC Science & Technology

    2008-07-01

    Sources of Ionizing Radiation Electrically generated • Charged particle accelerators • Van de Graaff generator , cyclotron linear accelerator ...Presented at the Armed Forces Radiobiology Research Institute Scientific Medical Effects of Ionizing Radiation Course July 28 through August 1, 2008...conducted once a year, focuses on the latest research about the medical effects of ionizing radiation to help clinicians, health physicists, and

  18. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  19. Radiation skyshine from a 6 MeV medical accelerator

    PubMed Central

    McGinley, Patton H.; Rising, Mary B.; Pahikkala, A. Jussi

    2010-01-01

    This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs. PACS numbers: 87.52.‐g, 87.52.Df, 87.52.Tr, 87.53.‐j, 87.53.Bn, 87.53.Dq, 87.66.‐a, 89., 89.60.+x

  20. SU-E-T-598: Parametric Equation for Quick and Reliable Estimate of Stray Neutron Doses in Proton Therapy and Application for Intracranial Tumor Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfrate, A; Farah, J; Sayah, R

    2015-06-15

    Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volumemore » was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.« less

  1. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  2. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  4. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  5. Phase locked multiple rings in the radiation pressure ion acceleration process

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2018-04-01

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.

  6. Rapid acceleration of outer radiation belt electrons associated with solar wind pressure pulse: Simulation study with Arase and Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Yoshizumi, M.; Saito, S.; Matsumoto, Y.; Kurita, S.; Teramoto, M.; Hori, T.; Matsuda, S.; Shoji, M.; Machida, S.; Amano, T.; Seki, K.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Ishisaka, K.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.

    2017-12-01

    Relativistic electron fluxes of the outer radiation belt rapidly change in response to solar wind variations. One of the shortest acceleration processes of electrons in the outer radiation belt is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause caused by interplanetary shocks. In order to investigate this process by a solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, an interplanetary pressure pulse with the enhancement of 5 nPa is used as the up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative 𝐸𝜙 : |𝐸&;#120601;| 10 mV/m, azimuthal mode number : m ≤ 2) propagates from the dayside to nightside, interacting with electrons. From the simulation results, we derived effective acceleration model and condition : The electrons whose drift velocities vd ≥ (π/2)Vfast are accelerated efficiently. On December 20, 2016, the Arase (ERG) satellite was launched , allowing more accurate multi-point simultaneous observation with other satellites. We will compare our simulation results with observations from Arase and Van Allen Probes, and investigate the acceleration condition of relativistic electrons associated with storm sudden commencement (SSC).

  7. Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Yagil, A.; Almoalem, A.; Soumyanarayanan, Anjan; Tan, Anthony K. C.; Raju, M.; Panagopoulos, C.; Auslaender, O. M.

    2018-05-01

    Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Néel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portend broad applicability in the burgeoning field of topological spin textures.

  8. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  9. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  10. Molecular and serological surveillance of canine enteric viruses in stray dogs from Vila do Maio, Cape Verde

    PubMed Central

    2014-01-01

    Background Infections caused by canine parvovirus, canine distemper virus and canine coronavirus are an important cause of mortality and morbidity in dogs worldwide. Prior to this study, no information was available concerning the incidence and prevalence of these viruses in Cape Verde archipelago. Results To provide information regarding the health status of the canine population in Vila do Maio, Maio Island, Cape Verde, 53 rectal swabs were collected from 53 stray dogs during 2010 and 93 rectal swabs and 88 blood samples were collected from 125 stray dogs in 2011. All rectal swabs (2010 n = 53; 2011 n = 93) were analysed for the presence of canine parvovirus, canine distemper virus and canine coronavirus nucleic acids by quantitative PCR methods. Specific antibodies against canine distemper virus and canine parvovirus were also assessed (2011 n = 88). From the 2010 sampling, 43.3% (23/53) were positive for canine parvovirus DNA, 11.3% (6/53) for canine distemper virus RNA and 1.9% (1/53) for canine coronavirus RNA. In 2011, the prevalence values for canine parvovirus and canine coronavirus were quite similar to those from the previous year, respectively 44.1% (41/93), and 1.1% (1/93), but canine distemper virus was not detected in any of the samples analysed (0%, 0/93). Antibodies against canine parvovirus were detected in 71.6% (63/88) blood samples and the seroprevalence found for canine distemper virus was 51.1% (45/88). Conclusions This study discloses the data obtained in a molecular and serological epidemiological surveillance carried out in urban populations of stray and domestic animals. Virus transmission and spreading occurs easily in large dog populations leading to high mortality rates particularly in unvaccinated susceptible animals. In addition, these animals can act as disease reservoirs for wild animal populations by occasional contact. Identification of susceptible wildlife of Maio Island is of upmost importance to evaluate the risk

  11. Molecular and serological surveillance of canine enteric viruses in stray dogs from Vila do Maio, Cape Verde.

    PubMed

    Castanheira, Pedro; Duarte, Ana; Gil, Solange; Cartaxeiro, Clara; Malta, Manuel; Vieira, Sara; Tavares, Luis

    2014-04-23

    Infections caused by canine parvovirus, canine distemper virus and canine coronavirus are an important cause of mortality and morbidity in dogs worldwide. Prior to this study, no information was available concerning the incidence and prevalence of these viruses in Cape Verde archipelago. To provide information regarding the health status of the canine population in Vila do Maio, Maio Island, Cape Verde, 53 rectal swabs were collected from 53 stray dogs during 2010 and 93 rectal swabs and 88 blood samples were collected from 125 stray dogs in 2011. All rectal swabs (2010 n = 53; 2011 n = 93) were analysed for the presence of canine parvovirus, canine distemper virus and canine coronavirus nucleic acids by quantitative PCR methods. Specific antibodies against canine distemper virus and canine parvovirus were also assessed (2011 n = 88).From the 2010 sampling, 43.3% (23/53) were positive for canine parvovirus DNA, 11.3% (6/53) for canine distemper virus RNA and 1.9% (1/53) for canine coronavirus RNA. In 2011, the prevalence values for canine parvovirus and canine coronavirus were quite similar to those from the previous year, respectively 44.1% (41/93), and 1.1% (1/93), but canine distemper virus was not detected in any of the samples analysed (0%, 0/93). Antibodies against canine parvovirus were detected in 71.6% (63/88) blood samples and the seroprevalence found for canine distemper virus was 51.1% (45/88). This study discloses the data obtained in a molecular and serological epidemiological surveillance carried out in urban populations of stray and domestic animals. Virus transmission and spreading occurs easily in large dog populations leading to high mortality rates particularly in unvaccinated susceptible animals. In addition, these animals can act as disease reservoirs for wild animal populations by occasional contact. Identification of susceptible wildlife of Maio Island is of upmost importance to evaluate the risk of pathogen spill over from

  12. SU-E-T-361: Energy Dependent Radiation/light-Field Misalignment On Truebeam Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, N; Tanny, S; Parsai, E

    2015-06-15

    Purpose: Verifying the co-incidence of the radiation and light field is recommended by TG-142 for monthly and annual checks. On a digital accelerator, it is simple to verify that beam steering settings are consistent with accepted and commissioned values. This fact should allow for physicists to verify radiation-light-field co-incidence for a single energy and accept that Result for all energies. We present a case where the radiation isocenter deviated for a single energy without any apparent modification to the beam steering parameters. Methods: The radiation isocenter was determined using multiple Methods: Gafchromic film, a BB test, and radiation profiles measuredmore » with a diode. Light-field borders were marked on Gafchromic film and then irradiated for all photon energies. Images of acceptance films were compared with films taken four months later. A phantom with a radio-opaque BB was aligned to isocenter using the light-field and imaged using the EPID for all photon energies. An unshielded diode was aligned using the crosshairs and then beam profiles of multiple field sizes were obtained. Field centers were determined using Omni-Pro v7.4 software, and compared to similar scans taken during commissioning. Beam steering parameter files were checked against backups to determine that the steering parameters were unchanged. Results: There were no differences between the configuration files from acceptance. All three tests demonstrated that a single energy had deviated from accepted values by 0.8 mm in the inline direction. The other two energies remained consistent with previous measurements. The deviated energy was re-steered to be within our clinical tolerance. Conclusions: Our study demonstrates that radiation-light-field coincidence is an energy dependent effect for modern linacs. We recommend that radiation-light-field coincidence be verified for all energies on a monthly basis, particularly for modes used to treat small fields, as these may drift

  13. Characterization of in Band Stray Light in SBUV-2 Instruments

    NASA Technical Reports Server (NTRS)

    Huang, L. K.; DeLand, M. T.; Taylor, S. L.; Flynn, L. E.

    2014-01-01

    Significant in-band stray light (IBSL) error at solar zenith angle (SZA) values larger than 77deg near sunset in 4 SBUV/2 (Solar Backscattered Ultraviolet) instruments, on board the NOAA-14, 17, 18 and 19 satellites, has been characterized. The IBSL error is caused by large surface reflection and scattering of the air-gapped depolarizer in front of the instrument's monochromator aperture. The source of the IBSL error is direct solar illumination of instrument components near the aperture rather than from earth shine. The IBSL contamination at 273 nm can reach 40% of earth radiance near sunset, which results in as much as a 50% error in the retrieved ozone from the upper stratosphere. We have analyzed SBUV/2 albedo measurements on both the dayside and nightside to develop an empirical model for the IBSL error. This error has been corrected in the V8.6 SBUV/2 ozone retrieval.

  14. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses

    DOE PAGES

    Albert, F.; Lemos, N.; Shaw, J. L.; ...

    2017-03-31

    We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ~ 5 × 1 0 18 W / cm 2 are focused into plasmas with electron densities of ~ 1 × 1 0 19 cm - 3 , they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10–20 keV, and 2D particle-in-cell simulations were used to modelmore » the acceleration and radiation of the electrons in our experimental conditions« less

  15. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  16. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  17. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  18. Neutron dose per fluence and weighting factors for use at high energy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations.more » A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.« less

  19. Radiation pressure injection in laser-wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Kuramitsu, Y.; Isayama, S.; Chen, S. H.

