Sample records for accelerator science tokyo

  1. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    PubMed

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  2. Microparticle acceleration by a Van de Graaff accelerator and application to space and material sciences

    NASA Astrophysics Data System (ADS)

    Shibata, Hiromi; Kobayashi, Koichi; Iwai, Takeo; Hamabe, Yoshimi; Sasaki, Sho; Hasegawa, Sunao; Yano, Hajime; Fujiwara, Akira; Ohashi, Hideo; Kawamura, Toru; Nogami, Ken-ichi

    2001-01-01

    A microparticle (dust) ion source has been installed in the 3.75 MV Van de Graaff electrostatic accelerator and a new beam line for microparticle experiments has been built at the HIT facility of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron- or submicron-sized particles. Development of in situ dust detectors on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time-of-flight mass spectrometry, impact flash measurement and scanning electron microscope observation for metals, polymers and semiconductors bombarded by micron-sized particles have been started.

  3. Landsat View: Tokyo, Japan

    NASA Image and Video Library

    2017-12-08

    Tokyo is the world’s largest metropolitan region, home to nearly 37 million people. During the past two decades, Tokyo’s population has grown by more than 7 million. The city’s growth has continued despite Japan’s overall stagnating population, mainly due to a continued trend of centralization—citizens moving out of the country and into the city. Landsat 4 collected this first false-color image of Tokyo on Feb. 2, 1989. The upper half of Tokyo Bay is the large water body visible in a dark blue. In the middle of the image, central Tokyo appears a deep purple just north of the bay. Twenty-two years later, Landsat 5, captured this second image of Tokyo on April 5, 2011. The urban reaches of metropolitan Tokyo have grown in both distance and density, as seen where the green color of vegetation has turned to pink and purple shades of urbanization. A major expansion of Tokyo’s Haneda Airport, can be seen south of the city, on land built out into the bay. The constant circular spot of green in the dense city-center, visible on both images, is the Tokyo Imperial Palace and its gardens. (Landsat 5 TM Bands 7,4,2) ---- NASA and the U.S. Department of the Interior through the U.S. Geological Survey (USGS) jointly manage Landsat, and the USGS preserves a 40-year archive of Landsat images that is freely available over the Internet. The next Landsat satellite, now known as the Landsat Data Continuity Mission (LDCM) and later to be called Landsat 8, is scheduled for launch in 2013. In honor of Landsat’s 40th anniversary in July 2012, the USGS released the LandsatLook viewer – a quick, simple way to go forward and backward in time, pulling images of anywhere in the world out of the Landsat archive. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing

  4. Assessment of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2013-12-01

    This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan

  5. Pulse - Accelerator Science in Medicine

    Science.gov Websites

    discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing perhaps to new tools for medical science. National laboratories build particle accelerators for physicists

  6. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  7. Tokyo, Japan

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Tokyo, (35.5N, 140.0E) the capital city of Japan, Tokyo Bay and the neighboring cities of Yokohama, Kawasaki and Chiba are seen in this view of Japan. This great international seaport facility covers almost all of the bayfront and is home to over thirty million people.

  8. Proceedings of the Thirteenth Symposium on Naval Hydrodynamics Held at Tokyo (Japan) on October 6-10 1980

    DTIC Science & Technology

    1981-01-01

    sciences, material sciences, and ocean University of Tokyo, and his many able and science and technology . dedicated co-workers, in organizing this meeting...occasion. Since our Symposia concerning hydro- us to ease this section and gastronomy such as this dynamics or naval science took place in Tokyo, I buffet...Houten, R.J., Unpublished, 1978. 6. Van Oossanen, P., "Theoretical 6. CONCLUSION Prediction of Cavitation of Propellers,"Marine Technology , Vol. 14, No

  9. The metropolis of Tokyo.

    PubMed

    Russoff, D

    1986-04-01

    The Tokyo metropolis houses 11,892,016 people, 1/10 of the Japanese population. In recent years, Tokyo's population growth has slowed as the birthrate has fallen from a 1947 postwar high of 31.5/1000 to 11.4/1000 in 1983. 5.9 million males and 5.8 million females, composing 4 1/2 million households, live in Tokyo's 2160 square kilometers. Within the metropolis' 23 wards, density per square kilometer was 14,023 persons in 1983, with Toshima ward containing 21,844 people per square kilometer. Wards around the city's center held 71% of the population in 1983, but had only 27% of its land mass; outlying cities, towns, and villages held 28% of the population on 54% of the land. 50% of Tokyo's population is aged 25-59; those 65 or over will rise from 1980's 9% to 15.6% of the population in 2000. In 40 years, Japan will have more elderly people than any other advanced country. In 1983, Tokyo had over 150,000 housing starts, high by Japanese and international standards. Nearly 1/4 of Tokyo households each contain a married couple with 2 children, but single person households predominate, reflecting Tokyo's student, working bachelor, and elderly populations. Young, single Japanese workers spend 1/3 of their income on leisure, entertainment, cultural activities and education; couples marry late and, with 2 incomes, can purchase many nonessentials. Nearly 3.25 million students attend Tokyo's fiercely competitive schools and colleges; Japan is almost 100% literate. Of the 6 million people working in Tokyo, half work in the service and retail sector, 25% in manufacturing, 12% in transportation and communication, 9% in finance and insurance, and 8% work in construction. Tokyo workers earn nearly 20% more than the average Japanese worker. Japan now faces job shortages and will see many unemployment problems by 1990. To help absorb new workers, government planners recommend increasing vacation time, training workers as specialists rather than generalists, and encouraging job

  10. Shock-wave facility at Tokyo Institute of Technology

    NASA Astrophysics Data System (ADS)

    Sawaoka, A.; Kondo, K.

    1982-04-01

    The shock-wave facility at the Tokyo Institute of Technology is described. Two double-stage light-gas guns are used to studying material science and technology. Recently construction has begun for a new type of rail gun combined with a double-stage light-gas gun.

  11. A new probabilistic seismic hazard assessment for greater Tokyo

    USGS Publications Warehouse

    Stein, R.S.; Toda, S.; Parsons, T.; Grunewald, E.; Blong, R.; Sparks, S.; Shah, H.; Kennedy, J.

    2006-01-01

    Tokyo and its outlying cities are home to one-quarter of Japan's 127 million people. Highly destructive earthquakes struck the capital in 1703, 1855 and 1923, the last of which took 105 000 lives. Fuelled by greater Tokyo's rich seismological record, but challenged by its magnificent complexity, our joint Japanese-US group carried out a new study of the capital's earthquake hazards. We used the prehistoric record of great earthquakes preserved by uplifted marine terraces and tsunami deposits (17 M???8 shocks in the past 7000 years), a newly digitized dataset of historical shaking (10 000 observations in the past 400 years), the dense modern seismic network (300 000 earthquakes in the past 30 years), and Japan's GeoNet array (150 GPS vectors in the past 10 years) to reinterpret the tectonic structure, identify active faults and their slip rates and estimate their earthquake frequency. We propose that a dislodged fragment of the Pacific plate is jammed between the Pacific, Philippine Sea and Eurasian plates beneath the Kanto plain on which Tokyo sits. We suggest that the Kanto fragment controls much of Tokyo's seismic behaviour for large earthquakes, including the damaging 1855 M???7.3 Ansei-Edo shock. On the basis of the frequency of earthquakes beneath greater Tokyo, events with magnitude and location similar to the M??? 7.3 Ansei-Edo event have a ca 20% likelihood in an average 30 year period. In contrast, our renewal (time-dependent) probability for the great M??? 7.9 plate boundary shocks such as struck in 1923 and 1703 is 0.5% for the next 30 years, with a time-averaged 30 year probability of ca 10%. The resulting net likelihood for severe shaking (ca 0.9g peak ground acceleration (PGA)) in Tokyo, Kawasaki and Yokohama for the next 30 years is ca 30%. The long historical record in Kanto also affords a rare opportunity to calculate the probability of shaking in an alternative manner exclusively from intensity observations. This approach permits robust estimates

  12. A new probabilistic seismic hazard assessment for greater Tokyo.

    PubMed

    Stein, Ross S; Toda, Shinji; Parsons, Tom; Grunewald, Elliot

    2006-08-15

    Tokyo and its outlying cities are home to one-quarter of Japan's 127 million people. Highly destructive earthquakes struck the capital in 1703, 1855 and 1923, the last of which took 105,000 lives. Fuelled by greater Tokyo's rich seismological record, but challenged by its magnificent complexity, our joint Japanese-US group carried out a new study of the capital's earthquake hazards. We used the prehistoric record of great earthquakes preserved by uplifted marine terraces and tsunami deposits (17 M approximately 8 shocks in the past 7000 years), a newly digitized dataset of historical shaking (10000 observations in the past 400 years), the dense modern seismic network (300,000 earthquakes in the past 30 years), and Japan's GeoNet array (150 GPS vectors in the past 10 years) to reinterpret the tectonic structure, identify active faults and their slip rates and estimate their earthquake frequency. We propose that a dislodged fragment of the Pacific plate is jammed between the Pacific, Philippine Sea and Eurasian plates beneath the Kanto plain on which Tokyo sits. We suggest that the Kanto fragment controls much of Tokyo's seismic behaviour for large earthquakes, including the damaging 1855 M approximately 7.3 Ansei-Edo shock. On the basis of the frequency of earthquakes beneath greater Tokyo, events with magnitude and location similar to the M approximately 7.3 Ansei-Edo event have a ca 20% likelihood in an average 30 year period. In contrast, our renewal (time-dependent) probability for the great M > or = 7.9 plate boundary shocks such as struck in 1923 and 1703 is 0.5% for the next 30 years, with a time-averaged 30 year probability of ca 10%. The resulting net likelihood for severe shaking (ca 0.9 g peak ground acceleration (PGA)) in Tokyo, Kawasaki and Yokohama for the next 30 years is ca 30%. The long historical record in Kanto also affords a rare opportunity to calculate the probability of shaking in an alternative manner exclusively from intensity observations

  13. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The Com

  14. The Influence of Accelerator Science on Physics Research

    NASA Astrophysics Data System (ADS)

    Haussecker, Enzo F.; Chao, Alexander W.

    2011-06-01

    We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.

  15. Improvement of the High Fluence Irradiation Facility at the University of Tokyo

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto

    2016-08-01

    This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.

  16. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  17. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  18. Accelerator science and technology in Europe 2008-2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, Eu

  19. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  20. University of Tokyo, Institute of Astronomy

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Founded in 1987, the Institute of Astronomy, University of Tokyo, is located at Ohsawa, Mitaka, Japan, 30 km west of central Tokyo. Its objectives are research and education in observational astronomy. It has a staff of 3 professors; 5 associate professors; 8 research associates, 2 technical support staff, 2 administrative officers and several part-time staff (secretary, catering etc). Its major ...

  1. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  2. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  3. Systematic Education of Self-Medication at Tokyo University of Pharmacy and Life Sciences.

    PubMed

    Narui, Koji; Samizo, Kazuo; Inoue, Michiko; Watanabe, Kinzo

    2016-01-01

    The promotion of self-medication by pharmacies, with the aim of encouraging a patient's self-selection of proper OTC drug, is written about in the national action plan "Japan is Back". The subject of self-medication has been improved in the 2013 revised edition of "Model Core Curriculum for Pharmaceutical Education". At Tokyo University of Pharmacy and Life Sciences, the systematic education of self-medication was started from the onset of the six-year course in the third, fourth and fifth grade. We introduce here a new approach in our systematic education of self-medication. In the practice of the fourth grade, groups of around 5-6 students are formed. The pharmacy students assume various roles-of pharmacist, rater, observer, and chairman-and perform role-playing. We prepared a standardized patient (SP) showing various symptoms. The student of the role of pharmacist asks about the SP's symptoms, chooses an OTC drug suitable for the SP, and explains the OTC drug to the SP. After the role-playing, those in the roles of rater, observer, SP, and faculty give feedback to the student who played the role of pharmacist. Because we conduct this role-playing using SPs with a variety of symptoms, we can create a situation similar to a real drugstore.

  4. Overview of graduate training program of John Adams Institute for Accelerator Science

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei

    The John Adams Institute for Accelerator Science is a center of excellence in the UK for advanced and novel accelerator technology, providing expertise, research, development and training in accelerator techniques, and promoting advanced accelerator applications in science and society. We work in JAI on design of novel light sources upgrades of 3-rd generation and novel FELs, on plasma acceleration and its application to industrial and medical fields, on novel energy recovery compact linacs and advanced beam diagnostics, and many other projects. The JAI is based on three universities - University of Oxford, Imperial College London and Royal Holloway University of London. Every year 6 to 10 accelerators science experts, trained via research on cutting edge projects, defend their PhD thesis in JAI partner universities. In this presentation we will overview the research and in particular the highly successful graduate training program in JAI.

  5. Accelerator science and technology in Europe: EuCARD 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  6. New applications of particle accelerators in medicine, materials science, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

  7. Enhanced Surveillance for the Sports Festival in Tokyo 2013: Preparation for the Tokyo 2020 Olympic and Paralympic Games.

    PubMed

    Shimatani, Naotaka; Sugishita, Yoshiyuki; Sugawara, Tamie; Nakamura, Yuuki; Ohkusa, Yasushi; Yamagishi, Takuya; Matsui, Tamano; Kawano, Masashi; Watase, Hirotoshi; Morikawa, Yukiko; Oishi, Kazunori

    2015-01-01

    Enhanced surveillance was conducted during the Sports Festival in Tokyo 2013 (September 28-October 14, 2013) for early detection of outbreaks of infectious diseases and other health emergencies. Through this enhanced surveillance, 15 cases were found that required additional gathering of information outside the routine process of creating/evaluating the Daily Report. However, none of these was assessed as critical. Through the enhanced surveillance, we structured a framework that allows for earlier response when detecting aberrations. It includes the role of the Tokyo Metropolitan Government in communications and contacts with relevant parties such as public health centers, as well as in monitoring of surveillance data. However, some issues need to be further considered toward the Tokyo 2020 Olympic and Paralympic Games, such as establishing the criteria for additional response steps, increasing the number of participating bodies in syndromic surveillance, and strengthening of cooperation with related departments, including those for crisis management assuming potential biological/chemical terrorism.

  8. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  9. Food poisoning outbreak in Tokyo, Japan caused by Staphylococcus argenteus.

    PubMed

    Suzuki, Yasunori; Kubota, Hiroaki; Ono, Hisaya K; Kobayashi, Makiko; Murauchi, Konomi; Kato, Rei; Hirai, Akihiko; Sadamasu, Kenji

    2017-12-04

    Staphylococcus argenteus is a novel species subdivided from Staphylococcus aureus. Whether this species can cause food poisoning outbreaks is unknown. This study aimed to investigate the enterotoxigenic activities of two food poisoning isolates suspected to be S. argenteus (Tokyo13064 and Tokyo13069). The results for phylogenic trees, constructed via whole genome sequencing, demonstrated that both isolates were more similar to a type strain of S. argenteus (MSHR1132) than any S. aureus strain. Moreover, the representative characteristics of S. argenteus were present in both strains, namely both isolates belong to the CC75 lineage and both lack a crtOPQMN operon. Thus, both were determined to be "S. argenteus." The compositions of the two isolates' accessory elements differed from those of MSHR1132. For example, the seb-related Staphylococcus aureus pathogenicity island, SaPIishikawa11, was detected in Tokyo13064 and Tokyo13069 but not in MSHR1132. Both isolates were suggested to belong to distinct lineages that branched off from MSHR1132 lineages in terms of accessory elements. Tokyo13064 and Tokyo13069 expressed high levels of s(arg)eb and produced S(arg)EB protein, indicating that both have the ability to cause food poisoning. Our findings suggest that S. argenteus harboring particular accessory elements can cause staphylococcal diseases such as food poisoning, similarly to S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of a Screening Scale for High-Functioning Pervasive Developmental Disorders Using the Tokyo Child Development Schedule and Tokyo Autistic Behavior Scale

    ERIC Educational Resources Information Center

    Suzuki, Mayo; Tachimori, Hisateru; Saito, Mari; Koyama, Tomonori; Kurita, Hiroshi

    2011-01-01

    This study aimed to compile a screening scale for high-functioning pervasive developmental disorders (PDD), using the Tokyo Child Development Schedule (TCDS) and Tokyo Autistic Behavior Scale (TABS). The 72 participants (IQ greater than or equal to 70) were divided into 3 groups after IQ matching depending on their diagnoses: i.e., PDD,…

  11. Utilizing a MOOC as an education and outreach tool for geoscience: case study from Tokyo Tech's MOOC on "Deep Earth Science"

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Okuda, Y.; Hideki, M.; Cross, S. J.; Tazawa, K.; Hirose, K.

    2016-12-01

    Massive open online courses (MOOC or MOOCs) have attracted world-wide attention as a new digital educational tool. However, utilizing MOOCs for teaching geoscience and for outreach activity are limited so far. Mainly due to the fact that few MOOCs are available on this topic. The following questions are usually asked before undertaking MOOC development. How many students will potentially enroll in a course and what kind of background knowledge do they have? What is the best way to market the course and let them learn concepts easily? How will the instructor or staff manage discussion boards and answer questions? And, more simply, is a MOOC an effective educational or outreach tool? Recently, Tokyo Institute of Technology (Tokyo Tech) offered our first MOOC on "Deep Earth Science" on edX, which is one of the largest worldwide MOOC platforms. This brand new course was released in the Fall of 2015 and will re-open during the winter of 2016. This course contained materials such as structure of inside of the Earth, internal temperature of the earth and how it is estimated, chemical compositions and dynamics inside the earth. Although this course mainly dealt with pure scientific research content, over 5,000 students from 156 countries enrolled and 4 % of them earned a certificate of completion. In this presentation, we will share a case study based upon what we learned from offering "Deep Earth Science". At first, we will give brief introduction of our course. Then, we want to introduce tips to make a better MOOC by focusing on 1) students' motivation on studying, scientific literacy background, and completion rate, 2) offering engaging content and utilization of surveys, and 3) discussion board moderation. In the end, we will discuss advantages of utilizing a MOOC as an effective educational tool for geoscience. We welcome your ideas on MOOCs and suggestions on revising the course content.

  12. Simon van der Meer (1925-2011):. A Modest Genius of Accelerator Science

    NASA Astrophysics Data System (ADS)

    Chohan, Vinod C.

    2011-02-01

    Simon van der Meer was a brilliant scientist and a true giant of accelerator science. His seminal contributions to accelerator science have been essential to this day in our quest for satisfying the demands of modern particle physics. Whether we talk of long base-line neutrino physics or antiproton-proton physics at Fermilab or proton-proton physics at LHC, his techniques and inventions have been a vital part of the modern day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics, in 1984. Van der Meer's lesserknown contributions spanned a whole range of subjects in accelerator science, from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs and controls.

  13. Accelerators for Discovery Science and Security applications

    NASA Astrophysics Data System (ADS)

    Todd, A. M. M.; Bluem, H. P.; Jarvis, J. D.; Park, J. H.; Rathke, J. W.; Schultheiss, T. J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15-50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug-cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  14. Social, not physical, infrastructure: the critical role of civil society after the 1923 Tokyo earthquake.

    PubMed

    Aldrich, Daniel P

    2012-07-01

    Despite the tremendous destruction wrought by catastrophes, social science holds few quantitative assessments of explanations for the rate of recovery. This article illuminates four factors-damage, population density, human capital, and economic capital-that are thought to explain the variation in the pace of population recovery following disaster; it also explores the popular but relatively untested factor of social capital. Using time-series, cross-sectional models and propensity score matching, it tests these approaches using new data from the rebuilding of 39 neighbourhoods in Tokyo after its 1923 earthquake. Social capital, more than earthquake damage, population density, human capital, or economic capital, best predicts population recovery in post-earthquake Tokyo. These findings suggest new approaches for research on social capital and disasters as well as public policy avenues for handling catastrophes. © 2012 The Author(s). Journal compilation © Overseas Development Institute, 2012.

  15. Terascale Computing in Accelerator Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Kwok

    2002-08-21

    We have entered the age of ''terascale'' scientific computing. Processors and system architecture both continue to evolve; hundred-teraFLOP computers are expected in the next few years, and petaFLOP computers toward the end of this decade are conceivable. This ever-increasing power to solve previously intractable numerical problems benefits almost every field of science and engineering and is revolutionizing some of them, notably including accelerator physics and technology. At existing accelerators, it will help us optimize performance, expand operational parameter envelopes, and increase reliability. Design decisions for next-generation machines will be informed by unprecedented comprehensive and accurate modeling, as well as computer-aidedmore » engineering; all this will increase the likelihood that even their most advanced subsystems can be commissioned on time, within budget, and up to specifications. Advanced computing is also vital to developing new means of acceleration and exploring the behavior of beams under extreme conditions. With continued progress it will someday become reasonable to speak of a complete numerical model of all phenomena important to a particular accelerator.« less

  16. Development of evaluation metod of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2012-12-01

    Flood is one of the most significant natural hazards in Japan. In particular, the Tokyo metropolitan area has been affected by several large flood disasters. Investigating potential flood risk in Tokyo metropolitan area is important for development of climate change adaptation strategy. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published "Statistics of flood", which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. Based on these flood data, we constructed a flood database system for Tokyo metropolitan area for the period from 1961 to 2008 by using ArcGIS software.Based on these flood data , we created flood risk curve, representing the relation ship between damage and exceedbability of flood for the period 1976-2008. Based on the flood risk cruve, we aim to evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause of regional difference in flood risk at Tokyo metropolitan area by considering effect of socio-economic change and climate change

  17. The Third International Conference: Tokyo

    ERIC Educational Resources Information Center

    Kidd, J. Roby

    1972-01-01

    The Tokyo Conference featured more of an acceptance of established theory, agreement on broad programs, and consolidation of approaches. It also made clear the fact that governments now take, and expect to take a much greater responsibility for adult education. (Author/RK)

  18. Education for Earthquake Disaster Prevention in the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Oki, S.; Tsuji, H.; Koketsu, K.; Yazaki, Y.

    2008-12-01

    Japan frequently suffers from all types of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. In the first half of this year, we already had three big earthquakes and heavy rainfall, which killed more than 30 people. This is not just for Japan but Asia is the most disaster-afflicted region in the world, accounting for about 90% of all those affected by disasters, and more than 50% of the total fatalities and economic losses. One of the most essential ways to reduce the damage of natural disasters is to educate the general public to let them understand what is going on during those desasters. This leads individual to make the sound decision on what to do to prevent or reduce the damage. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools, and ERI, the Earthquake Research Institute, is qualified to develop education for earthquake disaster prevention in the Tokyo metropolitan area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1703 Genroku earthquake (M 8.0) and the 1923 Kanto earthquake (M 7.9) which had 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global economic repercussion. To better understand earthquakes in this region, "Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area" has been conducted mainly by ERI. It is a 4-year

  19. Health risks and precautions for visitors to the Tokyo 2020 Olympic and Paralympic Games.

    PubMed

    Nakamura, Sachiko; Wada, Koji; Yanagisawa, Naoki; Smith, Derek R

    In 2020, Japan will host the Tokyo Olympic and Paralympic Games in 2020 (Tokyo 2020) which will involve a large population influx from various countries to Tokyo, the most populated city in Japan. We summarize the potential health risks for visitors to Tokyo 2020, related to communicable disease risks and other health threats, based on recent national and local surveillance reports. We reviewed up-to-date surveillance reports published by the National Institute of Infectious Diseases and Tokyo Metropolitan Infectious Disease Surveillance Center. Communicable disease risks for vaccine-preventable illnesses such as measles and rubella, as well as food and waterborne diseases represent the most likely risks. The risk of acquiring vector-borne diseases is considered low in Japan. On the other hand, however, heat-related illness represents a potential risk, as Tokyo 2020 is scheduled during the hottest season in Japan, with temperatures generally expected to exceed 30 °C. Maintaining an up-to-date routine vaccination schedule is highly recommended for visitors attending the Tokyo 2020 and appropriate hygiene measures for food and waterborne diseases as well as health promotion for heat-related illness. It may also be useful to increase the number of multilingual triage clinicians whom can be placed within emergency departments during the Tokyo 2020 to provide first contact services and coordination of emergency care among non-Japanese speaking visitors to Tokyo. Copyright © 2018. Published by Elsevier Ltd.

  20. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  1. Science Teachers Accelerated Programme Model: A Joint Partnership in the Pacific Region

    ERIC Educational Resources Information Center

    Sharma, Bibhya; Lauano, Faatamali'i Jenny; Narayan, Swasti; Anzeg, Afshana; Kumar, Bijeta; Raj, Jai

    2018-01-01

    The paper heralds a new pedagogical model known as the Science Teachers Accelerated Programme as a platform to upgrade the qualifications of secondary school science teachers throughout the Pacific region. Based on a tripartite partnership between a higher education provider, a regional government and a cohort of science teachers, the model offers…

  2. Circadian Variation in Suicide Attempts in Tokyo from 1978 to 1985.

    ERIC Educational Resources Information Center

    Motohashi, Yutaka

    1990-01-01

    Analyzed circadian variations in suicide attempts in Tokyo from 1978 to 1985 from records of Ambulance Service of Tokyo. Findings showed significant circadian variation in suicide attempts which seemed to be associated with endogenous rhythms, such as mood, and daily variation in social activities. Established peak time for suicide attempts as…

  3. Tokyo Metropolitan Earthquake Preparedness Project - A Progress Report

    NASA Astrophysics Data System (ADS)

    Hayashi, H.

    2010-12-01

    Munich Re once ranked that Tokyo metropolitan region, the capital of Japan, is the most vulnerable area for earthquake disasters, followed by San Francisco Bay Area, US and Osaka, Japan. Seismologists also predict that Tokyo metropolitan region may have at least one near-field earthquake with a probability of 70% for the next 30 years. Given this prediction, Japanese Government took it seriously to conduct damage estimations and revealed that, as the worst case scenario, if a7.3 magnitude earthquake under heavy winds as shown in the fig. 1, it would kill a total of 11,000 people and a total of direct and indirect losses would amount to 112,000,000,000,000 yen(1,300,000,000,000, 1=85yen) . In addition to mortality and financial losses, a total of 25 million people would be severely impacted by this earthquake in four prefectures. If this earthquake occurs, 300,000 elevators will be stopped suddenly, and 12,500 persons would be confined in them for a long time. Seven million people will come to use over 20,000 public shelters spread over the impacted area. Over one millions temporary housing units should be built to accommodate 4.6 million people who lost their dwellings. 2.5 million people will relocate to outside of the damaged area. In short, an unprecedented scale of earthquake disaster is expected and we must prepare for it. Even though disaster mitigation is undoubtedly the best solution, it is more realistic that the expected earthquake would hit before we complete this business. In other words, we must take into account another solution to make the people and the assets in this region more resilient for the Tokyo metropolitan earthquake. This is the question we have been tackling with for the last four years. To increase societal resilience for Tokyo metropolitan earthquake, we adopted a holistic approach to integrate both emergency response and long-term recovery. There are three goals for long-term recovery, which consists of Physical recovery, Economic

  4. [Mercury concentration of fish in Tokyo Bay and the surrounding sea area].

    PubMed

    Zhang, R; Kashima, Y; Matsui, M; Okabe, T; Doi, R

    2001-07-01

    Total mercury in the muscles of three fish species was analyzed in fish caught in Tokyo Bay and the surrounding sea areas, Sagami Bay and Choshi. Tokyo Bay is a semi-closed sea area surrounded by Tokyo, Kanagawa and Chiba prefectures. Sagami Bay and Choshi are open to the Pacific Ocean. A total of 412 fish consisting of northern whiting (Sillago japonica), flatfish (Limanda yokohamae) and sardine (Sardinops melanosticta) were caught in these areas over a 6 months period from November 1998 to April 1999. Total mercury concentration ranged from 0.008-0.092 microgram/g (wet wt.) in northern whiting, 0.006-0.065 microgram/g in flatfish and 0.001-0.045 microgram/g in sardine. All concentrations were below the restriction limit of fish mercury in Japan, 0.4 microgram/g of total mercury concentration. A significant correlation was found between mercury concentrations and body length or body weight in northern whiting and flatfish, irrespective of the sea area. A correlation was also found between mercury concentration in fish and their feeding habits: among the 3 species caught in the same area, crustacean feeding northern whiting had the highest, polychaete feeding flatfish moderate, and plankton feeding sardine had the lowest mercury concentration. In a comparison of mercury concentration in the same species caught in different sea areas, a higher concentration was noted in fish caught in the semi-closed sea area of Tokyo Bay, than in fish caught in the open sea areas of Sagami Bay and Choshi. This difference was most marked in fish caught at the bottom of Tokyo Bay and we considered that the mercury concentration of seawater and sediment in these areas was the cause of mercury accumulation in fish. These findings suggest that improved water quality control and environmental monitoring is necessary in semi-closed sea areas such as Tokyo Bay.

  5. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  6. Preventing heat illness in the anticipated hot climate of the Tokyo 2020 Summer Olympic Games.

    PubMed

    Kakamu, Takeyasu; Wada, Koji; Smith, Derek R; Endo, Shota; Fukushima, Tetsuhito

    2017-09-19

    Amid the effects of global warming, Tokyo has become an increasingly hot city, especially during the summertime. To prepare for the upcoming 2020 Summer Olympics and Paralympics in Tokyo, all participants, including the athletes, staff, and spectators, will need to familiarize themselves with Tokyo's hot and humid summer conditions. This paper uses the wet-bulb globe temperature (WBGT) index, which estimates the risk of heat illness, to compare climate conditions of sports events in Tokyo with the conditions of the past three Summer Olympics (held in Rio de Janeiro, London, and Beijing) and to subsequently detail the need for establishing appropriate countermeasures. We compared WBGT results from the past three Summer Olympics with the same time periods in Tokyo during 2016. There was almost no time zone where a low risk of heat illness could be expected during the time frame of the upcoming 2020 Tokyo Olympics. We also found that Tokyo had a higher WBGT than any of those previous host cities and is poorly suited for outdoor sporting events. Combined efforts by the official organizers, government, various related organizations, and the participants will be necessary to deal with these challenging conditions and to allow athletes to perform their best, as well as to prevent heat illnesses among staff and spectators. The sporting committees, as well as the Olympic organizing committee, should consider WBGT measurements in determining the venues and timing of the events to better avoid heat illness and facilitate maximum athletic performance.

  7. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  8. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the acceleratorsmore » are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.« less

  9. Impact of the 2001 Tohoku-oki earthquake to Tokyo Metropolitan area observed by the Metropolitan Seismic Observation network (MeSO-net)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Hayashi, H.; Nakagawa, S.; Sakai, S.; Honda, R.; Kasahara, K.; Obara, K.; Aketagawa, T.; Kimura, H.; Sato, H.; Okaya, D. A.

    2011-12-01

    tomography of P- and S- wave structure, seismic interferometry for shallow structure and using the dense MeSO-net data. We observed the 2011 Tohoku-oki event and its aftershocks including M7.7 event off Ibaraki prefecture, which is the largest aftershock so far. We imaged source radiation energy using the MeSO-net data by the back-projection method (Honda et al., 2011). We found seismic activity in the Kanto region has been activated after the event, suggesting increased seismic hazard in Kanto region even for plate boundary events. We use a new image of PSP and Pacific plate. We evaluate potential zones of the M7+ earthquake on the plate boundary and within the PSP slab which will be used for risk mitigation study by a socio-science group. We will also discuss a future plan to continue our effort in seismic risk mitigation in Tokyo Metropolitan area, stress regime of which is seriously changed by the Tohoku-oki event. This is supported by the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area

  10. Redefining The U.S.-Japan Alliance: Tokyo’s National Defense Program

    DTIC Science & Technology

    1994-11-01

    affairs to a member of the National Diet , a Fulbright Fellow at Tokyo University, a reporter for Defense News and the Iwate Nippo, and Tokyo...process of introducing electoral reform in the Diet has already split the LDP and led to the recent series of coalitions. The process of implementing this...what Malaysian Prime Minister Mahathir Mohamad told Japanese Prime Minister Murayama in August 1994. See "Mahathir to Japan: ’Drop War Apologies, Join

  11. Implementation Science to Accelerate Clean Cooking for Public Health

    PubMed Central

    Rosenthal, Joshua; Balakrishnan, Kalpana; Bruce, Nigel; Chambers, David; Graham, Jay; Jack, Darby; Kline, Lydia; Masera, Omar; Mehta, Sumi; Mercado, Ilse Ruiz; Neta, Gila; Pattanayak, Subhrendu; Puzzolo, Elisa; Petach, Helen; Punturieri, Antonello; Rubinstein, Adolfo; Sage, Michael; Sturke, Rachel; Shankar, Anita; Sherr, Kenny; Smith, Kirk; Yadama, Gautam

    2017-01-01

    Summary: Clean cooking has emerged as a major concern for global health and development because of the enormous burden of disease caused by traditional cookstoves and fires. The World Health Organization has developed new indoor air quality guidelines that few homes will be able to achieve without replacing traditional methods with modern clean cooking technologies, including fuels and stoves. However, decades of experience with improved stove programs indicate that the challenge of modernizing cooking in impoverished communities includes a complex, multi-sectoral set of problems that require implementation research. The National Institutes of Health, in partnership with several government agencies and the Global Alliance for Clean Cookstoves, has launched the Clean Cooking Implementation Science Network that aims to address this issue. In this article, our focus is on building a knowledge base to accelerate scale-up and sustained use of the cleanest technologies in low- and middle-income countries. Implementation science provides a variety of analytical and planning tools to enhance effectiveness of clinical and public health interventions. These tools are being integrated with a growing body of knowledge and new research projects to yield new methods, consensus tools, and an evidence base to accelerate improvements in health promised by the renewed agenda of clean cooking. PMID:28055947

  12. Tokyo terror and chemical arms control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeny, S.M. Jr.

    The nerve gas attack in the Tokyo subway underscores the extreme vulnerability of urban society to terrorist attacks. The best defense is improved intelligence of potential terrorists and domestic laws permitting pre-emptive action when there is probable cause. If the 1993 Chemical Weapons Convention (CWC) were in force, all 159 signatories would be required to have such laws. The author examies the threat and provides some political insights.

  13. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  14. Accelerator Science: Why RF?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  15. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research.

    PubMed

    Horowitz, Carol R; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N; Smith, Geoffrey W; Dudley, Joel; Manning, Rachel; Bickell, Nina A; Galvez, Maida P

    2017-02-23

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific "accelerators", tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators-digital health, big data, genomics and environmental health-and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities.

  16. Accelerator Science: Circular vs. Linear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  17. Age-related prevalence of allergic diseases in Tokyo schoolchildren.

    PubMed

    Futamura, Masaki; Ohya, Yukihiro; Akashi, Masayuki; Adachi, Yuichi; Odajima, Hiroshi; Akiyama, Kazuo; Akasawa, Akira

    2011-12-01

    The International Study of Asthma and Allergies in Childhood (ISAAC) has reported the prevalence of asthma and allergic diseases in many countries. We used the ISAAC core written questionnaire to examine the prevalence of asthma and allergic diseases in 6- to 14-year old schoolchildren in Tokyo. In 2005, we conducted a cross-sectional survey of all schoolchildren in all public schools located in the Setagaya area of Tokyo. Data were collected from 27,196 children in 95 schools. Prevalence ranged from 10.5% to 18.2% for asthma symptoms and from 10.9% to 19.6% for atopic dermatitis, with both conditions tending to decrease with age. As has been previously reported for all age groups, significantly higher rates of current asthma are observed in boys than in girls. The prevalence of allergic rhinoconjunctivitis exhibited a different pattern from that of asthma and atopic dermatitis, peaking at the age of 10 (34.8%). Prevalence of allergic rhinoconjunctivitis was 1.5 to 2-fold higher than the previous ISAAC studies that were performed in Tochigi and Fukuoka. In all age groups, symptoms of allergic conjunctivitis were more frequent from February to May, which coincides with the Japanese cedar pollen season, and were less frequent between June to September. The prevalence of asthma and atopic dermatitis was higher in younger schoolchildren. Tokyo schoolchildren appear to have extremely high prevalence rates of seasonal allergic rhinoconjunctivitis.

  18. Airborne pollen and suicide mortality in Tokyo, 2001-2011.

    PubMed

    Stickley, Andrew; Sheng Ng, Chris Fook; Konishi, Shoko; Koyanagi, Ai; Watanabe, Chiho

    2017-05-01

    Prior research has indicated that pollen might be linked to suicide mortality although the few studies that have been undertaken to date have produced conflicting findings and been limited to Western settings. This study examined the association between the level of airborne pollen and suicide mortality in Tokyo, Japan in the period from 2001 to 2011. The daily number of suicide deaths was obtained from the Japanese Ministry of Health, Labour and Welfare, with pollen data being obtained from the Tokyo Metropolitan Institute of Public Health. A time-stratified case-crossover study was performed to examine the association between different levels of pollen concentration and suicide mortality. During the study period there were 5185 male and 2332 female suicides in the pollen season (February to April). For men there was no association between airborne pollen and suicide mortality. For women, compared to when there was no airborne pollen, the same-day (lag 0) pollen level of 30 to <100 grains per cm 2 was associated with an approximately 50% increase in the odds for suicide (e.g. 30 to <50 grains per cm 2 : odds ratio 1.574, 95% confidence interval 1.076-2.303, p=0.020). The estimates remained fairly stable after adjusting for air pollutants and after varying the cut-points that defined the pollen levels. Our results indicate that pollen is associated with female suicide mortality in Tokyo. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Accelerator Science: Circular vs. Linear

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  20. TOKYO criteria 2014 for transpapillary biliary stenting.

    PubMed

    Isayama, Hiroyuki; Hamada, Tsuyoshi; Yasuda, Ichiro; Itoi, Takao; Ryozawa, Shomei; Nakai, Yousuke; Kogure, Hirofumi; Koike, Kazuhiko

    2015-01-01

    It is difficult to carry out meta-analyses or to compare the results of different studies of biliary stents because there is no uniform evaluation method. Therefore, a standardized reporting system is required. We propose a new standardized system for reporting on biliary stents, the 'TOKYO criteria 2014', based on a consensus among Japanese pancreatobiliary endoscopists. Instead of stent occlusion, we use recurrent biliary obstruction, which includes occlusion and migration. The time to recurrent biliary obstruction was estimated using Kaplan-Meier analysis with the log-rank test. We can evaluate both plastic and self-expandable metallic stents (uncovered and covered). We also propose specification of the cause of recurrent biliary obstruction, identification of complications other than recurrent biliary obstruction, indication of severity, measures of technical and clinical success, and a standard for clinical care. Most importantly, the TOKYO criteria 2014 allow comparison of biliary stent quality across studies. Because blocked stents can be drained not only using transpapillary techniques but also by an endoscopic ultrasonography-guided transmural procedure, we should devise an evaluation method that includes transmural stenting in the near future. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  1. Pilot fatigue : intercontinental jet flight. 1. Oklahoma City Tokyo.

    DOT National Transportation Integrated Search

    1965-03-01

    Following 3 consecutive days of biomedical assessment in Oklahoma City, six healthy subjects were transported to Tokyo, where assessments were made on alternate days throughout a period of 10 days, and were then transported back to Oklahoma City, whe...

