Sample records for accelerator target facilities

  1. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  2. Overview of Progress on the LANSCE Accelerator and Target Facilities Improvement Program

    NASA Astrophysics Data System (ADS)

    Macek, R. J.; Brun, T.; Donahue, J. B.; Fitzgerald, D. H.

    1997-05-01

    Three projects to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center have been initiated since 1994. The LANSCE Reliability Improvement Project was separated into two phases. Phase I, completed in 1995, was targeted at near-term improvements to beam availability that could be completed in a year. Phase II, now underway, consists of two projects: 1) converting the beam injection into the Proton Storage Ring (PSR) from the present two-step process H^- to H^0 to H^+) to direct injection of H^- beam in one step (H^- to H^+), and 2) an upgrade of the spallation neutron production target which will reduce the target change-out time from about a year to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current from the present 70 μA at 20 Hz to 200 μA at 30 Hz, plus implementing seven new neutron scattering instruments. Objectives, plans, results and progress to date will be summarized.

  3. Laser-driven proton acceleration with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Vallières, Simon; Morabito, Antonia; Veltri, Simona; Scisciò, Massimiliano; Barberio, Marianna; Antici, Patrizio

    2017-05-01

    Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The efficiency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, efficiency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured films are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL.

  4. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  5. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  6. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  7. "DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, M.; Leitner, D.; Lemut, A.

    2009-05-28

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV tomore » 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.« less

  8. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  9. Simulations of laser-driven ion acceleration from a thin CH target

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Bulanov, Stepan; Ji, Qing; Steinke, Sven; Treffert, Franziska; Vay, Jean-Luc; Schenkel, Thomas; Esarey, Eric; Leemans, Wim; Vincenti, Henri

    2017-10-01

    2D and 3D computer simulations of laser driven ion acceleration from a thin CH foil using code WARP were performed. As the foil thickness varies from a few nm to μm, the simulations confirm that the acceleration mechanism transitions from the RPA (radiation pressure acceleration) to the TNSA (target normal sheath acceleration). In the TNSA regime, with the CH target thickness of 1 μ m and a pre-plasma ahead of the target, the simulations show the production of the collimated proton beam with the maximum energy of about 10 MeV. This agrees with the experimental results obtained at the BELLA laser facility (I 5 × 18 W / cm2 , λ = 800 nm). Furthermore, the maximum proton energy dependence on different setups of the initialization, i.e., different angles of the laser incidence from the target normal axis, different gradient scales and distributions of the pre-plasma, was explored. This work was supported by LDRD funding from LBNL, provided by the U.S. DOE under Contract No. DE-AC02-05CH11231, and used resources of the NERSC, a DOE office of Science User Facility supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  10. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from

  11. Novel neutron sources at the Radiological Research Accelerator Facility.

    PubMed

    Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  12. Novel neutron sources at the Radiological Research Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  13. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudisco, S., E-mail: tudisco@lns.infn.it; Cirrone, G. A. P.; Mascali, D.

    2016-02-15

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  14. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  15. Novel neutron sources at the Radiological Research Accelerator Facility

    PubMed Central

    Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

    2012-01-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  16. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE PAGES

    Xu, Yanping; Garty, G.; Marino, S. A.; ...

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  17. The Nike KrF laser facility: Performance and initial target experiments

    NASA Astrophysics Data System (ADS)

    Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-05-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.

  18. Computational study of radiation doses at UNLV accelerator facility

    NASA Astrophysics Data System (ADS)

    Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel

    2017-09-01

    A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.

  19. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2016-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  20. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.

    2017-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  1. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the

  2. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  3. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  4. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  5. A new AMS facility at Inter University Accelerator Centre, New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  6. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  7. Action-perception dissociation in response to target acceleration.

    PubMed

    Dubrowski, Adam; Carnahan, Heather

    2002-05-01

    The purpose of this study was to investigate whether information about the acceleration characteristics of a moving target can be used for both action and perception. Also of interest was whether prior movement experience altered perceptual judgements. Participants manually intercepted targets moving with various acceleration, velocity and movement time characteristics. They also made perceptual judgements about the acceleration characteristics of these targets either with or without prior manual interception experience. Results showed that while aiming kinematics were sensitive to the acceleration characteristics of the target, participants were only able to perceptually discriminate the velocity characteristics of target motion, even after performing interceptive actions to the same targets. These results are discussed in terms of a two channel (action-perception) model of visuomotor control.