    2018-01-01

    We investigated the injection of electrons in laser-wakefield acceleration induced by a self-modulated laser pulse by a two dimensional particle-in-cell simulation. The localized electric fields and magnetic fields are excited by the counter-streaming flows on the surface of the ion bubble, owing to the Weibel or two stream like instability. The electrons are injected into the ion bubble from the sides of it and then accelerated by the wakefield. Contrary to the conventional wave breaking model, the injection of monoenergetic electrons are mainly caused by the electromagnetic process. A simple model was proposed to address the instability, and the growth rate was verified numerically and theoretically.

  20. [Linear accelerator-based stereotactic radiation treatment of patients with medial middle fossa meningiomas].

    PubMed

    Golanov, A V; Cherekaev, V A; Serova, N K; Pronin, I N; Gorlachev, G E; Kotel'nikova, T M; Podoprigora, A E; Kudriavtseva, P A; Galkin, M V

    2010-01-01

    Medial middle fossa meningiomas are challenging for neurosurgical treatment. Invasion of cranial nerves and vessels leads to high risk of complications after removal of such meningiomas. Currently methods of conformal stereotactic radiation treatment are applied wider and wider for the discussed lesions. During a 3.5-year period 80 patients with medial middle fossa meningiomas were treated in Burdenko Moscow Neurosurgical Institute using linear accelerator "Novalis". In 31 case radiation treatment was preceded by surgical resection. In majority of patients symptoms included cranial nerve dysfunction: oculomotor disturbances in 62.5%, trigeminal impairment--in 37.5%, visual deficit--in 43.8%, facial nerve palsy--in 1.25%. 74 patients underwent radiotherapy with classical fractioning, 2--in hypofractionated mode and 4 received radiosurgery. In cases of classical fractioning mean marginal dose reached 46.3 Gy during 28-33 fractions, in hypofractioning (7 fractions)--31.5 Gy, in radiosurgery--16.25 Gy. Mean follow-up period was 18.4 months (6-42 months). Control of tumor growth was achieved in 97.5% of cases (78 patients): in 42 (52.5%) lesion shrinked, in 36 (45%) stabilization was observed. Clinical examination revealed improvement of visual function in 15 patients (18%) and deterioration in 2 (2.5%). No new neuropathies were found. Stereotactic radiation treatment is the method of choice for medial anterior and middle fossa meningiomas due to effective control of tumor progression and minimal rate of complications.

  1. An accelerator-based neutron microbeam system for studies of radiation effects

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2011-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min−1. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy. PMID:21131327

  2. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  3. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  4. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  5. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE PAGES

    Wan, Y.; Hua, J. F.; Pai, C. -H.; ...

    2018-03-05

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  6. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y.; Hua, J. F.; Pai, C. -H.

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  7. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor.

    PubMed

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Suppression of sun interference in the star sensor baffling stray light by total internal reflection

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Shimoji, Haruhiko; Yoshikawa, Shoji; Miyatake, Katsumasa; Hama, Kazumori; Nakamura, Shuji

    2005-09-01

    We have developed a star sensor as an experimental device onboard the SERVIS-1 satellite launched in October 2003. The in-orbit data have verified its fundamental performance. One of the advantages of our star sensor is that the baffle has a small length of 120 mm instead of 182 mm in the conventional two-stage baffle design. The key concepts for light shielding are total internal reflection phenomena inside a nearly half sphere (NHS) lens and scattering light control by gloss black paint. However, undesirable background noise by the sun outside of the field of view (FOV) was observed in the corner of the FOV in the orbital experiment. Ray trace simulations revealed that slight scattering light on the specular baffle wall entered the NHS lens and reached the corner of the image sensor through the multi-reflection path inside the lens. It was found that the stray light path can be shielded effectively if the diameter of the aperture under the NHS lens was reduced. We redesigned the baffle and evaluated the light shielding ability with our sun interference test facility on the ground, and confirmed that the stray light was reduced below the acceptable level. As a result, the light shielding technique which we have proposed was proved to be effective for a small-size baffle. The redesigned star sensor is planned to be installed as a main attitude sensor for the SERVIS-2 satellite scheduled to be launched in February 2008.

  9. EDITORIAL: Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009 Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009

    NASA Astrophysics Data System (ADS)

    Bingham, Bob; Muggli, Patric

    2011-01-01

    The Laser and Plasma Accelerators Workshop 2009 was part of a very successful series of international workshops which were conceived at the 1985 Laser Acceleration of Particles Workshop in Malibu, California. Since its inception, the workshop has been held in Asia and in Europe (Kardamyli, Kyoto, Presqu'ile de Giens, Portovenere, Taipei and the Azores). The purpose of the workshops is to bring together the most recent results in laser wakefield acceleration, plasma wakefield acceleration, laser-driven ion acceleration, and radiation generation produced by plasma-based accelerator beams. The 2009 workshop was held on 22-26 June in Kardamyli, Greece, and brought together over 80 participants. (http://cfp.ist.utl.pt/lpaw09/). The workshop involved five main themes: • Laser plasma electron acceleration (experiment/theory/simulation) • Computational methods • Plasma wakefield acceleration (experiment/theory/simulation) • Laser-driven ion accelerationRadiation generation and application. All of these themes are covered in this special issue of Plasma Physics and Controlled Fusion. The topic and application of plasma accelerators is one of the success stories in plasma physics, with laser wakefield acceleration of mono-energetic electrons to GeV energies, of ions to hundreds of MeV, and electron-beam-driven wakefield acceleration to 85 GeV. The accelerating electric field in the wake is of the order 1 GeV cm-1, or an accelerating gradient 1000 times greater than in conventional accelerators, possibly leading to an accelerator 1000 times smaller (and much more affordable) for the same energy. At the same time, the electron beams generated by laser wakefield accelerators have very good emittance with a correspondingly good energy spread of about a few percent. They also have the unique feature in being ultra-short in the femtosecond scale. This makes them attractive for a variety of applications, ranging from material science to ultra-fast time

  10. Spatio-temporal radiation biology with conventionally or laser-accelerated particles for ELIMED

    NASA Astrophysics Data System (ADS)

    Ristić-Fira, A.; Bulat, T.; Keta, O.; Romano, F.; Cirrone, P.; Cuttone, G.; Petrović, I.

    2013-07-01

    The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumor cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (γ-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (γ-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of γ-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between γ-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the data base that might promote pulsed sources for medical treatments of malignant growths.

  11. Prevalence of Echinococcus granulosus taeniasis in stray dogs in the region of Constantine (North-East Algeria).

    PubMed

    Kohil, K; Benchikh El Fegoun, M C; Gharbi, M

    2017-10-01

    In North Africa, the domestic dog is regarded as the main reservoir for infection by Echinococcus granulosus of domestic livestock and man. In Algeria, there is very little data on the rate of infestation of dogs, while the prevalence of E. granulosus in the definitive host is a very reliable marker of the potential risk of transmission of cystic tapeworm to humans and livestock. To find out this information, a survey was conducted to assess the prevalence of infection with E. granulosus in stray dogs in the region of Constantine (North-East Algeria). We autopsied and examined 120 stray dogs, 22 (18.3%) of which were infected with E. granulosus, with an average intensity of infestation of 249 worms. The prevalence in the area of survey was evaluated: 15.5% (14/90) and 26.6% (8/30) dogs were parasitized by E. granulosus in urban and rural areas respectively. The influence of age on the rate of infection was very marked. In addition, the appreciation of the prevalence of parasitism by cestodes as a whole showed that 56 (46.6%) animals out of 120 were infected. Facing such a situation of endemic tapeworm parasitism, with a potential risk of transmission to humans, there is an urgent need to take measures to control and break the epidemiological cycles of the parasite.

  12. Note: Wide band amplifier for quartz tuning fork sensors with digitally controlled stray capacitance compensation.

    PubMed

    Peng, Ping; Hao, Lifeng; Ding, Ning; Jiao, Weicheng; Wang, Qi; Zhang, Jian; Wang, Rongguo

    2015-11-01

    We presented a preamplifier design for quartz tuning fork (QTF) sensors in which the stray capacitance is digitally compensated. In this design, the manually controlled variable capacitor is replaced by a pair of varicap diodes, whose capacitance could be accurately tuned by a bias voltage. A tuning circuit including a single side low power operational amplifier, a digital-to-analog converter, and a microprocessor is also described, and the tuning process can be conveniently carried out on a personal computer. For the design, the noise level was investigated experimentally.

  13. Accelerated radiation damping for increased spin equilibrium (ARISE): a new method for controlling the recovery of longitudinal magnetization.

    PubMed

    Huang, Susie Y; Witzel, Thomas; Wald, Lawrence L

    2008-11-01

    Control of the longitudinal magnetization in fast gradient-echo (GRE) sequences is an important factor in enabling the high efficiency of balanced steady-state free precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The accelerated radiation damping for increased spin equilibrium (ARISE) method uses an external feedback circuit to strengthen the radiation damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T(1) relaxation. The method is characterized in GRE phantom imaging at 3T as a function of feedback gain, phase, and duration, and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10 ms) during a refocused interval of a crushed GRE sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T(2) relaxation had time to occur. An appropriate application might be to improve navigated sequences. Unlike conventional flip-back schemes, the ARISE "flip-back" is generated by the spins themselves, thereby offering a potentially useful building block for enhancing GRE sequences.

  14. J-Black: a stray light coating for optical and infrared systems

    NASA Astrophysics Data System (ADS)

    Waddell, Patrick; Black, David S.

    2016-07-01

    A new stray light coating, called J-Black, has been developed for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). The coating is a layered composition of Nextel-Suede 3101 primers and top coats and silicon carbide grit. J-Black has been applied to large areas of the SOFIA airborne telescope and is currently operating within the open cavity environment of the Boeing 747. Over a series of discrete filter bands, from 0.4 to 21 microns, J-Black optical and infrared reflectivity performance is compared with other available coatings. Measured total reflectance values are less than 2% at the longest wavelengths, including at high incidence angles. Detailed surface structure characteristics are also compared via electron and ion microscopy. Environmental tests applicable for aerospace applications are presented, as well as the detailed steps required to apply the coating.