  2. The reliability and validity of the Tokyo Autistic Behaviour Scale.

    PubMed

    Kurita, H; Miyake, Y

    1990-03-01

    The Tokyo Autistic Behavior Scale (TABS) consisting of 39 items provisionally grouped in four areas--interpersonal-social relationship, language-communication, habit-mannerism and others--is an instrument used by a child's caretaker to rate the child's autistic behaviors on a 3-point scale. Test-retest reliability was satisfactory (i.e., an r for a total score was .94). Among six DSM-III diagnostic groups, infantile autism showed a significantly higher total TABS score than the other five groups, and a taxonomic validity coefficient was .54. An r between total scores of the TABS and the Childhood Autism Rating Scale--Tokyo Version was .59. The area scores showed a lower validity than the total score. The TABS appears to be a useful instrument to assess autistic behavior.

  3. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  4. Accelerator Science: Proton vs. Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  5. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  6. Accelerating Translational Research through Open Science: The Neuro Experiment.

    PubMed

    Gold, E Richard

    2016-12-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  7. Can Low-Cost Support Programmes with Coaching Accelerate Doctoral Completion in Health Science Faculty Academics?

    ERIC Educational Resources Information Center

    Geber, Hilary; Bentley, Alison

    2012-01-01

    Career development for full-time Health Sciences academics through to doctoral studies is a monumental task. Many academics have difficulty completing their studies in the minimum time as well as publishing after obtaining their degree. As this problem is particularly acute in the Health Sciences, the PhD Acceleration Programme in Health Sciences…

  8. Mathematics and science acceleration in grade eight: School leaders' perceptions and satisfaction

    NASA Astrophysics Data System (ADS)

    Graham, Kenneth

    Shifts in attitudes regarding academic program accessibility to provide the most rigorous academic opportunities to all students will not occur smoothly without departmental level leaders who believe in the potential benefits of accelerating larger numbers of students. Without the support and the belief of the department level leadership, practices such as open enrollment and universal acceleration that target school equity will be doomed to failure. This study was conducted using a questionnaire developed by the researcher called the Perceptions of Acceleration and Leadership Survey. The survey was distributed to all math and science department leaders within a suburban region of New York. The survey sought to determine how the perceptions of acceleration, job satisfaction, self-efficacy, and role longevity for the department level leaders are impacted by their personal demographics, professional characteristics, and community characteristics. The study did not reveal any statistically significant differences among department level leaders' personal, professional, and community characteristics with respect to perceptions of acceleration. There were significant differences for job satisfaction, self-efficacy, and role longevity for several intervening and independent variables within the study. Statistically significant correlations were found between beliefs in college preparation and perceptions of acceleration as well as relationships with the community and perceptions of acceleration. The results indicate the importance of hiring department leaders who recognize the potential for accelerating more students, hiring more ethnically diverse candidates for these leadership positions, affording department level leaders with significant professional development, and evaluation of administrative structures to maximize student success.

  9. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more

  10. Imaging of Heterogeneous Structure beneath the Metropolitan Tokyo Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Kurashimo, E.; Kato, A.; Hagiwara, H.; Kasahara, K.; Tanada, T.; Obara, K.; Hirata, N.

    2009-12-01

    Beneath the metropolitan Tokyo area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. The Dai-Dai-Toku Project revealed the geometry of the upper surface of PSP, and estimated a rupture process and a ground motion of the 1923 Kanto earthquake [Sato et al., 2005]. Hagiwara et al. (2006) estimated the velocity structure of Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the metropolitan Tokyo area including those due to an intra-slab M7+ earthquake. So, we have carried out a 5-year project since 2007, the Special Project for Earthquake Disaster Mitigation in the Metropolitan Tokyo area. Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) of PSP is very important to attain this issue. The core item of this project is the dense seismic array observation in metropolitan area, which is called the MeSO-net (Metropolitan Seismic Observation network). In order to obtain the high resolution images of a velocity structure, it is requested to construct a seismic network with a spacing of 2-5 km. The total number of seismic stations of the MeSO-net will be about 400 and will be deployed in 4 years. We deployed the 178 seismic stations, which construct 5 seismic arrays such as Tsukuba-Fujisawa (TF) array etc., by 2008, and we are now deploying the 45 seismic stations in this year. The MeSO-net data are quasi-real-time transferred to the data center at ERI [Kasahara et al., 2007; Nakagawa et al., 2007]. In this study, we applied the tomography to image the heterogeneous structure under the metropolitan Tokyo area. We selected events from the catalogue by Hagiwara et al. (2006) and merged the new event data observed by MeSO-net with these data. Around the Kanto region there are several seismic explorations using active sources were carried out [Sato et al., 2005; Oikawa et al., 2007]. Since these data may improve the

  11. Ambient air pollution and suicide in Tokyo, 2001-2011.

    PubMed

    Ng, Chris Fook Sheng; Stickley, Andrew; Konishi, Shoko; Watanabe, Chiho

    2016-09-01

    Some evidence suggests an association may exist between the level of air pollution and suicide mortality. However, this relation has been little studied to date. The current study examined the association in Tokyo, Japan. Suicide mortality data for Tokyo for the 11-year period 2001-2011 were obtained together with data on four air pollutants: fine particulate matter (PM2.5), suspended particulate matter (SPM), sulphur dioxide (SO2) and nitrogen dioxide (NO2). A time-stratified case-crossover study design was used to examine the daily association between the level of air pollution and suicide mortality. During the study period there were 29,939 suicide deaths. In stratified analyses an interquartile range (IQR) increase in the same-day concentration of NO2 was linked to increased suicide mortality among those aged under 30 (percentage change: 6.73%, 95% CI: 0.69-13.12%). An IQR increase in PM2.5 and SO2 was associated with a 10.55% (95% CI: 2.05-19.75%) and 11.47% (95% CI: 3.60-19.93%) increase, respectively, in suicide mortality among widowed individuals for mean exposure on the first four days (average lags 0-3). Positive associations were observed for the air pollutants in the summer although associations were reversed in autumn. We relied on monitoring data to approximate individual exposure to air pollutants. Higher levels of air pollution are associated with increased suicide mortality in some population subgroups in Tokyo. Further research is needed to elucidate the mechanisms linking air pollutants and suicide in this setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Measuring the inequalities in radiotherapy health resources in Japan: comparison of the Hokkaido-Tohoku and Tokyo districts.

    PubMed

    Ohba, Hisateru; Narumi, Masakazu; Hosokawa, Yoichiro; Aoki, Masahiko

    2010-01-01

    The aim of this study was to measure and compare the geographical inequalities in radiotherapy health resources between the Hokkaido-Tohoku and Tokyo districts of Japan. The numbers of radiotherapy facilities, radiologists, and radiological technologists were used to represent radiotherapy health resources. The target areas were 11 prefectures in the Hokkaido-Tohoku and Tokyo districts. The Gini coefficient (GC) was used to measure inequalities in health resources in relation to the population and area of each secondary medical care zone. Correlation analysis was performed to clarify the relation between the GC and the all-cancer mortality rate per 100,000 people. The mean population and area GCs of Yamagata Prefecture were the smallest, whereas the mean population GC of Tokyo and the mean area GC of Hokkaido were the largest. The mean GCs of radiotherapy facilities and radiological technologists were higher in the Tokyo district than in the Hokkaido-Tohoku district. No significant correlation was found between GC and cancer mortality. Geographical inequalities in radiotherapy health resources tended to be larger in the Tokyo district than in the Hokkaido-Tohoku district. It is expected that the radiotherapy system will be substantially improved by the Basic Plan to Promote Cancer Control Programs.

  13. PREFACE: International Conference on High Pressure Science and Technology, Joint AIRAPT-22 & HPCJ-50

    NASA Astrophysics Data System (ADS)

    Viña, Luis; Tejedor, Carlos; Calleja, José M.

    2010-01-01

    The International Joint AIRAPT-22 & HPCJ-50 Conference was held in Odaiba, Tokyo, on 26-31 July 2009. About 480 scientists from 24 countries attended the conference and 464 papers, including 3 plenary lectures, 39 invited talks, and 156 oral presentations, were presented. It is my great pleasure to present this proceedings volume, which is based on the high quality scientific works presented at the conference. The International AIRAPT conference has been held every two years in various countries around the world since 1965, while High Pressure Conference of Japan (HPCJ) has been held annually since 1959 in various Japanese cities. Pressure is a fundamental parameter to control the property of matter. As a result, both AIRAPT and HPCJ have become highly multidisciplinary, and cover Physics, Chemistry, Materials Science, Earth and Planetary Sciences, Biosciences, Food Science, and Technology. Although each discipline has a unique target, they all have high-pressure research in common. This proceedings volume includes about 200 papers of state-of-the-art studies from numerous fields. I hope this proceedings volume provides excellent pieces of information in various fields to further advance high-pressure research. Conference logo Takehiko Yagi Conference Chairman Institute for Solid State Physics The University of Tokyo 7 December 2009 Conference photograph Participants at the conference venue, Tokyo International Exchange Center, Odaiba, Tokyo, Japan. Editor in Chief TAKEMURA Kenichi National Institute for Materials Science, Japan Editorial board Tadashi KONDO Osaka University, Japan Hitoshi MATSUKI The University of Tokushima, Japan Nobuyuki MATUBAYASI Kyoto University, Japan Yoshihisa MORI Okayama University of Science, Japan Osamu OHTAKA Osaka University, Japan Chihiro SEKINE Muroran Institute of Technology, Japan

  14. Experiences with Deriva: An Asset Management Platform for Accelerating eScience.

    PubMed

    Bugacov, Alejandro; Czajkowski, Karl; Kesselman, Carl; Kumar, Anoop; Schuler, Robert E; Tangmunarunkit, Hongsuda

    2017-10-01

    The pace of discovery in eScience is increasingly dependent on a scientist's ability to acquire, curate, integrate, analyze, and share large and diverse collections of data. It is all too common for investigators to spend inordinate amounts of time developing ad hoc procedures to manage their data. In previous work, we presented Deriva, a Scientific Asset Management System, designed to accelerate data driven discovery. In this paper, we report on the use of Deriva in a number of substantial and diverse eScience applications. We describe the lessons we have learned, both from the perspective of the Deriva technology, as well as the ability and willingness of scientists to incorporate Scientific Asset Management into their daily workflows.

  15. Tokyo, Yokohama and Tokoy Bay as seen from STS-58

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Japan's modern megalopolis is seen in this nadir view in great detail. More than 80 vessels can be seen at the anchorage's in Tokyo Bay. The gardens of the Emperor's Palace are seen in this circular area in the upper left quadrant.

  16. The 2011 measles outbreak in Tokyo. An analysis of surveillance data.

    PubMed

    Nadaoka, Yoko; Hayata, Noriko; Sugishita, Yoshiyuki; Kajiwara, Toshiko; Watanabe, Yu; Yoshida, Michihiko; Hasegawa, Michiya; Hayashi, Yukinao; Ochi, Masayo; Kai, Akemi; Sumitomo, Masami

    2014-01-01

    The study was conducted with the intention of establishing a strategy to eliminate measles on the basis of an analysis of the epidemiological profile of measles cases reported in Tokyo during the year 2011. We investigated measles cases reported to the Tokyo Metropolitan Government in 2011, recorded as part of the National Epidemiological Surveillance of Infectious Diseases. Factors analyzed included age, vaccination status for each patient, cases for which records were discarded after laboratory confirmation, genotype of the measles virus and relationships between dates of specimen collection and results of polymerase chain reaction (PCR) and IgM antibody tests. A total of 178 measles cases were reported in Tokyo during 2011, and the majority of cases (128, 71.9%) were reported during the peak period from epiweeks 13 to 24. The largest age group reported was one to four years of age (40, 22.5%) followed by groups of 20-29 and 30-39 years of age (both 34, 19.1%). Most cases were sporadic, with only six outbreaks occurring. Even then, the numbers of cases for each outbreak was less than five. More than half of the patients in all age groups, except for the 1-4-year-old group, had not been vaccinated or did not have a record of vaccination. Genotypes D4 and D9 of measles virus were detected in most cases. However, genotype D5, which had been circulating in Japan before 2008, was not detected. Imported viruses were the cause of measles cases reported in Tokyo during 2011. The disease control was better than that in 2007 and 2008 because of the swift and appropriate responses to the occurrences. It is also possible that there has been an increase in the proportion of people with immunity to measles. Increasing the rate of immunization, performing effective surveillance, and confirming suspicious measles cases by using molecular methods are important for achieving the elimination of measles.

  17. 77 FR 75450 - Request for Information (RFI): Use of National Science Foundation Overseas Offices in Paris...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... NATIONAL SCIENCE FOUNDATION Request for Information (RFI): Use of National Science Foundation Overseas Offices in Paris, Tokyo, Beijing by Broader Stakeholder Community AGENCY: National Science Foundation. ACTION: Request for information (RFI). FOR FURTHER INFORMATION CONTACT: NSF-FOREIGN-OFFICE-INFO...

  18. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the

  19. Protective efficacy of recombinant BCG Tokyo (Ag85A) in rhesus monkeys (Macaca mulatta) infected intratracheally with H37Rv Mycobacterium tuberculosis.

    PubMed

    Sugawara, I; Sun, L; Mizuno, S; Taniyama, T

    2009-01-01

    We have reported previously that recombinant BCG Tokyo (Ag85A) (rBCG-Ag85A[Tokyo]) shows promise as a tuberculosis vaccine, demonstrating protective efficacy in cynomolgus monkeys. As a next step, rhesus monkeys were utilized because they are also susceptible to Mycobacterium tuberculosis and show a continuous course of infection resembling human tuberculosis. The recombinant BCG vaccine (5x10(5) CFU per monkey) was administered once intradermally into the back skin to three groups of rhesus monkeys, and its protective efficacy was compared for 4months with that of its parental BCG Tokyo strain. Eight week vaccination of the monkeys with rBCG-Ag85A[Tokyo] resulted in a reduction of tubercle bacilli CFU (p<0.01) and lung pathology in animals infected intratracheally with 3000 CFU H37Rv M. tuberculosis. Vaccination prevented an increase in the old tuberculin test after challenge with M. tuberculosis and reaction of M. tuberculosis-derived antigen. Thus, it was shown that even in rhesus monkeys rBCG-Ag85A[Tokyo] induced higher protective efficacy than BCG Tokyo.

  20. Tokyo Guidelines 2018: management bundles for acute cholangitis and cholecystitis.

    PubMed

    Mayumi, Toshihiko; Okamoto, Kohji; Takada, Tadahiro; Strasberg, Steven M; Solomkin, Joseph S; Schlossberg, David; Pitt, Henry A; Yoshida, Masahiro; Gomi, Harumi; Miura, Fumihiko; Garden, O James; Kiriyama, Seiki; Yokoe, Masamichi; Endo, Itaru; Asbun, Horacio J; Iwashita, Yukio; Hibi, Taizo; Umezawa, Akiko; Suzuki, Kenji; Itoi, Takao; Hata, Jiro; Han, Ho-Seong; Hwang, Tsann-Long; Dervenis, Christos; Asai, Koji; Mori, Yasuhisa; Huang, Wayne Shih-Wei; Belli, Giulio; Mukai, Shuntaro; Jagannath, Palepu; Cherqui, Daniel; Kozaka, Kazuto; Baron, Todd H; de Santibañes, Eduardo; Higuchi, Ryota; Wada, Keita; Gouma, Dirk J; Deziel, Daniel J; Liau, Kui-Hin; Wakabayashi, Go; Padbury, Robert; Jonas, Eduard; Supe, Avinash Nivritti; Singh, Harjit; Gabata, Toshifumi; Chan, Angus C W; Lau, Wan Yee; Fan, Sheung Tat; Chen, Miin-Fu; Ker, Chen-Guo; Yoon, Yoo-Seok; Choi, In-Seok; Kim, Myung-Hwan; Yoon, Dong-Sup; Kitano, Seigo; Inomata, Masafumi; Hirata, Koichi; Inui, Kazuo; Sumiyama, Yoshinobu; Yamamoto, Masakazu

    2018-01-01

    Management bundles that define items or procedures strongly recommended in clinical practice have been used in many guidelines in recent years. Application of these bundles facilitates the adaptation of guidelines and helps improve the prognosis of target diseases. In Tokyo Guidelines 2013 (TG13), we proposed management bundles for acute cholangitis and cholecystitis. Here, in Tokyo Guidelines 2018 (TG18), we redefine the management bundles for acute cholangitis and cholecystitis. Critical parts of the bundles in TG18 include the diagnostic process, severity assessment, transfer of patients if necessary, and therapeutic approach at each time point. Observance of these items and procedures should improve the prognosis of acute cholangitis and cholecystitis. Studies are now needed to evaluate the dissemination of these TG18 bundles and their effectiveness. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included. © 2017 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  1. Accelerator science in medical physics.

    PubMed

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future.

  2. Regional Characterization of Tokyo Metoropolitan area using a highly-dense seismic netwok(MeSO-net)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Nakagawa, S.; Sakai, S.; Panayotopoulos, Y.; Ishikawa, M.; Ishibe, T.; Kimura, H.; Honda, R.

    2014-12-01

    We have developed a dense seismic network, MeSO-net (Metropolitan Seismic Observation network), since 2007 in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area (FY2007-FY2011) and Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters (FY2012-FY2016)( Hirata et al., 2009). So far we have acquired more than 120TB continuous seismic data form MeSO-net which consists of about 300 seismic stations. Using MeSO-net data, we obtain clear P- and S- wave velocity tomograms (Nakagawa et al., 2010) and Qp, Qs tomograms (Panayotopoulos et al., 2014) which show a clear image of Philippine Sea Plate (PSP) and PAcific Plate (PAP). A depth to the top of PSP, 20 to 30 km beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo region. Based on elastic wave velocities of rocks and minerals, we interpreted the tomographic images as petrologic images. Tomographic images revealed the presence of two stepwise velocity increase of the top layer of the subducting PSP slab. Because strength of the serpentinized peridotite is not large enough for brittle fracture, if the area is smaller than previously estimated, a possible area of the large thrust fault on the upper surface of PSP can be larger than previously thought. Change of seismicity rate after the 2011 Tohoku-oki earthquake suggests change of stressing rate in greater Tokyo. Quantitative analysis of MeSO-net data shows significant increase of rate of earthquakes that have a fault orientation favorable to increasing Coulomb stress after the Tohoku-oki event.

  3. Large-Scale Calculations for Material Sciences Using Accelerators to Improve Time- and Energy-to-Solution

    DOE PAGES

    Eisenbach, Markus

    2017-01-01

    A major impediment to deploying next-generation high-performance computational systems is the required electrical power, often measured in units of megawatts. The solution to this problem is driving the introduction of novel machine architectures, such as those employing many-core processors and specialized accelerators. In this article, we describe the use of a hybrid accelerated architecture to achieve both reduced time to solution and the associated reduction in the electrical cost for a state-of-the-art materials science computation.

  4. Social Experiments in Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities(TOMACS)

    NASA Astrophysics Data System (ADS)

    Tsuyoshi, Nakatani; Nakamura, Isao; MIsumi, Ryohei; Shoji, Yoshinori

    2015-04-01

    Introduction TOMACS research project has been started since 2010 July in order to develop the elementary technologies which are required for the adaptation of societies to future global warming impacts that cannot be avoided by the reduction of greenhouse gases. In collaboration with related government institutions, local governments, private companies, and residents, more than 25 organizations and over 100 people are participated. TOMACS consists of the following three research themes: Theme 1: Studies on extreme weather with dense meteorological observations Theme 2: Development of the extreme weather early detection and prediction system Theme 3: Social experiments on extreme weather resilient cities Theme 1 aims to understand the initiation, development, and dissipation processes of convective precipitation in order to clarify the mechanism of localized heavy rainfall which are potential causes of flooding and landslides. Theme 2 aims to establish the monitoring and prediction system of extreme phenomena which can process real-time data from dense meteorological observation networks, advanced X-band radar network systems and predict localized heavy rainfalls and strong winds. Through social experiments, theme 3 aims to establish a method to use information obtained by the monitoring system of extreme phenomena to disaster prevention operations in order to prevent disasters and reduce damage. Social Experiments Toyo University is the core university for the social experiments accomplishment. And following organizations are participating in this research theme: NIED, the Tokyo Metropolitan Research Institute for Environmental Protection (TMRIEP), University of Tokyo, Tokyo Fire Department (TFD), Edogawa Ward in Tokyo, Yokohama City, Fujisawa City and Minamiashigara City in Kanagawa, East Japan Railway Company, Central Japan Railway Company, Obayashi Corporation, and Certified and Accredited Meteorologists of Japan(CAMJ). The social experiments have carried out

  5. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    NASA Astrophysics Data System (ADS)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  6. Mega-thrust and Intra-slab Earthquakes Beneath Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sato, H.; Koketsu, K.; Hagiwara, H.; Wu, F.; Okaya, D.; Iwasaki, T.; Kasahara, K.

    2006-12-01

    In central Japan the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. The vertical proximity of this down going lithospheric plate is of concern because the greater Tokyo urban region has a population of 42 million and is the center of approximately 40% of the nation's economic activities. A M7+ earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The M7+ earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In 2002, a consortium of universities and government agencies in Japan started the Special Project for Earthquake Disaster Mitigation in Urban Areas, a project to improve information needed for seismic hazards analyses of the largest urban centers. Assessment in Kanto of the seismic hazard produced by the Philippine Sea Plate (PSP) mega-thrust earthquakes requires identification of all significant faults and possible earthquake scenarios and rupture behavior, regional characterizations of PSP geometry and the overlying Honshu arc physical properties (e.g., seismic wave velocities, densities, attenuation), and local near-surface seism ic site effects. Our study addresses (1) improved regional characterization of the PSP geometry based on new deep seismic reflection profiles (Sato etal.,2005), reprocessed off-shore profiles (Kimura et al.,2005), and a dense seismic array in the Boso peninsular (Hagiwara et al., 2006) and (2) identification of asperities of the mega-thrust at the top of the PSP. We qualitatively examine the relationship between seismic reflections and asperities inferred by reflection physical properties. We also discuss the relation between deformation of PSP and intra-slab M7+ earthquakes: the

  7. Frontier applications of electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  8. Inventory of the Heteroptera (Insecta: Hemiptera) in Komaba Campus of the University of Tokyo, a highly urbanized area in Japan

    PubMed Central

    Saito, Masayuki U.; Kishimoto-Yamada, Keiko; Kato, Toshihide; Kurashima, Osamu; Ito, Motomi

    2015-01-01

    Abstract Background The Heteroptera, or true bugs, forms one of the major insect groups with respect to the very diverse habitat preferences, including both aquatic and terrestrial species, as well as a variety of feeding types. The first comprehensive inventory of the Heteroptera at Komaba Campus of the University of Tokyo, or an urban green space in the center of the Tokyo Metropolis, Japan, was conducted. New information A total of 115 species in 29 families of the suborder Heteroptera were identified. The area had a high species richness compared with other urbanized and suburbanized localities in Tokyo. The campus is found to show a substantial difference in heteropteran species compositions, despite being close to the other localities surrounded by highly urbanized zones in central Tokyo. PMID:25941455

  9. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  10. Citizen Science International Pellet Watch

    ERIC Educational Resources Information Center

    Dohrenwend, Peter

    2012-01-01

    Like Tokyo, other cities, both small and large, typically have numerous universities with dedicated faculties of scientists. By using portals such as Citizen Science and SciStarter, teachers can reach beyond the four walls of their classroom. The incredible experience of forging a relationship with a local scientist can easily begin via a cordial…

  11. Can the Principles of Cognitive Acceleration Be Used to Improve Numerical Reasoning in Science?

    ERIC Educational Resources Information Center

    Clowser, Anthony; Jones, Susan Wyn; Lewis, John

    2018-01-01

    This study investigates whether the Cognitive Acceleration through Science Education (CASE) scheme could be used to meet the demands of the Literacy and Numeracy Framework (LNF). The LNF is part of the Welsh Government's improvement strategy in response to perceived poor performance in the Programme for International Student Assessment (PISA)…

  12. The ASP at 125: Advancing Science Literacy in an Age of Acceleration

    NASA Astrophysics Data System (ADS)

    Manning, Jim

    2014-01-01

    On February 7, 2014, the Astronomical Society of the Pacific will celebrate its 125th birthday and a century and a quarter of advancing astronomy and astronomy/science education during a period of revolutionary change in our understanding of the universe. In keeping with both the retrospective and forward-looking nature of such milestones, the presenter will: 1) share highlights of the Society’s work in supporting the communication of astronomy research through its professional publications, and creating innovative astronomy education and public outreach projects and networks to advance student, teacher and public understanding of astronomy and science; 2) report on current NASA- and NSF-funded efforts and on plans going forward; 3) and solicit input from the assembled community on how the ASP can best serve its various constituencies and the cause of science education, communication and literacy at a time when both the universe and life on Earth are accelerating at unprecedented rates. Birthdays are for celebrating; come celebrate with us as we rededicate ourselves to a mission of advancing science literacy through astronomy.

  13. OBSERVATION OF FALL-OUT IN TOKYO. PART I (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, H.; Tanaka, M.; Asakuno, K.

    1962-01-01

    Total radioactivities of fallout in rain water and air dust observed in Tokyo are reported. The maximum radioactivities from October to November in 1961 were 125 mu mu C/m/sup 3/ in dust and 3.0 mu mu C/ml in rain water. This may be due to nuclear tests in September, 1981. The observation of gross radioactivities and Sr/sup 90/ concentration in rain water, vegetables, and soil in Miyake-Jima, Tokyo, has been carried on since July, 1960. The results showed no significant differences from the values observed in other places. Total radioactivities in rain water were 0.4 to 1.17 cpm/l in 1980more » and 8 to 7476 cpm/l in 1961, and in vegetable 3.4 to 7.9 cpm/dry weight (g) in 1980. The concentrations of Sr/sup 90/ were 16 to 78 mu mu C Sr/sup 90//Ca (g) in vegetables and 10 to 85 mu mu C Sr/sup 90//Ca (g) in soil. (auth)« less

  14. Decreasing trends of suspended particulate matter and PM2.5 concentrations in Tokyo, 1990-2010.

    PubMed

    Hara, Kunio; Homma, Junichi; Tamura, Kenji; Inoue, Mariko; Karita, Kanae; Yano, Eiji

    2013-06-01

    In Tokyo, the annual average suspended particulate matter (SPM) and PM2.5 concentrations have decreased in the past two decades. The present study quantitatively evaluated these decreasing trends using data from air-pollution monitoring stations. Annual SPM and PM2.5 levels at 83 monitoring stations and hourly SPM and PM2.5 levels at four monitoring stations in Tokyo, operated by the Tokyo Metropolitan Government, were used for analysis, together with levels of co-pollutants and meteorological conditions. Traffic volume in Tokyo was calculated from the total traveling distance of vehicles as reported by the Ministry of Land, Infrastructure, Transport, and Tourism. High positive correlations between SPM levels and nitrogen oxide levels, sulfur dioxide levels, and traffic volume were determined. The annual average SPM concentration declined by 62.6%from 59.4 microg/m3 in 1994 to 22.2 microg/m3 in 2010, and PM2.5 concentration also declined by 49.8% from 29.3 microg/m3 in 2001 to 14.7 microg/m3 in 2010. Likewise, the frequencies of hourly average SPM and PM2.5 concentrations exceeding the daily guideline values have significantly decreased since 2001 and the hourly average SPM or PM2.5 concentrations per traffic volume for each time period have also significantly decreased since 2001. However SPM and PM2.5 concentrations increased at some monitoring stations between 2004 and 2006 and from 2009 despite strengthened environmental regulations and improvements in vehicle engine performance. The annual average SPM and PM2.5 concentrations were positively correlated with traffic volumes and in particular with the volume of diesel trucks. These results suggest that the decreasing levels of SPM and PM2.5 in Tokyo may be attributable to decreased traffic volumes, along with the effects of stricter governmental regulation and improvements to vehicle engine performance, including the fitting of devices for exhaust emission reduction.

  15. Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay.

    PubMed

    Kubo, Atsushi; Kanda, Jota

    2017-01-30

    Total organic carbon (TOC), total nitrogen (TN) contents, their stable C and N isotope ratio (δ 13 C and δ 15 N), and chlorophyll a ([Chl a] sed ) of surface sediments were investigated monthly to identify the seasonal variations and sources of organic matter in Tokyo Bay. The sedimentary TOC (TOC sed ) and TN (TN sed ) contents, and the sedimentary δ 13 C and δ 15 N (δ 13 C sed and δ 15 N sed ) values were higher in summer than other seasons. The seasonal variations were controlled by high primary production in the water column and hypoxic water in the bottom water during summer. The fraction of terrestrial and marine derived organic matter was estimated by Bayesian mixing model using stable isotope data and TOC/TN ratio. Surface sediments in Tokyo Bay are dominated by marine derived organic matter, which accounts for about 69±5% of TOC sed . Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. JPRS Report, Science & Technology, Japan

    DTIC Science & Technology

    1988-05-06

    Sought ( Nobuaki Teraoka; PUROMETEUSU, Nov 87) 62 IPCR Molecular Laser Uranium Enrichment Method Discussed (GENSHIRYOKU IINKAI GEPPO, Nov 87... Kobayashi ) Investigation of Tokyo University character of winter (Professor Tatsuo thunder on Japan Kawamura, Sea side by new Assistant...PUROMETEUSU in Japanese Nov 87 pp 78-81 [Article by Nobuaki Teraoka, Technology Development Division, Atomic Energy Bureau, Science and Technology Agency

  17. Factors Contributing to Plate Waste among Elementary School Children in Tokyo, Japan: Application of the Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Abe, Keina; Akamatsu, Rie

    2013-01-01

    Purpose/Objectives: The purpose of this study was to identify the aspects of the Theory of Planned Behavior with the greatest relevance to plate waste (PW) among elementary school children in Tokyo, Japan. Methods: A total of 111 fifth- and sixth-grade students at an elementary school in Tokyo, Japan responded to a self-report questionnaire. The…

  18. Mathematics Instruction in Tokyo's and Hawaii's Junior High Schools. Final Report.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Coll. of Education.

    Mathematics instruction in junior high schools in Tokyo and Hawaii was compared in order to gain knowledge of how mathematics teachers' effectiveness in the classroom may be improved. Because they were likely to influence teachers' behavior, these factors were considered: teachers' background and teaching load, allocation of time, views on…

  19. Innovation in Extraterrestrial Service Systems - A Challenge for Service Science

    NASA Technical Reports Server (NTRS)

    Bergner, David

    2010-01-01

    This presentation was prepared at the invitation of Professor Yukio Ohsawa, Department of Systems Innovation, School of Engineering, The University of Tokyo, for delivery at the International Workshop on Innovating Service Systems, sponsored by the Japanese Society of Artificial Intelligence (JSAI) as part of the JSAI Internation Symposium on AI, 2010. It offers several challenges for Service Science and Service Innovation. the goal of the presentation is to stimulate thinking about how service systems viII evolve in the future, as human society advances from its terrestrial base toward a permanent presence in space. First we will consider the complexity of the International Space Station (ISS) as it is today, with particular emphasis of its research facilities, and focus on a current challenge - to maximize the utilization of ISS research facilities for the benefit of society. After briefly reviewing the basic principles of Service Science, we will discuss the potential application of Service Innovation methodology to this challenge. Then we viII consider how game-changing technologies - in particular Synthetic Biology - could accelerate the pace of sociocultural evolution and consequently, the progression of human society into space. We will use this provocative vision to advance thinking about how the emerging field of Service Science, Management, and Engineering (SSME) might help us anticipate and better handle the challenges of this inevitable evolutionary process.

  20. Fermilab | Science | Particle Accelerators

    Science.gov Websites

    2,300 physicists from all over the world come to Fermilab to conduct experiments using particle particle physics to the next level, collaborating with scientists and laboratories around the world to help world leader in accelerator research, development and industrialization. Learn more about IARC. Fermilab

  1. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  2. Estimating Vector-borne Viral Infections in the Urban Setting of the 2020 Tokyo Olympics, Japan, Using Mathematical Modeling.

    PubMed

    Furuya, Hiroyuki

    2017-12-20

    The first domestic outbreak of dengue fever in Japan since 1945 was reported in Tokyo in 2014. Meanwhile, daily mean summer temperatures are expected to continue to rise world-wide. Such conditions are expected to increase the risk of an arbovirus outbreak at the 2020 Tokyo Olympic Games. To address this possibility, the present study compared estimates of the risk of infection by dengue, chikungunya, and Zika viruses in urban areas. To compare the risk of infection by arboviruses transmitted by Ae. albopictus mosquitoes, the reproduction number for each of three arboviruses was estimated under the environmental conditions associated with the 2014 dengue outbreak in Tokyo, and additionally under conditions assuming a daily mean temperature elevation of 2° C. For dengue, chikungunya, and Zika, the estimated distributions of R 0 were independently fitted to gamma distributions yielding median R 0 values of 1.00, 0.46, and 0.36, respectively. If the daily mean temperature were to rise from 28° C to 30° C, our model predicts increases of the median R 0 of 18% for dengue, 4.3% for chikungunya, and 11.1% for Zika. Strengthening of the public health responsivity for these emerging arboviral diseases will be needed in preparation for the 2020 Olympic Games in Tokyo.

  3. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo

    NASA Astrophysics Data System (ADS)

    Miyakawa, T.; Takegawa, N.; Kondo, Y.

    2007-07-01

    Ground-based in situ measurements of sulfur dioxide (SO2) and submicron sulfate aerosol (SO42-) together with carbon monoxide (CO) were conducted at an urban site in Tokyo, Japan from spring 2003 to winter 2004. The observed concentrations of SO2 were affected dominantly by anthropogenic emissions (for example, manufacturing industries) in source areas, while small fraction of the data (<30%) was affected by large point sources of SO2 (power plant and volcano). Although emission sources of CO in Tokyo are different from those of SO2, the major emission sources of CO and SO2 are colocated, indicating that CO can be used as a tracer of anthropogenic SO2 emissions in Tokyo. The ratio of SO42- to total sulfur compounds (SOx = SO2 + SO42-) and the remaining fraction of SOx, which is derived as the ratio of the linear regression slope of the SOx-CO correlation, is used as measures for the formation of SO42- and removal of SOx, respectively. Using these parameters, the average formation efficiency of SO42- (i.e., amount of SO42- produced per SO2 emitted from emission sources) are estimated to be 0.18 and 0.03 in the summer and winter periods, respectively. A simple box model was developed to estimate the lifetime of SOx. The lifetime of SOx for the summer period (26 h) is estimated to be about two times longer than that for the winter period (14 h). The seasonal variations of the remaining fraction of SOx, estimated formation efficiency of SO42-, and lifetime of SOx are likely due to those of the boundary layer height and photochemical activity (i.e., hydroxyl radical). These results provide useful insights into the formation and removal processes of sulfur compounds exported from an urban area.

  4. A Brief Test of the Tokyo Sokushin VSE-355G3 Strong Motion Velocity Seismometer

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Yokoi, Isamu

    2008-01-01

    The VSE-355G3 seismometer is a broadband seismometer (called a 'servo velocity meter' by Tokyo Sokushin) with a specified clip level of 2 m/s and a flat response to earth velocity from 0.008 Hertz (Hz) to 70 Hz. Mr. Yokoi and Mr. Kurahashi of Tokyo Sokushin shipped one instrument to the U. S. Geological Survey's Albuquerque Seismological Laboratory (ASL) for testing in early September 2007. They gave a presentation on this instrument and some of their other products to the authors and others on September 6, 2007. Testing of the VSE-355G3, Serial Number 70520, commenced on Friday, September 7, 2007.

  5. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    Heffner, JAEA/LANL W Higemoto, JAEA (Co-chair) T Hyodo, Univ. Tokyo I Kanazawa, Tokyo Gakugei Univ. A Kawasuso, JAEA (Co-chair) Y Kobayashi, AIST T Matsuzaki, RIKEN-RAL Y Miyake, KEK N Nishida, Tokyo IT K Nishiyama, KEK I Shimamura, RIKEN Y Shirai, Kyoto Univ. R Suzuki, AIST A Uedono, Univ. Tsukuba Local organizing committee (JAEA) M Maekawa Y Fukaya T U Ito A Yabuuchi K Ninomiya T Hirade W Higemoto A Kawasuso S Sakurai Secretariat (JAEA) H Sekino Cooperation The Physical Society of Japan Positron Science Society Society of Muon and Meson Science of Japan International Society for μSR Spectroscopy Conference photograph

  6. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  7. Forecasting probabilistic seismic shaking for greater Tokyo from 400 years of intensity observations

    USGS Publications Warehouse

    Bozkurt, S.B.; Stein, R.S.; Toda, S.

    2007-01-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past shaking. We calculate the time-averaged (Poisson) probability of severe shaking by using more than 10,000 intensity observations recorded since AD 1600 in a 350 km-wide box centered on Tokyo. Unlike other hazard-assessment methods, source and site effects are included without modeling, and we do not need to know the size or location of any earthquake nor the location and slip rate of any fault. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same, and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct here suggest that both assumptions are sound. The resulting 30-year probability of IJMA ??? 6 shaking (??? PGA ??? 0.4 g or MMI ??? IX) is 30%-40% in Tokyo, Kawasaki, and Yokohama, and 10% 15% in Chiba and Tsukuba. This result means that there is a 30% chance that 4 million people will be subjected to IJMA ??? 6 shaking during an average 30-year period. We also produce exceedance maps of PGA for building-code regulations, and calculate short-term hazard associated with a hypothetical catastrophe bond. Our results resemble an independent assessment developed from conventional seismic hazard analysis for greater Tokyo. ?? 2007, Earthquake Engineering Research Institute.

  8. Infant Mortality and Income in 4 World Cities: New York, London, Paris, and Tokyo

    PubMed Central

    Rodwin, Victor G.; Neuberg, Leland G.

    2005-01-01

    Objectives. We investigated the association between average income or deprivation and infant mortality rate across neighborhoods of 4 world cities. Methods. Using a maximum likelihood negative binomial regression model that controls for births, we analyzed data for 1988–1992 and 1993–1997. Results. In Manhattan, for both periods, we found an association (.05% significance level) between income and infant mortality. In Tokyo, for both periods, and in Paris and London for period 1, we found none (5% significance level). For period 2, the association just missed statistical significance for Paris, whereas for London it was significant (5% level). Conclusions. In stark contrast to Tokyo, Paris, and London, the association of income and infant mortality rate was strongly evident in Manhattan. PMID:15623865

  9. Comparison of plasma levels of nutrient-related biomarkers among Japanese populations in Tokyo, Japan, São Paulo, Brazil, and Hawaii, USA.