  8. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  9. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    NASA Astrophysics Data System (ADS)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  10. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    NASA Astrophysics Data System (ADS)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  12. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  13. Tritium target manufacturing for use in accelerators

    NASA Astrophysics Data System (ADS)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  14. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  15. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition ratemore » capability, this target is promising for future applications.« less

  16. ACCELERATOR TARGET POSITIONER AND CONTROL CIRCUIT THEREFOR

    DOEpatents

    Stone, K.F.; Force, R.J.; Olson, W.W.; Cagle, D.S.

    1959-12-15

    An apparatus is described for inserting and retracting a target material with respect to the internal beam of a charged particle accelerator and to circuitry for controlling the timing and motion of the target placement. Two drive coils are mounted on the shaft of a target holder arm and disposed within the accelerator magnetic field with one coil at right angles to the other. Control circuitry alternately connects each coil to a current source and to a varying shorting resistance whereby the coils interchangeably produce driving and braking forces which swing the target arm within a ninety degree arc. The target is thus moved into the beam and away from it at high speeds and is brought to rest after each movement without whiplash or vibration.

  17. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  18. Can-AMS: The New Accelerator Mass Spectrometry Facility At The University Of Ottawa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.

    2011-06-01

    The Canadian Centre for Accelerator Mass Spectrometry (AMS) at the University of Ottawa will be equipped with a new, 3 MV tandem accelerator with peripheral equipment for the analysis of elements ranging from tritium to the actinides. This facility, along with a wide array of support instrumentation recently funded by the Canada Foundation for Innovation, will be located in a new science building on the downtown campus of the University of Ottawa. In addition to providing the standard AMS measurements on {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I for earth, environmental, cultural and biomedical sciences, thismore » facility will incorporate the new technologies of anion isobar separation at low energies using RFQ chemical reaction cells for {sup 36}Cl and new heavy element applications, integrated sample combustion and gas ion source for biomedical and environmental {sup 14}C analysis and the use of novel target matrices for expanding the range of applicable elements and simplifying sample preparation, all currently being developed at IsoTrace. This paper will outline the design goals for the new facility, present some details of the new AMS technologies, in particular the Isobar Separator for Anions and discuss the design of the AMS system resulting from these requirements.« less

  19. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  20. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  1. Simulations of ion acceleration from ultrathin targets with the VEGA petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2015-05-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 : 1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022Wcm-2 impinging normally on 5 - 40 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  2. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  3. Ion acceleration enhanced by target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  4. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime

    DOE PAGES

    Poole, P. L.; Obst, L.; Cochran, G. E.; ...

    2018-01-11

    Here we present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasma mirror) laser interaction (~2.65 J, 30 fs, I>1 x 10 21 W cm -2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nm indicate the influence ofmore » relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-in-cell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.« less

  5. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, P. L.; Obst, L.; Cochran, G. E.

    Here we present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasma mirror) laser interaction (~2.65 J, 30 fs, I>1 x 10 21 W cm -2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nm indicate the influence ofmore » relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-in-cell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.« less

  6. Systems analysis of a low-acceleration research facility

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Ferebee, Melvin J., Jr.; Wright, Robert L.

    1988-01-01

    The Low-Acceleration Research Facility (LARF), an unmanned free-flier that is boosted from low-earth orbit to a desired altitude using an orbital transfer vehicle is discussed. Design techniques used to minimize acceleration-causing disturbances and to create an ultra-quiet workshop are discussed, focusing on residual acceleration induced by the environment, the spacecraft and experiments. The selection and integration of critical subsystems, such as electrical power and thermal control, that enable the LARf to accomodate sub-microgravity levels for extended periods of time are presented, including a discussion of the Low-Acceleration Module, which will supply the payload with 25.0 kW of power, and up to 11.8 kW in the low-power mode. Also, the data management, communications, guidance, navigation and control, and structural features of supporting subsystems are examined.

  7. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  8. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  9. Accelerator Science: Collider vs. Fixed Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  10. Accelerator Science: Collider vs. Fixed Target

    ScienceCinema

    Lincoln, Don

    2018-01-16

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  11. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  12. Choosing a therapy electron accelerator target.

    PubMed

    Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K

    1979-01-01

    Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.