  15. Current status of L. infantum infection in stray cats in the Madrid region (Spain): implications for the recent outbreak of human leishmaniosis?

    PubMed

    Miró, Guadalupe; Rupérez, Cristina; Checa, Rocío; Gálvez, Rosa; Hernández, Leticia; García, Manuel; Canorea, Isabel; Marino, Valentina; Montoya, Ana

    2014-03-24

    Since 2009, the incidence of human leishmaniosis in the SW of the Madrid region has been unusually high. Although dogs are the main reservoir for this disease, a role played by dogs in this outbreak has been ruled out and investigators are now considering other hosts (eg. cats, rabbits, hares) as possible alternative reservoirs.This study was designed to examine the Leishmania infantum status of stray cats in Madrid to assess its possible implications in the human leishmaniosis outbreak. 346 captured stray cats were tested for antibodies against L. infantum by the indirect fluorescent antibody technique (IFAT) and nested-PCR methods were used to detect Leishmania DNA in blood samples of cats testing seropositive for L. infantum and/or retroviruses infection. Cats were also tested for Toxoplasma gondii using the direct agglutination test (DAT) and feline leukemia virus (FeLV) antigen and feline immunodeficiency virus (FIV) antibodies (PetChek* FIV/FeLV). The presence of intestinal parasites was determined using a routine coprological method. The seroprevalence of L. infantum infection (cut off ≥ 1/100) was 3.2% (11/346). However, it was not possible to amplify Leishmania DNA in any of the blood samples. Seropositivity was not associated with sex, age, capture site, clinical status, retrovirus infection or T. gondii seropositivity. Of the 11 cats seropositive for L. infantum, 3 also tested positive for FIV, none for FeLV and 6 for T. gondii. It should be mentioned that the prevalence of FeLV p27 antigen was 4% and of FIV antibody was 9.2%. Although the seroprevalence of T. gondii was quite high at 53.5%, no T. gondii oocysts were found in any of the faeces samples analysed (n = 287). In contrast, intestinal parasites were detected in 76 (26.5%) samples, Toxocara cati being the most prevalent. Our results suggest a stable L. infantum infection situation among the stray cats of the Madrid area; the disease is uncommon and no clinical cases have been reported to date

  16. Accelerated Solar-UV Test Chamber

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  17. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites.

    PubMed

    Szwabe, Katarzyna; Blaszkowska, Joanna

    2017-03-22

    The main source of many zoonoses is soil contaminated with feline and canine faeces. Thus, the aim of this study was to estimate the prevalence of intestinal parasites in stray dogs and cats adopted in Lodz shelter (Poland). In total, 163 faecal samples were collected from 95 dogs and 68 cats from 2011 to 2012. The samples were processed by sedimentation techniques using Mini Parasep®SF. Six parasite genera belonging to protozoa, cestoda, and nematoda, were found in dogs, while eight were found in cats. Out of the 163 fecal samples, 37.4% were positive for the presence at least one species of intestinal parasites. The majority of positive dog samples contained eggs from Toxocara and Trichuris genera, and the family Ancylostomatidae, while Toxocara and Taenia eggs, as well as Cystoisospora oocysts, predominated in cat faeces. A significantly higher prevalence of parasites was noted in cats (48.5%) than in dogs (29.5%) (χ2=6.15, P=0.013). The Toxocara genus was the most prevalent parasite in both populations; eggs were found in 27.9% and 16.8% of cats and dogs, respectively. Animals younger than 12 months of age showed higher infection rates with Toxocara, but differences were not statistically significant. The average numbers of Toxocara eggs/gram of faeces in positive puppy and kitten samples were over 5 and 7 times higher than in older dogs and cats, respectively. Mixed infection were found in dogs (5.3%) and cats (8.8%). Cat faeces represent a more important potential source of environmental contamination with zoonotic parasites than dog faeces. Among the detected parasites of stray dogs and cats, Toxocara present an important zoonotic risk for the local human population, especially children.

  18. Initial Human Response to Nuclear Radiation

    DTIC Science & Technology

    1982-04-01

    radiation from a linear accelerator . Victim A , age 31, received a dose of 100 rads; victim B, age 29... The radiation has always been in the million-electron- volt range, usually from a cobalt 60 source but sometimes using linear accelerators prouucing up...more recent medical experience, Appendix B presents comments by a radiation oncologist on the

  19. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  20. Prevalence and Potential Risk Factors for Bartonella Infection in Tunisian Stray Dogs.

    PubMed

    Belkhiria, Jaber; Chomel, Bruno B; Ben Hamida, Taoufik; Kasten, Rickie W; Stuckey, Matthew J; Fleischman, Drew A; Christopher, Mary M; Boulouis, Henri-Jean; Farver, Thomas B

    2017-06-01

    Bartonellae are blood-borne and vector-transmitted pathogens, some are zoonotic, which have been reported in several Mediterranean countries. Transmission from dogs to humans is suspected, but has not been clearly demonstrated. Our objectives were to determine the seroprevalence of Bartonella henselae, Bartonella vinsonii subsp. berkhoffii, Bartonella clarridgeiae, and Bartonella bovis (as a proxy for Candidatus Bartonella merieuxii) in stray dogs from Tunisia, identify the Bartonella species infecting the dogs and evaluate potential risk factors for canine infection. Blood samples were collected between January and November 2013 from 149 dogs in 10 Tunisian governorates covering several climatic zones. Dog-specific and geographic variables were analyzed as potential risk factors for Bartonella spp. seropositivity and PCR-positivity. DNA was extracted from the blood of all dogs and tested by PCR for Bartonella, targeting the ftsZ and rpoB genes. Partial sequencing was performed on PCR-positive dogs. Twenty-nine dogs (19.5%, 95% confidence interval: 14-27.4) were seropositive for one or more Bartonella species, including 17 (11.4%) for B. vinsonii subsp. berkhoffii, 14 (9.4%) for B. henselae, 13 (8.4%) for B. clarridgeiae, and 7 (4.7%) for B. bovis. Statistical analysis revealed a few potential risk factors, mainly dog's age and breed, latitude and average winter temperature. Twenty-two (14.8%) dogs, including 8 of the 29 seropositive dogs, were PCR-positive for Bartonella based on the ftsZ gene, with 18 (81.8%) of these 22 dogs also positive for the rpoB gene. Partial sequencing showed that all PCR-positive dogs were infected with Candidatus B. merieuxii. Dogs from arid regions and regions with cold average winter temperatures were less likely to be PCR-positive than dogs from other climatic zones. The widespread presence of Bartonella spp. infection in Tunisian dogs suggests a role for stray dogs as potential reservoirs of Bartonella species in Tunisia.

  1. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  2. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  3. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Li, Guolin

    2017-11-01

    Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA), which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T) of the transient current of the gas main switch and the dominant frequency (F) of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  4. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  5. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  6. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  7. Radiobiological research at JINR's accelerators

    NASA Astrophysics Data System (ADS)

    Krasavin, E. A.

    2016-04-01

    The half-a-century development of radiobiological studies at the Joint Institute for Nuclear Research (JINR) is reviewed on a stage-by-stage basis. With the use of the institute's accelerators, some key aspects of radiation biology have been settled, including the relative biological effectiveness (RBE) of various types of ionizing radiation with different physical characteristics; radiation-induced mutagenesis mechanisms, and the formation and repair of genetic structure damage. Practical space radiobiology problems that can be solved using high-energy charged particles are discussed.

  8. Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures.

    PubMed

    Marinetto, Eugenio; Victores, Juan González; García-Sevilla, Mónica; Muñoz, Mercedes; Calvo, Felipe Ángel; Balaguer, Carlos; Desco, Manuel; Pascau, Javier

    2017-10-01

    Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. The system could be used to guide docking with any commercial linear accelerator. We believe that the

  9. Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production.

    PubMed

    Atiba, Ayman; Nishimura, Mayumi; Kakinuma, Shizuko; Hiraoka, Takeshi; Goryo, Masanobu; Shimada, Yoshiya; Ueno, Hiroshi; Uzuka, Yuji

    2011-06-01

    Delayed wound healing is a significant clinical problem in patients who have had previous irradiation. This study investigated the effectiveness of Aloe vera (Av) on acute radiation-delayed wound healing. The effect of Av was studied in radiation-exposed rats compared with radiation-only and control rats. Skin wounds were excised on the back of rats after 3 days of local radiation. Wound size was measured on days 0, 3, 6, 9, and 12 after wounding. Wound tissues were examined histologically and the expressions of transforming growth factor β-1 (TGF-β-1) and basic fibroblast growth factor (bFGF) were examined by immunohistochemistry and reverse-transcription polymerase chain reaction. Wound contraction was accelerated significantly by Av on days 6 and 12 after wounding. Furthermore, the inflammatory cell infiltration, fibroblast proliferation, collagen deposition, angiogenesis, and the expression levels of TGF-β-1 and bFGF were significantly higher in the radiation plus Av group compared with the radiation-only group. These data showed the potential application of Av to improve the acute radiation-delayed wound healing by increasing TGF-β-1 and bFGF production. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, F; Tosh, R

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less

  11. Blazars: The accelerating inner jet model.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Marscher, A. P.

    1996-05-01

    The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.

  12. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  13. Ferroelectric ceramics in a pyroelectric accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua; Belgorod State University, Belgorod 308015; Miroshnik, V. S.

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  14. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  15. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Low, D; Mutic, S

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research

  16. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  17. Stray light rejection in giant externally-occulted solar coronagraphs: experimental developments

    NASA Astrophysics Data System (ADS)

    Venet, M.; Bazin, C.; Koutchmy, S.; Lamy, P.