    PubMed

    Iwasaki, Motoki; Franke, Adrian A; Hamada, Gerson S; Miyajima, Nelson T; Sharma, Sangita; Ishihara, Junko; Takachi, Ribeka; Tsugane, Shoichiro; Le Marchand, Loïc

    2015-03-01

    Previous studies of Japanese migrants have suggested that the increase in colorectal cancer rates occurring after migration is slower among Japanese Brazilians than among Japanese Americans. We hypothesized that this difference may partly reflect differences in vegetable and fruit intake between the populations. Using data from validation studies of food frequency questionnaires being used in comparative case-control studies of colorectal adenoma in Tokyo, São Paulo, and Hawaii, plasma carotenoid, retinol, tocopherol, and coenzyme Q10 levels were measured by high-performance liquid chromatography, and 25-hydroxy vitamin D levels were estimated by enzyme-linked immunosorbent assay. Plasma levels were compared by analysis of covariance between 142 Japanese in Tokyo, 79 Japanese Brazilians in São Paulo, and 78 Japanese Americans in Hawaii. Overall, we found significantly lower plasma carotenoid levels, except for lycopene levels, and retinol levels in Japanese Americans compared with Japanese in Tokyo and Japanese Brazilians. The plasma total carotenoid level was highest in Japanese Brazilians. Compared with the mean level among Japanese Brazilians (1741.2 ng/ml), P for difference was 0.03 among Japanese in Tokyo (1514.4 ng/ml) and less than 0.01 for Japanese Americans (1257.7 ng/ml). Plasma lycopene and tocopherol levels did not substantially differ between the three populations. We also found significantly lower plasma levels of 25-hydroxy vitamin D and total coenzyme Q10 in Japanese in Tokyo than in Japanese Americans and Japanese Brazilians. Higher levels of plasma carotenoids among Japanese Brazilians than among Japanese in Tokyo and Hawaii may have contributed to the slower pace of the increase in colorectal cancer rates observed in that population after migration.

  10. Comparison of plasma levels of nutrient-related biomarkers among Japanese populations in Tokyo, Japan; São Paulo, Brazil; and Hawaii, USA

    PubMed Central

    Iwasaki, Motoki; Franke, Adrian A.; Hamada, Gerson Shigeaki; Miyajima, Nelson Tomio; Sharma, Sangita; Ishihara, Junko; Takachi, Ribeka; Tsugane, Shoichiro; Le Marchand, Loïc

    2015-01-01

    Objectives Previous studies of Japanese migrants have suggested that the increase in colorectal cancer rates occurring after migration is slower among Japanese Brazilians than Japanese Americans. We hypothesized that this difference may partly reflect differences in vegetable and fruit intake between populations. Methods Using data from validation studies of food frequency questionnaires being used in a comparative case-control study of colorectal adenoma in Tokyo, São Paulo, and Hawaii, plasma carotenoids, retinol, tocopherols, and coenzyme Q10 levels were measured by high-performance liquid chromatography, and 25-hydroxy vitamin D levels by enzyme-linked immunosorbent assay. Plasma levels were compared by analysis of covariance between 142 Japanese in Tokyo, 79 Japanese Brazilians in São Paulo, and 78 Japanese Americans in Hawaii. Results Overall, we found significantly lower plasma carotenoid levels, except for lycopene, and retinol levels in Japanese Americans than in Japanese in Tokyo and Japanese Brazilians. Plasma total carotenoids level was highest in Japanese Brazilians. Compared to mean level among Japanese Brazilians (1741.2 ng/mL), p for difference was 0.03 for Japanese in Tokyo (1514.4 ng/mL) and <0.01 for Japanese Americans (1257.7 ng/mL). Plasma lycopene and tocopherol levels did not substantially differ between the three populations. We also found significantly lower plasma levels of 25-hydroxyvitamin D and total coenzyme Q10 levels in Japanese in Tokyo than in Japanese Americans and Japanese Brazilians. Conclusion Higher levels of plasma carotenoids among Japanese Brazilians than Japanese in Tokyo and Hawaii may contribute to the slower pace of increase in colorectal cancer rates observed in that population following migration. PMID:25633435

  11. Thermal comfort along the marathon course of the 2020 Tokyo Olympics.

    PubMed

    Honjo, Tsuyoshi; Seo, Yuhwan; Yamasaki, Yudai; Tsunematsu, Nobumitsu; Yokoyama, Hitoshi; Yamato, Hiroaki; Mikami, Takehiko

    2018-04-17

    The Olympic Games will be held in Tokyo in 2020 and the period will be the hottest period of the year in Japan. Marathon is a sport with a large heat load, and it is said that the risk of heat stroke rises more than other sports activities. The thermal environment of the 2020 Tokyo Olympic marathon course is analyzed by using wet-bulb globe temperature (WBGT) and Universal Thermal Climate Index (UTCI) map of the center area of Tokyo. The change due to the place, the effect of the shadow of the building, and the position on the course was analyzed from the distribution of WBGT and UTCI in the short-term analysis of sunny day from August 2 to August 6, 2014. To make the distribution map, we calculated distributions of sky view factor and mean radiant temperature of the 10 km × 7.5 km analyzed area in the center of Tokyo. Distributions of air temperature and humidity are calculated from Metropolitan Environmental Temperature and Rainfall Observation System data, which is a high-resolution measurement network. It was possible to incorporate the local variation of temperature and humidity of the analyzed area. In the result, the WBGT is about 1 °C lower and the UTCI is about 4-8 °C lower in the shadow of buildings from 9:00 to 10:00 than in the sunny side. As a cooling method, making a shadow is a relatively effective method. The variation along the course considering the distribution of meteorological data within the area is about 0.5 °C WBGT and 1 °C UTCI range. If we allow the error of this range, one-point meteorological data can be applied for the estimation along the course. Passing the right side (left side in the case of return) of the course could keep the accumulated value slightly lower along the course in the morning because the marathon course roughly runs from west to east and buildings' shadow is on the relatively right side (south side). But practically, the effect of changing the position on the course was small. The long-term analysis on

  12. Thermal comfort along the marathon course of the 2020 Tokyo Olympics

    NASA Astrophysics Data System (ADS)

    Honjo, Tsuyoshi; Seo, Yuhwan; Yamasaki, Yudai; Tsunematsu, Nobumitsu; Yokoyama, Hitoshi; Yamato, Hiroaki; Mikami, Takehiko

    2018-04-01

    The Olympic Games will be held in Tokyo in 2020 and the period will be the hottest period of the year in Japan. Marathon is a sport with a large heat load, and it is said that the risk of heat stroke rises more than other sports activities. The thermal environment of the 2020 Tokyo Olympic marathon course is analyzed by using wet-bulb globe temperature (WBGT) and Universal Thermal Climate Index (UTCI) map of the center area of Tokyo. The change due to the place, the effect of the shadow of the building, and the position on the course was analyzed from the distribution of WBGT and UTCI in the short-term analysis of sunny day from August 2 to August 6, 2014. To make the distribution map, we calculated distributions of sky view factor and mean radiant temperature of the 10 km × 7.5 km analyzed area in the center of Tokyo. Distributions of air temperature and humidity are calculated from Metropolitan Environmental Temperature and Rainfall Observation System data, which is a high-resolution measurement network. It was possible to incorporate the local variation of temperature and humidity of the analyzed area. In the result, the WBGT is about 1 °C lower and the UTCI is about 4-8 °C lower in the shadow of buildings from 9:00 to 10:00 than in the sunny side. As a cooling method, making a shadow is a relatively effective method. The variation along the course considering the distribution of meteorological data within the area is about 0.5 °C WBGT and 1 °C UTCI range. If we allow the error of this range, one-point meteorological data can be applied for the estimation along the course. Passing the right side (left side in the case of return) of the course could keep the accumulated value slightly lower along the course in the morning because the marathon course roughly runs from west to east and buildings' shadow is on the relatively right side (south side). But practically, the effect of changing the position on the course was small. The long-term analysis on the

  13. Pulse - Accelerator Science in Medicine

    Science.gov Websites

    intermediate machines. Each generation of particle accelerators build on the accomp-lishments of the previous ones, raising the level of technology ever higher. Security, Privacy Legal

  14. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  15. Modeling and predicting urban growth pattern of the Tokyo metropolitan area based on cellular automata

    NASA Astrophysics Data System (ADS)

    Zhao, Yaolong; Zhao, Junsan; Murayama, Yuji

    2008-10-01

    The period of high economic growth in Japan which began in the latter half of the 1950s led to a massive migration of population from rural regions to the Tokyo metropolitan area. This phenomenon brought about rapid urban growth and urban structure changes in this area. Purpose of this study is to establish a constrained CA (Cellular Automata) model with GIS (Geographical Information Systems) to simulate urban growth pattern in the Tokyo metropolitan area towards predicting urban form and landscape for the near future. Urban land-use is classified into multi-categories for interpreting the effect of interaction among land-use categories in the spatial process of urban growth. Driving factors of urban growth pattern, such as land condition, railway network, land-use zoning, random perturbation, and neighborhood interaction and so forth, are explored and integrated into this model. These driving factors are calibrated based on exploratory spatial data analysis (ESDA), spatial statistics, logistic regression, and "trial and error" approach. The simulation is assessed at both macro and micro classification levels in three ways: visual approach; fractal dimension; and spatial metrics. Results indicate that this model provides an effective prototype to simulate and predict urban growth pattern of the Tokyo metropolitan area.

  16. Analysis of Realized Volatility for Nikkei Stock Average on the Tokyo Stock Exchange

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya; Watanabe, Toshiaki

    2016-04-01

    We calculate realized volatility of the Nikkei Stock Average (Nikkei225) Index on the Tokyo Stock Exchange and investigate the return dynamics. To avoid the bias on the realized volatility from the non-trading hours issue we calculate realized volatility separately in the two trading sessions, i.e. morning and afternoon, of the Tokyo Stock Exchange and find that the microstructure noise decreases the realized volatility at small sampling frequency. Using realized volatility as a proxy of the integrated volatility we standardize returns in the morning and afternoon sessions and investigate the normality of the standardized returns by calculating variance, kurtosis and 6th moment. We find that variance, kurtosis and 6th moment are consistent with those of the standard normal distribution, which indicates that the return dynamics of the Nikkei Stock Average are well described by a Gaussian random process with time-varying volatility.

  17. Risk assessment of TBT in the Japanese short-neck clam ( Ruditapes philippinarum) of Tokyo Bay using a chemical fate model

    NASA Astrophysics Data System (ADS)

    Horiguchi, Fumio; Nakata, Kisaburo; Ito, Naganori; Okawa, Ken

    2006-12-01

    A risk assessment of Tributyltin (TBT) in Tokyo Bay was conducted using the Margin of Exposure (MOE) method at the species level using the Japanese short-neck clam, Ruditapes philippinarum. The assessment endpoint was defined to protect R. philippinarum in Tokyo Bay from TBT (growth effects). A No Observed Effect Concentration (NOEC) for this species with respect to growth reduction induced by TBT was estimated from experimental results published in the scientific literature. Sources of TBT in this study were assumed to be commercial vessels in harbors and navigation routes. Concentrations of TBT in Tokyo Bay were estimated using a three-dimensional hydrodynamic model, an ecosystem model and a chemical fate model. MOEs for this species were estimated for the years 1990, 2000, and 2007. Estimated MOEs for R. philippinarum for 1990, 2000, and 2007 were approximately 1-3, 10, and 100, respectively, indicating a declining temporal trend in the probability of adverse growth effects. A simplified software package called RAMTB was developed by incorporating the chemical fate model and the databases of seasonal flow fields and distributions of organic substances (phytoplankton and detritus) in Tokyo Bay, simulated by the hydrodynamic and ecological model, respectively.

  18. The United States Particle Accelerator School: Educating the Next Generation of Accelerator Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    2009-03-01

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator/beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  19. IMPLEMENTATION OF INFORMATION SHARING DEMONSTRATION AMONG ORGANIZATIONS IN CHARGE OF DISASTER MANAGEMENT IN TOKYO METROPOLITAN NEAR FIELD EARTHQUAKE DISASTER

    NASA Astrophysics Data System (ADS)

    Hada, Yasunori; Kondo, Shinya; Meguro, Kimiro; Ohara, Miho; Zama, Shinsaku; Endo, Makoto; Kobayashi, Keiji; Suzuki, Takeyasu; Noda, Itsuki; Shimora, Hiroki; Takeuchi, Ikuo; Kobayashi, Satoshi; Arakawa, Junpei; Yoshimoto, Kenichi

    For realizing cross-sectional inform ation sharing in the Tokyo metropolitan area, we develop disaster management applications to reduce negative impact due to vital issue in phase of initial response, and cooperation of those applications are demonstrated toward public officials in charge of disaster management. The demonstration of information sharing among disaster related organizations focusing on issues about simultaneous multiple post-earthquake fires and rescue operations after an earthquake directly underneath Tokyo are reported.

  20. Radioactive contamination in the Tokyo metropolitan area in the early stage of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and its fluctuation over five years

    PubMed Central

    Yamazaki, Hideo

    2017-01-01

    Radioactive contamination in the Tokyo metropolitan area in the immediate aftermath of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident was analyzed via surface soil sampled during a two-month period after the accident. 131I, 134Cs, and 137Cs were detected in these soil samples. The activity and inventory of radioactive material in the eastern part of Tokyo tended to be high. The 134Cs/137Cs activity ratio in soil was 0.978 ± 0.053. The 131I/137Cs ratio fluctuated widely, and was 19.7 ± 9.0 (weighted average 18.71 ± 0.13, n = 14) in the Tokyo metropolitan area. The radioactive plume with high 131I activity spread into the Tokyo metropolitan area and was higher than the weighted average of 6.07 ± 0.04 (n = 26) in other areas. The radiocesium activity and inventory surveyed in soil from a garden in Chiyoda Ward in the center of Tokyo, fell approximately 85% in the four months after the accident, and subsequently tended to rise slightly while fluctuating widely. It is possible that migration and redistribution of radiocesium occurred. The behavior of radiocesium in Tokyo was analyzed via monitoring of radiocesium in sludge incineration ash. The radiocesium activity in the incineration ash was high at wastewater treatment centers that had catchment areas in eastern Tokyo and low at those with catchment areas in western Tokyo. Similar to the case of the garden soil, even in incineration ash, the radiocesium activity dropped rapidly immediately after the accident. The radiocesium activity in the incineration ash fell steadily from the tenth month after the accident until December 2016, and its half-life was about 500 days. According to frequency analysis, in central Tokyo, the cycles of fluctuation of radiocesium activity in incineration ash and rainfall conformed, clearly showing that radiocesium deposited in urban areas was resuspended and transported by rainfall run-off. PMID:29136641

  1. Accelerator Science: Collider vs. Fixed Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  2. Accelerator Science: Collider vs. Fixed Target

    ScienceCinema

    Lincoln, Don

    2018-01-16

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  3. Future Projection of Storm Surge at Tokyo Bay under RCP 8.5 Scenario by Meteorological-Ocean-Tide Coupled Model

    NASA Astrophysics Data System (ADS)

    Iwamoto, T.; Nakamura, R.; Takagawa, T.; Shibayama, T.

    2016-12-01

    It is clearly valuable to accomplish well-reproduced storm surge model and conduct future projection for disaster prevention. In this study, the reproducibility of Meteorological-Ocean-Tide coupled model was validated by simulating typhoon Roke (2011) storm surge, which was recorded as the highest anomaly (119cm) at Tokyo tide station (JMA) in Tokyo Bay over the last 10 years. Furthermore, the future projection (2050) under global warming scenario (RCP8.5) was conducted. The coupled model was composed of 3 models; ARW-WRFV3 (Skamarock et al., 2008), FVCOM (Chen et al., 2011) and WXTide32. WRF firstly calculated downscaled meteorological field by using FiNal anaLysis (FNL) as initial/boundary (I/B) condition. In this calculation, single layer urban canopy model (Kusaka et al., 2001) and topography data from SRTM3 (90m mesh) and GSI (50m mesh) were applied. Then the output was used as I/B condition to FVCOM, which calculated storm surge. Finally tide level was calculated by adding storm surge to astronomical tide calculated by WXTide32. For 2050 case, sea surface temperature (SST) from 26 GCM under RCP8.5 was used for constructing pseudo global warming meteorological fields. In details, ensemble average of SST variation between 2006-2015 and 2041-2060 was added to FNL's SST by following Oya et al (2016). In this case, calculating astronomical tide is omitted due to the limitation of WXTide32. The reproduced result of typhoon Roke shows that the difference of maximum tide level (first peak) to the observation is less than 10cm, the difference of second peak is about 50cm. The future projection result shows that the increase of storm surge at Tokyo tide station is about 20cm and that at Funabashi is about 30cm. This intensification is mainly caused by wind speed increment, since the variation of low pressure due to higher SST is relatively small. Moreover, Funabashi is located in front of the open space at inner part of Tokyo Bay, Tokyo tide station is similar however

  4. Computational Accelerator Physics. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognano, J.J.; Mondelli, A.A.

    1997-04-01

    The sixty two papers appearing in this volume were presented at CAP96, the Computational Accelerator Physics Conference held in Williamsburg, Virginia from September 24{minus}27,1996. Science Applications International Corporation (SAIC) and the Thomas Jefferson National Accelerator Facility (Jefferson lab) jointly hosted CAP96, with financial support from the U.S. department of Energy`s Office of Energy Research and the Office of Naval reasearch. Topics ranged from descriptions of specific codes to advanced computing techniques and numerical methods. Update talks were presented on nearly all of the accelerator community`s major electromagnetic and particle tracking codes. Among all papers, thirty of them are abstracted formore » the Energy Science and Technology database.(AIP)« less

  5. ONR Tokyo Scientific Bulletin. Volume 5, Number 3, July-September 1980,

    DTIC Science & Technology

    1980-09-01

    engineering Director NATIONAL TAIWAN UNIVERSITY, TAIPEI - Department of Agricultural Chemistry Chen. Yuh-Lin Pesticide chemistry Professor Lin. Liang-Ping...3-1, Hongo, Bynkyo-ku Tokyo 113 August 9- The 5th International Congress Kyoto, Japan Rikagaku Kenkyusho September 3 of Pesticide Chemistry, IUPAC 2-1...to those who request them. The meeting emphasized two timely subjects, inhalation injuries and fluid therapy. Papers presented were: Basil A. Pruitt

  6. Tokyo, Yokohama and Tokoy Bay as seen from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-103-080 (18 Oct-1 Nov 1993) --- Japan's modern megalopolis is seen in this nadir view in great detail. More than 80 vessels can be seen at the anchorage's in Tokyo Bay. The gardens of the Emperor's Palace are seen in this circular area in the upper left quadrant. Even greater detail of this area was captured in the simultaneous color infrared image acquired during this space shuttle mission. (That photo number is STS058-110-085.)

  7. Moving Toward a Globally Harmonized Volcanic Ash Forecast System: Anchorage and Tokyo VAAC Best Practices on Collaboration

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Moore, D.; Igarashi, Y.

    2014-12-01

    Since the eruption of Eyjafjallajökull in 2010, there has been an increased awareness on the need for better collaboration between the Volcanic Ash Advisory Centers (VAACs). Work through the International Civil Aviation Organization (ICAO) International Airways Volcano Watch Operations Group (IAVWOPSG) and International Airways Volcano Task Force (IAVTF) brought increased awareness and focus to this challenge. A VAAC Best Practices group was formed out of these larger meetings and focused on VAAC specific issues of importance. Collaboration was one of the topics under consideration. Some ideas and procedures for an effective, yet easy, method for the VAACs to collaborate have been discussed. Implementation has been mainly on a VAAC to VAAC basis, however a more consolidated process needs to be developed and agreed upon between all VAACs in order to successfully move toward harmonization. Collaboration procedures and tools are being considered. The National Weather Service (NWS) Alaska Region has been looking at collaborative software to help the VAACs identify the presence of ash and forecast the plume both in the horizontal and vertical. Having an interactive graphical interface within the forecast operation may help to ensure consistency across VAAC boundaries. Existing chat software within NWS is being investigated to allow Tokyo and Anchorage VAAC to "chat" about forecast issues in real time. This capability is being tested through scenarios. The Anchorage and Tokyo VAACs participated in a series of meetings in Tokyo in March 2014. Collaboration was a major topic of discussion. This paper will outline some of the efforts being undertaken between the Anchorage and Tokyo VAACs as a result of these meetings and subsequent dialogue.

  8. An Annotated Bibliography of Accelerated Learning

    ERIC Educational Resources Information Center

    Garcia, GNA

    2007-01-01

    A rich narrative-style bibliography of accelerated learning (reviewing six articles published between 1995-2003). Articles reviewed include: (1) Accelerative learning and the Emerging Science of Wholeness (D. D. Beale); (2) Effective Teaching in Accelerated Learning Programs (D. Boyd); (3) A Critical Theory Perspective on Accelerated Learning (S.…

  9. Focus prosody of telephone numbers in Tokyo Japanese.

    PubMed

    Lee, Yong-Cheol; Nambu, Satoshi; Cho, Sunghye

    2018-05-01

    Using production and perception experiments, this study examined whether the prosodic structure inherent to telephone numbers in Tokyo Japanese affects the realization of focus prosody as well as its perception. It was hypothesized that prosodic marking of focus differs by position within the digit groups of phone number strings. Overall, focus prosody of telephone numbers was not clearly marked, resulting in poor identification in perception. However, a difference between positions within digit groups was identified, reflecting a prosodic structure where one position is assigned an accentual peak instead of the other. The findings suggest that, conforming to a language-specific prosodic structure, focus prosody within a language can vary under the influence of a particular linguistic environment.

  10. Aflatoxin contamination in foods and foodstuffs in Tokyo: 1986-1990.

    PubMed

    Tabata, S; Kamimura, H; Ibe, A; Hashimoto, H; Iida, M; Tamura, Y; Nishima, T

    1993-01-01

    Aflatoxins were determined in 3054 samples of foods or foodstuffs, including cereals, nuts, beans, spices, dairy products, dry fruits, and edible oil. Samples were collected in Tokyo from 1986 to 1990. Aflatoxins were found in rice products, adlay, corn, crude sugar, peanut products, pistachio nuts, brazil nuts, sesame products, butter beans, white pepper, red pepper, paprika, nutmeg, and mixed spices. The highest incidence of aflatoxin contamination was observed in nutmeg (80%), and the highest level of aflatoxin B1 was observed in pistachio nuts (1382 ppb).

  11. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  12. Comparison of plasma levels of obesity-related biomarkers among Japanese populations in Tokyo, Japan, São Paulo, Brazil, and Hawaii, USA.

    PubMed

    Iwasaki, Motoki; Le Marchand, Loïc; Franke, Adrian A; Hamada, Gerson Shigeaki; Miyajima, Nelson Tomio; Sharma, Sangita; Yamaji, Taiki; Tsugane, Shoichiro

    2016-01-01

    Although Japanese in Japan and the USA are high-risk populations for colorectal cancer, the prevalence of obesity, one of the established risk factors for this disease, is low in these populations compared with other high-risk populations. To understand this inconsistency, we compared plasma obesity-related biomarkers in cross-sectional studies carried out in Tokyo, São Paulo, and Hawaii. We measured plasma levels of insulin-like growth factor-I (IGF-I), insulin-like growth factor-binding protein (IGFBP)-1, IGFBP-3, C-peptide, adiponectin, leptin, tumor necrosis factor-α, and interleukin-6 by immunoassay and total C-reactive protein, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides using a clinical chemistry autoanalyzer. A total of 299 participants were included in the present analysis, comprising 142 Japanese in Tokyo, 79 Japanese Brazilians in São Paulo, and 78 Japanese Americans in Hawaii. We found significantly lower plasma levels of C-peptide and IGF-I in Japanese in Tokyo than in Japanese Americans, and lower levels of leptin and triglycerides and higher levels of adiponectin, IGFBP-3, and high-density lipoprotein cholesterol in Japanese in Tokyo than in the other two populations. We also observed a significantly higher plasma IGFBP-1 level in Japanese Brazilians, and lower plasma levels of total cholesterol and low-density lipoprotein in Japanese Americans than in the other two populations. We observed significant differences in obesity-related biomarkers between the three Japanese populations. If our results are confirmed, the risk of colorectal cancer predicted on the basis of these biomarkers would be lowest for Japanese in Tokyo, followed by Japanese Brazilians and Japanese Americans.

  13. Comparison of plasma levels of obesity-related biomarkers among Japanese populations in Tokyo, Japan, São Paulo, Brazil, and Hawaii, USA

    PubMed Central

    Le Marchand, Loïc; Franke, Adrian A.; Hamada, Gerson Shigeaki; Miyajima, Nelson Tomio; Sharma, Sangita; Yamaji, Taiki; Tsugane, Shoichiro

    2016-01-01

    Although Japanese in Japan and the USA are high-risk populations for colorectal cancer, the prevalence of obesity, one of the established risk factors for this disease, is low in these populations compared with other high-risk populations. To understand this inconsistency, we compared plasma obesity-related biomarkers in cross-sectional studies carried out in Tokyo, São Paulo, and Hawaii. We measured plasma levels of insulin-like growth factor-I (IGF-I), insulin-like growth factor-binding protein (IGFBP)-1, IGFBP-3, C-peptide, adiponectin, leptin, tumor necrosis factor-α, and interleukin-6 by immunoassay and total C-reactive protein, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides using a clinical chemistry autoanalyzer. A total of 299 participants were included in the present analysis, comprising 142 Japanese in Tokyo, 79 Japanese Brazilians in São Paulo, and 78 Japanese Americans in Hawaii. We found significantly lower plasma levels of C-peptide and IGF-I in Japanese in Tokyo than in Japanese Americans, and lower levels of leptin and triglycerides and higher levels of adiponectin, IGFBP-3, and high-density lipoprotein cholesterol in Japanese in Tokyo than in the other two populations. We also observed a significantly higher plasma IGFBP-1 level in Japanese Brazilians, and lower plasma levels of total cholesterol and low-density lipoprotein in Japanese Americans than in the other two populations. We observed significant differences in obesity-related biomarkers between the three Japanese populations. If our results are confirmed, the risk of colorectal cancer predicted on the basis of these biomarkers would be lowest for Japanese in Tokyo, followed by Japanese Brazilians and Japanese Americans. PMID:25714650

  14. Changes of Earthquake Vulnerability of Marunouchi and Ginza Area in Tokyo and Urban Recovery Digital Archives on Google Earth

    NASA Astrophysics Data System (ADS)

    Igarashi, Masayasu; Murao, Osamu

    In this paper, the authors develop a multiple regression model which estimates urban earthquake vulnerability (building collapse risk and conflagration risk) for different eras, and clarify the historical changes of urban risk in Marunouchi and Ginza Districts in Tokyo, Japan using old maps and contemporary geographic information data. Also, we compare the change of urban vulnerability of the districts with the significant historical events in Tokyo. Finally, the results are loaded onto Google Earth with timescale extension to consider the possibility of urban recovery digital archives in the era of the recent geoinformatic technologies.

  15. Child Development in Okinawa Compared with Tokyo and Denver, and the Implications for Developmental Screening.

    ERIC Educational Resources Information Center

    Ueda, Reiko

    1978-01-01

    Developmental differences in the Denver Developmental Screening Test items were demonstrated between samples of children from Okinawa (n=615) and Tokyo (n=1171), who were 16 days to 6 years old. Journal availability: see EC 112 661. (Author)

  16. Seismic activity of Tokyo area and Philippine Sea plate under Japanese Islands

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Nakagawa, S.; Nanjo, K.; Kasahara, K.; Panayotopoulos, Y.; Tsuruoka, H.; Kurashimo, E.; Obara, K.; Hirata, N.; Kimura, H.; Honda, R.

    2012-12-01

    2011. This observation suggests that shear stresses on the plate boundaries have increased due to eastwards movement of the eastern Japan driven by post-seismic slip of the M9.0 Tohoku-oki event. The present study is supported by two Special Projects for Earthquake Disaster Mitigation in Tokyo Metropolitan Area and reducing vulnerability for urban mega earthquake disasters from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  17. Spatiotemporal distribution and fluctuation of radiocesium in Tokyo Bay in the five years following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident

    PubMed Central

    Yamazaki, Hideo; Hinokio, Ryoichi; Yamashiki, Yosuke Alexandre; Azuma, Ryokei

    2018-01-01

    A monitoring survey was conducted from August 2011 to July 2016 of the spatiotemporal distribution in the 400 km2 area of the northern part of Tokyo Bay and in rivers flowing into it of radiocesium released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. The average inventory in the river mouth (10 km2) was 131 kBq⋅m-2 and 0.73 kBq⋅m-2 in the central bay (330 km2) as the decay corrected value on March 16, 2011. Most of the radiocesium that flowed into Tokyo Bay originated in the northeastern section of the Tokyo metropolitan area, where the highest precipitation zone of 137Cs in soil was almost the same level as that in Fukushima City, then flowed into and was deposited in the Old-Edogawa River estuary, deep in Tokyo Bay. The highest precipitation of radiocesium measured in the high contaminated zone was 460 kBq⋅m-2. The inventory in sediment off the estuary of Old-Edogawa was 20.1 kBq⋅m-2 in August 2011 immediately after the accident, but it increased to 104 kBq⋅m-2 in July 2016. However, the radiocesium diffused minimally in sediments in the central area of Tokyo Bay in the five years following the FDNPP accident. The flux of radiocesium off the estuary decreased slightly immediately after the accident and conformed almost exactly to the values predicted based on its radioactive decay. Contrarily, the inventory of radiocesium in the sediment has increased. It was estimated that of the 8.33 TBq precipitated from the atmosphere in the catchment regions of the rivers Edogawa and Old-Edogawa, 1.31 TBq migrated through rivers and was deposited in the sediments of the Old-Edogawa estuary by July 2016. Currently, 0.25 TBq⋅yr-1 of radiocesium continues to flow into the deep parts of Tokyo Bay. PMID:29494667

  18. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  19. Towards more stable operation of the Tokyo Tier2 center

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Mashimo, T.; Matsui, N.; Sakamoto, H.; Ueda, I.

    2014-06-01

    The Tokyo Tier2 center, which is located at the International Center for Elementary Particle Physics (ICEPP) in the University of Tokyo, was established as a regional analysis center in Japan for the ATLAS experiment. The official operation with WLCG was started in 2007 after the several years development since 2002. In December 2012, we have replaced almost all hardware as the third system upgrade to deal with analysis for further growing data of the ATLAS experiment. The number of CPU cores are increased by factor of two (9984 cores in total), and the performance of individual CPU core is improved by 20% according to the HEPSPEC06 benchmark test at 32bit compile mode. The score is estimated as 18.03 (SL6) per core by using Intel Xeon E5-2680 2.70 GHz. Since all worker nodes are made by 16 CPU cores configuration, we deployed 624 blade servers in total. They are connected to 6.7 PB of disk storage system with non-blocking 10 Gbps internal network backbone by using two center network switches (NetIron MLXe-32). The disk storage is made by 102 of RAID6 disk arrays (Infortrend DS S24F-G2840-4C16DO0) and served by equivalent number of 1U file servers with 8G-FC connection to maximize the file transfer throughput per storage capacity. As of February 2013, 2560 CPU cores and 2.00 PB of disk storage have already been deployed for WLCG. Currently, the remaining non-grid resources for both CPUs and disk storage are used as dedicated resources for the data analysis by the ATLAS Japan collaborators. Since all hardware in the non-grid resources are made by same architecture with Tier2 resource, they will be able to be migrated as the Tier2 extra resource on demand of the ATLAS experiment in the future. In addition to the upgrade of computing resources, we expect the improvement of connectivity on the wide area network. Thanks to the Japanese NREN (NII), another 10 Gbps trans-Pacific line from Japan to Washington will be available additionally with existing two 10 Gbps lines

  20. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  1. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  2. APPLICATION OF STEEL PIPE PILE LOADING TESTS TO DESIGN VERIFICATION OF FOUNDATION OF THE TOKYO GATE BRIDGE

    NASA Astrophysics Data System (ADS)

    Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji

    Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.

  3. Characteristics of Individuals With Mental Illness in Tokyo Homeless Shelters.

    PubMed

    Okamura, Tsuyoshi; Takeshima, Tadashi; Tachimori, Hisateru; Takiwaki, Ken; Matoba, Yuki; Awata, Shuichi

    2015-12-01

    Japan has the largest number of psychiatric beds in the world and has been in the process of deinstitutionalization since 2004. The majority of psychiatric inpatients are elderly long-term patients, who are at risk of homelessness after they are discharged. There is little information about homeless people with mental illnesses in Japan, and the aim of this study was to describe characteristics of people with a mental illness in homeless shelters in Tokyo. A face-to-face survey was conducted from December 2012 to March 2013 by the staff of a nonprofit organization (NPO) that helps socially isolated persons. Of the 1,056 people who received help during the study period, 684 completed the survey. Eighteen percent of the 684 survey participants had a mental illness. Of the 210 individuals who lived in shelters, one-third had a mental illness. The mean age of shelter users with mental illness was 64.9; they tended to be referred from hospitals, and their mental well-being was poorer than other NPO service users in the study. Among the service users with mental illness, those living in shelters were older than those living in the community and more likely to have a history of trouble with alcohol, poor family relationships, and impaired instrumental activities of daily living. Unmet mental health needs were noted among discharged hospital patients living in Tokyo homeless shelters. An integrated and community-based support system with more effective health care delivery, including critical time interventions, is needed.

  4. New evaporator station for the center for accelerator target science

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  5. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For

  6. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  7. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  8. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  9. Accelerator Science: Luminosity vs. Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    In the world of high energy physics there are several parameters that are important when one constructs a particle accelerator. Two crucial ones are the energy of the beam and the luminosity, which is another word for the number of particles in the beam. In this video, Fermilab’s Dr. Don Lincoln explains the differences and the pros and cons. He even works in an unexpected sporting event.

  10. Accelerator Science: Luminosity vs. Energy

    ScienceCinema

    Lincoln, Don

    2018-06-12

    In the world of high energy physics there are several parameters that are important when one constructs a particle accelerator. Two crucial ones are the energy of the beam and the luminosity, which is another word for the number of particles in the beam. In this video, Fermilab’s Dr. Don Lincoln explains the differences and the pros and cons. He even works in an unexpected sporting event.

  11. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    NASA Astrophysics Data System (ADS)

    Barletta, William; Chattopadhyay, Swapan; Seryi, Andrei

    2012-01-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intensive courses at regional accelerator schools. This article describes the approaches being used to satisfy the educational curiosity of a growing number of interested physicists and engineers.

  12. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, William A.; Chattopadhyay, Swapan; Seryi, Andrei

    2012-07-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intense courses at regional accelerator schools. This paper describes the approaches being used to satisfy the educational interests of a growing number of interested physicists and engineers.

  13. [Current and future legislation of illegal drugs in Tokyo].

    PubMed

    Abe, Tetsuya

    2013-01-01

    Abuse of illegal drugs is widespread among young people, especially in the so-called "dance club scene" or "rave scene". Severe and even fatal poisonings have been attributed to the consumption of such drugs of abuse. The actions against these drugs by the Tokyo Metropolitan Government and subsequently by the Government of Japan have gone some way to reducing the potential harm caused by these substances. However, alternative products have been advertised on a number of websites. During our careful surveillance of illegal drugs in 2011, we found seven unregulated drugs advertised. This means that we have an obligation to continue strict surveillance of illegal drugs and to structure a system of temporary bans on illegal drugs.

  14. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  15. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  16. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  17. (Installation of the Vinca Accelerator)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucker, A.

    1991-04-22

    I participated in a workshop of the physics with accelerators in Belgrade, Yugoslavia and chaired an advisory committee for the Vinca Accelerator Installation which is currently in progress. Also, I participated in meetings with the Serbian Academy of Sciences and with the Deputy Prime Minister of Serbia concerning the plans and aspirations of the nuclear research center at Vinca.

  18. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Michael James

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less

  19. Modified multiplex PCR for identification of Bacillus Calmette-Guérin substrain Tokyo among clinical isolates.

    PubMed

    Seki, Masaaki; Sato, Akimasa; Honda, Ikuro; Yamazaki, Toshio; Yano, Ikuya; Koyama, Akira; Toida, Ichiro

    2005-05-02

    When an adverse reaction occurs and a mycobacterial species is isolated from a person vaccinated with Bacillus Calmette-Guérin (BCG) or a patient receiving BCG immunotherapy, it is essential to identify whether the isolate is BCG or another mycobacterial species. However, differentiation of BCG from other members of Mycobacterium tuberculosis complex has been very difficult. Using several specific primer-pairs, Bedwell et al. [Bedwell J, Kairo SK, Behr MA, Bygraves JA. Identification of substrains of BCG vaccine using multiplex PCR. Vaccine 2001; 19: 2146-51] recently reported that they could distinguish BCG substrains. We modified their method to improve differentiation of Tokyo 172 from other members of the M. tuberculosis complex, and examined whether this modified method could be applied to clinical isolates. Our method clearly identified BCG substrain (BCG Tokyo 172) among clinical isolates and easily distinguished between M. tuberculosis and wild-type Mycobacterium bovis.

  20. Distribution and identification of airborne fungi in railway stations in Tokyo, Japan.

    PubMed

    Kawasaki, Tamami; Kyotani, Takashi; Ushiogi, Tomoyoshi; Izumi, Yasuhiko; Lee, Hunjun; Hayakawa, Toshio

    2010-01-01

    The current study was performed to (1) understand the distribution of airborne fungi culturable on dichloran-glycerol agar (DG18) media over a one-year monitoring period, (2) identify the types of airborne fungi collected, and (3) compare and contrast under- and above-ground spaces, in two railway stations in Tokyo, Japan. Measurements of airborne fungi were taken at stations A and B located in Tokyo. Station A had under- and above-ground concourses and platforms whereas station B had spaces only above-ground. Airborne fungi at each measurement position were collected with an air sampler on DG18 media. After cultivation of the sample plates, the number of fungi colonies was counted on each agar plate. In station A, the underground platform was characterized as (1) having the highest humidity and (2) a high concentration of airborne fungi, with (3) a high proportion of non-sporulating fungi (NSF) and Aspergillus versicolor. There was a strong positive correlation between the concentrations of airborne particles and fungi in station A. Common aspects of the two stations were (1) that fungi were mostly detected in autumn, and (2) there was no correlation between the humidity and concentration of fungi throughout the year. The results of this study indicate that the distribution and composition of fungi differ depending on the structure of the station.

  1. A Simple but Powerful Heuristic Method for Accelerating k-Means Clustering of Large-Scale Data in Life Science.

    PubMed

    Ichikawa, Kazuki; Morishita, Shinichi

    2014-01-01

    K-means clustering has been widely used to gain insight into biological systems from large-scale life science data. To quantify the similarities among biological data sets, Pearson correlation distance and standardized Euclidean distance are used most frequently; however, optimization methods have been largely unexplored. These two distance measurements are equivalent in the sense that they yield the same k-means clustering result for identical sets of k initial centroids. Thus, an efficient algorithm used for one is applicable to the other. Several optimization methods are available for the Euclidean distance and can be used for processing the standardized Euclidean distance; however, they are not customized for this context. We instead approached the problem by studying the properties of the Pearson correlation distance, and we invented a simple but powerful heuristic method for markedly pruning unnecessary computation while retaining the final solution. Tests using real biological data sets with 50-60K vectors of dimensions 10-2001 (~400 MB in size) demonstrated marked reduction in computation time for k = 10-500 in comparison with other state-of-the-art pruning methods such as Elkan's and Hamerly's algorithms. The BoostKCP software is available at http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/boostKCP/.