  13. Optimization of the combined proton acceleration regime with a target composition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W. P.; Graduate School, China Academy of Engineering Physics, Beijing 100088; Li, B. W., E-mail: li-baiwen@iapcm.ac.cn

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CHmore » target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.« less

  14. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less

  15. Targeted Alpha Therapy: The US DOE Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy

    NASA Astrophysics Data System (ADS)

    John, Kevin

    2017-01-01

    Targeted radiotherapy is an emerging discipline of cancer therapy that exploits the biochemical differences between normal cells and cancer cells to selectively deliver a lethal dose of radiation to cancer cells, while leaving healthy cells relatively unperturbed. A broad overview of targeted alpha therapy including isotope production methods, and associated isotope production facility needs, will be provided. A more general overview of the US Department of Energy Isotope Program's Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy will also be presented focusing on the accelerator-production of 225Ac and final product isolation methodologies for medical applications.

  16. View of new centrifuge at Flight Acceleration Facility

    NASA Technical Reports Server (NTRS)

    1966-01-01

    View of the new centrifuge at the Manned Spacecraft Center (MSC), located in the Flight Acceleration Facility, bldg 29. The 50-ft. arm can swing the three man gondola to create g-forces astronauts will experience during controlled flight and during reentry. The centrifuge was designed primarily for training Apollo astronauts.

  17. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  19. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  20. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, K. D.; Huang, T. W.; Zhou, C. T., E-mail: zcangtao@iapcm.ac.cn

    2016-01-15

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstratedmore » that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.« less

  1. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    PubMed Central

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 μm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly. PMID:28140790

  2. Accelerator shield design of KIPT neutron source facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Gohar, Y.

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain

  3. The physics of sub-critical lattices in accelerator driven hybrid systems: The MUSE experiments in the MASURCA facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, J. P.; Lebrat, J. F.; Soule, R.

    Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment ismore » planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.« less

  4. High power neutron production targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  5. Influence of micromachined targets on laser accelerated proton beam profiles

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  6. TAC Proton Accelerator Facility: The Status and Road Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algin, E.; Akkus, B.; Caliskan, A.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  7. Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Willis, Christopher R.

    Over the past two decades, a number of experiments have been performed demonstrating the acceleration of ions from the interaction of an intense laser pulse with a thin, solid density target. These ions are accelerated by quasi-static electric fields generated by energetic electrons produced at the front of the target, resulting in ion energies up to tens of MeV. These ions have been widely studied for a variety of potential applications ranging from treatment of cancer to the production of neutrons for advanced radiography techniques. However, realization of these applications will require further optimization of the maximum energy, spectrum, or species of the accelerated ions, which has been a primary focus of research to date. This thesis presents two experiments designed to optimize several characteristics of the accelerated ion beam. The first of these experiments took place on the GHOST laser system at the University of Texas at Austin, and was designed to demonstrate reliable acceleration of deuterium ions, as needed for the most efficient methods of neutron generation from accelerated ions. This experiment leveraged cryogenically cooled targets coated in D2 O ice to suppress the protons which typically dominate the accelerated ions, producing as many as 2 x 1010 deuterium ions per 1 J laser shot, exceeding the proton yield by an average ratio of 5:1. The second major experiment in this work was performed on the Scarlet laser system at The Ohio State University, and studied the accelerated ion energy, yield, and spatial distribution as a function of the target thickness. In principle, the peak energy increases with decreasing target thickness, with the thinnest targets accessing additional acceleration mechanisms which provide favorable scaling with the laser intensity. However, laser prepulse characteristics provide a lower bound for the target thickness, yielding an optimum target thickness for ion acceleration which is dependent on the laser system. This

  8. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The target vacuum storage facility at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Neveling, R.; Kheswa, N. Y.; Papka, P.

    2018-05-01

    A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.

  10. Modification of the argon stripping target of the tandem accelerator.

    PubMed

    Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P

    2015-12-01

    The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M.; CEA, DAM, DIF, 91297 Arpajon; Lévy, A.

    2014-01-15

    It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (∼5 × 10{sup 18} W/cm{sup 2}) picosecond laser pulse. Wemore » show that protons accelerated using targets having moderate front and rear plasma gradients (up to ∼8 μm gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme.« less

  12. Modeling target normal sheath acceleration using handoffs between multiple simulations

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard

    2013-10-01

    We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.

  13. 78 FR 73144 - Acceleration of Broadband Deployment by Improving Wireless Facilities Siting Policies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ..., ground-based enclosures, battery back-up power systems, grounding equipment, power transfer switch, and... No. 11-59; FCC 13-122] Acceleration of Broadband Deployment by Improving Wireless Facilities Siting... of new wireless facilities and on rules to implement statutory provisions governing State and local...