    2017-11-01

    The advent of giant, formation-flight, externally-occulted solar coronagraphs such as ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire [1,2,3,4]) selected by the European Space Agency (ESA) for its third PROBA (Project for On-Board Autonomy) mission of formation flying demonstration (presently in phase B) and Hi-RISE proposed in the framework of ESA Cosmic Vision program, presents formidable challenges for the study and calibration of instrumental stray light. With distances between the external occulter (EO) and the optical pupil (OP) exceeding hundred meters and occulter sizes larger than a meter, it becomes impossible to perform tests at the real scale. The requirement to limit the over-occultation to less than 1.05 Rsun, orders of magnitude to what has been achieved so far in past coronagraphs, further adds to the challenge. We are approaching the problem experimentally using reduced scale simulators and present below a progress report of our work.

  18. HMI Data Corrected for Stray Light Now Available

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Duvall, T. L.; Schou, J.; Cheung, M. C. M.; Scherrer, P. H.

    2016-10-01

    The form of the point spread function (PSF) derived for HMI is an Airy function convolved with a Lorentzian. The parameters are bound by observational ground-based testing of the instrument conducted prior to launch (Wachter et al., 2012), by full-disk data used to evaluate the off-limb behavior of the scattered light, as well as by data obtained during the Venus transit. The PSF correction has been programmed in both C and cuda C and runs within the JSOC environment using either a CPU or GPU. A single full-disk intensity image can be deconvolved in less than one second. The PSF is described in more detail in Couvidat et al. (2016) and has already been used by Hathaway et al. (2015) to forward-model solar-convection spectra, by Krucker et al. (2015) to investigate footpoints of off-limb solar flares and by Whitney, Criscuoli and Norton (2016) to examine the relations between intensity contrast and magnetic field strengths. In this presentation, we highlight the changes to umbral darkness, granulation contrast and plage field strengths that result from stray light correction. A twenty-four hour period of scattered-light corrected HMI data from 2010.08.03, including the isolated sunspot NOAA 11092, is currently available for anyone. Requests for additional time periods of interest are welcome and will be processed by the HMI team.

  19. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  20. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  1. Relativistically strong electromagnetic radiation in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less

  2. Proceedings of the First International Symposium on the Biological Interpretation of Dose from Accelerator-Produced Radiation, Held at the Lawrence Radiation Laboratory, Berkeley, California, March 13--16, 1967

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, R.

    1967-03-13

    The objective of the meeting was to provide a companion meeting to the ''First Symposium on Accelerator Radiation Dosimetry and Experience'' which was held November 3-5, 1965, at the Brookhaven National Laboratory. This first symposium was limited in scope to an intensified discussion of dosimetry techniques. The biology which is associated with high energy radiation was specifically excluded, since it was the original plan to hold a second symposium devoted entirely to biology. Thus the present Symposium was a sequel to the first and they were inseparable in their objectives. Since those attending the BNL Symposium were almost entirely healthmore » physicists with a background in physical science and actively engaged in the solution of radiation protection problems at high energy accelerators, it was felt that it would be necessary to begin the BID Symposium with a general review session on radiation biology, in order to provide a biological background for the proper understanding of the later sessions. This first session was arranged to give the health physicist a meaningful transition from fundamental radiobiological considerations to current new research activities in high energy biology. In our opinion, and also based on the comments of several of those attending these objectives were quite well attained. The talks by Bond, Robertson, Brustad, Wolff, and Patt were quite exhaustive as an introduction to the several areas of specialization in radiobiology. The overall purpose of the meeting was of course to inform the health physicists about the state of knowledge in advanced biological research as it might apply to their problems. It has often been said that it takes a long time for laboratory findings to be applied in practical situations, but this is certainly not true in radiobiology. Through this conference and others like it, the most recent understanding of high energy radiobiology is available to the practicing health physicist and is probably used

  3. Prevalence of zoonotic intestinal parasites in domestic and stray dogs in a rural area of Iran.

    PubMed

    Beiromvand, Molouk; Akhlaghi, Lame; Fattahi Massom, Seyed Hossein; Meamar, Ahmad Reza; Motevalian, Abbas; Oormazdi, Hormozd; Razmjou, Elham

    2013-04-01

    Certain zoonotic parasites are enteropathogens in dogs that cause serious human disease such as cystic echinococcosis, human alveolar echinococcosis, visceral larva migrans, and ocular larva migrans. This study investigated the prevalence of intestinal parasites in dogs in the Chenaran County, Razavi Khorasan Province, Iran. Sampling was carried out randomly in 17 villages from November 2009 to January 2010. Seventy-seven fecal samples from 28 domestic and 49 stray dogs were examined using sieving/flotation and modified Ziehl-Neelsen staining. Intestinal parasites were found in 51 of the 77 (66%) dogs most common being Toxascaris leonina (29%, 22/77), Toxocara spp. (25%, 19/77), Eimeria spp. (19%, 15/77), Taenia/Echinococcus spp. (18%, 14/77), Sarcocystis spp. (17%, 13/77), and Dicrocoelium dendriticum (14%, 11/77). Lower infection rates of parasites were observed for Trichuris vulpis (6%, 5/77), Cryptosporidium spp. (5%, 4/77), and Physaloptera spp. (3%, 2/77). Prevalence of infection by Dipylidium caninum, Capillaria spp., Cystoisospora spp., and hookworms was similar (1%, 1/77). This study is the first report of the prevalence of intestinal parasites of domestic and stray dogs in Chenaran County, Northeast Iran. The higher prevalence of zoonotic intestinal parasites such as Toxascaris leonina, Toxocara spp. and Taenia/Echinococcus spp. compared to other parasites indicates the need for control programs to minimize the risk of transmission of zoonotic disease, particularly cystic echinococcosis, alveolar echinococcosis, visceral larva migrans, and ocular larva migrans to people living in these areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. An assessment of the stray light in 25 years of Dobson total ozone data at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-07-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for air-mass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the measurements made by the Dobson instrument of the Athens station for air mass values up to 2.5, underestimates the total ozone content by 3.5 DU in average, or about 1 % of the station's mean total ozone content (TOC). The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south-eastern Europe, may be assumed as a ground truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  5. SOLAR INTERACTING PROTONS VERSUS INTERPLANETARY PROTONS IN THE CORE PLUS HALO MODEL OF DIFFUSIVE SHOCK ACCELERATION AND STOCHASTIC RE-ACCELERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharov, L.; Laitinen, T.; Vainio, R.

    2015-06-10

    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported backmore » to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.« less

  6. The legal status of cats in New Zealand: a perspective on the welfare of companion, stray, and feral domestic cats (Felis catus).

    PubMed

    Farnworth, Mark J; Dye, Nicholson G; Keown, Natasha

    2010-01-01

    Pinpointing and safeguarding the welfare status of domestic cats is problematic, especially in New Zealand where cats are introduced predators with significant impact on indigenous fauna. Usually the identification of welfare status depends on conservational, legal, and public attitudes that are often contrasting. Cats may rapidly transgress definitions placed on them, confounding attempts to categorize them. In 1 generation, cats can move from a human-dependent state ("stray" or "companion") to wild ("feral"). Often this categorization uses arbitrary behavioral and or situational parameters; consequent treatment and welfare protection for these cats are similarly affected. Terminology used to describe cats is not equitable across research. However, the New Zealand Animal Welfare (Companion Cats) Code of Welfare 2007 seeks to create a new definition of the terms companion, stray, and feral. It distinguishes between cats who live within and without human social constructs. This legislation mandates that cats in human environments or indirectly dependent on humans cannot be classified as feral. Such definitions may prove vital when safeguarding the welfare of free-living domestic cats and cat colonies.

  7. Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Yang, Li-Bing; Li, Jing; Zhou, Shao-Tong; Ren, Xiao-Dong; Zhang, Si-Qun; Dan, Jia-Kun; Cai, Hong-Chun; Duan, Shu-Chao; Chen, Guang-Hua; Zhang, Zheng-Wei; Ouyang, Kai; Li, Jun; Zhang, Zhao-Hui; Zhou, Rong-Guo; Wang, Gui-Lin

    2012-05-01

    We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns. The arrays are made up of (8-32) × 5 μm wires 6/10 mm in diameter and 15 mm in height. The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9% (24 × 5 μm wires, 6 mm in diameter). Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV, peaked at 250 and 375 eV. The dominant wavelengths of the wire ablation and the magneto-Rayleigh—Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images. Through analyzing the implosion trajectories obtained by an optical streak camera, the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about (1.3-2.1) × 107 cm/s.

  8. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Carol J.; Taylor, J.; Edgecock, R.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, amore » joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.« less

  9. Molecular survey of canine vector-borne diseases in stray dogs in Thailand.

    PubMed

    Liu, Mingming; Ruttayaporn, Ngasaman; Saechan, Vannarat; Jirapattharasate, Charoonluk; Vudriko, Patrick; Moumouni, Paul Franck Adjou; Cao, Shinuo; Inpankaew, Tawin; Ybañez, Adrian P; Suzuki, Hiroshi; Xuan, Xuenan

    2016-08-01

    Despite the large population of stray dogs in Thailand, there is limited information on the prevalence of canine vector-borne diseases (CVBDs). In this study, a molecular survey was conducted to determine the prevalence of Babesia spp., Ehrlichia canis, Hepatozoon spp., Anaplasma platys and Mycoplasma spp. in dogs in Thailand. Of the 181 dog blood samples tested by PCR, 78/181 (43.1%) were found to be infected with one or more pathogens. The overall prevalence rates of Mycoplasma spp., Hepatozoon spp., Babesia spp., A. platys and E. canis infections were 19.9%, 18.8%, 9.4%, 4.4% and 3.9%, respectively. To the authors' knowledge, this is the first report of Mycoplasma infection in Thailand in dogs. The current findings are important for future surveillance of CVBDs and designing appropriate approaches for diagnosis and control for the diseases in Thailand. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features ofmore » the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)« less

  11. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  12. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  13. Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo

    DOE PAGES

    Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...

    2017-08-26

    Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.