  2. Two long-term slow slip events around Tokyo Bay found by GNSS observation during 1996-2011

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Yabe, Suguru

    2017-03-01

    Slow slip events (SSEs) with durations ranging from days to more than a decade have been observed in plate subduction zones around the world. In the Kanto district in Japan, several SSEs have been identified based on geodetic observations. However, none of these events have had durations largely exceeding a year. In this study, we show that long-term SSEs with durations longer than 3 years occurred before the year 2000 and after 2007 on the upper interface of the Philippine Sea Plate at depths of 30-40 km. The fault model determined by inversion of global navigation satellite system data is located northeast of Tokyo Bay, where a seismic gap and low seismic wave velocities were detected by seismological observations. Moreover, the acceleration periods of the fault slip corresponded well with increases in the background seismicity for shallower earthquakes. The slip history was also temporally correlated with the long-term shear stress changes governed mainly by non-tidal variations in the ocean bottom pressure. However, the predicted slip from the long-term stress change was too small to reproduce the observed slow slips. To prove the causal relationship between the SSEs and the external stress change, more advanced modeling is necessary to confirm whether such a small slip can trigger an SSE.[Figure not available: see fulltext.

  3. Analysis of photochemical pollution in summer and winter using a photochemical box model in the center of Tokyo, Japan.

    PubMed

    Huang, H; Akustu, Y; Arai, M; Tamura, M

    2001-07-01

    In order to give an effective and rapid analysis of the photochemical pollution and information for emission control strategies, a photochemical box model (PBM) was applied to one moderate summer episode, 11 July 1996, and one typical winter episode, 3 December 1996, in the center of Tokyo, Japan. The box model gave a good prediction of the photochemical pollution with minimal investment. As expected, the peak ozone in summer is higher than in winter. The NOx concentrations in winter are higher than those in summer. In summer, NO and NO2 have one peak in the morning. In winter, NO and NO2 show two peaks during the day. Three model runs including no reactions, a zero ozone boundary condition and dark reactions were conducted to understand the photochemical processes. The effects of emission reduction on the formation of the photochemical pollution in the center of Tokyo have been studied. The results show that the reduction of NMHC emission can decrease the ozone, however, the reduction of NOx emission can increase the ozone. It can be concluded that if the NOx emission are reduced, the reduction of NMHC should be more emphasized in order to decrease the ozone concentration in the center of Tokyo, Japan, especially the reduction of the NMHC from stationary source emission.

  4. Numerical Analysis of Storm Surge and Seiche at Tokyo Bay caused by the 2 Similar Typhoons, Typhoon Phanphon and Vongfong in 2014

    NASA Astrophysics Data System (ADS)

    Iwamoto, T.; Takagawa, T.

    2017-12-01

    A long period damped oscillation, or seiche, sometimes happens inside a harbor after passing typhoon. For some cases, a maximum sea level is observed due to the superposition of astronomical tide and seiche rather than a peak of storm surge. Hence to clarify seiche factors for reducing disaster potential is important, a long-period seiche with a fundamental period of 5.46 hours in Tokyo Bay (Konishi, 2008) was investigated through numerical simulations and analyses. We examined the case of Typhoon Phanphon and Vongfong in 2014 (Hereafter Case P and V). The intensity and moving velocity were similar and the best-tracks were an arc-shaped, typical one approaching to Tokyo Bay. The track of Case V was about 1.5 degree higher latitude than that of Case P, only Typhoon Phanphon caused significant seiche.Firstly, numerical simulations for the 2 storm surges at Tokyo Bay were conducted by Regional Ocean Modeling System (ROMS) and Meso-Scale Model Grid Point Values (MSM-GPV). MSM-GPV gave the 10m wind speed and Sea Level Pressure (SLP), especially the Mean Error (ME) and Root Mean Squire Error (RMSE) of SLP were low compared to the 12 JMA observation points data (Case P: ME -0.303hPa, RMSE 1.87hPa, Case V: ME -0.285hPa, RMSE 0.74hPa). The computational results showed that the maximum of storm surge was underestimated but the difference was less than 20cm at 5 observation points in Tokyo Bay(Fig.1, 2).Then, power spectrals, coherences and phase differences of storm surges at the 5 observation points were obtained by spectral analysis of observed and simulated waveforms. For Case P, the phase-difference between the bay mouth and innermost part of Tokyo Bay was little, and coherence was almost 1(Fig.3, 4). However, for Case V, coherence was small around the fundamental period of 5.46 hours. Furthermore, Empirical Orthogonal Function (EOF) analysis of storm surge, SLP and sea surface stress were conducted. The contributions of EOF1 were above 90% for the all variables, the

  5. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    NASA Astrophysics Data System (ADS)

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  6. Accelerating Science to Action: NGOs Catalyzing Scientific Research using Philanthropic/Corporate Funding

    NASA Astrophysics Data System (ADS)

    Hamburg, S.

    2017-12-01

    While government funding of scientific research has been the bedrock of scientific advances in the US, it is seldom quick or directly responsive to societal needs. If we are to effectively respond to the increasingly urgent needs for new science to address the environmental and social challenges faced by humanity and the environment we need to deploy new scientific models to augment government-centric approaches. The Environmental Defense Fund has developed an approach that accelerates the development and uptake of new science in pursuit of science-based policy to fill the gap while government research efforts are initiated. We utilized this approach in developing the data necessary to quantify methane emissions from the oil and gas supply chain. This effort was based on five key principles: studies led by an academic researchers; deployment of multiple methods whenever possible (e.g. top-down and bottom-up); all data made public (identity but not location masked when possible); external scientific review; results released in peer-reviewed scientific journals. The research to quantify methane emissions involved > 150 scientists from 40 institutions, resulting in 35 papers published over four years. In addition to the research community companies operating along the oil and gas value chain participated by providing access to sites/vehicles and funding for a portion of the academic research. The bulk of funding came from philanthropic sources. Overall the use of this alternative research/funding model allowed for the more rapid development of a robust body of policy-relevant knowledge that addressed an issue of high societal interest/value.

  7. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  8. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  9. The Medical Library and Media Center of Keio University in Tokyo: report on a visit.

    PubMed Central

    Accart, J P

    1995-01-01

    The Medical Library and Media Center at Keio University in Tokyo offers many facilities to its users: access to medical information within a large catalog of monographs and journals, online searching and CD-ROM databases, and a dynamic interlibrary loan service. This article is a report of a professional visit to the library on September 30, 1993. PMID:7703947

  10. Risk and Infrastructure Science Center - Global Security Sciences

    Science.gov Websites

    delivers scientific tools and methodologies to inform decision making regarding the most challenging Sciences ASD Accelerator Systems AES APS Engineering Support XSD X-ray Science Physical Sciences and Leadership Strategic Alliance for Global Energy Solutions Overview Leadership Systems Science Center Overview

  11. Fermilab | Science | Particle Accelerators | LHC and Future Accelerators

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Office of Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at

  12. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  13. Western blot (immunoblot) assay of small, round-structured virus associated with an acute gastroenteritis outbreak in Tokyo.

    PubMed

    Hayashi, Y; Ando, T; Utagawa, E; Sekine, S; Okada, S; Yabuuchi, K; Miki, T; Ohashi, M

    1989-08-01

    Small, round-structured virus (SRSV) was detected in a stool specimen of a patient during an acute gastroenteritis outbreak in Tokyo and was tentatively named SRSV-9. SRSV-9 was purified by sucrose velocity gradient centrifugation after CsCl density gradient centrifugation. The buoyant density of SRSV-9 appeared to be 1.36 g/ml in CsCl. A Western blot (immunoblot) assay using the biotin-avidin system revealed that SRSV-9 was antigenically related to the Hawaii agent but distinct from the Norwalk agent and contained a single major structural protein with a molecular size of 63.0 +/- 0.6 kilodaltons. The prevalence of SRSV-9 infection in Tokyo was surveyed by the Western blot antibody assay by using a crude virus preparation as the antigen. Seroconversion was observed in 56.5% of the patients involved in the outbreaks from which SRSV was detected by electron microscopy.

  14. The "Tokyo" consensus on propeller flaps.

    PubMed

    Pignatti, Marco; Ogawa, Rei; Hallock, Geoffrey G; Mateev, Musa; Georgescu, Alexandru V; Balakrishnan, Govindasamy; Ono, Shimpei; Cubison, Tania C S; D'Arpa, Salvatore; Koshima, Isao; Hyakusoku, Hikko

    2011-02-01

    Over the past few years, the use of propeller flaps, which base their blood supply on subcutaneous tissue or isolated perforators, has become increasingly popular. Because no consensus has yet been reached on terminology and nomenclature of the propeller flap, different and confusing uses of the term can be found in the literature. In this article, the authors report the consensus on the definition and classification of propeller flaps reached by the authors that gathered at the First Tokyo Meeting on Perforator and Propeller Flaps in June of 2009. Some peculiar aspects of the surgical technique are discussed. A propeller flap can be defined as an "island flap that reaches the recipient site through an axial rotation." The classification is based on the nourishing pedicle (subcutaneous pedicled propeller flap, perforator pedicled propeller flap, supercharged propeller flap), the degrees of skin island rotation (90 to 180 degrees) and, when possible, the artery of origin of the perforator. The propeller flap is a useful reconstructive tool that can achieve good cosmetic and functional results. A flap should be called a propeller flap only if it fulfils the definition above. The type of nourishing pedicle, the source vessel (when known), and the degree of skin island rotation should be specified for each flap.

  15. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Linda

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less

  16. History of ancient megathrust earthquakes beneath metropolitan Tokyo inferred from coastal lowland deposits

    NASA Astrophysics Data System (ADS)

    Mannen, Kazutaka; Yoong, Kim Haeng; Suzuki, Shigeru; Matsushima, Yoshiaki; Ota, Yuki; Kain, Claire L.; Goff, James

    2018-02-01

    Metropolitan Tokyo is located directly above a subduction zone that has generated two megathrust earthquakes in the past 300 years. However, the timing of older megathrusts on this margin is poorly understood. In this study, we aim to constrain the timings of past megathrust earthquakes, using coastal stratigraphy, paleoecology, radiocarbon dating and archaeological records from coastal lowlands. An investigation of 13 boreholes in the southern coastal area of metropolitan Tokyo found evidence for 4 m of uplift in a 6000-year period. However, we found that net vertical displacement in the last 1000 years is approximately zero. Results suggest that preservation of usually ephemeral lagoon sediments occurred on three occasions in the past 1000 years, and radiocarbon dating results show that the timings of these preservation episodes are close to that of major historical earthquakes. We thus attribute the intermittent preservation of the ephemeral lagoon deposits to coseismic uplift caused by the megathrust earthquakes. The candidates of the megathrust earthquakes are events that took place in 1703 CE, the 13th century, and 878 CE. Since these events produced no net vertical displacement due to inter-seismic subsidence, we propose that earthquakes responsible for long-term uplift of this region took place prior to the 9th century. This research also demonstrates the value of preserved intertidal sediments as paleoseismological archives where net tectonic displacement is neutral.

  17. JPRS Report, Science & Technology, Japan. Goto Quantum Magneto-Flux Logic Project.

    DTIC Science & Technology

    1992-04-23

    established infrastruc- T. Kobayashi Professor, Physics Department, ture technology, such as the minimal signal measure-Faculty of Science, Tokyo Uni...5th Josephson Electronics, p 103 ence Proceedings, p 1215 (1989) (1988) M. Sato, N. Fukazawa, P. Spee and E. Goto J. Yuyama, M. Kasuya, S. Kobayashi , R...a speed similar to the real number inner product Nobuaki Yoshida computation. Because the single precision inner product computation can be composed

  18. Fine-particulate Air Pollution from Diesel Emission Control and Mortality Rates in Tokyo: A Quasi-experimental Study.

    PubMed

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-11-01

    Evidence linking air pollution with adverse health outcomes is accumulating. However, few studies have adopted a quasi-experimental design to evaluate whether decline in air pollution from regulatory action improves public health. We evaluated the effect of a diesel emission control ordinance introduced in 2003 on mortality rates in 23 wards of the Tokyo metropolitan area, Japan, from October 2000 to September 2012, taking into account change in mortality rates in a reference population (Osaka) with a introduction of such a regulation in 2009. We obtained daily counts of all-cause and cause-specific mortality and concentrations of nitrogen dioxide (NO2) and particulate matter less than 2.5 μm in diameter (PM2.5) during the study period. We employed interrupted time-series analysis to analyze the data. Decline in NO2 during the study period was similar in the two areas, while decline in PM2.5 and the improvement in age-standardized mortality rates were greater in Tokyo's 23 wards compared with Osaka. Even after adjusting for age-standardized mortality rates in Osaka, percent changes in mortality between the first 3-year interval (October 2000 to September 2003) and the last 3-year interval (October 2009 to September 2012) were -6.0% for all causes, -11% for cardiovascular disease, -10% for ischemic heart disease, -6.2% for cerebrovascular disease, -22% for pulmonary disease, and -4.9% for lung cancer. We did not observe a decline in mortality from other causes. This quasi-experimental study in Tokyo suggests that emission control was associated with improvements in both air quality and health outcomes.

  19. Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay, Japan.

    PubMed

    Powell, David E; Suganuma, Noriyuki; Kobayashi, Keiji; Nakamura, Tsutomu; Ninomiya, Kouzo; Matsumura, Kozaburo; Omura, Naoki; Ushioka, Satoshi

    2017-02-01

    Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS), specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated in the pelagic marine food web of Tokyo Bay, Japan. Polychlorinated biphenyl (PCB) congeners that are "legacy" chemicals known to bioaccumulate in aquatic organisms and biomagnify across aquatic food webs were used as a benchmark chemical (CB-180) to calibrate the sampled food web and as a reference chemical (CB-153) to validate the results. Trophic magnification factors (TMFs) were calculated from slopes of ordinary least-squares (OLS) regression models and slopes of bootstrap regression models, which were used as robust alternatives to the OLS models. Various regression models were developed that incorporated benchmarking to control bias associated with experimental design, food web dynamics, and trophic level structure. There was no evidence from any of the regression models to suggest biomagnification of cVMS in Tokyo Bay. Rather, the regression models indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food web. Comparison of results for Tokyo Bay to results from other studies indicated that bioaccumulation of cVMS was not related to type of food web (pelagic vs demersal), environment (marine vs freshwater), species composition, or location. Rather, results suggested that differences between study areas was likely related to food web dynamics and variable conditions of exposure resulting from non-uniform patterns of organism movement across spatial concentration gradients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Accelerating target discovery using pre-competitive open science-patients need faster innovation more than anyone else.

    PubMed

    Low, Eric; Bountra, Chas; Lee, Wen Hwa

    2016-01-01

    We are experiencing a new era enabled by unencumbered access to high quality data through the emergence of open science initiatives in the historically challenging area of early stage drug discovery. At the same time, many patient-centric organisations are taking matters into their own hands by participating in, enabling and funding research. Here we present the rationale behind the innovative partnership between the Structural Genomics Consortium (SGC)-an open, pre-competitive pre-clinical research consortium and the research-focused patient organisation Myeloma UK to create a new, comprehensive platform to accelerate the discovery and development of new treatments for multiple myeloma.

  1. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  2. Agricultural aspects of radiocontamination induced by the Fukushima nuclear accident - A survey of studies by the Univ. of Tokyo Agricultural Dept. (2011-2016).

    PubMed

    Nakanishi, Tomoko M

    2018-01-01

    Immediately after the Fukushima nuclear power plant accident, a team of 40-50 researchers at the Graduate School of Agricultural and Life Sciences at the University of Tokyo began to analyze the behavior of radioactive materials in the fallout regions. The fallout has remained in situ and become strongly adsorbed within the soil over time. 137 Cs was found to bind strongly to the fine clay, weathered biotite, and organic matter in the soil; therefore, it has not mobilized from mountainous regions, even after heavy rainfall. In farmland, the quantity of 137 Cs in the soil absorbed by crop plants was small. The downward migration of 137 Cs in soil is now estimated at 1-2 mm/year. The intake of 137 Cs by trees occurred through the bark and not from the roots. This report summarizes the findings of research across a wide variety of agricultural specialties.

  3. Johannes Ludwig Janson, professor of veterinary medicine in Tokyo in 1880-1902 - contribution to German-Japanese medical relations, part IV.

    PubMed

    Kast, Alexander

    2010-01-01

    Among the German pioneers of Western medicine in Japan (8, 12) during the Meiji period (1868-1912), veterinary officer Johannes Ludwig Janson (1849-1914) was one of the most important figures. He arrived in Tokyo in October 1880 and taught at the Veterinary School in Komaba. During his tenure, the school in Komaba was integrated into the School of Agriculture of the Imperial University of Tokyo. Numerous of his graduates occupied high public offices. Among his publications, those about domestic animals and veterinary medicine in Japan deserve special attention. He married a Japanese girl and continued teaching in Komaba until 1902. He found his last resting place in Kagoshima, the native place of his wife. To this day, the Japanese consider Janson the founder of modern veterinary medicine in their country.

  4. Origin of soluble chemical species in bulk precipitation collected in Tokyo, Japan: Statistical evaluation of source materials

    NASA Astrophysics Data System (ADS)

    Tsurumi, Makoto; Takahashi, Akira; Ichikuni, Masami

    An iterative least-squares method with a receptor model was applied to the analytical data of the precipitation samples collected at 23 points in the suburban area of Tokyo, and the number and composition of the source materials were determined. Thirty-nine monthly bulk precipitation samples were collected in the spring and summer of 1987 from the hilly and mountainous area of Tokyo and analyzed for Na +, K +, NH 4+, Mg 2+, Ca 2+, F -, Cl -, Br -, NO 3- and SO 42- by atomic absorption spectrometry and ion chromatography. The pH of the samples was also measured. A multivariate ion balance approach (Tsurumi, 1982, Anal. Chim. Acta138, 177-182) showed that the solutes in the precipitation were derived from just three major sources; sea salt, acid substance (a mixture of 53% HNO 3, 39% H 2SO 4 and 8% HCl in equivalent) and CaSO 4. The contributions of each source to the precipitation were calculated for every sampling site. Variations of the contributions with the distance from the coast were also discussed.

  5. Comparison of cost-benefit analysis of nitrogen dioxide control in Tokyo, Japan with those in other countries and cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voorhees, A.S.; Araki, S.; Sakai, R.

    1999-07-01

    To evaluate the economic effectiveness of past NO{sub 2} controls in Tokyo, the authors compared the results of their cost-benefit analysis (CBA) of these controls with other investigations. The authors carried out a CBA of NO{sub 2} controls in Tokyo using Freeman's benefit methodology and EPA and Dixon et al. cost methodologies and they compared their assumptions and results to work done by other researchers for other countries and cities, which were collected from the literature. The authors assumed 2 to 3 days duration per incidence of respiratory illness. Kenkel suggested 4.1 days and Dixon et al. assumed 2 weeks. They estimated avoided incidence per person in adults as 2.6 (upper limit UL 2.7; lower limit LL 2.4) and in children as 0.33 (UL 0.35; LL 0.30). Ostro estimated 0.20 for respiratory symptoms in adults from NO{sub 2} exposure, 5.2 for respiratory symptoms and 0.078 for asthma attacks in adults from particulates. The authors estimated work loss days (WLDs) per person for workers as 4.7 (UL 5.0; LL 4.4) and for working mothers as 0.61 (UL 0.66; LL 0.56). Shin et al.'s per-person estimates included 4.5 WLDs in Bangkok, 3.7 in Beijing, 2.3 in Shanghai, and 1.1 in Kuala Lumpur. They estimated the cost effectiveness of NO{sub 2} control in Tokyo to bemore » $1,400/ton (UL $1,500; LL $1,300) for motor vehicles, $21,000/ton (UL $23,000; LL $$19,000) for all NO{sub x} sources, and $$91,000/ton (UL $98,000; LL $84,000) for stationary point sources. This compares to $240 to $$1,500/ton in West Virginia for all NO{sub x} sources, $$2,700/ton in northern Virginia from motor vehicles, $5,600/ton from motor vehicles in Virginia, and $17,000 to $26,000/ton from all NO{sub x} sources in the Chesapeake River Watershed. Herein, the benefits in Tokyo exceeded the costs by a ratio of approximately 6 to 1 (UL 7:1; LL 5:1).« less

  6. Tokyo Guidelines 2018: management strategies for gallbladder drainage in patients with acute cholecystitis (with videos).

    PubMed

    Mori, Yasuhisa; Itoi, Takao; Baron, Todd H; Takada, Tadahiro; Strasberg, Steven M; Pitt, Henry A; Ukai, Tomohiko; Shikata, Satoru; Noguchi, Yoshinori; Teoh, Anthony Yuen Bun; Kim, Myung-Hwan; Asbun, Horacio J; Endo, Itaru; Yokoe, Masamichi; Miura, Fumihiko; Okamoto, Kohji; Suzuki, Kenji; Umezawa, Akiko; Iwashita, Yukio; Hibi, Taizo; Wakabayashi, Go; Han, Ho-Seong; Yoon, Yoo-Seok; Choi, In-Seok; Hwang, Tsann-Long; Chen, Miin-Fu; Garden, O James; Singh, Harjit; Liau, Kui-Hin; Huang, Wayne Shih-Wei; Gouma, Dirk J; Belli, Giulio; Dervenis, Christos; de Santibañes, Eduardo; Giménez, Mariano Eduardo; Windsor, John A; Lau, Wan Yee; Cherqui, Daniel; Jagannath, Palepu; Supe, Avinash Nivritti; Liu, Keng-Hao; Su, Cheng-Hsi; Deziel, Daniel J; Chen, Xiao-Ping; Fan, Sheung Tat; Ker, Chen-Guo; Jonas, Eduard; Padbury, Robert; Mukai, Shuntaro; Honda, Goro; Sugioka, Atsushi; Asai, Koji; Higuchi, Ryota; Wada, Keita; Yoshida, Masahiro; Mayumi, Toshihiko; Hirata, Koichi; Sumiyama, Yoshinobu; Inui, Kazuo; Yamamoto, Masakazu

    2018-01-01

    Since the publication of the Tokyo Guidelines in 2007 and their revision in 2013, appropriate management for acute cholecystitis has been more clearly established. Since the last revision, several manuscripts, especially for alternative endoscopic techniques, have been reported; therefore, additional evaluation and refinement of the 2013 Guidelines is required. We describe a standard drainage method for surgically high-risk patients with acute cholecystitis and the latest developed endoscopic gallbladder drainage techniques described in the updated Tokyo Guidelines 2018 (TG18). Our study confirmed that percutaneous transhepatic gallbladder drainage should be considered the first alternative to surgical intervention in surgically high-risk patients with acute cholecystitis. Also, endoscopic transpapillary gallbladder drainage or endoscopic ultrasound-guided gallbladder drainage can be considered in high-volume institutes by skilled endoscopists. In the endoscopic transpapillary approach, either endoscopic naso-gallbladder drainage or gallbladder stenting can be considered for gallbladder drainage. We also introduce special techniques and the latest outcomes of endoscopic ultrasound-guided gallbladder drainage studies. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included. © 2017 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  7. Living on an Active Earth: Perspectives on Earthquake Science

    NASA Astrophysics Data System (ADS)

    Lay, Thorne

    2004-02-01

    The annualized long-term loss due to earthquakes in the United States is now estimated at $4.4 billion per year. A repeat of the 1923 Kanto earthquake, near Tokyo, could cause direct losses of $2-3 trillion. With such grim numbers, which are guaranteed to make you take its work seriously, the NRC Committee on the Science of Earthquakes begins its overview of the emerging multidisciplinary field of earthquake science. An up-to-date and forward-looking survey of scientific investigation of earthquake phenomena and engineering response to associated hazards is presented at a suitable level for a general educated audience. Perspectives from the fields of seismology, geodesy, neo-tectonics, paleo-seismology, rock mechanics, earthquake engineering, and computer modeling of complex dynamic systems are integrated into a balanced definition of earthquake science that has never before been adequately articulated.

  8. Accelerate synthesis in ecology and environmental sciences

    USDA-ARS?s Scientific Manuscript database

    Synthesis of diverse knowledge is a central part of all sciences, but especially those such as ecology and environmental sciences which draw information from many disciplines. Research and education in ecology are intrinsically synthetic, and synthesis is increasingly needed to find solutions for en...

  9. Community Project for Accelerator Science and Simulation (ComPASS) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, John R.; Cowan, Benjamin M.; Veitzer, S. A.

    2016-03-04

    Tech-X participated across the full range of ComPASS activities, with efforts in the Energy Frontier primarily through modeling of laser plasma accelerators and dielectric laser acceleration, in the Intensity Frontier primarily through electron cloud modeling, and in Uncertainty Quantification being applied to dielectric laser acceleration. In the following we present the progress and status of our activities for the entire period of the ComPASS project for the different areas of Energy Frontier, Intensity Frontier and Uncertainty Quantification.

  10. Social capital and stigma toward people with mental illness in Tokyo, Japan.

    PubMed

    Kido, Yoshifumi; Kawakami, Norito; Miyamoto, Yuki; Chiba, Rie; Tsuchiya, Masao

    2013-04-01

    Living in a community with high social capital might lead to lower stigma towards people with mental illness. We examined the association between social capital and stigma toward people with mental illness in the community of Tokyo, Japan. A random sample of 2,000 community residents was selected and surveyed. Data from 516 respondents were analyzed. In this study, two individual-based social capital variables were significantly and negatively associated with the stigma score, while area-based social capital was not significantly associated with the stigma score. Social capital, particularly reciprocity/norm of cooperation and trust in the community, may be associated with lower stigma.

  11. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  12. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  13. An evidential example of airborne bacteria in a crowded, underground public concourse in Tokyo

    NASA Astrophysics Data System (ADS)

    Seino, Kaoruko; Takano, Takehito; Nakamura, Keiko; Watanabe, Masafumi

    2005-01-01

    We examined airborne bacteria in an underground concourse in Tokyo and investigated conditions that influenced bacterial counts. Airborne bacteria were collected by using an impactor sampler. Colonies on plate count agar (PCA) and Columbia colistin-nalidixic acid agar with 5% sheep blood (CNA agar) were enumerated. The range, geometric mean, and 95% CI of the bacterial counts (CFU m-3) on PCA and CNA agar were 150-1380, 456, 382-550 and 50-990, 237, 182-309, respectively. Bacterial counts on PCA significantly correlated with number of the pedestrians (r=0.89), relative humidity (r=0.70) and airborne dust (PM5.0) (r=0.73). Results of a multiple regression indicated independent positive association between the number of pedestrians and bacterial counts on PCA (p<0.01) after excluding the influence of relative humidity and airborne dust. Similar results were obtained with the statistical analysis for the counts of bacteria on CNA agar. Gram-positive cocci were dominant on PCA and CNA agar. Staphylococcus epidermidis and Micrococcus spp. were dominant among the 11 genera and 19 species identified in the present study. Considering the pattern of identified species and the significant independent association between number of pedestrians and bacterial counts, airborne bacteria in a crowded underground concourse were mostly originated from the pedestrians who were walking in the underground concourse. This study gave an evidential example of bacterial conditions in the air of an underground crowded public space in Tokyo.

  14. A new 1649-1884 catalog of destructive earthquakes near Tokyo and implications for the long-term seismic process

    USGS Publications Warehouse

    Grunewald, E.D.; Stein, R.S.

    2006-01-01

    In order to assess the long-term character of seismicity near Tokyo, we construct an intensity-based catalog of damaging earthquakes that struck the greater Tokyo area between 1649 and 1884. Models for 15 historical earthquakes are developed using calibrated intensity attenuation relations that quantitatively convey uncertainties in event location and magnitude, as well as their covariance. The historical catalog is most likely complete for earthquakes M ??? 6.7; the largest earthquake in the catalog is the 1703 M ??? 8.2 Genroku event. Seismicity rates from 80 years of instrumental records, which include the 1923 M = 7.9 Kanto shock, as well as interevent times estimated from the past ???7000 years of paleoseismic data, are combined with the historical catalog to define a frequency-magnitude distribution for 4.5 ??? M ??? 8.2, which is well described by a truncated Gutenberg-Richter relation with a b value of 0.96 and a maximum magnitude of 8.4. Large uncertainties associated with the intensity-based catalog are propagated by a Monte Carlo simulation to estimations of the scalar moment rate. The resulting best estimate of moment rate during 1649-2003 is 1.35 ?? 1026 dyn cm yr-1 with considerable uncertainty at the 1??, level: (-0.11, + 0.20) ?? 1026 dyn cm yr-1. Comparison with geodetic models of the interseismic deformation indicates that the geodetic moment accumulation and likely moment release rate are roughly balanced over the catalog period. This balance suggests that the extended catalog is representative of long-term seismic processes near Tokyo and so can be used to assess earthquake probabilities. The resulting Poisson (or time-averaged) 30-year probability for M ??? 7.9 earthquakes is 7-11%.

  15. [Serial Food Poisoning Outbreaks Caused by Norovirus-Contaminated Shredded Dried Laver Seaweed Provided at School Lunch, Tokyo, 2017].

    PubMed

    Somura, Yoshiko; Kimoto, Kana; Oda, Mayuko; Okutsu, Yuta; Kato, Rei; Suzuki, Yasunori; Siki, Dai; Hirai, Akihiko; Akiba, Tetsuya; Shinkai, Takayuki; Sadamasu, Kenji

    2017-01-01

    In February 2017, four food poisoning outbreaks occurred in Tokyo, involving ten schools. Shredded dried laver seaweed processed by a single food manufacturer in December 2016 was provided in common for the school meals that caused all four outbreaks. Of 4,209 persons exposed, 1,193 (28.3%) had symptoms of gastroenteritis. Norovirus (NoV) GII was detected in 207 (78.1%) of 265 cases by real-time RT-PCR. Thirty-one shredded dried laver seaweed samples were examined and seven (22.6%) of them were positive for NoV GII. PCR fragments of NoV ORF1/2 junction region (302 bp) from seven shredded dried laver seaweed samples and 20 clinical samples derived from the four outbreaks were sequenced. All of them displayed complete homology, and the genotype was classified as GII.17. A nearly full-length sequence (7,420 bp) of NoV RNA derived from a case was obtained by next-generation sequencer analysis and phylogenetic analysis indicated that this strain belongs to the same cluster as Hu/GII/JP/2015/GII.P17_GII.17/Kawasaki308. Thus, our investigation elucidated that the causative agent of these four serial food poisoning outbreaks was NoV GII.17 and the infectious source was a single batch of shredded dried laver seaweed. The water activity of the shredded dried laver seaweed was found to be 0.119 to 0.129. It was epidemiologically clarified that NoV does not lose infectivity for about two months even in the dry state. We conclude that a large diffuse outbreak of food poisoning caused by NoV GII.17 contamination of shredded dried laver seaweed had occurred in Tokyo. Our elucidation of the causative agent indicated that the food poisoning outbreaks in multiple areas of Japan, including Tokyo, during January to February 2017 were caused by the same contaminated food.

  16. NIH/NSF accelerate biomedical research innovations

    Cancer.gov

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  17. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Daniel; Jacobson, B.; Murokh, A.

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less

  18. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    DOE PAGES

    Mihalcea, Daniel; Jacobson, B.; Murokh, A.; ...

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less

  19. The history and future of accelerator radiological protection.

    PubMed

    Thomas, R H

    2001-01-01

    The development of accelerator radiological protection from the mid-1930s, just after the invention of the cyclotron, to the present day is described. Three major themes--physics, personalities and politics--are developed. In the sections describing physics the development of shielding design though measurement, radiation transport calculations, the impact of accelerators on the environment and dosimetry in accelerator radiation fields are described. The discussion is limited to high-energy, high-intensity electron and proton accelerators. The impact of notable personalities on the development of both the basic science and on the accelerator health physics profession itself is described. The important role played by scholars and teachers is discussed. In the final section. which discusses the future of accelerator radiological protection, some emphasis is given to the social and political aspects that must he faced in the years ahead.

  20. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  1. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    PubMed

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  2. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes

    NASA Astrophysics Data System (ADS)

    Elmore, David; Phillips, Fred M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  3. X-ray spectroscopy of high-/Z highly charged ions with the Tokyo EBIT

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Kato, Daiji; Ohtani, Shunsuke

    2003-05-01

    We have been using the Tokyo electron beam ion trap to investigate the relativistic and the quantum electrodynamical effects on the atomic structure of few electron heavy ions. In this paper, we present 1s binding energy measurement for hydrogen-like rhodium which was performed as one of such systematic studies. It has been obtained by measuring the X-ray transition energy for radiative recombination into the 1s vacancy of bare rhodium and subtracting the electron beam energy from it. For further investigation, a bent crystal spectrometer for hard X-rays is being developed. The design of the new spectrometer and the preliminary result with it are also presented.

  4. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2006-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  5. AMS with light nuclei at small accelerators

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.

    2017-06-01

    AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.

  6. Design for simultaneous acceleration of stable and unstable beams in a superconducting heavy-ion linear accelerator for RISP

    NASA Astrophysics Data System (ADS)

    Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho

    2017-11-01

    The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.

  7. High Intensity Proton Accelerator Project in Japan (J-PARC).

    PubMed

    Tanaka, Shun-ichi

    2005-01-01

    The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.

  8. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  9. NINR Centers of Excellence: A logic model for sustainability, leveraging resources and collaboration to accelerate cross-disciplinary science

    PubMed Central

    Dorsey, Susan G.; Schiffman, Rachel; Redeker, Nancy S.; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S.; Grady, Patricia A.

    2014-01-01

    The NINR Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present a NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR Center Directors’ meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. PMID:25085328

  10. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan.

    PubMed

    Ishizaki, Naoto; Sogawa, Kazuyuki; Inoue, Hiroaki; Agata, Kunio; Edagawa, Akiko; Miyamoto, Hiroshi; Fukuyama, Masafumi; Furuhata, Katsunori

    2016-03-01

    Strain L-47(T) of a novel bacterial species belonging to the genus Legionella was isolated from a sample of hot spring water from Tokyo, Japan. The 16S rRNA gene sequences (1477 bp) of this strain (accession number AB899895) had less than 95.0% identity with other Legionella species. The dominant fatty acids of strain L-47(T) were a15:0 (29.6%) and the major ubiquinone was Q-12 (71.1%). It had a guanine-plus-cytosine content of 41.5 mol%. The taxonomic description of Legionella thermalis sp. nov. is proposed to be type strain L-47(T) (JCM 30970(T)  = KCTC 42799(T)). © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  11. Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: Analysis of surface waters by purge and trap method.

    PubMed

    Horii, Yuichi; Minomo, Kotaro; Ohtsuka, Nobutoshi; Motegi, Mamoru; Nojiri, Kiyoshi; Kannan, Kurunthachalam

    2017-05-15

    Surface waters including river water and effluent from sewage treatment plants (STPs) were collected from Tokyo Bay watershed, Japan, and analyzed for seven cyclic and linear volatile methylsiloxanes (VMSs), i.e., D3, D4, D5, D6, L3, L4, and L5 by an optimized purge and trap extraction method. The total concentrations of seven VMSs (ΣVMS) in river water ranged from <4.9 to 1700ng/L (mean: 220ng/L). The individual mean concentrations of cyclic VMSs in surface waters were; 10ng/L for D3, 13ng/L for D4, 180ng/L for D5, and 18ng/L for D6. The concentrations of ΣVMS determined in STP effluents varied widely from 99 to 2500ng/L and the individual mean concentrations were 21ng/L for D3, 27ng/L for D4, 540ng/L for D5, and 45ng/L for D6. D5, which is widely used in personal-care products, was found to be the most abundant compound in both river water and STP effluent. Linear VMSs were detected at much lower frequency and concentrations than those of cyclic VMSs. The measured concentrations of D4 were below the no-observed effect concentration (NOEC). The annual emission of ΣVMS through STPs into Tokyo Bay watershed was estimated at 2300kg. Our results indicate widespread distribution of VMSs in Tokyo Bay watershed and the influence of domestic wastewater discharges as a source of VMSs in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The University of Tokyo Atacama Observatory 6.5m Telescope: enclosure design and wind analysis

    NASA Astrophysics Data System (ADS)

    Konishi, Masahiro; Sako, Shigeyuki; Uchida, Takanori; Araya, Ryou; Kim, Koui; Yoshii, Yuzuru; Doi, Mamoru; Kohno, Kotaro; Miyata, Takashi; Motohara, Kentaro; Tanaka, Masuo; Minezaki, Takeo; Morokuma, Tomoki; Tamura, Yoichi; Tanabé, Toshihiko; Kato, Natsuko; Kamizuka, Takafumi; Takahashi, Hidenori; Aoki, Tsutomu; Soyano, Takao; Tarusawa, Ken'ichi

    2016-07-01

    We present results on the computational fluid dynamics (CFD) numerical simulations as well as the wind tunnel experiments for the observation facilities of the University of Tokyo Atacama Observatory 6.5m Telescope being constructed at the summit of Co. Chajnantor in northern Chile. Main purpose of this study starting with the baseline design reported in 2014 is to analyze topographic effect on the wind behavior, and to evaluate the wind pressure, the air turbulence, and the air change (ventilation) efficiency in the enclosure. The wind velocity is found to be accelerated by a factor of 1.2 to reach the summit (78 m sec-1 expected at a maximum), and the resulting wind pressure (3,750 N m-2) is used for the framework design of the facilities. The CFD data reveals that the open space below the floor of the facilities works efficiently to drift away the air turbulence near the ground level which could significantly affect the dome seeing. From comparisons of the wind velocity field obtained from the CFD simulation for three configurations of the ventilation windows, we find that the windows at a level of the telescope secondary mirror have less efficiency of the air change than those at lower levels. Considering the construction and maintenance costs, and operation procedures, we finally decide to allocate 13 windows at a level of the observing floor, 12 at a level of the primary mirror, and 2 at the level of the secondary mirror. The opening area by those windows accounts for about 14% of the total interior surface of the enclosure. Typical air change rate of 20-30 per hour is expected at the wind velocity of 1 m sec-1.

  13. Accelerator boom hones China's engineering expertise

    NASA Astrophysics Data System (ADS)

    Normile, Dennis

    2018-02-01

    In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.

  14. Establishment and current status of patient community at Tokyo Dental College.

    PubMed

    Yamamoto, Hitoshi; Murakami, Satoshi; Hirata, Soichiro; Sugihara, Naoki; Mochizuki, Riuji; Takahashi, Toshiyuki; Kawada, Eiji

    2012-01-01

    The "Dental students training to address the needs of each individual patient: enhancement of ability to make a comprehensive diagnosis and treatment plans with high ethical standards and good communication skills", project launched at Tokyo Dental College was adopted by the Ministry of Education, Culture, Sports, Science and Technology as part of its "Program for Promoting University Education and Student Support, Theme A: Program for Promoting University Education Reform" in 2009. One of the main goals of this subject is "the establishment of Patient Community". Patient Community members allowed students to gain a more realistic experience of clinical practice than simulated patients. The Patient Community consists of patients and members of the parents' association who have agreed to cooperate for the advancement of dental education, becoming involved in dental student education through Communication Studies, which are held for first- to fourth-year students. Patient Community members were recruited at the open lectures (15 times, between July 10, 2010 and November 30, 2011). The Patient Community comprised 24 members, including 8 men and 16 women by November 30, 2011. The cumulative number of attendees in Communication Studies (I-IV, 6 times) was 35, including 13 men and 22 women. Fourteen people applied for admission on the day of the open lecture. Seven people signed up between 1 and 7 days after the open lecture. On the other hand, only 3 people applied within 8 to 9 days after the open lecture. However, interestingly, the ratio of the attendance for Communication Studies by Patient Community members who applied 8 to 9 days after the open lecture was higher than that of members who applied for admission on the day of the open lecture. Since the number of Patient Community members is insufficient for the purposes of the Patient Community, it is necessary to think about how recruitment methods can be made more effective and how such open lectures should be

  15. Agricultural aspects of radiocontamination induced by the Fukushima nuclear accident — A survey of studies by the Univ. of Tokyo Agricultural Dept. (2011–2016)

    PubMed Central

    NAKANISHI, Tomoko M.

    2018-01-01

    Immediately after the Fukushima nuclear power plant accident, a team of 40–50 researchers at the Graduate School of Agricultural and Life Sciences at the University of Tokyo began to analyze the behavior of radioactive materials in the fallout regions. The fallout has remained in situ and become strongly adsorbed within the soil over time. 137Cs was found to bind strongly to the fine clay, weathered biotite, and organic matter in the soil; therefore, it has not mobilized from mountainous regions, even after heavy rainfall. In farmland, the quantity of 137Cs in the soil absorbed by crop plants was small. The downward migration of 137Cs in soil is now estimated at 1–2 mm/year. The intake of 137Cs by trees occurred through the bark and not from the roots. This report summarizes the findings of research across a wide variety of agricultural specialties. PMID:29321444

  16. [An outbreak of epidemic louse-borne typhus in Tokyo 1914: a study on the prevention of epidemics].

    PubMed

    Watanabe, Mikio

    2002-12-01

    In 1914, the third year of the Taisho era, a period of democracy and prosperity of Japan, Tokyo was attached by an outbreak of epidemic louse-borne typhus. The number of patients was 4,119 and number of deaths was 778 (mortality rate of 18.9%) in Tokyo and 7,309 patients had been suffering from typhus fever that year in Japan. Many possible causes of the outbreak were suspected by the Health Authority of the Home Office, but these were not confirmed. One of the most likely reasons is the poor and congested living conditions of seasonal construction workers. Laborers had moved from the northwest region of Japan where typhus fever had developed occasionally in those days. Some of the laborers probably brought pathogenic germs with lice. The main preventive method for epidemic louse-borne typhus was isolation of patients and disinfecting of the areas. Kitasato Shibasaburou proposed the improvement of residential conditions of workers to prevent the prevalence of disease, but the proposal was not accepted because of financial reasons of the government. Recurrence of the outbreak did not occur in the following years. However, a huge outbreak of typhus fever with 32,366 patients and 3,351 deaths, was documented in 1946, amidst the disordered conditions of Japan after World War II.

  17. Environmental Oceanography of the Arctic Ocean and Its Marginal Seas

    DTIC Science & Technology

    1997-09-30

    held on 12-14 November 1996 at Mutsu , Aomori, Japan. Japan Marine Science Foundation, Tokyo, pp. 233-248. Honjo, S., Honda, M., Manganini, S. J. and...Proceedings of the International Marine Science Symposium held on 12-14 November 1996 at Mutsu , Aomori, Japan. Japan Marine Science Foundation, Tokyo...Collaborative Investigations.” Invited keynote paper for The International Marine Science Symposium, Mutsu , Aomori, Japan (invited). November 12-14 1996.

  18. Geometric integration for particle accelerators

    NASA Astrophysics Data System (ADS)

    Forest, Étienne

    2006-05-01

    This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  19. Space Science

    NASA Image and Video Library

    2005-08-09

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun’s magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth’s magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft’s operation center at the Japanese Aerospace Exploration Agency’s (JAXA’s) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). This image of a sunspot, taken by Hinode, is a prime example of what the spacecraft can offer.

  20. Vibration environment - Acceleration mapping strategy and microgravity requirements for Spacelab and Space Station

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Baugher, Charles R.; Delombard, Richard

    1990-01-01

    In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.

  1. The beam business: Accelerators in industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Robert W.; Hamm, Marianne E.

    Most physicists know that particle accelerators are widely used for treating cancer. But few are acquainted with the depth and breadth of their use in a myriad of applications outside of pure science and medicine. Society benefits from the use of particle beams in the areas of communications, transportation, the environment, security, health, and safety - in terms both of the global economy and quality of life. On the manufacturing level, the use of industrial accelerators has resulted in the faster and cheaper production of better parts for medical devices, automobiles, aircraft, and virtually all modern electronics. Consumers also benefitmore » from the use of accelerators to explore for oil, gas, and minerals; sterilize food, wastewater, and medical supplies; and aid in the development of drugs and biomaterials.« less

  2. Development of a Charged-particle Accumulator Using an RF Confinement Method II

    DTIC Science & Technology

    2006-08-24

    Ryugo Hayano, Ph.D., Professor Department of Physics, Graduate School of Science University of Tokyo 7-3-1 Hongo , Bunkyo-ku...NAME(S) AND ADDRESS(ES) University of Tokyo,7-3-1 Hongo , Bunkyo-ku,Tokyo 113-0033,Japan,JP,113-0033 8. PERFORMING ORGANIZATION REPORT NUMBER AOARD

  3. Infographic Development by Accelerated Bachelor of Science in Nursing Students: An Innovative Technology-Based Approach to Public Health Education.

    PubMed

    Falk, Nancy L

    Health communications and baccalaureate nursing education are increasingly impacted by new technological tools. This article describes how an Accelerated Bachelor of Science in Nursing program incorporates an infographic assignment into a graduate-level online health information and technology course. Students create colorful, engaging infographics using words and visuals to communicate public health information. The assignment, which incorporates the use of data and evidence, provides students the opportunity to acquire new research and technology skills while gaining confidence creating and innovating. The finished products may be disseminated, serving as vehicles to influence public health and well-being.

  4. Klynac: Compact Linear Accelerator with Integrated Power Supply

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, A. V.

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  5. Lipid phenotype of two distinct subpopulations of Mycobacterium bovis Bacillus Calmette-Guerin Tokyo 172 substrain.

    PubMed

    Naka, Takashi; Maeda, Shinji; Niki, Mamiko; Ohara, Naoya; Yamamoto, Saburo; Yano, Ikuya; Maeyama, Jun-ichi; Ogura, Hisashi; Kobayashi, Kazuo; Fujiwara, Nagatoshi

    2011-12-23

    Bacillus Calmette-Guérin (BCG) Tokyo 172 is a predominant World Health Organization Reference Reagent for the BCG vaccine. Recently, the BCG Tokyo 172 substrain was reported to consist of two subpopulations with different colony morphologies, smooth and rough. Smooth colonies had a characteristic 22-bp deletion in Rv3405c of the region of difference (RD) 16 (type I), and rough colonies were complete in this region (type II). We hypothesized that the morphological difference is related to lipid phenotype and affects their antigenicity. We determined the lipid compositions and biosynthesis of types I and II. Scanning electron microscopy showed that type I was 1.5 times longer than type II. Phenolic glycolipid (PGL) and phthiocerol dimycocerosate (PDIM) were found only in type I. Although it has been reported that the RD16 is involved in the expression of PGL, type II did not possess PGL/PDIM. We examined the ppsA-E gene responsible for PGL/PDIM biosynthesis and found that the existence of PGL/PDIM in types I and II is caused by a ppsA gene mutation not regulated by the RD16. PGL suppressed the host recognition of total lipids via Toll-like receptor 2, and this suggests that PGL is antigenic and involved in host responses, acting as a cell wall component. This is the first report to show the difference between lipid phenotypes of types I and II. It is important to clarify the heterogeneity of BCG vaccine substrains to discuss and evaluate the quality, safety, and efficacy of the BCG vaccine.

  6. The New Big Science at the NSLS

    NASA Astrophysics Data System (ADS)

    Crease, Robert

    2016-03-01

    The term ``New Big Science'' refers to a phase shift in the kind of large-scale science that was carried out throughout the U.S. National Laboratory system, when large-scale materials science accelerators rather than high-energy physics accelerators became marquee projects at most major basic research laboratories in the post-Cold War era, accompanied by important changes in the character and culture of the research ecosystem at these laboratories. This talk explores some aspects of this phase shift at BNL's National Synchrotron Light Source.

  7. Accelerating science, practice, and policy relevant to school psychology internationally: Looking backward and moving forward.

    PubMed

    Jimerson, Shane R

    2016-12-01

    Provides a brief synthesis of the past, present, and forecast for the future of School Psychology Quarterly , highlighting important contributions as an international resource to enrich, invigorate, enhance, advance, and accelerate science, practice, and policy relevant to school psychology internationally. Information highlights (a) the important contributions of those who serve on the editorial board, (b) the value of high quality and timely reviews, (c) publishing manuscripts that address a breadth of important topics relevant to school psychology, (d) international contributions, (e) an overview of special topic sections that have been featured over the years, and (f) contemporary ratings and rankings of School Psychology Quarterly . The diversity of the topics and methods that are featured in the journal continues to reflect the breadth of knowledge and skills necessary to inform the contemporary field of school psychology. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  9. Research | Computational Science | NREL

    Science.gov Websites

    Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples

  10. EuCARD2: enhanced accelerator research and development in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.

  11. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  12. Development of ΔE-E telescope ERDA with 40 MeV 35Cl7+ beam at MALT in the University of Tokyo optimized for analysis of metal oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Harayama, I.; Nagashima, K.; Hirose, Y.; Matsuzaki, H.; Sekiba, D.

    2016-10-01

    We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV 35Cl7+. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 103 Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO2N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.

  13. Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo.

    PubMed

    Murakami, Michio; Takada, Hideshige

    2008-11-01

    We investigated perfluorinated surfactants (PFSs) in size-fractionated street dust to identify their occurrence, contributions from traffic, and potential routes of entry into waters. Street dust was collected from residential areas and heavily trafficked areas in Tokyo and sorted into fine (<63 microm) and coarse fractions (63-2000 microm). Five PFS species were analyzed by liquid chromatography-tandem mass spectrometry: perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUA). In fine fractions, PFS contents were significantly higher in heavily trafficked street dust than in residential street dust, but in coarse fractions, no significant differences were observed. Additionally, in heavily trafficked areas, PFS contents were significantly higher in fine fractions than in coarse fractions, but in residential areas, no significant differences were observed. PFS compositions differed between size fractions, not locations, indicating differences in sources between size fractions. Fine particles from traffic contributed to PFSs in street dust. Street dust possibly acts as the origin of PFSs in street runoff and eventually enters waters. This is the first report of PFSs in street dust.

  14. Accelerator infrastructure in Europe: EuCARD 2011

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  15. Rayleigh-Taylor mixing with time-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  16. UCLA Final Technical Report for the "Community Petascale Project for Accelerator Science and Simulation”.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Warren

    The UCLA Plasma Simulation Group is a major partner of the “Community Petascale Project for Accelerator Science and Simulation”. This is the final technical report. We include an overall summary, a list of publications, progress for the most recent year, and individual progress reports for each year. We have made tremendous progress during the three years. SciDAC funds have contributed to the development of a large number of skeleton codes that illustrate how to write PIC codes with a hierarchy of parallelism. These codes cover 2D and 3D as well as electrostatic solvers (which are used in beam dynamics codesmore » and quasi-static codes) and electromagnetic solvers (which are used in plasma based accelerator codes). We also used these ideas to develop a GPU enabled version of OSIRIS. SciDAC funds were also contributed to the development of strategies to eliminate the Numerical Cerenkov Instability (NCI) which is an issue when carrying laser wakefield accelerator (LWFA) simulations in a boosted frame and when quantifying the emittance and energy spread of self-injected electron beams. This work included the development of a new code called UPIC-EMMA which is an FFT based electromagnetic PIC code and to new hybrid algorithms in OSIRIS. A new hybrid (PIC in r-z and gridless in φ) algorithm was implemented into OSIRIS. In this algorithm the fields and current are expanded into azimuthal harmonics and the complex amplitude for each harmonic is calculated separately. The contributions from each harmonic are summed and then used to push the particles. This algorithm permits modeling plasma based acceleration with some 3D effects but with the computational load of an 2D r-z PIC code. We developed a rigorously charge conserving current deposit for this algorithm. Very recently, we made progress in combining the speed up from the quasi-3D algorithm with that from the Lorentz boosted frame. SciDAC funds also contributed to the improvement and speed up of the quasi

  17. EH 11n modes E type in the disk and washer accelerating structure

    NASA Astrophysics Data System (ADS)

    Andreev, V. G.; Belugin, V. M.; Daikovsky, A. G.; Esin, S. K.; Kravchuk, L. V.; Paramonov, V. V.; Ryabov, A. D.

    1983-01-01

    The disk and washer accelerating structure has a great deal to do with high-beta structures progress. The frequencies and electromagnetic fields for modes, which have a different number of azimuthal variations, are calculated to determined the dispersion properties and other characteristics of parasitic modes in a disc and washer accelerating structure. The main attention was given to the accelerating structure of the linear accelerator of the Institute for Nuclear Research (INR) of the USSR Academy of Sciences. Modification of a structure for PIGMI accelerator (LANL, USA) is considered briefly.

  18. Creating the 2020 Tokyo Olympic Medals from Electronic Scrap: Sustainability Analysis

    NASA Astrophysics Data System (ADS)

    Leader, Alexandra M.; Wang, Xue; Gaustad, Gabrielle

    2017-09-01

    For the upcoming 2020 Olympic Games, which are to be held in Tokyo, Japan, it has been proposed that recycled metal from electronic waste should be used to create the gold, silver, and bronze medals that will be awarded to athletes from around the world. This work is aimed at exploring the feasibility of this goal, quantifying the required electronic waste, identifying the limiting material constraints, and addressing a selection of sustainability metrics. The results show that 2.5-13.8% of Japan's available electronic waste would be required to create the medals, depending on the composition of the collected electronics and the processing yields. The environmental benefits from this venture are identified as being a savings of approximately 4.5-5.1 TJ of energy, which is equivalent to CO2 emissions reductions of approximately 420 metric tons. Additionally, qualitative potential benefits to environment, human health, economic recovery of valuable materials, and supply stability are considered.

  19. Moral Education in Asia: Promotional Strategies and Evaluation Techniques. Reports of a High-Level Seminar and a Regional Workshop (Tokyo, Japan, 1978).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    This publication reports on a seminar and a workshop held in Tokyo, Japan, 1978 dealing with moral education in Asia. The seminar and workshop participants exchanged information and experiences, examined problems, and suggested guidelines for the implementation of regional programs in moral education. Participating countries include Afghanistan,…

  20. Studying astrophysical particle acceleration with laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2016-10-01

    The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion

  1. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1993-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  2. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  3. Collaborative Cultural Studies over The Internet: Learning Cultures with Virtual Partners. A Project between Baylor University and Tokyo Institute of Polytechnics.

    ERIC Educational Resources Information Center

    Okubo, Masamichi; Kumahata, Hajime

    Since the fall semester of 1995, students at Baylor University (Waco, Texas) taking Japanese and students at Tokyo Institute of Polytechnics have had opportunities to communicate with each other and learn together in a real-world situation. Until the fall of 2000, the format limited them to e-mail communication; however other Internet tools are…

  4. KLYNAC: Compact linear accelerator with integrated power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less

  5. MEMS-based, RF-driven, compact accelerators

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  6. Enculturating science: Community-centric design of behavior change interactions for accelerating health impact.

    PubMed

    Kumar, Vishwajeet; Kumar, Aarti; Ghosh, Amit Kumar; Samphel, Rigzin; Yadav, Ranjanaa; Yeung, Diana; Darmstadt, Gary L

    2015-08-01

    Despite significant advancements in the scientific evidence base of interventions to improve newborn survival, we have not yet been able to "bend the curve" to markedly accelerate global rates of reduction in newborn mortality. The ever-widening gap between discovery of scientific best practices and their mass adoption by families (the evidence-practice gap) is not just a matter of improving the coverage of health worker-community interactions. The design of the interactions themselves must be guided by sound behavioral science approaches such that they lead to mass adoption and impact at a large scale. The main barrier to the application of scientific approaches to behavior change is our inability to "unbox" the "black box" of family health behaviors in community settings. The authors argue that these are not black boxes, but in fact thoughtfully designed community systems that have been designed and upheld, and have evolved over many years keeping in mind a certain worldview and a common social purpose. An empathetic understanding of these community systems allows us to deconstruct the causal pathways of existing behaviors, and re-engineer them to achieve desired outcomes. One of the key reasons for the failure of interactions to translate into behavior change is our failure to recognize that the content, context, and process of interactions need to be designed keeping in mind an organized community system with a very different worldview and beliefs. In order to improve the adoption of scientific best practices by communities, we need to adapt them to their culture by leveraging existing beliefs, practices, people, context, and skills. The authors present a systems approach for community-centric design of interactions, highlighting key principles for achieving intrinsically motivated, sustained change in social norms and family health behaviors, elucidated with progressive theories from systems thinking, management sciences, cross-cultural psychology, learning

  7. Pulse Front Tilt and Laser Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Mittelberger, Daniel; Thévenet, Maxence; Nakamura, Kei; Lehe, Remi; Gonsalves, Anthony; Benedetti, Carlo; Leemans, Wim

    2017-10-01

    Pulse front tilt (PFT) is potentially present in any CPA laser system, but its effects may be overlooked because spatiotemporal pulse characterization is considerably more involved than measuring only spatial or temporal profile. PFT is particularly important for laser plasma accelerators (LPA) because it influences electron beam injection and steering. In this work, experimental results from the BELLA Center will be presented that demonstrate the effect of optical grating misalignment and optical compression, resulting in PFT, on accelerator performance. Theoretical models of laser and electron beam steering will be introduced based on particle-in-cell simulations showing distortion of the plasma wake. Theoretical predictions will be compared with experiments and complimentary simulations, and tolerances on PFT and optical compressor alignment will be developed as a function of LPA performance requirements. This work was supported by the Office of High Energy Physics, Office of Science, US Department of Energy under Contract DE-AC02-05CH11231 and the National Science Foundation under Grant PHY-1415596.

  8. Outline of the 2016 Kumamoto, Japan, Earthquakes and lessons for a large urban earthquake in Tokyo Metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirata, N.

    2016-12-01

    A series of devastating earthquakes hit Kumamoto districts in Kyushu, Japan, in April, 2016. The M6.5 event occurred at 21:26 on April 14th (JST) and, 28 hours later, the M7.3 event occurred at 01:25 on April 17th (JST) at almost the same location with a depth of 10 km. The both earthquakes were felt with a seismic intensity of 7 in Japan Metrological Agency (JMA) scale at Mashiki Town. The intensity of 7 is the highest level by definition. Very strong accelerations are observed by the M6.5 event with 1,580 gal at KiK-net Mashiki station and 1,791 gal by the M7.3 event at Ohtsu City station. As a result, more than 8,000 houses are totally collapsed, 26,000 are heavily collapsed, and 120,000 are partially damaged. There are 49 people directly killed and 32 are indirectly killed by the quakes. The most important lesson from the Kumamoto earthquake is that a very strong ground motion may hit immediately after the first large event, say in a few days. This has serious impact to a house damaged by the first large quake. In the 2016 Kumamoto sequence there are also many strong aftershocks including 4 M5.8-5.9 events till April 18th. More than 180,000 people, at most, took shelter because of scaring many strong aftershocks. I will discuss both natural and human aspects of the Kumamoto earthquake disaster by the in-land shallow large earthquakes suggesting lessons for the large Metropolitan Earthquakes in Tokyo, Japan.

  9. Proceedings of: 2005 Particle Acceleration Confence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Stuart

    2006-01-01

    The 21st Particle Accelerator Conference, PAC05, took place at the Knoxville Convention Center (KCC) from Monday through Friday, May 16-20, 2005. Sponsored by the American Physical Society (APS), the Institute of Electrics and Electronics Engineers (IEEE) with its subdivision of Nuclear and Plasma Sciences Society (NPSS), the conference was hosted by the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) Project and Thomas Jefferson National Accelerator Facility (JLab). The conference was chaired by Norbert Holtkamp, and the Local Organizing Committee was made up of staff from the ORNL SNS Project under the chairmanship of Stuart Henderson. The conference welcomedmore » over 1400 delegates from the United States, Europe, Asia, the Middle East, South America and from as far away as Australia. Almost 1400 papers where processed during the conference and will be published on the Joint Accelerator Conferences Website (JACoW) page.« less

  10. Insights from the Development of HiveScience

    EPA Science Inventory

    The National Advisory Council for Environmental Policy and Technology (NACEPT) recently assessed EPA's approach to citizen science. The Council concluded that integration of citizen science into EPA's structure will accelerate virtually every Agency activity. HiveScience is a n...

  11. A Future Accelerated Cognitive Distributed Hybrid Testbed for Big Data Science Analytics

    NASA Astrophysics Data System (ADS)

    Halem, M.; Prathapan, S.; Golpayegani, N.; Huang, Y.; Blattner, T.; Dorband, J. E.

    2016-12-01

    As increased sensor spectral data volumes from current and future Earth Observing satellites are assimilated into high-resolution climate models, intensive cognitive machine learning technologies are needed to data mine, extract and intercompare model outputs. It is clear today that the next generation of computers and storage, beyond petascale cluster architectures, will be data centric. They will manage data movement and process data in place. Future cluster nodes have been announced that integrate multiple CPUs with high-speed links to GPUs and MICS on their backplanes with massive non-volatile RAM and access to active flash RAM disk storage. Active Ethernet connected key value store disk storage drives with 10Ge or higher are now available through the Kinetic Open Storage Alliance. At the UMBC Center for Hybrid Multicore Productivity Research, a future state-of-the-art Accelerated Cognitive Computer System (ACCS) for Big Data science is being integrated into the current IBM iDataplex computational system `bluewave'. Based on the next gen IBM 200 PF Sierra processor, an interim two node IBM Power S822 testbed is being integrated with dual Power 8 processors with 10 cores, 1TB Ram, a PCIe to a K80 GPU and an FPGA Coherent Accelerated Processor Interface card to 20TB Flash Ram. This system is to be updated to the Power 8+, an NVlink 1.0 with the Pascal GPU late in 2016. Moreover, the Seagate 96TB Kinetic Disk system with 24 Ethernet connected active disks is integrated into the ACCS storage system. A Lightweight Virtual File System developed at the NASA GSFC is installed on bluewave. Since remote access to publicly available quantum annealing computers is available at several govt labs, the ACCS will offer an in-line Restricted Boltzmann Machine optimization capability to the D-Wave 2X quantum annealing processor over the campus high speed 100 Gb network to Internet 2 for large files. As an evaluation test of the cognitive functionality of the architecture, the

  12. The charged particle accelerators subsystems modeling

    NASA Astrophysics Data System (ADS)

    Averyanov, G. P.; Kobylyatskiy, A. V.

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.

  13. The Association between Science Summer Camps and Career Interest in Science and Engineering

    ERIC Educational Resources Information Center

    Kong, Xiaoqing; Dabney, Katherine P.; Tai, Robert H.

    2014-01-01

    This study addresses the association between middle-school students' reported participation in science summer programmes and their reported expectation of a career in science and engineering. Data were collected on 1,580 students from eight middle schools in five states, applying an accelerated longitudinal design. Two consecutive cohorts were…

  14. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2017-12-09

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  15. Accelerators for society: succession of European infrastructural projects: CARE, EuCARD, TIARA, EuCARD2

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the realization of CARE (Coordinated Accelerator R&D), EuCARD (European Coordination of Accelerator R&D) and during the national annual review meeting of the TIARA - Test Infrastructure of European Research Area in Accelerator R&D. The European projects on accelerator technology started in 2003 with CARE. TIARA is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of CARE, EuCARD and especially TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society. CARE, EuCARD and TIARA activities integrated the European accelerator community in a very effective way. These projects are expected very much to be continued.

  16. Development of the real-time control (RTC) system for Tokyo sewage system.

    PubMed

    Maeda, M; Mizushima, H; Ito, K

    2005-01-01

    Tokyo Metropolitan government has decided to make the maximum possible use of the existing facilities while ensuring safety against inundation and to promote measures also from a software approach by introducing a system capable of minimizing combined sewer overflow, the real-time control system (RTC). A pilot RTC system was installed in August 2002 for the Shinozaki Pumping Station. The RTC system monitors the precipitation volume and the water level in the pipe. Simulations were carried out on the basis of these data. From the results, it was found that with the use of the RTC it is possible to reduce CSO by roughly 50% for small rainfalls with a total precipitation level of 20 mm or less by strong rainwater in the pipe routes at the beginning of the rain. It has also been shown that CSO can be reduced by about 80% through the use of rainfall forecasting.

  17. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  18. [Civil engineering education at the Imperial College of Engineering in Tokyo: an analysis based on Ayahiko Ishibashi's memoirs].

    PubMed

    Wada, Masanori

    2014-01-01

    The Imperial College of Engineering (ICE or Kobu-Daigakko) in Tokyo, founded in 1873 under the auspices of the Ministry of Public Works, was one of the most prominent modern institutions of engineering education in early Meiji Japan. Previous studies have revealed that the ICE offered large scale practical training programs at enterprises of the Ministry, which sometimes lasted several months, and praised their ideal combination of theory and practice. In reality, it has been difficult to evaluate the quality of education at the ICE mainly because of scarcity of sources. ICE students published a collection of memoirs for alumni members, commemorating the fiftieth-year of the history of the Tokyo Imperial University. Drawing on the previously neglected collection of students' memoires, this paper appraises the education of civil engineering offered by the ICE. The paper also compares this collection with other official records of the college, and confirms it as a reliable source, even though it contains some minor errors. The author particularly uses the memoirs by Ayahiko Ishibashi, one of the first graduates from its civil engineering course, who left sufficient reminiscences on education that he received. This paper, as a result, illustrates that the main practical training for the students of civil engineering was limited to designing process, including surveying. Furthermore, practical training that Ishibashi received at those enterprises often lacked a plan, and its effectiveness was questionable.

  19. Thinking Science Australia: A Short History of How Thirty Science Lessons Transform Learning and Teaching

    ERIC Educational Resources Information Center

    Smith, Tim

    2016-01-01

    Originally called Cognitive Acceleration through Science Education, Thinking Science is a program of 30 lessons, usually delivered in Years 7 and 8, that has been shown to improve learner outcomes in science, maths and English. Over recent years, it has grown in popularity in Australia and was the subject of an ARC-funded research project at the…

  20. Application of the Weibull extrapolation to 137Cs geochronology in Tokyo Bay and Ise Bay, Japan.

    PubMed

    Lu, Xueqiang

    2004-01-01

    Considerable doubt surrounds the nature of processes by which 137Cs is deposited in marine sediments, leading to a situation where 137Cs geochronology cannot be always applied suitably. Based on extrapolation with Weibull distribution, the maximum concentration of 137Cs derived from asymptotic values for cumulative specific inventory was used to re-establish 137Cs geochronology, instead of original 137Cs profiles. Corresponding dating results for cores in Tokyo Bay and Ise Bay, Japan, by means of this new method, are in much closer agreement with those calculated from 210Pb method than the previous method.

  1. Rayleigh-Taylor mixing with space-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  2. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement ofmore » the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.« less

  3. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations

  4. Tokyo Guidelines 2018: antimicrobial therapy for acute cholangitis and cholecystitis.

    PubMed

    Gomi, Harumi; Solomkin, Joseph S; Schlossberg, David; Okamoto, Kohji; Takada, Tadahiro; Strasberg, Steven M; Ukai, Tomohiko; Endo, Itaru; Iwashita, Yukio; Hibi, Taizo; Pitt, Henry A; Matsunaga, Naohisa; Takamori, Yoriyuki; Umezawa, Akiko; Asai, Koji; Suzuki, Kenji; Han, Ho-Seong; Hwang, Tsann-Long; Mori, Yasuhisa; Yoon, Yoo-Seok; Huang, Wayne Shih-Wei; Belli, Giulio; Dervenis, Christos; Yokoe, Masamichi; Kiriyama, Seiki; Itoi, Takao; Jagannath, Palepu; Garden, O James; Miura, Fumihiko; de Santibañes, Eduardo; Shikata, Satoru; Noguchi, Yoshinori; Wada, Keita; Honda, Goro; Supe, Avinash Nivritti; Yoshida, Masahiro; Mayumi, Toshihiko; Gouma, Dirk J; Deziel, Daniel J; Liau, Kui-Hin; Chen, Miin-Fu; Liu, Keng-Hao; Su, Cheng-Hsi; Chan, Angus C W; Yoon, Dong-Sup; Choi, In-Seok; Jonas, Eduard; Chen, Xiao-Ping; Fan, Sheung Tat; Ker, Chen-Guo; Giménez, Mariano Eduardo; Kitano, Seigo; Inomata, Masafumi; Mukai, Shuntaro; Higuchi, Ryota; Hirata, Koichi; Inui, Kazuo; Sumiyama, Yoshinobu; Yamamoto, Masakazu

    2018-01-01

    Antimicrobial therapy is a mainstay of the management for patients with acute cholangitis and/or cholecystitis. The Tokyo Guidelines 2018 (TG18) provides recommendations for the appropriate use of antimicrobials for community-acquired and healthcare-associated infections. The listed agents are for empirical therapy provided before the infecting isolates are identified. Antimicrobial agents are listed by class-definitions and TG18 severity grade I, II, and III subcategorized by clinical settings. In the era of emerging and increasing antimicrobial resistance, monitoring and updating local antibiograms is underscored. Prudent antimicrobial usage and early de-escalation or termination of antimicrobial therapy are now important parts of decision-making. What is new in TG18 is that the duration of antimicrobial therapy for both acute cholangitis and cholecystitis is systematically reviewed. Prophylactic antimicrobial usage for elective endoscopic retrograde cholangiopancreatography is no longer recommended and the section was deleted in TG18. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included. © 2018 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  5. The LILIA (laser induced light ions acceleration) experiment at LNF

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Anania, M. P.; Caresana, M.; Cirrone, G. A. P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L. A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.; Varoli, V.; Velardi, L.

    2014-07-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50-75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  6. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser

  7. Laser-driven ion acceleration at BELLA

    NASA Astrophysics Data System (ADS)

    Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  8. STUDY USING A THREE-DIMENSIONAL PHOTOCHEMICAL SMOG FORMATION MODEL UNDER CONDITIONS OF COMPLEX FLOW: APPLICATION OF THE URBAN AIRSHED MODEL TO THE TOKYO METROPOLITAN AREA

    EPA Science Inventory

    The purpose of this study is to evaluate the Urban Airshed Model (UAM), a three-dimensional photochemical urban air quality simulation model, using field observations from the Tokyo Metropolitan Area. mphasis was placed on the photochemical smog formation mechanism under stagnant...

  9. ACCELERATION AND ENRICHMENT IN THE JUNIOR HIGH SCHOOL. A FOLLOW-UP STUDY.

    ERIC Educational Resources Information Center

    ARENDS, RICHARD H.; FORD, PAUL M.

    THE 1963-64 STUDY INVOLVED AN INVESTIGATION OF ACCELERATION IN MATHEMATICS AND ENRICHMENT IN READING AND SCIENCE IN THE JUNIOR HIGH SCHOOL. BUT THE RESEARCH WAS BROADENED AND, UNLIKE THE 1962-63 STUDY, EXPLORED MORE DEEPLY THE EFFECTS OF ACCELERATION AND ENRICHMENT. A NUMBER OF SCHOOLS OUTSIDE OF WALLA WALLA WAS USED. PROBLEMS CONSIDERED WERE--(1)…

  10. Collaborative workbench for cyberinfrastructure to accelerate science algorithm development

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.

    2013-12-01

    There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.

  11. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  12. The last large pelletron accelerator of the Herb era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, S.; Narayanan, M. M.; Joshi, R.

    1999-04-26

    Prof. Ray Herb pioneered the concept and design of the tandem Pelletron accelerator in the late sixties at NEC. The 15UD Pelletron at Nuclear Science Centre (NSC), upgraded for 16MV operation using compressed geometry accelerating tubes is the last such large Pelletron. It has unique features like offset and matching quadrupoles after the stripper for charge state selection inside the high voltage terminal and consequently the option of further stripping the ion species of the selected charge states at high energy dead section, and elaborate pulsing system in the pre-acceleration region consisting of a beam chopper, a travelling wave deflector,more » a light ion buncher (1-80 amu) and a heavy ion buncher (>80 amu). NSC was established as a heavy ion accelerator based inter university centre in 1985. It became operational in July 1991 to cater to the research requirements of a large user community which at present includes about fifty universities, twenty-eight colleges and a dozen other academic institutes and research laboratories. The number of users in Materials and allied sciences is about 500. Various important modifications have been made to improve the performance of the accelerator in the last seven years. These include replacement of the corona voltage grading system by a resistor based one, a pick-up loop to monitor charging system performance, conversion from basic double unit structure to singlet, installation of a spiral cavity based phase detector system with post-accelerator stripper after the analyzing magnet, and a high efficiency multi harmonic buncher. Installation of a turbo pump based stripper gas recirculation system in the terminal is also planned. A brief description of utilization of the machine will be given.« less

  13. Nanomedical science and laser-driven particle acceleration: promising approaches in the prethermal regime

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-05-01

    A major challenge of spatio-temporal radiation biomedicine concerns the understanding of biophysical events triggered by an initial energy deposition inside confined ionization tracks. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances in real-time radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to advanced techniques of ultrafast TW laser-plasma accelerator. Recent advances of powerful TW laser sources ( 1019 W cm-2) and laser-plasma interactions providing ultra-short relativistic particle beams in the energy domain 5-200 MeV open promising opportunities for the development of high energy radiation femtochemistry (HERF) in the prethermal regime of secondary low-energy electrons and for the real-time imaging of radiation-induced biomolecular alterations at the nanoscopic scale. New developments would permit to correlate early radiation events triggered by ultrashort radiation sources with a molecular approach of Relative Biological Effectiveness (RBE). These emerging research developments are crucial to understand simultaneously, at the sub-picosecond and nanometric scales, the early consequences of ultra-short-pulsed radiation on biomolecular environments or integrated biological entities. This innovating approach would be applied to biomedical relevant concepts such as the emerging domain of real-time nanodosimetry for targeted pro-drug activation and pulsed radio-chimiotherapy of cancers.

  14. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  15. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  16. The spatial diffusion of norovirus epidemics over three seasons in Tokyo.

    PubMed

    Inaida, S; Shobugawa, Y; Matsuno, S; Saito, R; Suzuki, H

    2015-02-01

    We studied the spatial trend of norovirus (NoV) epidemics using sentinel gastroenteritis surveillance data for patients aged <15 years (n = 140) in the Tokyo area for the 2006-2007 to 2008-2009 seasons utilizing the kriging method of geographical information system (GIS). This is the first study of the spreading pattern of NoV epidemics using sentinel surveillance data. Correlations of sentinel cases between the seasons and with demographic data were examined to identify the trend and related factors. A similar pattern of diffusion was observed over the seasons, and its mean correlation between seasons was significantly high. A higher number of cases were found in the peripheral area, which surrounds the most populated central area, and showed a correlation with the ratio of the children population (r = 0·321, P < 0·01) and the ratio of residents in larger families (r = 0·263, P < 0·01). While NoV susceptibility remained, the results suggest a transmission route in the local community as a possible epidemic factor. Prevention with focus on the peripheral area is desirable.

  17. Plasma wakefield acceleration experiments at FACET II

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.

    2018-03-01

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.

  18. Plasma wakefield acceleration experiments at FACET II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, C.; Adli, E.; An, W.

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  19. Plasma wakefield acceleration experiments at FACET II

    DOE PAGES

    Joshi, C.; Adli, E.; An, W.; ...

    2018-01-12

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  20. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    NASA Astrophysics Data System (ADS)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  1. ILU industrial electron accelerators for medical-product sterilization and food treatment

    NASA Astrophysics Data System (ADS)

    Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu.; Voronin, L. A.; Panfilov, A. D.; Radchenko, V. M.; Tkachenko, V. O.; Shtarklev, E. A.

    2016-12-01

    Pulse linear electron accelerators of the ILU type have been developed and produced by the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, for more than 30 years. Their distinctive features are simplicity of design, convenience in operation, and reliability during long work under conditions of industrial production. ILU accelerators have a range of energy of 0.7-10 MeV at a power of accelerated beam of up to 100 kW and they are optimally suitable for use as universal sterilizing complexes. The scientific novelty of these accelerators consists of their capability to work both in the electron-treatment mode of production and in the bremsstrahlung generation mode, which has high penetrating power.

  2. Individualizing Science Curricula for the Gifted.

    ERIC Educational Resources Information Center

    Cohn, Sanford J.

    Reported are methods of accelerating and individualizing science and mathematics curricula for extremely gifted junior high school students as developed by the Study of Mathematically Precocious Youth (SMPY) and the Intellectually Gifted Child Study Group. Given are examples of acceleration such as allowing the student to take more advanced…

  3. Accelerator mass spectrometry in the biomedical sciences: applications in low-exposure biomedical and environmental dosimetry

    NASA Astrophysics Data System (ADS)

    Felton, J. S.; Turteltaub, K. W.; Vogel, J. S.; Balhorn, R.; Gledhill, B. L.; Southon, J. R.; Caffee, M. W.; Finkel, R. C.; Nelson, D. E.; Proctor, I. D.; Davis, J. C.

    1990-12-01

    We are utilizing accelerator mass spectrometry as a sensitive detector for tracking the disposition of radioisotopically labeled molecules in the biomedical sciences. These applications have shown the effectiveness of AMS as a tool to quantify biologically important molecules at extremely low levels. For example, AMS is being used to determine the amount of carcinogen covalently bound to animal DNA (DNA adduct) at levels relevent to human exposure. Detection sensitivities are 1 carcinogen molecule bound in 1011 to 1012 DNA bases, depending on the specific activity of the radiolabeled carcinogen. Studies have been undertaken in our laboratory utilizing heterocyclic amine food-borne carcinogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent environmental carcinogen, to study the metabolism of carcinogens at low doses. In addition, AMS is being used to detect the presence of rare proteins (mutant forms of protamine) in human sperm. Approximately l per 106 sperm analyzed contain the rare form of the protamine. Protamine isolated from this small number of cells is being analyzed by AMS, following 14C labeling. Thus, AMS can be used to verify the identity of an extremely small amount of biological material. Furthermore, an additional improvement of 2 orders of magnitude in the sensitivity of biomédical tracer studies is suggested by preliminary work with bacterial hosts depleted in radiocarbon. Other problems in the life sciences where detection sensitivity or sample sizes are limitations should also benefit from AMS. Studies are underway to measure the molecular targeting of cancer chemotherapeutics in human tissue and to pursue applications for receptor biology. We are also applying other candidate isotopes, such as 3H (double labeling with 14C) and 41Ca (bone absorption) to problems in biology. The detection of 36Cl and 26Al have applications for determination of human neutron exposure and understanding neurological toxicity, respectively. The results

  4. A new perspective on global mean sea level (GMSL) acceleration

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-06-01

    The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.