  14. Model of inter-cell interference phenomenon in 10 nm magnetic tunnel junction with perpendicular anisotropy array due to oscillatory stray field from neighboring cells

    NASA Astrophysics Data System (ADS)

    Ohuchida, Satoshi; Endoh, Tetsuo

    2018-06-01

    In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.

  15. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  16. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  17. Single event effects in high-energy accelerators

    NASA Astrophysics Data System (ADS)

    García Alía, Rubén; Brugger, Markus; Danzeca, Salvatore; Cerutti, Francesco; de Carvalho Saraiva, Joao Pedro; Denz, Reiner; Ferrari, Alfredo; Foro, Lionel L.; Peronnard, Paul; Røed, Ketil; Secondo, Raffaello; Steckert, Jens; Thurel, Yves; Toccafondo, Iacocpo; Uznanski, Slawosz

    2017-03-01

    The radiation environment encountered at high-energy hadron accelerators strongly differs from the environment relevant for space applications. The mixed-field expected at modern accelerators is composed of charged and neutral hadrons (protons, pions, kaons and neutrons), photons, electrons, positrons and muons, ranging from very low (thermal) energies up to the TeV range. This complex field, which is extensively simulated by Monte Carlo codes (e.g. FLUKA) is due to beam losses in the experimental areas, distributed along the machine (e.g. collimation points) and deriving from the interaction with the residual gas inside the beam pipe. The resulting intensity, energy distribution and proportion of the different particles largely depends on the distance and angle with respect to the interaction point as well as the amount of installed shielding material. Electronics operating in the vicinity of the accelerator will therefore be subject to both cumulative damage from radiation (total ionizing dose, displacement damage) as well as single event effects which can seriously compromise the operation of the machine. This, combined with the extensive use of commercial-off-the-shelf components due to budget, performance and availability reasons, results in the need to carefully characterize the response of the devices and systems to representative radiation conditions.

  18. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  19. Fluctuation-dissipation relation in accelerated frames

    NASA Astrophysics Data System (ADS)

    Adhikari, Ananya; Bhattacharya, Krishnakanta; Chowdhury, Chandramouli; Majhi, Bibhas Ranjan

    2018-02-01

    A uniformly accelerated (Rindler) observer will detect particles in the Minkowski vacuum, known as the Unruh effect. The spectrum is thermal and the temperature is given by that of the Killing horizon, which is proportional to the acceleration. Considering that these particles are kept in a thermal bath with this temperature, we find that the correlation function of the random force due to radiation acting on the particles, as measured by the accelerated frame, shows the fluctuation-dissipation relation. It is observed that the correlations, in both (1 +1 ) spacetime and (1 +3 ) dimensional spacetimes, are of the Brownian type. We discuss the implications of this new observation.

  20. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  1. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  2. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of themore » scattered radiation.« less

  3. PW-class laser-driven super acceleration systems in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke

    2017-10-01

    Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.

  4. Observational artifacts of Nuclear Spectroscopic Telescope Array: ghost rays and stray light

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Christensen, Finn E.; Craig, William W.; Forster, Karl W.; Grefenstette, Brian W.; Harrison, Fiona A.; Miyasaka, Hiromasa; Rana, Vikram

    2017-10-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) launched in June 2012, flies two conical approximation Wolter-I mirrors at the end of a 10.15-m mast. The optics are coated with multilayers of Pt/C and W/Si that operate from 3 to 80 keV. Since the optical path is not shrouded, aperture stops are used to limit the field of view (FoV) from background and sources outside the FoV. However, there is still a sliver of sky (˜1.0 deg to 4.0 deg) where photons may bypass the optics altogether and fall directly on the detector array. We term these photons stray light. Additionally, there are also photons that do not undergo the focused double reflections in the optics, and we term these ghost rays. We present detailed analysis and characterization of these two components and discuss how they impact observations. Finally, we discuss how they could have been prevented and should be in future observatories.

  5. What Do They Have That We Don't Have? Local Libraries and Distance Students: Why Do Students Stray and Can We Get Them Back?

    ERIC Educational Resources Information Center

    Behr, Michele; LaDell-Thomas, Julie

    2014-01-01

    A significant number of distance students report they "stray" from their home universities by using local libraries, despite the fact that distance education librarians work hard to provide customized resources and services tailored to their programs and needs. Are public libraries and special libraries able to meet the research needs of…

  6. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  7. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  8. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  9. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  10. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneip, S.; Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109; McGuffey, C.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlightingmore » the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.« less

  11. Reactor for simulation and acceleration of solar ultraviolet damage

    NASA Technical Reports Server (NTRS)

    Laue, E.; Gupta, A.

    1979-01-01

    An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data.

  12. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  13. Radiation-Free Weekend Rescued! Continuous Accelerated Irradiation of 7-Days per Week Is Equal to Accelerated Fractionation With Concomitant Boost of 7 Fractions in 5-Days per Week: Report on Phase 3 Clinical Trial in Head-and-Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skladowski, Krzysztof, E-mail: skladowski@io.gliwice.pl; Hutnik, Marcin; Wygoda, Andrzej

    2013-03-01

    Purpose: To report long-term results of randomized trial comparing 2 accelerated fractionations of definitive radiation therapy assessing the need to irradiate during weekend in patients with head and neck squamous cell carcinoma. Methods and Materials: A total of 345 patients with SCC of the oral cavity, larynx, and oro- or hypo-pharynx, stage T2-4N0-1M0, were randomized to receive continuous accelerated irradiation (CAIR: once per day, 7 days per week) or concomitant accelerated boost (CB: once per day, 3 days per week, and twice per day, 2 days per week). Total dose ranged from 66.6-72 Gy, dose per fraction was 1.8 Gy,more » number of fractions ranged from 37-40 fractions, and overall treatment time ranged from 37-40 days. Results: No differences for all trial end-points were noted. At 5 and 10 years, the actuarial rates of local-regional control were 63% and 60% for CAIR vs 65% and 60% for CB, and the corresponding overall survival were 40% and 25% vs 44% and 25%, respectively. Confluent mucositis was the main acute toxicity, with an incidence of 89% in CAIR and 86% in CB patients. The 5-year rate of grade 3-4 late radiation morbidity was 6% for both regimens. Conclusions: Results of this trial indicate that the effects of accelerated fractionation can be achieve by delivering twice-per-day irradiation on weekday(s). This trial has also confirmed that an accelerated, 6-weeks schedule is a reasonable option for patients with intermediate-stage head-and-neck squamous cell carcinoma because of the associated high cure rate and minimal severe late toxicity.« less

  14. Environmental Impact From Accelerator Operation at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James C

    1999-03-22

    Environmental impacts from electron accelerator operations at the Stanford Linear Accelerator Center, which is located near populated areas, are illustrated by using examples of three different accelerator facilities: the low power (a few watts) SSRL, the high power (a few kilowatts) PEP-II, and the 50-kW SLC. Three types of major impacts are discussed: (1) off-site doses from skyshine radiation, mainly neutrons, (2) off-site doses from radioactive air emission, mainly {sup 13}N, and (3) radioactivities, mainly {sup 3}H, produced in the groundwater. It was found that, from SSRL operation, the skyshine radiation result in a MEI (Maximum Exposed Individual) of 0.3more » {mu}Sv/y while a conservative calculation using CAP88 showed a MEI of 0.36 {mu}Sv/y from radioactive air releases. The calculated MEI doses due to future PEP-II operation are 30 {mu}Sv/y from skyshine radiation and 2 {mu}Sv/y from air releases. The population doses due to radioactive air emission are 0.5 person-mSv from SSRL and 12 person-mSv from PEP-II. Because of the stronger decrease of skyshine dose as the distance increases, the population dose from skyshine radiation are smaller than that from air release. The third environmental impact, tritium activity produced in the groundwater, was also demonstrated to be acceptable from both the well water measurements and the FLUKA calculations for the worst case of the SLC high-power dump.« less

  15. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    NASA Astrophysics Data System (ADS)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  16. Proceedings of the Symposium on the Protection Against Radiation Hazards in Space Book 1: Radiation Environment in Space. Effects of Space Radiation on Radio Sensitive Objects. Biological Effects of Space Radiation

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The realization in recent years that outer space is traversed by high-energy radiations has caused man to reevaluate the feasibility of manned or even instrumented exploration outside our atmosphere. Fortunately, it is possible to determine the nature and intensities of these radiations and to produce similar radiations on earth by means of accelerators. Thus we can learn how to attenuate them and to design capsules which afford protection against them. Of course this protection carries a weight penalty so that there is a premium on optimizing the shield design. Many groups in the United states are engaged in research to this end,and it was the purpose of this symposium to bring these groups together so that they could exchange information. To make the meeting more comprehensive, sessions on the nature of the radiations and their effects on people and things were included. However, the major part of the meeting was devoted to discussions on shielding research, comprising theoretical calculations and experiments carried out mainly with high-energy accelerators. The symposium committee feels that the aims of the symposium were met and that progress in space research program was greatly accelerated thereby.

  17. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  18. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  19. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  20. Recirculating Electron Accelerators with Noncircular Electron Orbits as Radiation Sources for Applications (a Review)

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Ochkina, Elena I.

    2018-05-01

    State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.

  1. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  2. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  3. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  4. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  5. Method for Monitoring of Neutron Fields near High-Energy Accelerators

    NASA Astrophysics Data System (ADS)

    Beskrovnaia, L. G.; Guseva, S. V.; Timoshenko, G. N.

    2018-05-01

    The monitoring of neutron radiation from high-energy accelerators cannot fully rely on the standard dosimeters and radiometers manufactured in Russia, since these are sensitive only to neutrons with energies below some 10 MeV. This is because neutrons of higher energies can significantly contribute to the personnel doses both close to the accelerator shield and in the neutron multiscattered field around the shield. In this paper, we propose to measure the ambient neutron dose in energy range 10-2 MeV to 1 GeV with a device consisting of two polyethylene balls with diameters of 3 and 10 in. housing slow-neutron detectors. The larger ball also comprises a lead converter (10'' + Pb). This device can be implemented in zonal radiation monitoring in the near-accelerator area.

  6. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  7. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE PAGES

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.; ...