  5. Effects of Road Traffic Noise on Inhabitants of Tokyo

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Osada, Y.; Kawaguchi, T.; Hoshiyama, Y.; Yoshida, K.; Yamamoto, K.

    1997-08-01

    A questionnaire-based study was performed in an area of about 16 ha near a main road in Tokyo to elucidate any relations between road traffic noise and the effects of this noise among women living on both sides of the road. Questions concerned annoyance, sleep disturbance, interference with daily activities, health-related symptoms and disease histories. 366 inhabitants were analyzed. Dose-response relationships were found in high reported responses to noisiness, annoyance, dissatisfaction with the nearby environment and interference with listening to TV, conversation and reading. It was also found that the number of high responses to questions increases clearly at noise levels above 70 dB(A),Leq(24h), with regard to interference with thinking and sleep disturbance (waking during the night), fatigue, headache, gastroenteric disorders, loss of appetite, depression and irritation. Furthermore, there was an increase in reports of disease histories with noise above 70 dB(A) for climacteric disturbances, and at noise above 65 dB(A) for deafness, heart disease and hypercholestrolemia. These all suggest that noise may be related to the health status of inhabitants living in areas with heavy road traffic. A noise level of 65 dB(A) or 70 dB(A) inLeq(24h)was the critical point above which respondents indicated increased effects on health and reports of disease increased.

  6. Registration: Science Adventures

    Science.gov Websites

    classes, students must pre-register using one of two methods: Online Form or Downloadable form Accelerator Laboratory Office of Science / U.S. Department of Energy Managed by Fermi Research Alliance, LLC

  7. Lipid Phenotype of Two Distinct Subpopulations of Mycobacterium bovis Bacillus Calmette-Guérin Tokyo 172 Substrain*

    PubMed Central

    Naka, Takashi; Maeda, Shinji; Niki, Mamiko; Ohara, Naoya; Yamamoto, Saburo; Yano, Ikuya; Maeyama, Jun-ichi; Ogura, Hisashi; Kobayashi, Kazuo; Fujiwara, Nagatoshi

    2011-01-01

    Bacillus Calmette-Guérin (BCG) Tokyo 172 is a predominant World Health Organization Reference Reagent for the BCG vaccine. Recently, the BCG Tokyo 172 substrain was reported to consist of two subpopulations with different colony morphologies, smooth and rough. Smooth colonies had a characteristic 22-bp deletion in Rv3405c of the region of difference (RD) 16 (type I), and rough colonies were complete in this region (type II). We hypothesized that the morphological difference is related to lipid phenotype and affects their antigenicity. We determined the lipid compositions and biosynthesis of types I and II. Scanning electron microscopy showed that type I was 1.5 times longer than type II. Phenolic glycolipid (PGL) and phthiocerol dimycocerosate (PDIM) were found only in type I. Although it has been reported that the RD16 is involved in the expression of PGL, type II did not possess PGL/PDIM. We examined the ppsA-E gene responsible for PGL/PDIM biosynthesis and found that the existence of PGL/PDIM in types I and II is caused by a ppsA gene mutation not regulated by the RD16. PGL suppressed the host recognition of total lipids via Toll-like receptor 2, and this suggests that PGL is antigenic and involved in host responses, acting as a cell wall component. This is the first report to show the difference between lipid phenotypes of types I and II. It is important to clarify the heterogeneity of BCG vaccine substrains to discuss and evaluate the quality, safety, and efficacy of the BCG vaccine. PMID:22030395

  8. Special issue on "Frontiers in Materials Science: Condensed matters"

    NASA Astrophysics Data System (ADS)

    Hoang, Nam-Nhat; Yamamoto, Tomoyuki; Pham, Duc-Thang

    2018-03-01

    This special issue includes the editor-invited and selected papers from 3rd International Symposium on Frontiers in Materials Science (FMS2016), held in Hanoi, Vietnam, from the 28th to 30th of September 2016, which coincided with the 65th anniversary of the Faculty of Physics, Hanoi University of Education. The FMS2016 is a continuation of a series of meetings starting from 2010. A first event was a bilateral Vietnamese-German meeting in Hanoi, Vietnam, in 2010, and the second one was held in Frankfurt, Germany, in 2011. The idea at that time was to initiate interactions between scientists from both countries and to further develop the field of materials science in Southeast Asia. After these successful bilateral meetings, a next step was taken by advancing the format of the symposium into an international event. In 2013, the 1st International Symposium on Frontiers in Materials Science (FMS2013) was successfully organized in Hanoi, which followed 2nd symposium, FMS2015, in Tokyo, in 2015. The FMS2016 continues this idea of providing an international forum for physicists, material scientists and chemists for discussing their latest results and the recent developments in the important field of materials science.

  9. Degradation of 17β-Estradiol by a Gram-Negative Bacterium Isolated from Activated Sludge in a Sewage Treatment Plant in Tokyo, Japan

    PubMed Central

    Fujii, Katsuhiko; Kikuchi, Shintaro; Satomi, Masataka; Ushio-Sata, Noriko; Morita, Naoki

    2002-01-01

    A 17β-estradiol (E2)-degrading bacterium was isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. The isolate was suggested to be a new Novosphingobium species. Gas chromatography-mass spectrometry and 1H nuclear magnetic resonance analyses of the metabolites of E2 degradation suggested that no toxic products accumulated in the culture medium. PMID:11916733

  10. RESEARCH INTO PSYCHOLOGICAL EVALUATION METHOD OF UNDERGROUND SPACE - CENTERING ON THE TOKYO METRO -

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Naomi; Wake, Tenji; Mita, Takeshi; Wake, Hiromi

    This research is concerned with developing evaluation methods that can be useful for environmental design from the psychological perspective of QOL, that is comfort, in underground space. For this research, eight stations on the Tokyo Metro, including the Fukutoshin line, were selected and two types of questionnaires were carried out after respondents had walked through the station areas and the walkways connecting the stations. From the results of the first questionnaire, four factors, comfort/convenience, insecurity, visibility/noticeability, brightness/ease of walking, were extracted. From the results of the second questionnaire, three factors were extracted: visibility of noticeboards, overall atmosphere of underground space, visibility of fare chart/subway map. There was a strong correlation between the factors comfort/convenience and insecurity, extracted from the first questionnaire, and the overall atmosphere factor extracted from the second questionnaire. For visibility/noticeability, there was a strong correlation with notices, fares chart, and subway map.

  11. Tandem accelerators in Romania: Multi-tools for science, education and technology

    NASA Astrophysics Data System (ADS)

    Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.

    2017-06-01

    An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].

  12. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    PubMed

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  13. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  14. Acceleration induced water removal from ear canals.

    NASA Astrophysics Data System (ADS)

    Kang, Hosung; Averett, Katelee; Jung, Sunghwan

    2017-11-01

    Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.

  15. Current developments and clinical applications of bubble technology in Japan: a report from 85th Annual Scientific Meeting of The Japan Society of Ultrasonic in Medicine, Tokyo, 25-27 May, 2012.

    PubMed

    Achmad, Arifudin; Taketomi-Takahashi, Ayako; Tsushima, Yoshito

    2013-06-01

    The potentials of bubble technology in ultrasound has been investigated thoroughly in the last decade. Japan has entered as one of the leaders in bubble technology in ultrasound since Sonazoid (Daiichi Sankyo & GE Healthcare) was marketed in 2007. The 85th Annual Scientific Meeting of The Japan Society of Ultrasonics in Medicine held in Tokyo from May 25 to 27, 2012 is where researchers and clinicians from all over Japan presented recent advances and new developments in ultrasound in both the medical and the engineering aspects of this science. Even though bubble technology was originally developed simply to improve the conventional ultrasound imaging, recent discoveries have opened up powerful emerging applications. Bubble technology is the particular topic to be reviewed in this report, including its mechanical advances for molecular imaging, drug/gene delivery device and sonoporation up to its current clinical application for liver cancers and other liver, gastrointestinal, kidney and breast diseases.

  16. A high resolution 3D velocity model beneath the Tokyo Metropolitan area by MeSO-net

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Honda, R.; Kimura, H.; Hirata, N.

    2015-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes devastating mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating serious loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 23,000 fatalities and 95 trillion yen (about 1 trillion US$) economic loss. We have launched the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters in collaboration with scientists, engineers, and social-scientists in nationwide institutions since 2012. We analyze data from the dense seismic array called Metropolitan Seismic Observation network (MeSO-net), which has 296 seismic stations with spacing of 5 km (Sakai and Hirata, 2009; Kasahara et al., 2009). We applied the double-difference tomography method (Zhang and Thurber, 2003) and estimated the velocity structure and the upper boundary of PSP (Nakagawa et al., 2010). The 2011 Tohoku-oki earthquake (M9.0) has activated seismicity also in Kanto region, providing better coverage of ray paths for tomographic analysis. We obtain much higher resolution velocity models from whole dataset observed by MeSO-net between 2008 and 2015. A detailed image of tomograms shows that PSP contacts Pacific plate at a depth of 50 km beneath northern Tokyo bay. A variation of velocity along the oceanic crust suggests dehydration reaction to produce seismicity in a slab, which may related to the M7+ earthquake. Acknowledgement: This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters of MEXT, Japan and the Earthquake Research Institute cooperative research program.

  17. Estimated Dietary Intake of Radionuclides and Health Risks for the Citizens of Fukushima City, Tokyo, and Osaka after the 2011 Nuclear Accident

    PubMed Central

    Murakami, Michio; Oki, Taikan

    2014-01-01

    The radionuclides released from the Fukushima Daiichi nuclear power plant in 2011 pose a health risk. In this study, we estimated the 1st-year average doses resulting from the intake of iodine 131 (131I) and cesium 134 and 137 (134Cs and 137Cs) in drinking water and food ingested by citizens of Fukushima City (∼50 km from the nuclear power plant; outside the evacuation zone), Tokyo (∼230 km), and Osaka (∼580 km) after the accident. For citizens in Fukushima City, we considered two scenarios: Case 1, citizens consumed vegetables bought from markets; Case 2, citizens consumed vegetables grown locally (conservative scenario). The estimated effective doses of 134Cs and 137Cs agreed well with those estimated through market basket and food-duplicate surveys. The average thyroid equivalent doses due to ingestion of 131I for adults were 840 µSv (Case 1) and 2700 µSv (Case 2) in Fukushima City, 370 µSv in Tokyo, and 16 µSv in Osaka. The average effective doses due to 134Cs and 137Cs were 19, 120, 6.1, and 1.9 µSv, respectively. The doses estimated in this study were much lower than values reported by the World Health Organization and the United Nations Scientific Committee on the Effects of Atomic Radiation, whose assessments lacked validation and full consideration of regional trade in foods, highlighting the importance of including regional trade. The 95th percentile effective doses were 2–3 times the average values. Lifetime attributable risks (LARs) of thyroid cancers due to ingestion were 2.3–39×10−6 (Case 1) and 10–98×10−6 (Case 2) in Fukushima City, 0.95–14×10−6 in Tokyo, and 0.11–1.3×10−6 in Osaka. The contributions of LARs of thyroid cancers due to ingestion were 7.5%–12% of all exposure (Case 1) and 12%–30% (Case 2) in Fukushima City. PMID:25390339

  18. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, Anthony P.; Young, Laurence R.; Merfeld, Daniel M.

    1991-01-01

    Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear 'sleds' in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.

  19. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.; Merfeld, D. M.

    1990-01-01

    Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear "sleds" in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.

  20. Using a 400 kV Van de Graaff accelerator to teach physics at West Point

    NASA Astrophysics Data System (ADS)

    Marble, D. K.; Bruch, S. E.; Lainis, T.

    1997-02-01

    A small accelerator visitation laboratory is being built at the United States Military Academy using two 400 kV Van de Graaff accelerators. This laboratory will provide quality teaching experiments and increased research opportunities for both faculty and cadets as well as enhancing the department's ability to teach across the curriculum by using nuclear techniques to solve problems in environmental engineering, material science, archeology, art, etc. This training enhances a students ability to enter non-traditional fields that are becoming a large part of the physics job market. Furthermore, a small accelerator visitation laboratory for high school students can stimulate student interest in science and provide an effective means of communicating the scientific method to a general audience. A discussion of the USMA facility, class experiments and student research projects will be presented.

  1. Application of real-time digitization techniques in beam measurement for accelerators

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  2. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from

  3. Rover exploration on the lunar surface; a science proposal for SELENE-B mission

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Kubota, T.; Akiyama, H.; Hirata, N.; Kunii, Y.; Matsumoto, K.; Okada, T.; Otake, M.; Saiki, K.; Sugihara, T.

    LUNARSURFACE:ASCIENCES. Sasaki (1), T. Kubota (2) , H. Akiyama (1) , N. Hirata (3), Y. Kunii (4), K. Matsumoto (5), T. Okada (2), M. Otake (3), K. Saiki (6), T. Sugihara (3) (1) Department of Earth and Planetary Science, Univ. Tokyo, (2) Institute of Space and Astronautical Sciences, (3) National Space Development Agency of Japan, (4) Department of Electrical and Electronic Engineering, Chuo Univ., (5) National Aerospace Laboratory of Japan, (6) Research Institute of Materials and Resources, Akita Univ. sho@eps.s.u -tokyo.ac.jp/Fax:+81-3-5841-4569 A new lunar landing mission (SELENE-B) is now in consideration in Japan. Scientific investigation plans using a rover are proposed. To clarify the origin and evolution of the moon, the early crustal formation and later mare volcanic processes are still unveiled. We proposed two geological investigation plans: exploration of a crater central peak to discover subsurface materials and exploration of dome-cone structures on young mare region. We propose multi-band macro/micro camera using AOTF, X-ray spectrometer/diffractometer and gamma ray spectrometer. Since observation of rock fragments in brecciaed rocks is necessary, the rover should have cutting or scraping mechanism of rocks. In our current scenario, landing should be performed about 500m from the main target (foot of a crater central peak or a cone/dome). After the spectral survey by multi-band camera on the lander, the rover should be deployed for geological investigation. The rover should make a short (a few tens meter) round trip at first, then it should perform traverse observation toward the main target. Some technological investigations on SELENE-B project will be also presented.

  4. Simulated distribution and ecotoxicity-based assessment of chemically-dispersed oil in Tokyo Bay.

    PubMed

    Koyama, Jiro; Imakado, Chie; Uno, Seiichi; Kuroda, Takako; Hara, Shouichi; Majima, Takahiro; Shirota, Hideyuki; Añasco, Nathaniel C

    2014-08-30

    To assess risks of chemically-dispersed oil to marine organisms, oil concentrations in the water were simulated using a hypothetical spill accident in Tokyo Bay. Simulated oil concentrations were then compared with the short-term no-observed effect concentration (NOEC), 0.01 mg/L, obtained through toxicity tests using marine diatoms, amphipod and fish. Area of oil concentrations higher than the NOEC were compared with respect to use and non-use of dispersant. Results of the simulation show relatively faster dispersion near the mouth of the bay compared to its inner sections which is basically related to its stronger water currents. Interestingly, in the inner bay, a large area of chemically-dispersed oil has concentrations higher than the NOEC. It seems emulsifying oil by dispersant increases oil concentrations, which could lead to higher toxicity to aquatic organisms. When stronger winds occur, however, the difference in toxic areas between use and non-use of dispersant is quite small. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. PREFACE: Proceedings of the 2nd International Conference on Quantum Simulators and Design (Tokyo, Japan, 31 May-3 June 2008) Proceedings of the 2nd International Conference on Quantum Simulators and Design (Tokyo, Japan, 31 May-3 June 2008)

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Tsuneyuki, Shinji

    2009-02-01

    This special issue of Journal of Physics: Condensed Matter comprises selected papers from the proceedings of the 2nd International Conference on Quantum Simulators and Design (QSD2008) held in Tokyo, Japan, between 31 May and 3 June 2008. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The conference focused on the development of first principles electronic structure calculations and their applications. The aim was to provide an opportunity for discussion on the progress in computational materials design and, in particular, the development of quantum simulators and quantum design. Computational materials design is a computational approach to the development of new materials. The essential ingredient is the use of quantum simulators to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulator should be very reliable and be applicable to systems of realistic size. During the conference, new methods of quantum simulation and quantum design were discussed including methods beyond the local density approximation of density functional theory, order-N methods, methods dealing with excitations and reactions, and the application of these methods to the design of novel materials, devices and systems. The conference provided an international forum for experimental and theoretical researchers to exchange ideas. A total of 220 delegates from eight countries participated in the conference. There were 13 invited talks, ten oral presentations and 120 posters. The 3rd International Conference on Quantum Simulators and Design will be held in Germany in the autumn of 2011.

  6. Calendar of Selected Aeronautical and Space Meetings July 1988 (Calendrier des Manifestations Aeronautiques et Spatiales (Selecgion) Juillet 1988)

    DTIC Science & Technology

    1988-07-01

    Environnement terrestre 78 09 - Information, Documentation et Informatique 81 *10 - Themes g~n~raux (phuridisciplinaires) et divers 94 11 - Salons et...Dayton, OH 45432 US UTIIS University of Tokyo Institute of Industrial Science: 7-22-1 Roppongi, Minato-ku, Tokyo 106 JA VDE Verband Deutscher

  7. The University of Tokyo Atacama Observatory 6.5m telescope: project overview and current status

    NASA Astrophysics Data System (ADS)

    Yoshii, Y.; Doi, M.; Kohno, K.; Miyata, T.; Motohara, K.; Kawara, K.; Tanaka, M.; Minezaki, T.; Sako, S.; Morokuma, T.; Tamura, Y.; Tanabe, T.; Takahashi, H.; Konishi, M.; Kamizuka, T.; Kato, N.; Aoki, T.; Soyano, T.; Tarusawa, K.; Handa, T.; Koshida, S.; Bronfman, L.; Ruiz, M. T.; Hamuy, M.; Garay, G.

    2016-07-01

    The University of Tokyo Atacama Observatory Project is to construct a 6.5m infrared telescope at the summit of Co. Chajnantor (5640m altitude) in northern Chile, promoted by the University of Tokyo. Thanks to the dry climate (PWV 0.5mm) and the high altitude, it will achieve excellent performance in the NIR to MIR wavelengths. The telescope has two Nasmyth foci where the facility instruments are installed and two folded-Cassegrain foci for carry-in instruments. All these four foci can be switched by rotating a tertiary mirror. The final focal ratio is 12.2 and the telescope foci have large field-of-view of 25° in diameter. We adopted the 6.5m light-weighted borosilicate honeycomb primary mirror and its support system that are developed by Steward Observatory Richard F. Caris Mirror Lab. The dome enclosure has the shape of carousel, and large ventilation windows with shutters control the wind to flush heat inside the dome. The operation building with control room, aluminizing chamber and maintenance facilities is located at the side of the dome. Two cameras, SWIMS for spectroscopy and imaging in the near-infrared and MIMIZUKU in the mid-infrared, are being developed as the first-generation facility instruments. The operation of the telescope will be remotely carried out from a base facility at San Pedro de Atacama, 50km away from the summit. The construction of the telescope is now underway. Fabrication of the telescope mount has almost finished, and the pre-assembly has been carried out in Japan. The primary, secondary, and tertiary mirrors and their cells have been also fabricated, as well as their cells and support systems. Fabrication of the enclosure is now underway, and their pre-assembly in Japan will be carried out in 2016. Construction of the base facility at San Pedro de Atacama has been already completed in 2014, and operated for the activities in Atacama. The telescope is now scheduled to see the first light at the beginning of 2018.

  8. TAC Proton Accelerator Facility: The Status and Road Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algin, E.; Akkus, B.; Caliskan, A.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  9. Lederman Science Center: Physicists Explain Exhibits

    Science.gov Websites

    Adventures - Calendar - About - FAQ - Fermilab Friends - Fermilab Home Fermilab Office of Education & . Lederman Science Adventures Teacher Resource Center video video video video video Welcome Accelerators Maintainer: ed-webmaster@fnal.gov Lederman Science Education Center Fermilab MS 777 Box 500 Batavia, IL 60510

  10. ISEES: an institute for sustainable software to accelerate environmental science

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Schildhauer, M.; Fox, P. A.

    2013-12-01

    Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical

  11. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  12. Communicating Your Science

    NASA Astrophysics Data System (ADS)

    Young, C. A.

    2016-12-01

    Effective science communication can open doors, accelerate your career and even make you a better scientist. Part of being an effective and productive scientist means being an effective science communicator. The scientist must communicate their work in talks, posters, peer-reviewed papers, internal reports, proposals as well as to the broader public (including law makers). Despite the importance of communication, it has traditionally not been part of our core training as scientists. Today's science students are beginning to have more opportunities to formally develop their science communication skills. Fortunately, new and even more established scientists have a range of tools and resources at their disposal. In this presentation, we will share some of these resources, share our own experiences utilizing them, and provide some practical tools to improve your own science communication skills.

  13. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.

  14. Neutron physics with accelerators

    NASA Astrophysics Data System (ADS)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  15. Microwaves and particle accelerators: a fundamental link

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Swapan

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of themore » twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society

  16. Trains of electron micro-bunches in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan

    2018-07-01

    Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.

  17. Secular Acceleration of Barnard's Star

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2009-01-01

    Barnard's Star should have significant secular acceleration because it lies close to the Sun and has the highest known proper motion along with a large radial velocity. It will pass within about 1.4 pc in another 9,750 years. Secular changes in proper motion and radial velocity are essentially the Coriolis and centrifugal accelerations, respectively, arising from use of a rotating coordinate system defined by the Sun-star radius vector. Although stellar space velocities measured with respect to the Sun are essentially constant, these perspective effects arise with changing distance and viewing angle. Hipparcos-2 plus Nidever et al. (2002) predict a perspective change in the proper motion of 1.285±0.006 mas yr-2 for Barnard's Star. Recent analysis of 900+ photographic plates between 1968 and 1998 with the 26.25-in (0.67-m) McCormick refractor detected a secular acceleration of 1.25±0.04 mas yr-2, which agrees with the predicted value within the measurement errors. Earlier, Benedict et al. (1999) measured its secular acceleration to be 1.2±0.2 mas yr-2 using 3 years of HST FGS observations. Similarly, a perspective change in radial velocity of 4.50±0.01 m s-1 yr-1 can be predicted for Barnard's Star. Kürster et al. (2003) detected variations in their observations of it that are largely attributable to secular acceleration along the line of sight with some contribution from stellar activity. Although secular acceleration effects have been limited for past studies of stellar motions, they can be significant for observations extending over decades or for high-precision measurements required to detect extrasolar planets. Future studies will need to consider this factor for the nearest stars and for those with large proper motions or radial velocities. NSF grant AST 98-20711; Litton Marine Systems; Peninsula Community Foundation Levinson Fund; UVa Governor's Fellowship, Dean's F&A Fellowship, and Graduate School of Arts and Sciences; and, US Naval Observatory

  18. Choosing experiments to accelerate collective discovery

    DOE PAGES

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; ...

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less

  19. Calendar of Selected Aeronautical and Space Meetings (Calendrier des Manifestations Aeronautiques et Spatiales (Selection))

    DTIC Science & Technology

    1989-01-01

    Structurces, Matdriaux et MWcanique appliqu&c 53 08 - Physique de U’Atmosph~re et Environnement terrestre 73 09 -Information, Documentation et Informatique 77...CO 80840 US UTIIS University of Tokyo Institute of Industrial Science: 7-22-1 Roppongi, Minato-ku, Tokyo 106 JA VDE Verband Deutscher

  20. Accelerated Integrated Science Sequence: Interdisciplinary Undergraduate Science for the 21st Century

    ERIC Educational Resources Information Center

    Ulsh, Lisa S.

    2011-01-01

    Numerous reports cite the need to improve the quality of undergraduate STEM education in order to attract and train a diverse pool of talented students prepared to meet the scientific and technological challenges of the 21st century. A growing body of research reveals that the nature and quality of science instruction in introductory college…

  1. Imaging of early acceleration phase of the 2013-2014 Boso slow slip event

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Kato, A.; Obara, K.; Miura, S.; Kato, T.

    2014-12-01

    Based on GPS and seismic data, we examine the spatiotemporal evolution of a slow slip event (SSE) and associated seismic activity that occurred off the Boso peninsula, central Japan, from December 2013 to January 2014. We use GPS data from 71 stations of the GEONET and 6 stations operated by Earthquake Research Institute of the University of Tokyo and Tohoku University around the Boso peninsula. We apply a modified version of the Network Inversion Filter to the GPS time series at the 77 stations to estimate the spatiotemporal evolution of daily cumulative slip and slip rate on the subducting Philippine Sea plate. In addition, we create an improved earthquake catalog by applying a matched filter technique to continuous seismograms and examine the spatiotemporal relations between slow slip and seismicity. We find that the SSE started in early December 2013. The spatiotemporal evolution of slow slip and seismicity is divided into two distinct phases, an earlier slow phase from early to 30 December 2013 (Phase I) and a subsequent faster phase from 30 December 2013 to 9 January 2014 (Phase II). During Phase I, slip accelerated slowly up to a maximum rate of 1.6 m/yr with potentially accelerating along-strike propagation at speeds on the order of 1 km/day or less and no accompanying seismicity. On the other hand, during Phase II, slip accelerated rapidly up to a maximum rate of 4.5 m/yr and then rapidly decelerated. The slip front propagated along strike at a constant speed of ~10 km/day. During the Phase II, slow slip was accompanied by seismic swarm activity that was highly correlated in space and time with slip rate, suggesting that the swarm activity was triggered by stress loading due to slow slip. Early slow acceleration of slip has not been identified in the past Boso SSEs in 1996, 2002, 2007, and 2011. It is not clear at this point whether the past Boso SSEs started with slow acceleration similarly to the 2013-2014 SSE. The transition from the slow to the

  2. Relationship between the Prediction Accuracy of Tsunami Inundation and Relative Distribution of Tsunami Source and Observation Arrays: A Case Study in Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Takagawa, T.

    2017-12-01

    A rapid and precise tsunami forecast based on offshore monitoring is getting attention to reduce human losses due to devastating tsunami inundation. We developed a forecast method based on the combination of hierarchical Bayesian inversion with pre-computed database and rapid post-computing of tsunami inundation. The method was applied to Tokyo bay to evaluate the efficiency of observation arrays against three tsunamigenic earthquakes. One is a scenario earthquake at Nankai trough and the other two are historic ones of Genroku in 1703 and Enpo in 1677. In general, rich observation array near the tsunami source has an advantage in both accuracy and rapidness of tsunami forecast. To examine the effect of observation time length we used four types of data with the lengths of 5, 10, 20 and 45 minutes after the earthquake occurrences. Prediction accuracy of tsunami inundation was evaluated by the simulated tsunami inundation areas around Tokyo bay due to target earthquakes. The shortest time length of accurate prediction varied with target earthquakes. Here, accurate prediction means the simulated values fall within the 95% credible intervals of prediction. In Enpo earthquake case, 5-minutes observation is enough for accurate prediction for Tokyo bay, but 10-minutes and 45-minutes are needed in the case of Nankai trough and Genroku, respectively. The difference of the shortest time length for accurate prediction shows the strong relationship with the relative distance from the tsunami source and observation arrays. In the Enpo case, offshore tsunami observation points are densely distributed even in the source region. So, accurate prediction can be rapidly achieved within 5 minutes. This precise prediction is useful for early warnings. Even in the worst case of Genroku, where less observation points are available near the source, accurate prediction can be obtained within 45 minutes. This information can be useful to figure out the outline of the hazard in an early

  3. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  4. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE PAGES

    Dart, Eli; Rotman, Lauren; Tierney, Brian; ...

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  5. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  6. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  7. GASPRNG: GPU accelerated scalable parallel random number generator library

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or

  8. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  9. The accelerator neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  10. National Institute of Nursing Research Centers of Excellence: a logic model for sustainability, leveraging resources, and collaboration to accelerate cross-disciplinary science.

    PubMed

    Dorsey, Susan G; Schiffman, Rachel; Redeker, Nancy S; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S; Grady, Patricia A

    2014-01-01

    The National Institute of Nursing Research (NINR) Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present the NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR center directors' meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here onmore » the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.« less

  12. Effects of a Cognitive Acceleration Programme in a Low Socioeconomic High School in Regional Australia

    ERIC Educational Resources Information Center

    Oliver, Mary; Venville, Grady; Adey, Philip

    2012-01-01

    This paper presents research on the effects of a cognitive acceleration intervention in science lessons on low socioeconomic students in a government high school in regional Western Australia. "Thinking Science Australia" is a programme currently being implemented in Australian junior high school classes. The research was conducted for…

  13. Assessing the Allocation of Special Elderly Nursing Homes in Tokyo, Japan

    PubMed Central

    You, Ninglong; Shen, Zhenjiang; Nishino, Tatsuya

    2017-01-01

    Social welfare and public health departments require reliable assessments to enhance the rationality of phased construction of special elderly nursing homes (SENHs). This paper aims to assess the allocation of SENHs based on a beds-needed index for SENHs (BNIS). This may help departments determine the priority for approving locations of SENHs more accurately with a limited budget. Traditional assessments in Tokyo use the sphere of welfare, ward, and sphere of daily life as spatial units for estimating beds-to-elderly population ratios. We calculate the BNIS by introducing a parameter-improved floating catchment area method (PI-FCA) at a smaller spatial unit, the Chome. In the PI-FCA, the catchment area is generated according to the standard of average population served by SENHs and capacity, the population demand is the population of the elderly requiring care levels 3–5 and is further modified by a coefficient of potential demand via building a multivariate linear model. Improved results were obtained using the PI-FCA. Finally, this study maps the distribution of the degree of BNIS, to provide a basis for the allocation assessment of SENHs. This caters to the needs of departments and is easily applicable in other public healthcare facilities. PMID:28937659

  14. XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand

    NASA Astrophysics Data System (ADS)

    Zondervan, A.; Hauser, T. M.; Kaiser, J.; Kitchen, R. L.; Turnbull, J. C.; West, J. G.

    2015-10-01

    A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for 10Be, 14C, 26Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact 14C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for 10Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, 14C Poisson and non-Poisson errors, and 10Be detection limit and sensitivity. Operational details and hardware improvements, such as 10Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised 14C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of 14C measurement. For 10Be, the limit of detection in terms of the isotopic abundance ratio 10Be/9Be is 6 × 10-15 at at-1 and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  15. Status of ion sources at National Institute of Radiological Sciences.

    PubMed

    Kitagawa, A; Fujita, T; Goto, A; Hattori, T; Hamano, T; Hojo, S; Honma, T; Imaseki, H; Katagiri, K; Muramatsu, M; Sakamoto, Y; Sekiguchi, M; Suda, M; Sugiura, A; Suya, N

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  16. The development and piloting of a leadership questionnaire for general dental practitioners: preliminary results from the North West of England and Tokyo.

    PubMed

    Brocklehurst, P; O'Malley, L; Hill, H; Ozaki, T; Nomura, M; Matsuda, R

    2014-11-01

    Key reforms in England and Japan have called for greater clinical leadership from general dental practitioners to deliver improvements in the quality of care for patients. In England, the reorganisation of the National Health Service has led to the development of Local Professional Networks to ensure services are clinically led, patient and outcome focused. In Japan, the rapidly changing demographics have led to calls for general dental practitioners to become more active in meeting the emerging population health challenges. Both require engagement at a strategic and a local level. However, little is known about what is meant by clinical leadership in dentistry or what training needs exist. The aim of this study was to develop and pilot a questionnaire to understand what general dental practitioners feel is important about clinical leadership and how they rate themselves. A 61-item questionnaire was developed from the literature, an earlier qualitative study and refined through cognitive interviews. Questionnaires were distributed to general dental practitioners across the North West of England and Tokyo, using random sequence generation. For each item, the participant had to record whether they thought the statement was an important component of clinical leadership and how they rated themselves. Both were rated using a seven-point Likert scale. Data reduction was undertaken using principal component analysis to examine for factor loadings within the questionnaire. Differences in mean scores were also used to highlight substantive differences in how general dental practitioners rated the different components of leadership and how they rated themselves. The response rate for the pilot was low (22.9% and 7.5% for North West and Tokyo respectively). The items that were considered to be important in leadership reduced to two components in the North West (accounting for 62.1% of the total variance): 'How to lead' and 'How not to lead'. In Tokyo, 56.4% of the total

  17. "DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, M.; Leitner, D.; Lemut, A.

    2009-05-28

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV tomore » 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.« less

  18. Theoretical and technological building blocks for an innovation accelerator

    NASA Astrophysics Data System (ADS)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  19. EuCARD 2010: European coordination of accelerator research and development

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2010-09-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.

  20. Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-06-01

    X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

  1. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  2. Concentration of small ions measured at the center of Tokyo, at the summit of Mt. Fuji, and over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Miura, K.; Ueda, S.; Nagaoka, N.; Fukawa, A.; Nagano, K.; Kobayashi, H.; Yasuda, H.; Yajima, K.; Furutani, H.; Uematsu, M.

    2012-12-01

    /Introduction/ It has been proposed that climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. The cause of it is considered as a new particle formation with ion induced nucleation. The ion induced nucleation is occurred under the low concentration of particles and high concentration of ions, but there are a few reports. Then we have observed small ions, aerosol size distributions, radon concentrations, and intensity of cosmic rays at the summit of Mt. Fuji simultaneously. We also observed the similar elements at the center of Tokyo and over the Pacific Ocean. /Methods/ Observations were performed in summer in 2010 and 2011 at the summit (3776m ASL) and in summer in 2011 at Tarobo (1290m ASL), at the base of the Mt. Fuji and from autumn in 2010 to summer 2011 at the center of Tokyo, and from 1st December 2011 to 6th March 2012 on the R/V Hakuho Maru over the Pacific Ocean. Small ions were measured with the Gerdien type meter (COM-3400). The critical mobility was set 0.7 cm2/V/s and we measured positive and negative ions alternately. Size distributions from 4.4 to 5000 nm in diameter were measured with a scanning mobility particle sizer (SMPS, TSI 3936N25 or 3936L22) and an optical particle counter (OPC, RION KR12 or KC01D). Radon concentration was calculated from concentration of radioactive aerosols collected on a filter. Small ions are generated with ionization of air by cosmic rays or radiation from radioactive substances. Small ions are lost by various mechanisms such as ion-ion recombination and ion-aerosol attachment. /Results and Discussion/ Hourly averaged concentration often showed the diurnal pattern of high in the early morning and low in the evening at Kagurazaka, Tarobo, and the summit in 2010. However, the different pattern of low in the early morning and high in the evening was often observed at the summit in 2011. This pattern had observed by some investigaters. New

  3. Piaget and Elementary Science

    ERIC Educational Resources Information Center

    Chittenden, Edward A.

    1970-01-01

    Describes the intellectual development stages ascribed to children by Jean Piaget. Characteristics and examples are given for sensori-motor, preoperational, concrete operational, and formal operational thinking periods. Implications are given for elementary school science education, including (1) formal instruction does not accelerate acquisition…

  4. Expanding Possibilities of Periodicals for Children in Asia and the Pacific. Report of the 1997 Training Course on Production of Periodicals for Children (Tokyo, October 1-15, 1997).

    ERIC Educational Resources Information Center

    Asia/Pacific Cultural Centre for UNESCO, Tokyo (Japan).

    Following the proceedings of the training course on children's periodicals held in 1997 in Tokyo, this report contains the following articles: (1) "Children's Life and Magazines" (Jiro Saito); (2) "Periodical Picture Books to Develop Reading Skills of Children" (Tadashi Matsui); (3) "How to Produce Attractive Educational…

  5. Characteristics of cancer patients who died by suicide in the Tokyo metropolitan area.

    PubMed

    Fujimori, Maiko; Hikiji, Wakako; Tanifuji, Takanobu; Suzuki, Hideto; Takeshima, Tadashi; Matsumoto, Toshihiko; Yamauchi, Takashi; Kawano, Kenji; Fukunaga, Tatsushige

    2017-05-01

    The purpose of this study was to investigate the sociodemographic characteristics of cancer patients who died by suicide in comparison with cancer-free cases. Suicide data from the Tokyo Medical Examiner's Office from 2009 to 2013 were extracted retrospectively. A total of 503 (5.1%) out of 9841 people who committed suicide had cancer; age ranged from 26 to 97 years. The cancer patients were significantly older than the cancer-free cases. There were significantly more cancer patients with cohabiters than cancer-free cases with cohabiters. Only half of young to middle-aged subjects had a job in both groups. There were significantly more cancer patients who lived on pensions and welfare assistance, and less cancer patients who drink or smoke than those without cancer. Given the high incidence of suicide in elderly cancer patients, healthcare professionals should pay attention for risk even in cancer patients who have cohabiters, benefit from a pension, and do not drink or smoke. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  7. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  8. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-01

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  9. Mirror symmetric optics design for charge-stripping section in Rare Isotope Science Project

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Jin; Kim, Hyung-Jin; Jeon, Dong-O.; Hwang, Ji-Gwang; Kim, Eun-San

    2013-12-01

    The main aim of the Rare Isotope Science Project is to construct a high power heavy-ion accelerator based on the superconducting linear accelerator (SCL). The heavy ion accelerator is a key research facility that will allow ground-breaking research into numerous facets of basic science, such as nuclear physics, astrophysics, atomic physics, life science, medicine and material science. The machine will provide a beam power of 400 kW with a 238U79+ beam of 8 pμA and 200 MeV/u. One of the critical components in the SCL is the charge stripper between the two segments, SCL1 and SCL2, of the SCL. The charge stripper removes electrons from the ion beams to enhance the acceleration efficiency in the subsequent SCL2. To improve the efficiency of acceleration and power in SCL2, the optimal energy of stripped ions in a solid carbon foil stripper was estimated using the code LISE++. The thickness of the solid carbon foil was 300 μg/m2. The charge stripping efficiency of the solid carbon stripper in the present study was approximately 87%. For charge selection from the ions produced by the solid carbon stripper, a dispersive section is needed down-stream of the foil. The designed optics for the dispersive section is based on the mirror-symmetric optics to minimize the effect of high-order aberrations.

  10. The FuturICT education accelerator

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Buckingham Shum, S.; Willis, A.; Bishop, S.; Zamenopoulos, T.; Swithenby, S.; MacKay, R.; Merali, Y.; Lorincz, A.; Costea, C.; Bourgine, P.; Louçã, J.; Kapenieks, A.; Kelley, P.; Caird, S.; Bromley, J.; Deakin Crick, R.; Goldspink, C.; Collet, P.; Carbone, A.; Helbing, D.

    2012-11-01

    Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year `man-on-the-moon' project is proposed in which FuturICT's unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a `wind tunnel' for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT.

  11. Geophysics education on the Internet: Course production and assessment of our MOOC, "Deep Earth Science"

    NASA Astrophysics Data System (ADS)

    Okuda, Y.; Tazawa, K.; Sugie, K.; Sakuraba, H.; Hideki, M.; Tagawa, S.; Cross, S. J.