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  8. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; Henderson, M. G.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  9. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  10. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... specialized training in the field of radiation oncology physics, ensures the linear accelerator delivers the precise radiation ... critical normal structures, as well as the patient's health. Typically, patients are scheduled for IMRT sessions five ...

  11. Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2002-07-01

    We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.

  12. Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.

    We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.

  13. Working group written presentation: Solar radiation

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.

    1989-01-01

    The members of the Solar Radiation Working Group arrived at two major solar radiation technology needs: (1) generation of a long term flight data base; and (2) development of a standardized UV testing methodology. The flight data base should include 1 to 5 year exposure of optical filters, windows, thermal control coatings, hardened coatings, polymeric films, and structural composites. The UV flux and wavelength distribution, as well as particulate radiation flux and energy, should be measured during this flight exposure. A standard testing methodology is needed to establish techniques for highly accelerated UV exposure which will correlate well with flight test data. Currently, UV can only be accelerated to about 3 solar constants and can correlate well with flight exposure data. With space missions to 30 years, acceleration rates of 30 to 100X are needed for efficient laboratory testing.

  14. The prevalence and distribution of gastrointestinal parasites of stray and refuge dogs in four locations in India.

    PubMed

    Traub, Rebecca J; Pednekar, Riddhi P; Cuttell, Leigh; Porter, Ronald B; Abd Megat Rani, Puteri Azaziah; Gatne, Mukulesh L

    2014-09-15

    A gastrointestinal parasite survey of 411 stray and refuge dogs sampled from four geographical and climactically distinct locations in India revealed these animals to represent a significant source of environmental contamination for parasites that pose a zoonotic risk to the public. Hookworms were the most commonly identified parasite in dogs in Sikkim (71.3%), Mumbai (48.8%) and Delhi (39.1%). In Ladakh, which experiences harsh extremes in climate, a competitive advantage was observed for parasites such as Sarcocystis spp. (44.2%), Taenia hydatigena (30.3%) and Echinococcus granulosus (2.3%) that utilise intermediate hosts for the completion of their life cycle. PCR identified Ancylostoma ceylanicum and Ancylostoma caninum to occur sympatrically, either as single or mixed infections in Sikkim (Northeast) and Mumbai (West). In Delhi, A. caninum was the only species identified in dogs, probably owing to its ability to evade unfavourable climatic conditions by undergoing arrested development in host tissue. The expansion of the known distribution of A. ceylanicum to the west, as far as Mumbai, justifies the renewed interest in this emerging zoonosis and advocates for its surveillance in future human parasite surveys. Of interest was the absence of Trichuris vulpis in dogs, in support of previous canine surveys in India. This study advocates the continuation of birth control programmes in stray dogs that will undoubtedly have spill-over effects on reducing the levels of environmental contamination with parasite stages. In particular, owners of pet animals exposed to these environments must be extra vigilant in ensuring their animals are regularly dewormed and maintaining strict standards of household and personal hygiene. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Is Africa a 'Graveyard' for Linear Accelerators?

    PubMed

    Reichenvater, H; Matias, L Dos S

    2016-12-01

    Linear accelerator downtimes are common and problematic in many African countries and may jeopardise the outcome of affected radiation treatments. The predicted increase in cancer incidence and prevalence on the African continent will require, inter alia, improved response with regard to a reduction in linear accelerator downtimes. Here we discuss the problems associated with the maintenance and repair of linear accelerators and propose alternative solutions relevant for local conditions in African countries. The paper is based on about four decades of experience in capacity building, installing, commissioning, calibrating, servicing and repairing linear accelerators in Africa, where about 40% of the low and middle income countries in the world are geographically located. Linear accelerators can successfully be operated, maintained and repaired in African countries provided proper maintenance and repair plans are put in place and executed. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  16. WE-F-209-02: Radiation Safety Surveys of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.

    2016-06-15

    Over the past few years, numerous Accreditation Bodies, Regulatory Agencies, and State Regulations have implemented requirements for Radiation Safety Surveys following installation or modification to x-ray rooms. The objective of this session is to review best practices in performing radiation safety surveys for both Therapy and Diagnostic installations, as well as a review of appropriate survey instruments. This session will be appropriate for both therapy and imaging physicists who are looking to increase their working knowledge of radiation safety surveys. Learning Objectives: Identify Appropriate Survey Meters for Radiation Safety Surveys Develop best practices for Radiation Safety Surveys for Therapy unitsmore » that include common areas of concern. Develop best practices for Radiation Safety Surveys of Diagnostic and Nuclear Medicine rooms. Identify acceptable dose levels and the factors that affect the calculations associated with performing Radiation Safety Surveys.« less

  17. Inertial Mass Viewed as Reaction of the Vacuum to Accelerated Motion

    NASA Technical Reports Server (NTRS)

    Rueda, Alfonso; Haisch, Bernhard

    1999-01-01

    Preliminary analysis of the momentum flux (or of the Poynting vector) of the classical electromagnetic version of the quantum vacuum consisting of zero-point radiation impinging on accelerated objects as viewed by an inertial observer suggests that the resistance to acceleration attributed to inertia may be a force of opposition originating in the vacuum. This analysis avoids the ad hoc modeling of particle-field interaction dynamics used previously by Haisck Rueda and Puthoff (1994) to derive a similar result. This present approach is not dependent upon what happens at the particle point but on how an external observer assesses the kinematical characteristics of the zero-point radiation impinging on the accelerated object. A relativistic form of the equation of motion results from the present analysis.

  18. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  19. Electromagnetically Induced Transparency Experiments for the Advanced Undergraduate Laboratory: Suppression of Polarization Impurity and Stray Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Campbell, Kaleb; Jackson, Richard; van Vleet, Matthew; Kuhnash, Kodi; Worth, Bradley; Day, Amanda; Bali, Samir

    2014-05-01

    We investigate electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) in rubidium vapor using a single laser beam and a scanning magnetic field co-aligned with the laser propagation direction. We show that polarization impurity, stray magnetic fields and imperfect optical alignments cause broadening of the EIT/EIA signal and other spurious effects. We describe a systematic approach to minimizing these undesired effects, which produces EIT/EIA signals nearly two orders of magnitude narrower than the natural linewidth. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.

  20. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  1. Electron cyclotron wave acceleration outside a flaring loop

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.

  2. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  3. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  4. LIONs at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constant, T.N.; Zdarko, R.W.; Simmons, R.H.

    1998-01-01

    The term LION is an acronym for Long Ionization Chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from incorrectly steered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of incorrect steering intercepts a portion of 1-5/8 inch Heliax cable (about 100 meters in length) filled with Argon gas at 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmittedmore » via the cable to an integrator circuit whose output is directed to an electronic comparators, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used in the Stanford Linear Accelerator Center (SLAC) Beam Containment System (BCS) to prevent potentially hazardous ionizing radiation resulting from incorrectly steered beams in areas that might be occupied by people. This paper describes the design parameters and experience in use in the Final Focus Test Beam (FFTB) area of the Stanford Linear Accelerator Center.« less

  5. Force approach to radiation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less

  6. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  7. Accelerated life assessment of coating on the radar structure components in coastal environment.

    PubMed

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  8. Highly Relativistic Radiation Belt Electron Acceleration, Transport, and Loss: Large Solar Storm Events of March and June 2015

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J.C.; Erickson, P. J.; Fennell, Joseph; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; hide

    2016-01-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (Disturbance Storm Time Ring Current Index) value reaching 223 nanoteslas. On 22 June 2015 another strong storm (Dst reaching 204 nanoteslas) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E (Energy) greater than or approximately equal to 1 millielectronvolt) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 millielectronvolts in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong butterfly distributions with deep minima in flux at alpha equals 90 degrees. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported impenetrable barrier at L (L-shell magnetic field line value) approximately equal to 2.8 was pushed inward, but not significantly breached, and no E (Energy) greater than or approximately equal to 2.0 millielectronvolts electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  9. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    PubMed Central

    Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; Henderson, M. G.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-01-01

    Abstract Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection‐driven event occurred with a Dst (storm time ring current index) value reaching −223 nT. On 22 June 2015 another strong storm (Dst reaching −204 nT) was recorded. These two storms each produced almost total loss of radiation belt high‐energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis. PMID:27867796

  10. Characterisation of spectrophotometers used for spectral solar ultraviolet radiation measurements.

    PubMed

    Gröbner, J

    2001-01-01

    Spectrophotometers used for spectral measurements of the solar ultraviolet radiation need to be well characterised to provide accurate and reliable data. Since the characterisation and calibration are usually performed in the laboratory under conditions very different from those encountered during solar measurements, it is essential to address all issues concerned with the representativity of the laboratory characterisation with respect to the solar measurements. These include among others the instrument stability, the instrument linearity, the instrument responsivity, the wavelength accuracy, the spectral resolution, stray light rejection and the instrument dependence on ambient temperature fluctuations. These instrument parameters need to be determined often enough so that the instrument changes only marginally in the period between successive characterisations and therefore provides reliable data for the intervening period.

  11. Measurement and application of bidirectional reflectance distribution function

    NASA Astrophysics Data System (ADS)

    Liao, Fei; Li, Lin; Lu, Chengwen

    2016-10-01

    When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.

  12. Use of Cold Radiometers in Several Thermal/Vacuum Tests

    NASA Technical Reports Server (NTRS)

    DiPirro, M.; Tuttle, J.; Canavan, E.; Shirron, P.

    2011-01-01

    We have developed a low cost low temperature broadband radiometer for use with low temperature tests as a diagnostic tool for measuring stray thermal radiation and remote measurement of material properties. So far these radiometers have been used in two large thermal/vacuum tests for the James Webb Space Telescope (JWST) Project. In the first test the radiometers measured stray radiation in a test of part of the JWST sunshield, and in the second test the radiometers were used to measure the reflectivity and specularity of black Z307 painted aluminum walls on a 25 K cooled shroud. These results will be presented as well as plans for future tests to measure the residual energy through a baffled aperture in the shroud and other stray thermal energy measurements.