    2016-12-01

    Recently, massive open online courses (MOOC or MOOCs) have gained wide-spread attention as a new educational platform delivered via the internet. Many leading institutions all over the world have provided many fascinating MOOC courses in various fields. Students enrolled in MOOCs study their interested topic in a course not only by watching video lectures, reading texts, and answering questions, but also by utilizing interactive online tools such as discussion boards, Q&A sessions and peer assessments. MOOC is also gaining popularity as a way to do outreach activity and diffuse research results. Tokyo Institute of Technology provided its 1st MOOC, "Introduction to Deep Earth Science Part1" on edX, which is one of the largest MOOC providers. This four-week-long course was designed for 1st year college students and with two learning goals in this course; 1) to introduce students to the fascinating knowledge of solid Earth, 2) to provide an opportunity to use scientific thinking as well as to show how interesting and exciting science can be. This course contained materials such as 1) structure of inside of the Earth 2) internal temperature of the earth and how it is estimated and 3) chemical compositions and dynamics inside the earth. After the end of the provision of Part1, this course was re-made as "Introduction to Deep Earth Science"(so to speak, Part2) on the basis of opinions obtained from students who have attended our course and student teaching assistants (TA) who have run and produced this course. In this presentation, we will explain our MOOC making model, which is a team based course creation effort between the course instructor, Tokyo Tech Online Education Development Office (OEDO) staff and TA students. Moreover, we will share details and feedback of Part1 received from some of the 5000 enrolled students from 150 counties and regions, and report the implementation of Part2 in the light of challenges resulted from Part1.

  12. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  13. Discovery of an Unusual Optical Transient with the Hubble Space Telescope

    Science.gov Websites

    SAO/NASA ADS Astronomy Abstract Service Title: Discovery of an Unusual Optical Transient with the (Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181 , Sweden), AF(Department of Physics, Hamilton College, Clinton, NY 13323, USA), AG(Institute of Astronomy

  14. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  15. Tokyo Guidelines 2018: surgical management of acute cholecystitis: safe steps in laparoscopic cholecystectomy for acute cholecystitis (with videos).

    PubMed

    Wakabayashi, Go; Iwashita, Yukio; Hibi, Taizo; Takada, Tadahiro; Strasberg, Steven M; Asbun, Horacio J; Endo, Itaru; Umezawa, Akiko; Asai, Koji; Suzuki, Kenji; Mori, Yasuhisa; Okamoto, Kohji; Pitt, Henry A; Han, Ho-Seong; Hwang, Tsann-Long; Yoon, Yoo-Seok; Yoon, Dong-Sup; Choi, In-Seok; Huang, Wayne Shih-Wei; Giménez, Mariano Eduardo; Garden, O James; Gouma, Dirk J; Belli, Giulio; Dervenis, Christos; Jagannath, Palepu; Chan, Angus C W; Lau, Wan Yee; Liu, Keng-Hao; Su, Cheng-Hsi; Misawa, Takeyuki; Nakamura, Masafumi; Horiguchi, Akihiko; Tagaya, Nobumi; Fujioka, Shuichi; Higuchi, Ryota; Shikata, Satoru; Noguchi, Yoshinori; Ukai, Tomohiko; Yokoe, Masamichi; Cherqui, Daniel; Honda, Goro; Sugioka, Atsushi; de Santibañes, Eduardo; Supe, Avinash Nivritti; Tokumura, Hiromi; Kimura, Taizo; Yoshida, Masahiro; Mayumi, Toshihiko; Kitano, Seigo; Inomata, Masafumi; Hirata, Koichi; Sumiyama, Yoshinobu; Inui, Kazuo; Yamamoto, Masakazu

    2018-01-01

    In some cases, laparoscopic cholecystectomy (LC) may be difficult to perform in patients with acute cholecystitis (AC) with severe inflammation and fibrosis. The Tokyo Guidelines 2018 (TG18) expand the indications for LC under difficult conditions for each level of severity of AC. As a result of expanding the indications for LC to treat AC, it is absolutely necessary to avoid any increase in bile duct injury (BDI), particularly vasculo-biliary injury (VBI), which is known to occur at a certain rate in LC. Since the Tokyo Guidelines 2013 (TG13), an attempt has been made to assess intraoperative findings as objective indicators of surgical difficulty; based on expert consensus on these difficulty indicators, bail-out procedures (including conversion to open cholecystectomy) have been indicated for cases in which LC for AC is difficult to perform. A bail-out procedure should be chosen if, when the Calot's triangle is appropriately retracted and used as a landmark, a critical view of safety (CVS) cannot be achieved because of the presence of nondissectable scarring or severe fibrosis. We propose standardized safe steps for LC to treat AC. To achieve a CVS, it is vital to dissect at a location above (on the ventral side of) the imaginary line connecting the base of the left medial section (Segment 4) and the roof of Rouvière's sulcus and to fulfill the three criteria of CVS before dividing any structures. Achieving a CVS prevents the misidentification of the cystic duct and the common bile duct, which are most commonly confused. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included. © 2018 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. Teaching and Research with Accelerators at Tarleton State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, Daniel K.

    2009-03-10

    Tarleton State University students began performing both research and laboratory experiments using accelerators in 1998 through visitation programs at the University of North Texas, US Army Research Laboratory, and the Naval Surface Warfare Center at Carderock. In 2003, Tarleton outfitted its new science building with a 1 MV pelletron that was donated by the California Institution of Technology. The accelerator has been upgraded and supports a wide range of classes for both the Physics program and the ABET accredited Engineering Physics program as well as supplying undergraduate research opportunities on campus. A discussion of various laboratory activities and research projectsmore » performed by Tarleton students will be presented.« less

  17. The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)

    2001-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.

  18. Measures against increased environmental radiation dose by the TEPCO Fukushima Dai-ichi NPP accident in some local governments in the Tokyo metropolitan area: focusing on examples of both Kashiwa and Nagareyama cities in Chiba prefecture.

    PubMed

    Iimoto, T; Fujii, H; Oda, S; Nakamura, T; Hayashi, R; Kuroda, R; Furusawa, M; Umekage, T; Ohkubo, Y

    2012-11-01

    The accident of the Fukushima Dai-ichi nuclear power plant of Tokyo Electric Power Cooperation (TEPCO) after the great east Japan earthquake (11 March 2011) elevated the background level of environmental radiation in Eastern Japan. Around the Tokyo metropolitan area, especially around Kashiwa and Nagareyama cities, the ambient dose equivalent rate has been significantly increased after the accident. Responding to strong requests from citizens, the local governments started to monitor the ambient dose equivalent rate precisely and officially, about 3 months after the accident had occurred. The two cities in cooperation with each other also organised a local forum supported by three radiation specialists. In this article, the activities of the local governments are introduced, with main focus on radiation monitoring and measurements. Topics are standardisation of environmental radiation measurements for ambient dose rate, dose mapping activity, investigation of foodstuff and drinking water, lending survey meters to citizens, etc. Based on the data and facts mainly gained by radiation monitoring, risk management and relating activity have been organised. 'Small consultation meetings in kindergartens', 'health consultation service for citizens', 'education meeting on radiation protection for teachers, medical staffs, local government staffs, and leaders of active volunteer parties' and 'decontamination activity', etc. are present key activities of the risk management and restoration around the Tokyo metropolitan area.

  19. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  20. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  1. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  2. Comparison of high-functioning atypical autism and childhood autism by Childhood Autism Rating Scale-Tokyo version.

    PubMed

    Kanai, Chieko; Koyama, Tomonori; Kato, Seika; Miyamoto, Yuki; Osada, Hirokazu; Kurita, Hiroshi

    2004-04-01

    To assess autistic symptom differences between high-functioning atypical autism (atypical symptomatology) (HAA; IQ >/= 70) and childhood autism (HCA), 53 HAA children (mean: 6.0 +/- 0.5 years) were compared with 21 HCA children (mean: 8.2 +/- 1.1 years) on the Childhood Autism Rating Scale-Tokyo version (CARS-TV). Because IQ on the Japanese version of the Stanford-Binet and CARS-TV total scores differed significantly between HAA and HCA, analysis of covariance was conducted with IQ and CARS-TV total scores controlled for. In two items of CARS-TV (relationship with people and general impressions) the HAA children were significantly less abnormal than the HCA children. Affect tended to be significantly milder in HAA than HCA. Anxiety reaction was significantly more abnormal in HAA than HCA. These findings may be useful to distinguish between HAA and HCA.

  3. Climate change. Accelerating extinction risk from climate change.

    PubMed

    Urban, Mark C

    2015-05-01

    Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions. Copyright © 2015, American Association for the Advancement of Science.

  4. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  5. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and

  6. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  7. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downer, Michael C.

    2014-04-30

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond

  8. Final science results: Spacelab J

    NASA Technical Reports Server (NTRS)

    Leslie, Fred (Editor)

    1995-01-01

    This report contains a brief summary of the mission science conducted aboard Spacelab J (SL-J), a joint venture between the National Aeronautics and Space Administration (NASA) and the National Space Development Agency (NASDA) of Japan. The scientific objectives of the mission were to conduct a variety of material and life science experiments utilizing the weightlessness and radiation environment of an orbiting Spacelab. All 43 experiments were activated; 24 in microgravity sciences (material processing, crystal growth, fluid physics, and acceleration measurement) and 19 in life sciences (physiology, developmental biology, radiation effects, separation processes, and enzyme crystal growth). In addition, more than a dozen experiments benefited from the extra day through either additional experiment runs or extended growth time.

  9. Spatiotemporal dynamics of urban green spaces and human-wildlife conflicts in Tokyo

    NASA Astrophysics Data System (ADS)

    Hosaka, Tetsuro; Numata, Shinya

    2016-08-01

    Although urban green spaces are increasingly important both for humans and wildlife, an increase in urban green spaces may also increase human-wildlife conflicts in urban areas. However, few studies have examined the relationship between the size of green spaces and the level of conflicts with wildlife in multiple taxa, including invertebrates and vertebrates. To better understand current pest statistics and predict changes that will occur as the area of green spaces increases, we analysed a dataset compiling the number of pest consultations in 53 metropolitan districts in Tokyo over a 20-year period and its relationships with the area of green space. Stinging insects (e.g., wasps) made up over 50% of pest consultations, followed (in order) by rats and other nuisance animals (e.g., snakes). The number of consultations per unit population did not correlate, or was even negatively correlated, with the proportions of green spaces (mainly forest) for many indoor pests, but did positively correlate for some outdoor pests, such as wasps and snakes. Therefore, wasps and snakes can increase when urban green spaces increase. Because even minor nuisances are relevant for urban lifestyles, considerations of ways to minimise conflicts with wildlife are critical for urban green space management.

  10. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  11. MIT-KSC space life sciences telescience testbed

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.

  12. Urinary inorganic arsenic concentrations and semen quality of male partners of subfertile couples in Tokyo.

    PubMed

    Oguri, Tomoko; Yoshinaga, Jun; Toshima, Hiroki; Mizumoto, Yoshifumi; Hatakeyama, Shota; Tokuoka, Susumu

    2016-01-01

    Inorganic arsenic (iAs) has been known as a testicular toxicant in experimental rodents. Possible association between iAs exposure and semen quality (semen volume, sperm concentration, and sperm motility) was explored in male partners of couples (n = 42) who visited a gynecology clinic in Tokyo for infertility consultation. Semen parameters were measured according to WHO guideline at the clinic, and urinary iAs and methylarsonic acid (MMA), and dimethylarsinic acid concentrations were determined by liquid chromatography-hydride generation-ICP mass spectrometry. Biological attributes, dietary habits, and exposure levels to other chemicals with known effects on semen parameters were taken into consideration as covariates. Multiple regression analyses and logistic regression analyses did not find iAs exposure as significant contributor to semen parameters. Lower exposure level of subjects (estimated to be 0.5 μg kg(-1) day(-1)) was considered a reason of the absence of adverse effects on semen parameters, which were seen in rodents dosed with 4-7.5 mg kg(-1).

  13. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  14. Run II of the LHC: The Accelerator Science

    NASA Astrophysics Data System (ADS)

    Redaelli, Stefano

    2015-04-01

    In 2015 the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) starts its Run II operation. After the successful Run I at 3.5 TeV and 4 TeV in the 2010-2013 period, a first long shutdown (LS1) was mainly dedicated to the consolidation of the LHC magnet interconnections, to allow the LHC to operate at its design beam energy of 7 TeV. Other key accelerator systems have also been improved to optimize the performance reach at higher beam energies. After a review of the LS1 activities, the status of the LHC start-up progress is reported, addressing in particular the status of the LHC hardware commissioning and of the training campaign of superconducting magnets that will determine the operation beam energy in 2015. Then, the plans for the Run II operation are reviewed in detail, covering choice of initial machine parameters and strategy to improve the Run II performance. Future prospects of the LHC and its upgrade plans are also presented.

  15. Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning

    NASA Astrophysics Data System (ADS)

    Kuo, K. S.; Rilee, M. L.; Oloso, A.

    2017-12-01

    Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in

  16. Math and Science. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue contains six articles on improving math and science education for minority group students, particularly language-minority students. "Accelerating Content Area Gains for English Language Learners" (Laura Chris Green) describes the Young Scientists Acquiring English project, which seeks to improve the content-area…

  17. Open Science: a first step towards Science Communication

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  18. Particulate matter modifies the association between airborne pollen and daily medical consultations for pollinosis in Tokyo.

    PubMed

    Konishi, Shoko; Ng, Chris Fook Sheng; Stickley, Andrew; Nishihata, Shinichi; Shinsugi, Chisa; Ueda, Kayo; Takami, Akinori; Watanabe, Chiho

    2014-11-15

    Pollen from Japanese cedar (sugi) and cypress (hinoki) trees is responsible for the growing prevalence of allergic rhinitis, especially pollinosis in Japan. Previous studies have suggested that air pollutants enhance the allergic response to pollen in susceptible individuals. We conducted a time-stratified case-crossover study to examine the potential modifying effects of PM2.5 and suspended particulate matter (SPM) on the association between pollen concentration and daily consultations for pollinosis. A total of 11,713 daily pollinosis cases (International Classification of Diseases, ICD-10, J30.1) from January to May, 2001-2011, were obtained from a clinic in Chiyoda, Tokyo. Daily pollen counts and the daily mean values of air pollutants (PM2.5, SPM, SO2, NO2, CO, and O3) were collected from monitoring stations across Tokyo. The effects of pollen were stratified by the level of PM2.5 and SPM to examine the interaction effect of pollen and particulate pollutants. We found a statistically significant interaction between pollen concentration and PM2.5/SPM. On days with a high level of PM2.5 (>95th percentile), an interquartile increase in the mean cumulative pollen count (an average of 28 pollen grains per cm(2) during lag-days 0 to 5) corresponded to a 10.30% (95%CI: 8.48%-12.16%) increase in daily new pollinosis cases, compared to 8.04% (95%CI: 7.28%-8.81%) on days with a moderate level of PM2.5 (5th-95th percentile). This interaction persisted when different percentile cut-offs were used and was robust to the inclusion of other air pollutants. A similar interaction pattern was observed between SPM and pollen when a less extreme cut-off for SPM was used to stratify the effect of pollen. Our study showed the acute effect of pollen was greater when the concentration of air particulate pollutant, specifically PM2.5 and SPM, was higher. These findings are consistent with the notion that particulate air pollution may act as an adjuvant that promotes allergic disease (i

  19. Fermilab | Tevatron | Accelerator

    Science.gov Websites

    Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab temperature. They were used to transfer particles from one part of the Fermilab accelerator complex to another center ring of Fermilab's accelerator complex. Before the Tevatron shut down, it had three primary

  20. Plasma Acceleration by Rotating Magnetic Field Method using Helicon Source

    NASA Astrophysics Data System (ADS)

    Furukawa, Takeru; Shimura, Kaichi; Kuwahara, Daisuke; Shinohara, Shunjiro

    2017-10-01

    Electrodeless plasma thrusters are very promising due to no electrode damage, leading to realize further deep space exploration. As one of the important proposals, we have been concentrating on Rotating Magnetic Field (RMF) acceleration method. High-dense plasma (up to 1013 cm-3) can be generated by using a radio frequency (rf) external antenna, and also accelerated by an antenna wound around outside of a discharge tube. In this scheme, thrust increment is achieved by the axial Lorentz force caused by non linear effects. RMF penetration condition into plasma can be more satisfied than our previous experiment, by increasing RMF coil current and decreasing the RMF frequency, causing higher thrust and fuel efficiency. Measurements of AC RMF component s have been conducted to investigate the acceleration mechanism and the field penetration experimentally. This study has been partially supported by Grant-in-Aid for Scientific Research (B: 17H02995) from the Japan Society for the Promotion of Science.

  1. Assessment in Science Education

    NASA Astrophysics Data System (ADS)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  2. Physics. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 36 physics investigations which focus on concepts related to: movement; vectors; falling objects; force and acceleration; a…

  3. Statistical distribution of building lot frontage: application for Tokyo downtown districts

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki

    2018-03-01

    The frontage of a building lot is the determinant factor of the residential environment. The statistical distribution of building lot frontages shows how the perimeters of urban blocks are shared by building lots for a given density of buildings and roads. For practitioners in urban planning, this is indispensable to identify potential districts which comprise a high percentage of building lots with narrow frontage after subdivision and to reconsider the appropriate criteria for the density of buildings and roads as residential environment indices. In the literature, however, the statistical distribution of building lot frontages and the density of buildings and roads has not been fully researched. In this paper, based on the empirical study in the downtown districts of Tokyo, it is found that (1) a log-normal distribution fits the observed distribution of building lot frontages better than a gamma distribution, which is the model of the size distribution of Poisson Voronoi cells on closed curves; (2) the statistical distribution of building lot frontages statistically follows a log-normal distribution, whose parameters are the gross building density, road density, average road width, the coefficient of variation of building lot frontage, and the ratio of the number of building lot frontages to the number of buildings; and (3) the values of the coefficient of variation of building lot frontages, and that of the ratio of the number of building lot frontages to that of buildings are approximately equal to 0.60 and 1.19, respectively.

  4. Piezoelectric particle accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  5. Using Concepts from Complexity Science to Accelerate Curricular Revision

    ERIC Educational Resources Information Center

    Goldman, Ellen F.; Mintz, Matthew L.

    2017-01-01

    Curricular revision can be an arduous and challenging process. The literature favors a rational planned process for doing so, but offers little advice regarding how to proceed when the time required for such an approach is not available. This article describes our use of four concepts from complexity science to revise a medical school curriculum…

  6. Expanding Capacity With an Accelerated On-Line BSN Program.

    PubMed

    Lindley, Marie Kelly; Ashwill, Regina; Cipher, Daisha J; Mancini, Mary E

    Colleges of nursing are challenged to identify innovative, efficient, and effective mechanisms to expand enrollment in prelicensure programs. This objective of this project was to identify whether a prelicensure nursing program that is both accelerated and on-line is as effective as a traditional face-to-face program, in terms of graduation rates and National Council Licensure Exam pass rates. This analysis of 1,064 students compared demographic and outcomes data between students in a state university's college of nursing who were enrolled in an accelerated, fully on-line bachelors of science in nursing (BSN) program and the traditional on-campus BSN program. Students significantly differed in their ethnicity, level of prior education, and graduation rates (95% vs. 89.3%). First-time National Council Licensure Exam pass rates for both groups did not significantly differ (92.5% vs. 94.5%). Results indicate that an accelerated on-line BSN program can overcome factors known to limit capacity expansion in schools of nursing and produce high-quality student outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Herring, Rodney; Tryggvason, Bjarni; Duval, Walter

    1998-01-01

    Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.

  8. Microgravity Acceleration Environment of the International Space Station (panel)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Foster, William M.; Schafer, Craig P.

    2001-01-01

    This paper examines the microgravity environment provided to the early science experiments by the International Space Station vehicle which is under construction. The microgravity environment will be compared with predicted levels for this stage of assembly. Included are initial analyses of the environment and preliminary identification of some sources of accelerations. Features of the operations of the accelerometer instruments, the data processing system, and data dissemination to users are also described.

  9. Results of the Quasi-Steady Acceleration Environment from the STS-62 Missions

    NASA Technical Reports Server (NTRS)

    Matisak, Brian; French, Larry; DeLombard, Richard; Wagar, William

    1995-01-01

    One of the clear benefits of conducting scientific research in space is to take advantage of the reduced acceleration environment. Many accelerometer packages have proven to accurately measure the acceleration environment at frequency levels above one Hz. However, for particular classes of experiments the quality of science returns is a direct function of the extremely low frequency (less than 0.01 Hz), quasi-steady acceleration environment. One class particularly interested in this acceleration regime is the group of crystal growth experimenters. These scientists are primarily interested in knowing the resultant quasi-steady acceleration vector at their respective crystal growth locations. The objective of many of these scientists is to minimize the amount of convective flow acting in a direction perpendicular to the growth axis of the crystal. Convective flow within the crystal can be induced by the direction and magnitude of the quasi-steady acceleration vector. Convective flows acting perpendicular to the growth axis of the crystal can cause nonuniformity within the crystal, thus reducing the quality of the results. The Orbital Acceleration Research Experiment (OARE), an accelerometer package hardmounted to the bottom of the payload bay of the orbiter Columbia (OV-102), has the capability of monitoring and recording the quasi-steady acceleration environment. This paper will describe the components that make up the on-orbit quasi-steady acceleration environment, detail how results from the OARE device were achieved, and compare modelled acceleration results with actual on-orbit OARE results from the STS-62 and STS-65 flights. A summary of the results will be provided along with possible recommendations of how to combine modelled and realtime quasi-steady accelerometer data for future Shuttle flights.

  10. Experimental Validation of a Branched Solution Model for Magnetosonic Ionization Waves in Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas; Loebner, Keith; Cappelli, Mark

    2015-11-01

    Detailed measurements of the thermodynamic and electrodynamic plasma state variables within the plume of a pulsed plasma accelerator are presented. A quadruple Langmuir probe operating in current-saturation mode is used to obtain time resolved measurements of the plasma density, temperature, potential, and velocity along the central axis of the accelerator. This data is used in conjunction with a fast-framing, intensified CCD camera to develop and validate a model predicting the existence of two distinct types of ionization waves corresponding to the upper and lower solution branches of the Hugoniot curve. A deviation of less than 8% is observed between the quasi-steady, one-dimensional theoretical model and the experimentally measured plume velocity. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  11. Precise charge measurement for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim

    2011-10-01

    A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  12. An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang

    2015-10-01

    Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).

  13. Tokyo Guidelines 2018: flowchart for the management of acute cholecystitis.

    PubMed

    Okamoto, Kohji; Suzuki, Kenji; Takada, Tadahiro; Strasberg, Steven M; Asbun, Horacio J; Endo, Itaru; Iwashita, Yukio; Hibi, Taizo; Pitt, Henry A; Umezawa, Akiko; Asai, Koji; Han, Ho-Seong; Hwang, Tsann-Long; Mori, Yasuhisa; Yoon, Yoo-Seok; Huang, Wayne Shih-Wei; Belli, Giulio; Dervenis, Christos; Yokoe, Masamichi; Kiriyama, Seiki; Itoi, Takao; Jagannath, Palepu; Garden, O James; Miura, Fumihiko; Nakamura, Masafumi; Horiguchi, Akihiko; Wakabayashi, Go; Cherqui, Daniel; de Santibañes, Eduardo; Shikata, Satoru; Noguchi, Yoshinori; Ukai, Tomohiko; Higuchi, Ryota; Wada, Keita; Honda, Goro; Supe, Avinash Nivritti; Yoshida, Masahiro; Mayumi, Toshihiko; Gouma, Dirk J; Deziel, Daniel J; Liau, Kui-Hin; Chen, Miin-Fu; Shibao, Kazunori; Liu, Keng-Hao; Su, Cheng-Hsi; Chan, Angus C W; Yoon, Dong-Sup; Choi, In-Seok; Jonas, Eduard; Chen, Xiao-Ping; Fan, Sheung Tat; Ker, Chen-Guo; Giménez, Mariano Eduardo; Kitano, Seigo; Inomata, Masafumi; Hirata, Koichi; Inui, Kazuo; Sumiyama, Yoshinobu; Yamamoto, Masakazu

    2018-01-01

    We propose a new flowchart for the treatment of acute cholecystitis (AC) in the Tokyo Guidelines 2018 (TG18). Grade III AC was not indicated for straightforward laparoscopic cholecystectomy (Lap-C). Following analysis of subsequent clinical investigations and drawing on Big Data in particular, TG18 proposes that some Grade III AC can be treated by Lap-C when performed at advanced centers with specialized surgeons experienced in this procedure and for patients that satisfy certain strict criteria. For Grade I, TG18 recommends early Lap-C if the patients meet the criteria of Charlson comorbidity index (CCI) ≤5 and American Society of Anesthesiologists physical status classification (ASA-PS) ≤2. For Grade II AC, if patients meet the criteria of CCI ≤5 and ASA-PS ≤2, TG18 recommends early Lap-C performed by experienced surgeons; and if not, after medical treatment and/or gallbladder drainage, Lap-C would be indicated. TG18 proposes that Lap-C is indicated in Grade III patients with strict criteria. These are that the patients have favorable organ system failure, and negative predictive factors, who meet the criteria of CCI ≤3 and ASA-PS ≤2 and who are being treated at an advanced center (where experienced surgeons practice). If the patient is not considered suitable for early surgery, TG18 recommends early/urgent biliary drainage followed by delayed Lap-C once the patient's overall condition has improved. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included. © 2017 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  14. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  15. Statistical analysis of seismicity rate change in the Tokyo Metropolitan area due to the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Ishibe, T.; Sakai, S.; Shimazaki, K.; Satake, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2012-12-01

    We examined a relationship between the Coulomb Failure Function (ΔCFF) due to the Tohoku earthquake (March 11, 2011; MJMA 9.0) and the seismicity rate change in Tokyo Metropolitan area following March 2011. Because of large variation in focal mechanism in the Kanto region, the receiver faults for the ΔCFF were assumed to be two nodal planes of small (M ≥ 2.0) earthquakes which occurred before and after the Tohoku earthquake. The seismicity rate changes, particularly the rate increase, are well explained by ΔCFF due to the gigantic thrusting, while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration) may also contribute the rate changes. Among 30,746 previous events provided by the National Research Institute for Earth Science and Disaster Prevention (M ≥ 2.0, July 1979 - July 2003), we used as receiver faults, almost 16,000 events indicate significant increase in ΔCFF, while about 8,000 events show significant decrease. Positive ΔCFF predicts seismicity rate increase in southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in shallow crust of the Izu-Oshima and Hakone regions. In these regions, seismicity rates significantly increased after the Tohoku earthquake. The seismicity has increased since March 2011 with respect to the Epidemic Type of Aftershock Sequence (ETAS) model (Ogata, 1988), indicating that the rate change was due to the stress increase by the Tohoku earthquake. The activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern Ibaraki and northern Chiba prefectures is still continuing. We also calculated ΔCFF due to the 2011 Tohoku earthquake for the focal mechanism solutions of earthquakes between April 2008 and October 2011 recorded on the Metropolitan Seismic Observation network (MeSO-net). The ΔCFF values for the earthquakes after March 2011 show more

  16. Promoting Translational Research Among Movement Science, Occupational Science, and Occupational Therapy.

    PubMed

    Sainburg, Robert L; Liew, Sook-Lei; Frey, Scott H; Clark, Florence

    2017-01-01

    Integration of research in the fields of neural control of movement and biomechanics (collectively referred to as movement science) with the field of human occupation directly benefits both areas of study. Specifically, incorporating many of the quantitative scientific methods and analyses employed in movement science can help accelerate the development of rehabilitation-relevant research in occupational therapy (OT) and occupational science (OS). Reciprocally, OT and OS, which focus on the performance of everyday activities (occupations) to promote health and well-being, provide theoretical frameworks to guide research on the performance of actions in the context of social, psychological, and environmental factors. Given both fields' mutual interest in the study of movement as it relates to health and disease, the authors posit that combining OS and OT theories and principles with the theories and methods in movement science may lead to new, impactful, and clinically relevant knowledge. The first step is to ensure that individuals with OS or OT backgrounds are academically prepared to pursue advanced study in movement science. In this article, the authors propose 2 strategies to address this need.

  17. Effects of sarin on the nervous system in rescue team staff members and police officers 3 years after the Tokyo subway sarin attack.

    PubMed

    Nishiwaki, Y; Maekawa, K; Ogawa, Y; Asukai, N; Minami, M; Omae, K

    2001-11-01

    Although the clinical manifestations of acute sarin poisoning have been reported in detail, no comprehensive study of the chronic physical and psychiatric effects of acute sarin poisoning has been carried out. To clarify the chronic effects of sarin on the nervous system, a cross-sectional epidemiologic study was conducted 3 years after the Tokyo subway sarin attack. Subjects consisted of the rescue team staff members and police officers who had worked at the disaster site. Subjects consisted of 56 male exposed subjects and 52 referent subjects matched for age and occupation. A neurobehavioral test, stabilometry, and measurement of vibration perception thresholds were performed, as well as psychometric tests to assess traumatic stress symptoms. The exposed group performed less well in the backward digit span test than the referent group in a dose-effect manner. This result was the same after controlling for possible confounding factors and was independent of traumatic stress symptoms. In other tests of memory function, except for the Benton visual retention test (mean correct answers), effects related to exposure were also suggested, although they were not statistically significant. In contrast, the dose-effect relationships observed in the neurobehavioral tests (psychomotor function) were unclear. None of the stabilometry and vibration perception threshold parameters had any relation to exposure. Our findings suggest the chronic decline of memory function 2 years and 10 months to 3 years and 9 months after exposure to sarin in the Tokyo subway attack, and further study is needed.

  18. Effects of sarin on the nervous system in rescue team staff members and police officers 3 years after the Tokyo subway sarin attack.

    PubMed Central

    Nishiwaki, Y; Maekawa, K; Ogawa, Y; Asukai, N; Minami, M; Omae, K

    2001-01-01

    Although the clinical manifestations of acute sarin poisoning have been reported in detail, no comprehensive study of the chronic physical and psychiatric effects of acute sarin poisoning has been carried out. To clarify the chronic effects of sarin on the nervous system, a cross-sectional epidemiologic study was conducted 3 years after the Tokyo subway sarin attack. Subjects consisted of the rescue team staff members and police officers who had worked at the disaster site. Subjects consisted of 56 male exposed subjects and 52 referent subjects matched for age and occupation. A neurobehavioral test, stabilometry, and measurement of vibration perception thresholds were performed, as well as psychometric tests to assess traumatic stress symptoms. The exposed group performed less well in the backward digit span test than the referent group in a dose-effect manner. This result was the same after controlling for possible confounding factors and was independent of traumatic stress symptoms. In other tests of memory function, except for the Benton visual retention test (mean correct answers), effects related to exposure were also suggested, although they were not statistically significant. In contrast, the dose-effect relationships observed in the neurobehavioral tests (psychomotor function) were unclear. None of the stabilometry and vibration perception threshold parameters had any relation to exposure. Our findings suggest the chronic decline of memory function 2 years and 10 months to 3 years and 9 months after exposure to sarin in the Tokyo subway attack, and further study is needed. PMID:11713003

  19. A Heterogeneous High-Performance System for Computational and Computer Science

    DTIC Science & Technology

    2016-11-15

    Patents Submitted Patents Awarded Awards Graduate Students Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students supported...team of research faculty from the departments of computer science and natural science at Bowie State University. The supercomputer is not only to...accelerated HPC systems. The supercomputer is also ideal for the research conducted in the Department of Natural Science, as research faculty work on

  20. Designing the Future: South-South Cooperation in Science and Technology.

    ERIC Educational Resources Information Center

    Zhou, Yiping, Ed.; Gitta, Cosmas, Ed.

    2000-01-01

    This journal special issue contains the following articles on the role of science and Technology in accelerating sustainable development in the countries of the South: (1) "The History and Urgency of South-South Cooperation in Science and Technology" (John F.E. Ohiorhenuan, Amitav Rath); (2) "Challenges, Opportunities and…

  1. Current characteristics and management of ST elevation and non-ST elevation myocardial infarction in the Tokyo metropolitan area: from the Tokyo CCU network registered cohort.

    PubMed

    Miyachi, Hideki; Takagi, Atsushi; Miyauchi, Katsumi; Yamasaki, Masao; Tanaka, Hiroyuki; Yoshikawa, Masatomo; Saji, Mike; Suzuki, Makoto; Yamamoto, Takeshi; Shimizu, Wataru; Nagao, Ken; Takayama, Morimasa

    2016-11-01

    Limited data exists on ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) managed by a well-organized cardiac care network in a metropolitan area. We analyzed the Tokyo CCU network database in 2009-2010. Of 4329 acute myocardial infarction (AMI) patients including STEMI (n = 3202) and NSTEMI (n = 1127), percutaneous coronary intervention (PCI) was performed in 88.8 % of STEMI and 70.4 % of NSTEMI patients. Mean onset-to-door and door-to-balloon times in STEMI patients were shorter than those in NSTEMI patients (167 vs 233 and 60 vs 145 min, respectively, p < 0.001). Coronary artery bypass graft surgery was performed in 4.2 % of STEMI and 11.4 % of NSTEMI patients. In-hospital mortality was significantly higher in STEMI patients than NSTEMI patients (7.7 vs 5.1 %, p < 0.007). Independent correlates of in-hospital mortality were advanced age, low blood pressure, and high Killip classification, statin-treated dyslipidemia and PCI within 24 h were favorable predictors for STEMI. High Killip classification, high heart rate, and hemodialysis were significant predictors of in-hospital mortality, whereas statin-treated dyslipidemia was the only favorable predictor for NSTEMI. In conclusion, patients with MI received PCI frequently (83.5 %) and promptly (door-to-balloon time; 66 min), and had favorable in-hospital prognosis (in-hospital mortality; 7.0 %). In addition to traditional predictors of in-hospital death, statin-treated dyslipidemia was a favorable predictor of in-hospital mortality for STEMI and NSTEMI patients, whereas hemodialysis was the strongest predictor for NSTEMI patients.

  2. Energy--Structure--Life, A Learning System for Understanding Science.

    ERIC Educational Resources Information Center

    Bixby, Louis W.; And Others

    Material for the first year of Energy/Structure/Life, a two-year high school program in integrated science, is contained in this learning guide. The program, a sequence of physics, chemistry, and biology, presents the physical science phase during the first year with these 13 chapters: (1) distance/time/velocity; (2) velocity/change/acceleration;…

  3. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  4. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    NASA Astrophysics Data System (ADS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  5. Accelerations in Flight

    NASA Technical Reports Server (NTRS)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  6. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  7. Factors Affecting Initial Intimate Partner Violence-Specific Health Care Seeking in the Tokyo Metropolitan Area, Japan.

    PubMed

    Kamimura, Akiko; Bybee, Deborah; Yoshihama, Mieko

    2014-09-01

    This study examined the factors affecting a women's initial intimate partner violence (IPV)-specific health care seeking event which refers to the first health care seeking as a result of IPV in a lifetime. Data were collected using the Life History Calendar method in the Tokyo metropolitan area from 101 women who had experienced IPV. Discrete-time survival analysis was used to assess the time to initial IPV-specific health care seeking. IPV-related injury was the most significant factor associated with increased likelihood of seeking IPV-specific health care seeking for the first time. In the presence of a strong effect of formal help seeking, physical and sexual IPV were no longer significantly related to initial IPV-specific health care seeking. The results suggest some victims of IPV may not seek health care unless they get injured. The timing of receiving health care would be important to ensure the health and safety of victims. © The Author(s) 2014.

  8. Clinical and mycological study of occult tinea pedis and tinea unguium in dermatological patients from Tokyo.

    PubMed

    Ogasawara, Y; Hiruma, M; Muto, M; Ogawa, H

    2003-04-01

    An epidemiological investigation was conducted to determine the prevalence and circumstances of untreated, unsuspected tinea pedis and tinea unguium, morbid conditions that could be termed occult athlete's foot, in patients visiting a dermatology clinic in Tokyo, Japan, for the first time, for other complaints. All subjects completed a questionnaire covering comprehensive anamnestic details, and were examined for disposition of toes, presence of signs suggestive of tinea pedis, other diseases of the foot, score of clinical signs and symptoms, potassium hydroxide (KOH) test, severity score, and mycological culture. The results showed that the prevalence of occult athlete's foot was 25%, and that 59% of those cases were complicated by tinea unguium. The characteristics of patients with occult athlete's foot included a higher proportion of men and a tendency toward a low clinical score together with a high severity score. In the patient background, a strong correlation was observed between a positive KOH test result and characteristics such as age, disposition of toes, and predisposing disease.

  9. Cultural differences in clinical leadership: a qualitative study comparing the attitudes of general dental practitioners from Greater Manchester and Tokyo.

    PubMed

    Brocklehurst, P; Nomura, M; Ozaki, T; Ferguson, J; Matsuda, R

    2013-11-01

    Leadership has been argued to be a key component in the transformation of services in the United Kingdom and in Japan. In the UK, local professional networks have developed to provide clinician led care in dentistry; working to develop local plans to deliver improvements in the quality of care for patients. In Japan, the remuneration model for dental care has been revised with the aim to improve the service and tackle the current challenges of population health there. The aim of this study was to use semi-structured interviews and thematic analysis to explore general dental practitioners' (GDPs) understanding of the term 'leadership' and determine whether its meaning is culturally bound. Twelve participants were sampled purposively by the research team; identifying GDPs involved in leadership roles from across Greater Manchester and Tokyo. A set of open-ended questions was developed for semi-structured interviews a priori and the interviews continued until saturation. Interviews were recorded, transcribed verbatim and codes were developed into a coding frame for thematic analysis. Representative quotations are provided in the results. Fourteen codes were identified according to the aims of the study and organised into five overarching themes. 'Leadership as the relationship' was more pronounced among Japanese GDPs, while 'leadership as the individual' was common in GDPs from Greater Manchester. Differences were also found in respect of education and training in leadership. Training was also considered to be important by the GDPs from Japan, while UK GDPs felt leaders were more likely to be influenced by innate qualities. The interdependence of leadership and entrepreneurship was raised by both sets of GDPs. The concept of leadership was considered to be important by GDPs from both Greater Manchester and Tokyo; leadership was seen as providing strategy and direction for a clinical team. However, cultural influences were evident in how this was conceptualised.

  10. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillich, Don; Kovanen, Andrew; Anderson, Tom

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of {approx}100 keV. Within the next year, cadets and faculty atmore » USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.« less

  11. Compact all-fiber interferometer system for shock acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  12. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less

  13. Near-Real Time Monitoring of TEC Over Japan at NICT (RWC Tokyo OF ISES)

    NASA Astrophysics Data System (ADS)

    Miyake, W.; Jin, H.