  13. Radiation Protection

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    Radiation protection is a very important aspect for the application of particle detectors in many different fields, like high energy physics, medicine, materials science, oil and mineral exploration, and arts, to name a few. The knowledge of radiation units, the experience with shielding, and information on biological effects of radiation are vital for scientists handling radioactive sources or operating accelerators or X-ray equipment. This article describes the modern radiation units and their conversions to older units which are still in use in many countries. Typical radiation sources and detectors used in the field of radiation protection are presented. The legal regulations in nearly all countries follow closely the recommendations of the International Commission on Radiological Protection (ICRP). Tables and diagrams with relevant information on the handling of radiation sources provide useful data for the researcher working in this field.

  14. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  15. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    PubMed

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  16. Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-01-01

    We present radiation-hydrodynamic simulations of radiatively-driven gas shells launched by bright active galactic nuclei (AGN) in isolated dark matter haloes. Our goals are (1) to investigate the ability of AGN radiation pressure on dust to launch galactic outflows and (2) to constrain the efficiency of infrared (IR) multiscattering in boosting outflow acceleration. Our simulations are performed with the radiation-hydrodynamic code RAMSES-RT and include both single- and multiscattered radiation pressure from an AGN, radiative cooling and self-gravity. Since outflowing shells always eventually become transparent to the incident radiation field, outflows that sweep up all intervening gas are likely to remain gravitationally bound to their halo even at high AGN luminosities. The expansion of outflowing shells is well described by simple analytic models as long as the shells are mildly optically thick to IR radiation. In this case, an enhancement in the acceleration of shells through IR multiscattering occurs as predicted, i.e. a force \\dot{P} ≈ τ_IR L/c is exerted on the gas. For high optical depths τIR ≳ 50, however, momentum transfer between outflowing optically thick gas and IR radiation is rapidly suppressed, even if the radiation is efficiently confined. At high τIR, the characteristic flow time becomes shorter than the required trapping time of IR radiation such that the momentum flux \\dot{P} ≪ τ_IR L/c. We argue that while unlikely to unbind massive galactic gaseous haloes, AGN radiation pressure on dust could play an important role in regulating star formation and black hole accretion in the nuclei of massive compact galaxies at high redshift.

  17. High frequency measures of OHC nonlinear capacitance (NLC) and their significance: Why measures stray away from predictions

    NASA Astrophysics Data System (ADS)

    Santos-Sacchi, Joseph

    2018-05-01

    Measures of membrane capacitance (Cm) can be used to assess important characteristics of voltage-dependent membrane proteins (e.g., channels and transporters). In particular, a protein's time-dependent voltage-sensor charge movement is equivalently represented as a frequency-dependent component of Cm, telling much about the kinetics of the protein's conformational behavior. Recently, we have explored the frequency dependence of OHC voltage-dependent capacitance (aka nonlinear capacitance, NLC) to query rates of conformational switching within prestin (SLC26a5), the cell's lateral membrane molecular motor 1. Following removal of confounding stray capacitance effects, high frequency Cm measures using wide-band stimuli accurately reveal unexpected low pass behavior in prestin's molecular motions.

  18. A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Hartman, P. S.; Hlavacek, A.; Wilde, H.; Lewicki, D.; Schubert, W.; Kern, R. G.; Kazarians, G. A.; Benton, E. V.; Benton, E. R.; Nelson, G. A.

    2001-01-01

    The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.

  19. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro

  20. Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871

    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.

  1. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to

  2. On The Detection Of Footprints From Strong Electron Acceleration In High-Intensity Laser Fields, Including The Unruh Effect

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Homma, K.; Hörlein, R.; Karsch, S.; Krausz, F.; Maia, C.; Osterhoff, J.; Popp, A.; Schmid, K.; Schreiber, J.; Schützhold, R.; Tajima, T.; Veisz, L.; Wulz, J.; Yamazaki, T.

    2010-04-01

    The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3 1018V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of as = 2 1028 g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. In upcoming experiments with intense accelerating fields, we will encounter a set of opportunities to experimentally study the radiation from electrons under extreme fields. Even before the Unruh radiation detection, we should run into the copious Larmor radiation. The detection of Larmor radiation and its characterization themselves have never been experimentally carried out to the best of our knowledge, and thus this amounts to a first serious study of physics at extreme acceleration. For example, we can study radiation damping effects like the Landau-Lifshitz radiation. Furthermore, the experiment should be able to confirm or disprove whether the Larmor and Landau-Lifshitz radiation components may be enhanced by a collective (N2) radiation, if a tightly clumped cluster of electrons is accelerated. The technique of laser driven dense electron sheet formation by irradiating a thin DLC foil target should provide such a coherent electron cluster with a very high density. If and when such mildly relativistic electron sheets are realized, a counterpropagating second laser can interact with them coherently. Under

  3. Computational study of radiation doses at UNLV accelerator facility

    NASA Astrophysics Data System (ADS)

    Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel

    2017-09-01

    A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.

  4. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations.

    PubMed

    Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars; Jespersen, Bo; Juhler, Marianne

    2010-06-01

    Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. A database was searched for all patients with AVMs. We included 50 consecutive patients with a minimum of 24 months follow-up (24-51 months). AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%). Copyright 2010 Elsevier Inc. All rights reserved.

  5. NONCOHERENT RADIATION DUE TO ELECTRONS IN A SYNCHROTRON AND SOME OF ITS APPLICATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ado, Yu.M.

    1963-01-01

    Experiments are described in which the properties ot noncoherent radiation due to electrons accelerated in a synchrotron are investigated. The experiments were performed at the 280-Mev electron synchrotron of the Lebedeff Institute for Physics. An apparatus was constructed for the determination of optical radiation spectra arising from monoenergetic electrons during the complete acceleration cycle. The energy distribution of the radiation was determined for three electron energies, 150, 225, and 250 Mev. The intensity of various wvavelength radiation was measured as a function of the electron energy from 70 to 280 Mev. The effect of the intensity on the number ofmore » electrons was found to be linear for 250-Mev electrons. Three applications are described for the electron optical radiation: the determination of the number of accelerated electrons, the measurement of the amount of electrons hitting a target during the acceleration process, and the determination of the azimuthal extent of the clots of accelerated electrons. (TTT)« less

  6. Beam by design: Laser manipulation of electrons in modern accelerators

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

    2014-07-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

  7. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it; Ceccio, G.; Cannavò, A.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions dependingmore » on the laser parameters, the irradiation conditions, and a target optimization.« less

  8. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  9. The biological effect of prolonged radiation and ways of selecting new anti-radiation drugs effective in this kind of radiation injury

    NASA Technical Reports Server (NTRS)

    Rogozkin, V. D.; Chertkov, K. S.; Nikolov, I.

    1974-01-01

    The basic characteristics of prolonged radiation - increased tolerance of radiation injury - are attributed to cellular kinetics; as dose rate is reduced, the population rate is not disturbed, particularly that of stem cells which makes it possible for the organism to tolerate higher radiation loads. It is concluded that this effect makes approved radio protectors, whose effect contains an established cytostatic component, unsuitable for prolonged radiation. It is better to correct the stem pool formation process by either accelerating the proliferation of cells or limiting the effect of stimuli causing cells to lose colony forming properties.

  10. Common but unappreciated sources of error in one, two, and multiple-color pyrometry

    NASA Technical Reports Server (NTRS)

    Spjut, R. Erik

    1988-01-01

    The most common sources of error in optical pyrometry are examined. They can be classified as either noise and uncertainty errors, stray radiation errors, or speed-of-response errors. Through judicious choice of detectors and optical wavelengths the effect of noise errors can be minimized, but one should strive to determine as many of the system properties as possible. Careful consideration of the optical-collection system can minimize stray radiation errors. Careful consideration must also be given to the slowest elements in a pyrometer when measuring rapid phenomena.

  11. Specific feature of magnetooptical images of stray fields of magnets of various geometrical shapes

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.; Koveshnikov, A. V.; Andreev, S. V.

    2017-08-01

    Specific features of magnetooptical images (MOIs) of stray fields near the faces of prismatic hard magnetic elements have been studied. Attention has primarily been focused on MOIs of fields near faces oriented perpendicular to the magnetic moment of hard magnetic elements. With regard to the polar sensitivity, MOIs have practically uniform brightness and geometrically they coincide with the figures of the bases of the elements. With regard to longitudinal sensitivity, MOIs consist of several sectors, the number of which is determined by the number of angles of the image. Each angle is divided by the bisectrix into two sectors of different brightnesses; therefore, the MOI of a triangular magnet consists of three sectors. A rectangle consists of four sectors separated by the bisectrices of the interior angles. In all types of figures, these lines converge at the center of the figure and form a singular point of the source or sink type.

  12. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  13. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed; Konkashbaev, Isak

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  14. Laser-driven dielectric electron accelerator for radiobiology researches

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula

    2013-05-01

    In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.

  15. The Near-Earth Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  16. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  17. Evaluation of proton cross-sections for radiation sources in the proton accelerator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sik; Lee, Cheol-Woo; Lee, Young-Ouk

    2007-08-01

    Proton Engineering Frontier Project (PEFP) is currently building a proton accelerator in Korea which consists of a proton linear accelerator with 100 MeV of energy, 20 mA of current and various particle beam facilities. The final goal of this project consists of the production of 1 GeV proton beams, which will be used for various medical and industrial applications as well as for research in basic and applied sciences. Carbon and copper in the proton accelerator for PEPP, through activation, become radionuclides such as 7Be and 64Cu. Copper is a major element of the accelerator components and the carbon is planned to be used as a target material of the beam dump. A recent survey showed that the currently available cross-sections create a large difference from the experimental data in the production of some residual nuclides by the proton-induced reactions for carbon and copper. To more accurately estimate the production of radioactive nuclides in the accelerator, proton cross-sections for carbon and copper are evaluated. The TALYS code was used for the evaluation of the cross-sections for the proton-induced reactions. To obtain the cross-sections which best fits the experimental data, optical model parameters for the neutron, proton and other complex particles such as the deuteron and alpha were successively adjusted. The evaluated cross-sections in this study are compared with the measurements and other evaluations .

  18. Marshak Lectureship: The Turkish Accelerator Center, TAC

    NASA Astrophysics Data System (ADS)

    Yavas, Omer

    2012-02-01

    The Turkish Accelerator Center (TAC) project is comprised of five different electron and proton accelerator complexes, to be built over 15 years, with a phased approach. The Turkish Government funds the project. Currently there are 23 Universities in Turkey associated with the TAC project. The current funded project, which is to run until 2013 aims *To establish a superconducting linac based infra-red free electron laser and Bremsstrahlung Facility (TARLA) at the Golbasi Campus of Ankara University, *To establish the Institute of Accelerator Technologies in Ankara University, and *To complete the Technical Design Report of TAC. The proposed facilities are a 3^rd generation Synchrotron Radiation facility, SASE-FEL facility, a GeV scale Proton Accelerator facility and an electron-positron collider as a super charm factory. In this talk, an overview on the general status and road map of TAC project will be given. National and regional importance of TAC will be expressed and the structure of national and internatonal collaborations will be explained.

  19. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  20. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  1. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  2. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  3. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    entrapping is influenced by some factors such as the magnitude of wave amplitude or inhomogeneity of the Earth's dipole magnetic field. In addition, an energy range of electrons is also a major factor. In this way, it has been examined in detail how and under which conditions electrons are efficiently accelerated in the formation process of the radiation belts.

  4. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators

  5. Multimegawatt cyclotron autoresonance accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.

    1996-05-01

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE{sub 111}-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE{sub 11}-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance acceleratormore » (CARA) can operate with near-100{percent} efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40{percent}. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96{percent}. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. {copyright} {ital 1996 American Institute of Physics.}« less

  6. High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2004-01-01

    We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, where for most relatively rapidly rotating pulsars both the standard small-angle approximation and the assumption that the magnetic field lines are ideal stream lines break down. We address the importance of the electrodynamic conditions at the SG boundaries and the occurrence of a steady-state drift of charged particles across the SG field lines at very high altitudes. These boundary conditions and the cross-field particle motion determine the asymptotic behavior of the scalar potential at all radii from the polar cap (PC) to near the light cylinder. As a result, we demonstrate that the steady-state accelerating electric field, E(sub ll), must approach a small and constant value at high altitude above the PC. This E(sub ll) is capable of maintaining electrons moving with high Lorentz factors (approx. a few x 10(exp 7)) and emitting curvature gamma-ray photons up to nearly the light cylinder. By numerical simulations, we show that primary electrons accelerating from the PC surface to high altitude in the SG along the outer edge of the open field region will form caustic emission patterns on the trailing dipole field lines. Acceleration and emission in such an extended SG may form the physical basis of a model that can successfully reproduce some pulsar high-energy light curves.

  7. Radiation Durability of Candidate Polymer Films for the Next Generation Space Telescope Sunshield

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; Semmel, Charles; Edwards, David; Messer, Russell; Peters, Wanda; Carter, Amani; Puckett, David

    2002-01-01

    The Next Generation Space Telescope (NGST), anticipated to be launched in 2009 for a 10-year mission, will make observations in the infrared portion of the spectrum to examine the origins and evolution of our universe. Because it must operate at cold temperatures in order to make these sensitive measurements, it will use a large, lightweight, deployable sunshield, comprised of several polymer film layers, to block heat and stray light. This paper describes laboratory radiation durability testing of candidate NGST sunshield polymer film materials. Samples of fluorinated polyimides CP1 and CP2, and a polvarylene ether benzimidazole. TOR-LM(TM), were exposed to 40 keV electron and 40 keV proton radiation followed by exposure to vacuum ultraviolet (VUV) radiation in the 115 to 200 nm wavelength range. Samples of these materials were also exposed to VUV without prior electron and proton exposure. Samples of polyimides Kapton HN, Kapton E, and Upilex-S were exposed to electrons and protons only, due to limited available exposure area in the VUV facility. Exposed samples were evaluated for changes in solar absorptance and thermal emittance and mechanical properties of ultimate tensile strength and elongation at failure. Data obtained are compared with previously published data for radiation durability testing of these polymer film materials.

  8. Complications Following Linear Accelerator Based Stereotactic Radiation for Cerebral Arteriovenous Malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skjoth-Rasmussen, Jane, E-mail: jane@skjoeth-rasmussen.d; Roed, Henrik; Ohlhues, Lars

    2010-06-01

    Purpose: Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. Method and Materials: A database was searched for all patients with AVMs. We included 50 consecutive patients with amore » minimum of 24 months follow-up (24-51 months). Results: AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). Conclusions: We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%).« less

  9. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  10. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  11. Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment

    NASA Technical Reports Server (NTRS)

    Fuchs, Jordan Robert

    2010-01-01

    The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.

  12. Hawking radiation inside a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2018-05-01

    The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy-momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy-momentum inside a Schwarzschild black hole. The quantum energy-momentum near the singularity diverges as r^{-6}, and consists of relativistic Hawking radiation and negative energy vacuum in the ratio 3 : - 2. The classical back reaction of the quantum energy-momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy-momentum in 1 + 1 spacetime dimensions.

  13. A fast finite-difference algorithm for topology optimization of permanent magnets

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter

    2017-09-01

    We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.

  14. Surrendered and Stray Dogs in Australia—Estimation of Numbers Entering Municipal Pounds, Shelters and Rescue Groups and Their Outcomes

    PubMed Central

    Chua, Diana; Rand, Jacquie; Morton, John

    2017-01-01

    Simple Summary Analyses of comprehensive and accurate dog intake and outcome data in municipal pounds and shelters across states in Australia would provide an in-depth understanding of the surrendered and stray dog issue as well as facilitate effective evaluation of existing management strategies. Currently, there is a lack of comprehensive and reliable data at the federal, state and local government levels across public and private agencies. In this study, we developed a methodology to estimate the annual numbers of dog admissions in Australia, and to describe their outcomes. In 2012–2013, there were an estimated 9.3 dog admissions per 1000 residents (211,655 dog admissions). Of these admissions, 4.4 per 1000 residents were reclaimed (101,037 reclaimed), 2.9 per 1000 residents were rehomed (66,443 rehomed) and 1.9 per 1000 residents were euthanized (43,900 euthanized). An ongoing standardized monitoring system would enable Australia to evaluate management strategies to reduce numbers of dogs admitted and euthanized, and to benchmark its unwanted dog management policies and performance against comparable countries. Abstract There is no national system for monitoring numbers of dogs entering municipal council pounds and shelters in Australia, or their outcomes. This limits understanding of the surrendered and stray dog issue, and prevents the evaluation of management strategies. We aimed to estimate these in 2012–2013. Dog intake and outcome data were collected for municipal councils and animal welfare organizations using annual reports, publications, primary peer-reviewed journal articles, websites and direct correspondence. More comprehensive data were obtained for New South Wales, Victoria, South Australia and Australian Capital Territory, whereas it was necessary to impute some or all data for Western Australia, Northern Territory, Queensland and Tasmania, as data were incomplete/unavailable. A refined methodology was developed to address the numerous

  15. Dependence of radiation belt simulations to assumed radial diffusion rates

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.

    2017-12-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

  16. Magneto-optical visualization of three spatial components of inhomogeneous stray fields

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.

    2012-08-01

    The article deals with the physical principles of magneto-optical visualization (MO) of three spatial components of inhomogeneous stray fields with the help of FeCo metal indicator films in the longitudinal Kerr effect geometry. The inhomogeneous field is created by permanent magnets. Both p- and s-polarization light is used for obtaining MO images with their subsequent summing, subtracting and digitizing. As a result, the MO images and corresponding intensity coordinate dependences reflecting the distributions of the horizontal and vertical magnetization components in pure form have been obtained. Modeling of both the magnetization distribution in the indicator film and the corresponding MO images shows that corresponding to polar sensitivity the intensity is proportional to the normal field component, which permits normal field component mapping. Corresponding to longitudinal sensitivity, the intensity of the MO images reflects the angular distribution of the planar field component. MO images have singular points in which the planar component is zero and their movement under an externally homogeneous planar field permits obtaining of additional information on the two planar components of the field under study. The intensity distribution character in the vicinity of sources and sinks (singular points) remains the same under different orientations of the light incidence plane. The change of incident plane orientation by π/2 alters the distribution pattern in the vicinity of the saddle points.

  17. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  18. Shielding for High-Energy Electron Accelerator Installations. National Bureau of Standards Handbook 97.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    Recommendations for radiation shielding, protection, and measurement are presented. This handbook is an extension of previous recommendations for protection against radiation from--(1) high energy and power electron accelerators, (2) food processing equipment, and (3) general sterilization equipment. The new recommendations are concerned with…

  19. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  20. Accelerated Partial Breast Irradiation Using Only Intraoperative Electron Radiation Therapy in Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maluta, Sergio; Dall'Oglio, Stefano, E-mail: stefano.dalloglio@ospedaleuniverona.it; Marciai, Nadia

    2012-10-01

    Background: We report the results of a single-institution, phase II trial of accelerated partial breast irradiation (APBI) using a single dose of intraoperative electron radiation therapy (IOERT) in patients with low-risk early stage breast cancer. Methods and Materials: A cohort of 226 patients with low-risk, early stage breast cancer were treated with local excision and axillary management (sentinel node biopsy with or without axillary node dissection). After the surgeon temporarily reapproximated the excision cavity, a dose of 21 Gy using IOERT was delivered to the tumor bed, with a margin of 2 cm laterally. Results: With a mean follow-up ofmore » 46 months (range, 28-63 months), only 1 case of local recurrence was reported. The observed toxicity was considered acceptable. Conclusions: APBI using a single dose of IOERT can be delivered safely in women with early, low-risk breast cancer in carefully selected patients. A longer follow-up is needed to ascertain its efficacy compared to that of the current standard treatment of whole-breast irradiation.« less