    2010-05-01

    The world wide use of global navigation satellite systems such as GPS offers unique opportunities for a permanent monitoring of the total electron content (TEC) of the ionosphere. We have developed a system of the rapid derivation of TEC from GEONET (a dense GPS receiver network in Japan). In addition to a previous plot of TEC temporal variation over Japan, we have recently developed a near-real-time two-dimensional TEC map and have used it for the daily operation of Space Weather Forecast Center at NICT (Regional Warning Center Tokyo of International Space Environment Service). The TEC map can be used to continuously monitor the ionospheric disturbances over Japan, including spatial and temporal development of ionospheric storms, large-amplitude traveling ionospheric disturbances, and plasma bubbles intruding over Japan, with high time resolution. The development of the real-time monitoring system of TEC enables us to monitor large ionospheric disturbances, ranging from global- to small-scale disturbances, expected in the next solar maximum. The plot and maps are open to the public and are available on http://wdc.nict.go.jp/IONO/index_E.html.

  14. ALON® Components With Tunable Dielectric Properties for High Power Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Lee M; Jha, Santosh K; Lobur, Nicole

    There are challenges in linear particle accelerators associated with the need to suppress “higher order modes” (HOMs). HOMs are detrimental to accelerator operation as they are a source of beam instability. The absorption/suppression of HOMs and dissipation of the energy of higher order modes is vital to the function of these accelerators. Surmet has identified ALON® Optical Ceramic (Aluminum Oxynitride), a hard, durable ceramic that is fabricated through conventional powder processing techniques, as a potential material for HOM absorber. In this Phase I program, Surmet has produced new ALON-composite HOM absorber materials that function at both ambient and cryogenic temperatures.more » The composite materials were developed and evaluated in collaboration with Thomas Jefferson National Labs. Success in this Phase I and the potential Phase II will demonstrate the utility of ALON composite components for RF absorbing applications and lay the groundwork for commercialization of such products, with applications in basic science, medical and digital electronics industries.« less

  15. The accelerated site technology deployment program presents the segmented gate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE

    2000-02-24

    The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The papermore » uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.« less

  16. The Impact of Motivational "World-View" on Engagement in a Cognitive Acceleration Programme

    ERIC Educational Resources Information Center

    McLellan, Ros

    2006-01-01

    Cognitive Acceleration through Science Education (CASE) is an intervention programme conducted during Years 7 and 8 in the United Kingdom (aged 11-13 years), which has reported remarkable success in enhancing cognitive development and in raising academic achievement. Critics, however, have questioned whether a purely cognitive mechanism can…

  17. Taking Down a Giant: 699 Tons of SLAC’s Accelerator Removed for Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-31

    For the first time in more than 50 years, a door opened at the western end of the historic linear accelerator at the Department of Energy’s SLAC National Accelerator Laboratory casts light on four empty walls stretching as far as the eye can see. This end of the linac – a full kilometer of it – has been stripped of all its equipment both above and below ground. Over the next two years it will be re-equipped with new technology to power another wonder of modern science: an X-ray laser that will fire a million pulses per second.

  18. A study of integrated learning and the value of science in remote education: using the Internet to relay the total solar eclipse of 2001 June 11 in Africa

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Agata, H.; Maeda, K.; Okyudo, M..; Yamazaki, Y.

    A total solar eclipse was observed on 2001 June 21 in Angola, Zambia, and Zimbabwe in Africa. For the purpose of promotion of science education using a solar eclipse as an educational project, the whole image and an enlarged image of the Sun, that showed the process of an eclipse and how things went in the observation area, were broadcast to the world through the Internet (Live Eclipse). Such images were distributed to four primary schools in Hiroshima and the Science and Technology Museum in Tokyo to give a remote lecture through computers. To find the effectiveness of the lecture, the learning effect on the participating children was examined two times before and after the remote lecture on the solar eclipse.

  19. EDITORIAL: Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009 Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009

    NASA Astrophysics Data System (ADS)

    Bingham, Bob; Muggli, Patric

    2011-01-01

    The Laser and Plasma Accelerators Workshop 2009 was part of a very successful series of international workshops which were conceived at the 1985 Laser Acceleration of Particles Workshop in Malibu, California. Since its inception, the workshop has been held in Asia and in Europe (Kardamyli, Kyoto, Presqu'ile de Giens, Portovenere, Taipei and the Azores). The purpose of the workshops is to bring together the most recent results in laser wakefield acceleration, plasma wakefield acceleration, laser-driven ion acceleration, and radiation generation produced by plasma-based accelerator beams. The 2009 workshop was held on 22-26 June in Kardamyli, Greece, and brought together over 80 participants. (http://cfp.ist.utl.pt/lpaw09/). The workshop involved five main themes: • Laser plasma electron acceleration (experiment/theory/simulation) • Computational methods • Plasma wakefield acceleration (experiment/theory/simulation) • Laser-driven ion acceleration • Radiation generation and application. All of these themes are covered in this special issue of Plasma Physics and Controlled Fusion. The topic and application of plasma accelerators is one of the success stories in plasma physics, with laser wakefield acceleration of mono-energetic electrons to GeV energies, of ions to hundreds of MeV, and electron-beam-driven wakefield acceleration to 85 GeV. The accelerating electric field in the wake is of the order 1 GeV cm-1, or an accelerating gradient 1000 times greater than in conventional accelerators, possibly leading to an accelerator 1000 times smaller (and much more affordable) for the same energy. At the same time, the electron beams generated by laser wakefield accelerators have very good emittance with a correspondingly good energy spread of about a few percent. They also have the unique feature in being ultra-short in the femtosecond scale. This makes them attractive for a variety of applications, ranging from material science to ultra-fast time

  20. The Tanenbaum Open Science Institute: Leading a Paradigm Shift at the Montreal Neurological Institute.

    PubMed

    Poupon, Viviane; Seyller, Annabel; Rouleau, Guy A

    2017-08-30

    The Montreal Neurological Institute is adopting an Open Science Policy that will be enacted by the Tanenbaum Open Science Institute. The aim is to accelerate the generation of knowledge and novel effective treatments for brain disorders by freeing science. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  2. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  3. RF emittance in a low energy electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  4. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and wemore » compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.« less

  5. Preliminary Results from Pyroelectric Crystal Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Tom; Edwards, Ronald; Bright, Kevin

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. Cadets in the Department of Physics and Nuclear Engineering at USMA are using pyroelectric crystals to ionize and accelerate residual gas trapped inside a vacuum system. A system using two lithium tantalate crystals with associated diagnostics was designed and is now operational. X-ray energies of approximately 150 keV have been achieved. Future work will focus on developing a portable neutron generator using the D-D nuclearmore » fusion process.« less

  6. Accelerator Based Tools of Stockpile Stewardship

    NASA Astrophysics Data System (ADS)

    Seestrom, Susan

    2017-01-01

    The Manhattan Project had to solve difficult challenges in physics and materials science. During the cold war a large nuclear stockpile was developed. In both cases, the approach was largely empirical. Today that stockpile must be certified without nuclear testing, a task that becomes more difficult as the stockpile ages. I will discuss the role of modern accelerator based experiments, such as x-ray radiography, proton radiography, neutron and nuclear physics experiments, in stockpile stewardship. These new tools provide data of exceptional sensitivity and are answering questions about the stockpile, improving our scientific understanding, and providing validation for the computer simulations that are relied upon to certify todays' stockpile.

  7. Science-based stockpile stewardship at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, J.

    1995-10-01

    Let me tell you a little about the Los Alamos Neutron Science Center (LANSCE) and how some of the examples you heard about from Sig Hecker and John Immele fit together in this view of a different world in the future where defense, basic and industrial research overlap. I am going to talk about science-based stockpile stewardship at LANSCE; the accelerator production of tritium (APT), which I think has a real bearing on the neutron road map; the world-class neutron science user facility, for which I will provide some examples so you can see the connection with defense science; andmore » lastly, testing concepts for a high-power spallation neutron target and waste transmutation.« less

  8. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  9. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  10. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  11. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  12. Translations on USSR Science and Technology Physical Sciences and Technology No. 7

    DTIC Science & Technology

    1977-02-28

    cybernetics. [Answer] Immediately after the war , when the restoration of the national economy, which had been wrecked by the enemy, was started, Soviet...cyberneticization of economics and science will be developed at accelerated rates. 8545 CSO: 1870 CYBERNETICS, COMPUTERS AND AUTOMATION TECHNOLOGY...working storage of the machine exceeds 64 thousand alpha-numeric characters. Communication with the external world is effected by means of a main

  13. g-LIMIT: A Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    1998-01-01

    For many microgravity science experiments using the Microgravity Science Glovebox (MSG), the ambient acceleration environment will exceed desirable levels. To provide a more quiescent acceleration environment, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is the next generation of technology developed for and demonstrated by STABLE on the USML-2 mission in October 1995. Although g-LIMIT is a sub-rack level isolation system that can be used in a variety of applications, g-LIMIT is uniquely optimized for MSG implementation. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations. g-LIMIT is scheduled for flight during the UF-2 mission and will be available to glovebox investigators immediately after characterization testing.

  14. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    ScienceCinema

    Domen, Kazunari

    2018-02-06

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  15. Accelerating the pace of discovery in orthopaedic research: A vision toward team science.

    PubMed

    Bahney, Chelsea S; Bruder, Scott P; Cain, Jarrett D; Keyak, Joyce H; Killian, Megan L; Shapiro, Irving M; Jones, Lynne C

    2016-10-01

    The landscape of basic science in the United States and around the world is changing, and the field of orthopaedic research is positioned to lead by embracing a culture of collaborative, team science that reflects our field's interdisciplinary nature. In this article we hope to address some of the cultural challenges and programmatic barriers that impede a team science approach in the US and suggest opportunities for change. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1673-1679, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    PubMed

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a

  17. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  18. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  19. Ligand-accelerated enantioselective methylene C(sp3)-H bond activation.

    PubMed

    Chen, Gang; Gong, Wei; Zhuang, Zhe; Andrä, Michal S; Chen, Yan-Qiao; Hong, Xin; Yang, Yun-Fang; Liu, Tao; Houk, K N; Yu, Jin-Quan

    2016-09-02

    Effective differentiation of prochiral carbon-hydrogen (C-H) bonds on a single methylene carbon via asymmetric metal insertion remains a challenge. Here, we report the discovery of chiral acetyl-protected aminoethyl quinoline ligands that enable asymmetric palladium insertion into prochiral C-H bonds on a single methylene carbon center. We apply these palladium complexes to catalytic enantioselective functionalization of β-methylene C-H bonds in aliphatic amides. Using bidentate ligands to accelerate C-H activation of otherwise unreactive monodentate substrates is crucial for outcompeting the background reaction driven by substrate-directed cyclopalladation, thereby avoiding erosion of enantioselectivity. The potential of ligand acceleration in C-H activation is also demonstrated by enantioselective β-C-H arylation of simple carboxylic acids without installing directing groups. Copyright © 2016, American Association for the Advancement of Science.

  20. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  1. [Outbreaks of acute gastroenteritis caused by small round structured viruses in Tokyo].

    PubMed

    Sekine, S; Hayashi, Y; Ando, T; Ohta, K; Miki, T; Okada, S

    1992-07-01

    Of 34 non-bacterial gastroenteritis outbreaks which occurred at day-care centers, kindergartens, elementary and secondary schools in Tokyo during the period from February 1985 to June 1991, 28 outbreaks from which small round structured viruses (SRSV) were detected in the patients' stool specimens by electron microscopy were subjected to an epidemiological investigation. The outbreaks tended to occur frequently in the cold season; twenty-two (79%) of these outbreaks from November through April. Though detailed epidemiological informations was not obtained from all outbreaks, the common source of infection were presumed to be present in many of the outbreaks, judged from the incidence as to time course of patients. Food doubted to be incriminated as transmission vehicles in these outbreaks was served at schools, kindergartens, and lodgings. In some outbreaks, SRSV was detected from stool specimens of food handlers, or they were seroconverted to SRSV, suggesting that food was incriminated as a transmission vehicle. The symptoms of patients differ slightly from age to age: in the age range of 0 to 6 years, vomiting 90%, fever 41% and diarrhea 32%; in the 6 to 12 year-olds, nausea 61%, vomiting 48%, abdominal pain 65%, diarrhea 20% and fever 29%; and in the 12 to 15 year-olds, nausea 69%, vomiting 42%, abdominal pain 60%, diarrhea 30% and fever 34%. The lower the age of patient vomiting was more frequently observed. In these lower age groups, the frequency of nausea and vomiting tended to exceed that of diarrhea.

  2. Application of Plasma Waveguides to High Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysismore » of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration

  3. Successful Climate Science Communication Strategies

    NASA Astrophysics Data System (ADS)

    Sinclair, P.

    2016-12-01

    In the past decade, efforts to communicate the facts of global change have not successfully moved political leaders and the general public to action. In response, a number of collaborative efforts between scientists and professional communicators, writers, journalists, bloggers, filmmakers, artists and others have arisen seeking to bridge that gap. As a result, a new cadre of science-literate communicators, and media-savvy scientists have made themselves visible across diverse mainstream, traditional, and social media outlets. Because of these collaborations, in recent years, misinformation, and disinformation have been successfully met with accurate and credible rebuttals within a single news cycle.Examples of these efforts is the Dark Snow Project, a science/communication collaboration focusing initially on accelerated arctic melt and sea level rise, and the Climate Science Rapid Response team, which matches professional journalists with appropriate science experts in order to respond within a single news cycle to misinformation or misunderstandings about climate science.The session will discuss successful examples and suggest creative approaches for the future.

  4. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies.

    PubMed

    Katayama, Toshiaki; Wilkinson, Mark D; Micklem, Gos; Kawashima, Shuichi; Yamaguchi, Atsuko; Nakao, Mitsuteru; Yamamoto, Yasunori; Okamoto, Shinobu; Oouchida, Kenta; Chun, Hong-Woo; Aerts, Jan; Afzal, Hammad; Antezana, Erick; Arakawa, Kazuharu; Aranda, Bruno; Belleau, Francois; Bolleman, Jerven; Bonnal, Raoul Jp; Chapman, Brad; Cock, Peter Ja; Eriksson, Tore; Gordon, Paul Mk; Goto, Naohisa; Hayashi, Kazuhiro; Horn, Heiko; Ishiwata, Ryosuke; Kaminuma, Eli; Kasprzyk, Arek; Kawaji, Hideya; Kido, Nobuhiro; Kim, Young Joo; Kinjo, Akira R; Konishi, Fumikazu; Kwon, Kyung-Hoon; Labarga, Alberto; Lamprecht, Anna-Lena; Lin, Yu; Lindenbaum, Pierre; McCarthy, Luke; Morita, Hideyuki; Murakami, Katsuhiko; Nagao, Koji; Nishida, Kozo; Nishimura, Kunihiro; Nishizawa, Tatsuya; Ogishima, Soichi; Ono, Keiichiro; Oshita, Kazuki; Park, Keun-Joon; Prins, Pjotr; Saito, Taro L; Samwald, Matthias; Satagopam, Venkata P; Shigemoto, Yasumasa; Smith, Richard; Splendiani, Andrea; Sugawara, Hideaki; Taylor, James; Vos, Rutger A; Withers, David; Yamasaki, Chisato; Zmasek, Christian M; Kawamoto, Shoko; Okubo, Kosaku; Asai, Kiyoshi; Takagi, Toshihisa

    2013-02-11

    BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.

  5. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies

    PubMed Central

    2013-01-01

    Background BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. Results The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. Conclusion We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer. PMID:23398680

  6. Time representations in social science.

    PubMed

    Schulz, Yvan

    2012-12-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged "acceleration" of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them.

  7. Laser-driven electron beam acceleration and future application to compact light sources

    NASA Astrophysics Data System (ADS)

    Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Jeong, Y. U.; Lee, J.

    2009-07-01

    Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to ˜100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.

  8. The New Big Science: What's New, What's Not, and What's the Difference

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2016-03-01

    This talk will start with a brief recap of the development of the ``Big Science'' epitomized by high energy physics, that is, the science that flourished after WWII based on accelerators, teams, and price tags that grew ever larger. I will then explain the transformation that started in the 1980s and culminated in the 1990s when the Cold War ended and the next big machine needed to advance high energy physics, the multi-billion dollar Superconducting Supercollider (SSC), was cancelled. I will go on to outline the curious series of events that ushered in the New Big Science, a form of research well suited to a post-Cold War environment that valued practical rather than esoteric projects. To show the impact of the New Big Science I will describe how decisions were ``set into concrete'' during the development of experimental equipment at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia.

  9. Semiconductor acceleration sensor

    NASA Astrophysics Data System (ADS)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  10. Temporary suspension of acute facial paralysis using the S-S Cable Suture (Medical U&A, Tokyo, Japan).

    PubMed

    Ozaki, Mine; Takushima, Akihiko; Momosawa, Akira; Kurita, Masakazu; Harii, Kiyonori

    2008-07-01

    For a treatment of facial paralysis, suture suspension of soft tissue is considered effective due to its less invasiveness and relatively simple technique, with minimal bruising and rapid recovery. However, suture suspension effect may not last for a long period of time. We obtained good outcome with temporary static suture suspension in 5 cases of severe facial paralysis in the intervening period between the onset of paralysis and expected spontaneous recovery. We used the S-S Cable Suture (Medical U&A, Tokyo, Japan), which was based on the modification of previously established method using the Gore-Tex cable suture originally reported by Sasaki et al in 2002. Because of the ease of technique and relatively strong lifting capability of the malar pad, we recommend it as a useful procedure for a patient suffering acute facial paralysis with possible spontaneous recovery for an improved quality of life by the quick elimination of facial distortion.

  11. The Mysterious Universe - Exploring Our World with Particle Accelerators

    ScienceCinema

    Brau, James E [University of Oregon

    2018-04-24

    The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.

  12. A digitally facilitated citizen-science driven approach accelerates participant recruitment and increases study population diversity.

    PubMed

    Puhan, Milo A; Steinemann, Nina; Kamm, Christian P; Müller, Stephanie; Kuhle, Jens; Kurmann, Roland; Calabrese, Pasquale; Kesselring, Jürg; von Wyl, Viktor; Swiss Multiple Sclerosis Registry Smsr

    2018-05-16

    Our aim was to assess whether a novel approach of digitally facilitated, citizen-science research, as followed by the Swiss Multiple Sclerosis Registry (Swiss MS Registry), leads to accelerated participant recruitment and more diverse study populations compared with traditional research studies where participants are mostly recruited in study centres without the use of digital technology. The Swiss MS Registry is a prospective, longitudinal, observational study covering all Switzerland. Participants actively contribute to the Swiss MS Registry, from defining research questions to providing data (online or on a paper form) and co-authoring papers. We compared the recruitment dynamics over the first 18 months with the a priori defined recruitment goals and assessed whether a priori defined groups were enrolled who are likely to be missed by traditional research studies. The goal to recruit 400 participants in the first year was reached after only 20 days, and by the end of 18 months 1700 participants had enrolled in the Swiss MS Registry, vastly exceeding expectations. Of the a priori defined groups with potential underrepresentation in other studies, 645 participants (46.5%) received care at a private neurology practice, 167 participants (12%) did not report any use of healthcare services in the past 12 months, 32 (2.3%) participants lived in rural mountainous areas, and 20 (2.0% of the 1041 for whom this information was available) lived in a long-term care facility. Having both online and paper options increased diversity of the study population in terms of geographic origin and type and severity of disease, as well as use of health care services. In particular, paper enrolees tended to be older, more frequently affected by progressive MS types and more likely to have accessed healthcare services in the past 12 months. Academic and industry-driven medical research faces substantial challenges in terms of patient involvement, recruitment, relevance and

  13. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  14. Evolution from education to practical use in University of Tokyo's nano-satellite activities

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Sako, Nobutada; Sahara, Hironori; Nakamura, Yuya; Eishima, Takashi; Komatsu, Mitsuhito

    2010-04-01

    The paper overviews recent nano-satellite development activities of University of Tokyo, Intelligent Space Systems Laboratory (ISSL). Development of real satellites and actually launching them provides excellent materials for space engineering education as well as project management, which is rather difficult to teach in usual class lectures. In addition, it may lead to a new way of space development with its cheap and quick access to space. Two educational CubeSats were launched successfully in 2003 and 2005, and they have been surviving in space more than 5 years, which showed that the COTS (commercial off the shelf) can be reliably used in space if the system is designed appropriately. Based on the experiences and technologies obtained in CubeSat projects, ISSL initiated practical applications of nano-satellite, starting with PRISM, 8 kg remote sensing satellite aiming for 30 m ground resolution and Nano-JASMINE, 20 kg astrometry satellite, which will be launched in 2009 and 2010, respectively. In order to support these kinds of student-oriented activities in Japan, University Space Engineering Consortium (UNISEC) was founded in 2002 by the author's group, which has had large effect of further facilitating students' space-related activities in Japan. Significance and history of such activities are reviewed briefly, followed by the objectives and future vision of such nano-satellite activities.

  15. Genotoxic action of sunlight upon Bacillus subtilis spores: monitoring studies at Tokyo, Japan.

    PubMed

    Munakata, N

    1989-12-01

    Samples of Bacillus subtilis spores dried on membrane filter were exposed to natural sunlight from solar-noon time at Tokyo. The survival and mutation induction of wild-type (UVR) and repair-deficient (UVS) spores were determined on 66 occasions since 1979. Two of the values were considered to be useful in monitoring solar UV intensity; the inverse of the time (in minutes) of exposure to kill 63% of the UVS spores ("sporocidal index") and the induced mutation frequency at 60 minutes of exposure of the UVR spores ("mutagenic index"). Both values were varied greatly due to time of a year, weather and other conditions. Estimates of year-round changes under clear skies were obtained by connecting the maximum values attained in these years. In these curves, there are more than 7-fold differences in the genotoxicity between winter and summer months, with major increases observed in early spring and decreases through autumn. Using a series of UV cut-off filters, the wavelengths most effective for the sporocidal actions were estimated to be in the range of 308-325 nm, shorter wavelengths being effective when the genotoxicity was higher. Sunburn meter of Robertson-Berger type seems to respond to slightly longer wavelength components of the solar spectrum. However, a reasonable correlation was obtained between the reading of the meter and the sporocidal index.

  16. Prevalence of small round structured virus infections in acute gastroenteritis outbreaks in Tokyo.

    PubMed

    Sekine, S; Okada, S; Hayashi, Y; Ando, T; Terayama, T; Yabuuchi, K; Miki, T; Ohashi, M

    1989-01-01

    During the three-year period from 1984 to 1987, 506 acute gastroenteritis outbreaks involving 14,383 patients were reported to the Bureau of Public Health, Tokyo Metropolitan Government. Eighty (4,324 patients) of 150 outbreaks (4,860 patients) from which etiologic agents were not identified were subjected to virological investigation. Spherical particles of 28-32 nm in diameter with capsomere-like structures on the surface were detected in patients' stool specimens. Buoyant density of the particles appeared to be 1.36 to 1.40 g/ml in CsCl. Seroconversion to the particles was observed in patients by immune electron microscopy. From these observations, we concluded that the detected particles were members of small round structured virus (SRSV), and that they were implicated in the etiologically ill-defined outbreaks encountered. Prevalence of SRSV infections in these outbreaks was examined by electron microscopy. SRSV was positive in 83.8% of the outbreaks, and 96.4% of the cases. SRSV-positive outbreaks usually occurred during winter in contrast to bacterial outbreaks which often occurred in the summer season. Of 80 outbreaks examined, 53 were associated with the ingestion of oysters, and the remaining 27 mostly with food other than oysters. Oyster-associated outbreaks usually occurred on a small scale, while unassociated ones on diverse scales ranged from family clusters to large outbreaks.

  17. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  18. Simulations of laser-driven ion acceleration from a thin CH target

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Bulanov, Stepan; Ji, Qing; Steinke, Sven; Treffert, Franziska; Vay, Jean-Luc; Schenkel, Thomas; Esarey, Eric; Leemans, Wim; Vincenti, Henri

    2017-10-01

    2D and 3D computer simulations of laser driven ion acceleration from a thin CH foil using code WARP were performed. As the foil thickness varies from a few nm to μm, the simulations confirm that the acceleration mechanism transitions from the RPA (radiation pressure acceleration) to the TNSA (target normal sheath acceleration). In the TNSA regime, with the CH target thickness of 1 μ m and a pre-plasma ahead of the target, the simulations show the production of the collimated proton beam with the maximum energy of about 10 MeV. This agrees with the experimental results obtained at the BELLA laser facility (I 5 × 18 W / cm2 , λ = 800 nm). Furthermore, the maximum proton energy dependence on different setups of the initialization, i.e., different angles of the laser incidence from the target normal axis, different gradient scales and distributions of the pre-plasma, was explored. This work was supported by LDRD funding from LBNL, provided by the U.S. DOE under Contract No. DE-AC02-05CH11231, and used resources of the NERSC, a DOE office of Science User Facility supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  19. THOR contribution to space weather science

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Opgenoorth, H. J.; Retino, A.; Khotyaintsev, Y. V.; Soucek, J.; Valentini, F.; Escoubet, C. P.; Chen, C. H. K.; Vainio, R. O.; Fazakerley, A. N.; Lavraud, B.; Narita, Y.; Marcucci, M. F.; Kucharek, H.; Bale, S. D.; Moore, T. E.; Kistler, L. M.; Samara, M.

    2016-12-01

    Turbulence Heating ObserveR - THOR is a mission proposal to study energy dissipation and particle acceleration in turbulent space plasma. THOR will focus on turbulent plasma in pristine solar wind, bow shock and magnetosheath. The orbit of THOR is tuned to spend long times in those regions allowing THOR to obtain high resolution data sets that can be used also for space weather science. Here we will discuss the space weather science questions that can be addressed and significantly advanced using THOR. Link to THOR: http://thor.irfu.se.

  20. Contamination, distribution and pathogenicity of Toxocara canis and T. cati eggs from sandpits in Tokyo, Japan.

    PubMed

    Macuhova, K; Akao, N; Fujinami, Y; Kumagai, T; Ohta, N

    2013-09-01

    The contamination, distribution and pathogenicity of Toxocara canis and T. cati eggs in sandpits in the Tokyo metropolitan area, Japan, are described. A total of 34 sandpits were examined, 14 of which were contaminated with T. cati eggs, as assessed by the floatation method and polymerase chain reaction (PCR) analysis. Two naturally contaminated sandpits were investigated to determine the vertical and horizontal distribution of eggs, and an inverse relationship between the sand depth and number of eggs was observed. To examine the pathogenicity of the eggs, three ICR mice were inoculated with 300 eggs, which were recovered from sandpits. The mice exhibited eosinophilia in the peripheral blood and IgG antibody production in the sera after 3 weeks of infection. Most migrating larvae were recovered from carcasses, although three were found in the brains of two infected mice. These three larvae were determined to be T. canis by PCR, revealing that not only T. cati, but also T. canis eggs could be found in sandpits and, further, that eggs recovered from sandpits have the ability to invade a paratenic host.

  1. Effects of a Modified Thinking Science Program for Year 8 Students of Various Abilities

    ERIC Educational Resources Information Center

    Mobbs, Ellen

    2016-01-01

    The aim of this research was to identify whether students of various academic abilities would achieve positive gains in cognitive ability after completing a modified cognitive acceleration program based on the Cognitive Acceleration through Science Education (CASE) program. This research was quasi-experimental in design, with small samples of…

  2. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2006-01-01

    High-End Computing (HEC) has always played a major role in meeting the modeling and simulation needs of various NASA missions. With NASA's newest 62 teraflops Columbia supercomputer, HEC is having an even greater impact within the Agency and beyond. Significant cutting-edge science and engineering simulations in the areas of space exploration, Shuttle operations, Earth sciences, and aeronautics research, are already occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. The talk will describe how the integrated supercomputing production environment is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions.

  3. The phenomenon of Soviet science.

    PubMed

    Kojevnikov, Alexei

    2008-01-01

    The grand "Soviet experiment" constituted an attempt to greatly accelerate and even shortcut the gradual course of historical development on the assumption of presumed knowledge of the general laws of history. This paper discusses the parts of that experiment that directly concerned scientific research and, in fact, anticipated or helped define important global changes in the functioning of science as a profession and an institution during the twentieth century. The phenomenon of Soviet, or socialist, science is analyzed here from the comparative international perspective, with attention to similarities and reciprocal influences, rather than to the contrasts and dichotomies that have traditionally interested cold war-type historiography. The problem is considered at several levels: philosophical (Soviet thought on the relationship between science and society and the social construction of scientific knowledge); institutional (the state recognition of research as a separate profession, the rise of big science and scientific research institutes); demographic (science becoming a mass profession, with ethnic and gender diversity among scientists); and political (Soviet-inspired influences on the practice of science in Europe and the United States through the social relations of science movement of the 1930s and the Sputnik shock of the 1950s).

  4. X-band RF gun and linac for medical Compton scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  5. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  6. DEM simulation of granular flows in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    this validation is abstracting the role of the governing acceleration on the granular flow dynamics and extend it to a wider range of accelerations and slope angles. Based on this results we aim to validate the centrifuge scaling principle of flow velocity and flow height, and discuss the viability of centrifuge modelling of mass flows in a wider range of configurations. References T. Arndt, A. Brucks, J.M. Ottino, and R. Lueptow. Creeping granular motion under variable gravity levels. Phys. Rev. E, 74 (031307), 2006. E. Bowman, J. Laue, and S. Springman. Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotechnical Journal, 47(7): 742 - 762, 2010. M. Cabrera. Experimental modelling of granular flows in rotating frames. PhD thesis, University of Natural Resources and Life Sciences, Vienna, February 2016 J. Garnier, C. Gaudin, S.M. Springman, P.J. Culligan, D.J. Goodings, D. Konig, B.L. Kutter, R. Phillips, M.F. Randolph, and L. Thorel. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 7(3):1 - 23, 2007. R.M. Iverson. Scaling and design of landslide and debris-flow experiments. Geomorphology, 2015. J. Mathews. Investigation of granular flow using silo centrifuge models. PhD thesis, University of Natural Resources and Life Sciences, Vienna, September 2013. L. Vallejo, N. Estrada, A. Taboada, B. Caicedo, and J.A. Silva. Numerical and physical modeling of granular flow. In C.W. Ng, Y.H. Wang, and L.M. Zhang, editors, Physical Modelling in Geotechnics. Taylor & Francis, July 2006.

  7. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  8. Cryogenic Caging for Science Instrumentation

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso C.

    2011-01-01

    A method has been developed for caging science instrumentation to protect from pyro-shock and EDL (entry, descent, and landing) acceleration damage. Caging can be achieved by immersing the instrument (or its critical parts) in a liquid and solidifying the liquid by cooling. After the launch shock and/or after the payload has landed, the solid is heated up and evaporated.

  9. Tradeoffs in Acceleration and Initialization of Superparameterized Global Atmospheric Models for MJO and Climate Science

    NASA Astrophysics Data System (ADS)

    Pritchard, M. S.; Bretherton, C. S.; DeMott, C. A.

    2014-12-01

    New trade-offs are discussed in the cloud superparameterization approach to explicitly representing deep convection in global climate models. Intrinsic predictability tests show that the memory of cloud-resolving-scale organization is not critical for producing desired modes of organized convection such as the Madden-Julian Oscillation (MJO). This has implications for the feasibility of data assimilation and real-world initialization for superparameterized weather forecasting. Climate simulation sensitivity tests demonstrate that 400% acceleration of cloud superparameterization is possible by restricting the 32-128 km scale regime without deteriorating the realism of the simulated MJO but the number of cloud resolving model grid columns is discovered to constrain the efficiency of vertical mixing, with consequences for the simulated liquid cloud climatology. Tuning opportunities for next generation accelerated superparameterized climate models are discussed.

  10. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  11. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Richard P.; Gold, Steven H.

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less

  12. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  13. Theoretical and Experimental Studies in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James

    This report describes research supported by the US Dept. of Energy Office of High Energy Physics (OHEP), performed by the UCLA Particle Beam Physics Laboratory (PBPL). The UCLA PBPL has, over the last two decades-plus, played a critical role in the development of advanced accelerators, fundamental beam physics, and new applications enabled by these thrusts, such as new types of accelerator-based light sources. As the PBPL mission is broad it is natural that it has been grown within the context of the accelerator science and technology stewardship of the OHEP. Indeed, steady OHEP support for the program has always beenmore » central to the success of the PBPL; it has provided stability, and above all has set the over-arching themes for our research directions, which have producing over 500 publications (>120 in high level journals). While other agency support has grown notably in recent years, permitting more vigorous pursuit of the program, it is transient by comparison. Beyond permitting program growth in a time of flat OHEP budgets, the influence of other agency missions is found in push to adapt advanced accelerator methods to applications, in light of the success the field has had in proof-of-principle experiments supported first by the DoE OHEP. This three-pronged PBPL program — advanced accelerators, fundamental beam physics and technology, and revolutionary applications — has produced a generation of students that have had a profound affect on the US accelerator physics community. PBPL graduates, numbering 28 in total, form a significant population group in the accelerator community, playing key roles as university faculty, scientific leaders in national labs (two have been named Panofsky Fellows at SLAC), and vigorous proponents of industrial application of accelerators. Indeed, the development of advanced RF, optical and magnet technology at the PBPL has led directly to the spin-off company, RadiaBeam Technologies, now a leading industrial

  14. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  15. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  16. Post-accelerator issues at the IsoSpin Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) themore » Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.« less

  17. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  18. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    PubMed Central

    Horowitz, Carol R.; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N.; Smith, Geoffrey W.; Dudley, Joel; Manning, Rachel; Bickell, Nina A.; Galvez, Maida P.

    2017-01-01

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities. PMID:28241508

  19. Development of Acceleration Sensor and Acceleration Evaluation System for Super-Low-Range Frequencies

    NASA Astrophysics Data System (ADS)

    Asano, Shogo; Matsumoto, Hideki

    2001-05-01

    This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.

  20. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  1. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  2. Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup

    2016-10-01

    Collisionless electrostatic shock ion acceleration has become a major regime of laser-driven ion acceleration owing to generation of quasi-monoenergetic ion beams from moderate parametric conditions of lasers and plasmas in comparison with target-normal-sheath-acceleration or radiation pressure acceleration. In order to construct the shock, plasma heating is an essential condition for satisfying Mach number condition 1.5 acceleration could be achieved via electron heating by relativistic transparency of a circularly polarized (CP) laser pulse. This is different from the usual method of shock generation via the electron heating by oscillating ponderomotive force of a linearly polarized laser pulse. In this poster we show one-dimensional particle-in-cell simulation result to compare LP-shock with CP-shock ion acceleration for a broad range of parameters. As the main result, the CP-shock could be formed at lower density plasmas than the LP-shock due to the efficient density compression of CP pulses. This leads to higher shock velocity and ion energy. Comparison of other detailed characteristics such as transmittance, scale length dependence, and other results from the simulations is presented. In addition, two-dimensional simulation is also discussed in association with Weibel instability. This work was supported by the Basic Science Research Program (NRF- 2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).

  3. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  4. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  5. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  6. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  7. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  8. NASA's Microgravity Fluid Physics Program: Tolerability to Residual Accelerations

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond

    1998-01-01

    An overview of the NASA microgravity fluid physics program is presented. The necessary quality of a reduced-gravity environment in terms of tolerable residual acceleration or g levels is a concern that is inevitably raised for each new microgravity experiment. Methodologies have been reported in the literature that provide guidance in obtaining reasonable estimates of residual acceleration sensitivity for a broad range of fluid physics phenomena. Furthermore, a relatively large and growing database of microgravity experiments that have successfully been performed in terrestrial reduced gravity facilities and orbiting platforms exists. Similarity of experimental conditions and hardware, in some cases, lead to new experiments adopting prior experiments g-requirements. Rationale applied to other experiments can, in principle, be a valuable guide to assist new Principal Investigators, PIs, in determining the residual acceleration tolerability of their flight experiments. The availability of g-requirements rationale from prior (mu)g experiments is discussed. An example of establishing g tolerability requirements is demonstrated, using a current microgravity fluid physics flight experiment. The Fluids and Combustion Facility (FCF) which is currently manifested on the US Laboratory of the International Space Station (ISS) will provide opportunities for fluid physics and combustion experiments throughout the life of the ISS. Although the FCF is not intended to accommodate all fluid physics experiments, it is expected to meet the science requirements of approximately 80% of the new PIs that enter the microgravity fluid physics program. The residual acceleration requirements for the FCF fluid physics experiments are based on a set of fourteen reference fluid physics experiments which are discussed.

  9. Contributions of regional and intercontinental transport to surface ozone in Tokyo

    NASA Astrophysics Data System (ADS)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-04-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  10. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  11. Cosmic Acceleration, Dark Energy, and Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.; Huterer, Dragan

    2007-11-01

    A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic ( p˜-ρ), very smooth form of energy called “dark energy” accounting for about 75% of the Universe. The “simplest” explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.

  12. The Accelerated Schools Movement: Expansion and Support through Accelerated Schools Centers.

    ERIC Educational Resources Information Center

    Brunner, Ilse; And Others

    From 1987 to 1995, the Accelerated Schools Project moved from a two-school pilot project to a national movement of over 700 schools in 35 states. This paper examines how the Accelerated Schools Centers have helped the expansion of the accelerated schools movement by recruiting and supporting schools in their regions, and how their institutional…

  13. Milky Way's super-efficient particle accelerators caught in the act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. ESO PR Photo 23a/09 The rim of RCW 86 ESO PR Photo 23b/09 DSS + insert, annotated ESO PR Photo 23c/09 DSS image ESO PR Video 23a/09 Zoom-in RCW 86 During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays -- extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough

  14. Fermilab | Science | Questions for the Universe | The Birth of the Universe

    Science.gov Websites

    Fermilab and the LHC Dark matter and dark energy ADMX Muons More fundamental particles and forces Theory , that could explain ultra-high-energy cosmic rays, dark matter and perhaps even dark energy. Experiments Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How

  15. Summary Report of Mission Acceleration Measurements for STS-73, Launched October 20, 1995

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; DeLombard, Richard

    1996-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.

  16. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  17. A TE-mode accelerator

    NASA Astrophysics Data System (ADS)

    Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.

    1987-04-01

    An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.

  18. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  19. Evaluation of proton cross-sections for radiation sources in the proton accelerator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sik; Lee, Cheol-Woo; Lee, Young-Ouk

    2007-08-01

    Proton Engineering Frontier Project (PEFP) is currently building a proton accelerator in Korea which consists of a proton linear accelerator with 100 MeV of energy, 20 mA of current and various particle beam facilities. The final goal of this project consists of the production of 1 GeV proton beams, which will be used for various medical and industrial applications as well as for research in basic and applied sciences. Carbon and copper in the proton accelerator for PEPP, through activation, become radionuclides such as 7Be and 64Cu. Copper is a major element of the accelerator components and the carbon is planned to be used as a target material of the beam dump. A recent survey showed that the currently available cross-sections create a large difference from the experimental data in the production of some residual nuclides by the proton-induced reactions for carbon and copper. To more accurately estimate the production of radioactive nuclides in the accelerator, proton cross-sections for carbon and copper are evaluated. The TALYS code was used for the evaluation of the cross-sections for the proton-induced reactions. To obtain the cross-sections which best fits the experimental data, optical model parameters for the neutron, proton and other complex particles such as the deuteron and alpha were successively adjusted. The evaluated cross-sections in this study are compared with the measurements and other evaluations .

  20. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…