  14. The South African isotope facility project

    NASA Astrophysics Data System (ADS)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  15. Quasi-monoenergetic protons accelerated by laser radiation pressure and shocks in thin gaseous targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Minqing; Shao Xi; Liu Chuansheng

    Recent experiments and simulations have demonstrated effective CO{sub 2} laser acceleration of quasi-monoenergetic protons from thick gaseous hydrogen target (of thickness tens of laser wavelengths) via hole boring and shock accelerations. We present here an alternative novel acceleration scheme by combining laser radiation pressure acceleration with shock acceleration of protons in a thin gaseous target of thickness several laser wavelengths. The laser pushes the thin gaseous plasma forward while compressing it with protons trapped in it. We demonstrated the combined acceleration with two-dimensional particle-in-cell simulation and obtained quasi-monoenergetic protons {approx}44 MeV in a gas target of thickness twice of themore » laser wavelength irradiated by circularly polarized CO{sub 2} laser with normalized laser amplitude a{sub 0}=10.« less

  16. Proton acceleration measurements using fs laser irradiation of foils in the target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Batani, D.; Boutoux, G.; Burgy, F.; Jakubowska, K.; Ducret, J. E.

    2018-05-01

    We present experimental results obtained at the CELIA laboratory using the laser ECLIPSE to study proton acceleration from ultra-intense laser pulses. Several types of targets were irradiated with different laser conditions (focusing and prepulse level). Proton emission was characterized using time-of-flight detectors (SiC and diamond) and a Thomson parabola spectrometer. In all cases, the maximum energy of observed protons was of the order of 260 keV with a large energy spectrum. Such characteristics are typical of protons emitted following the target normal sheath acceleration mechanism for low-energy short-pulse lasers like ECLIPSE.

  17. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  18. Facility target insert shielding assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In themore » present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.« less

  19. Establishment of a National Accelerator Facility: Design and construction phase

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The main components of an accelerator facility for nuclear physics, isotope production, and radiotherapy in South Africa are in 8-MeV solid pole injector cyclotron and a separated sector cyclotron with a k-value of 200 MeV. Progress made in the development of the light ion injector and in the design of the control and beam transport systems is described. Mechanical and engineering tasks associated with component manufacture are discussed as well as the construction of the building to house the facility and the installation of necessary services.

  20. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    NASA Astrophysics Data System (ADS)

    Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.

    2006-01-01

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  1. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    NASA Astrophysics Data System (ADS)

    Otiougova, Polina; Bergmann, Ryan; Kiselev, Daniela; Talanov, Vadim; Wohlmuther, Michael

    2017-09-01

    The Paul Scherrer Institute (PSI) is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA) has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN) are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010) [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE) [4] as well as to the Swiss liberation limits (LL) [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well. Note to the reader: the pdf file has been changed on September 22, 2017.

  2. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  3. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target.

    PubMed

    Sharma, Ashutosh

    2018-02-01

    Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.

  4. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  5. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  6. Reliability Considerations for the Operation of Large Accelerator User Facilities

    DOE PAGES

    Willeke, F. J.

    2016-01-29

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  7. SECOND TARGET STATION MODERATOR PERFORMANCE WITH A ROTATING TARGET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Gallmeier, Franz X; Rennich, Mark J

    2016-01-01

    Oak Ridge National Laboratory manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's most advanced neutron scattering facilities. Both facilities are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, and are available to researchers from all over the world. Delivering cutting edge science requires continuous improvements and development of the facilities and instruments. The SNS was designed from the outset to accommodate an additional target station, or Second Target Station (STS), and an upgraded accelerator feeding proton beams to STS and the existing First Targetmore » Station (FTS). Upgrade of the accelerator and the design and construction of STS are being proposed. The presently considered STS configuration is driven with short (<1 s) proton pulses at 10 Hz repetition rate and 467 kW proton beam power, and is optimized for high intensity and high resolution long wavelength neutron applications. STS will allow installation of 22 beamlines and will expand and complement the current national neutron scattering capabilities. In 2015 the STS studies were performed for a compact tungsten target; first a stationary tungsten plate target was analyzed to considerable details and then dropped in favor of a rotating target. For both target options the proton beam footprint as small as acceptable from mechanical and heat removal aspects is required to arrive at a compact-volume neutron production zone in the target, which is essential for tight coupling of target and moderators and for achieving high-intensity peak neutron fluxes. This paper will present recent STS work with the emphasis on neutronics and moderator performance.« less

  8. Radiological assessment of target materials for accelerator transmutation of waste (ATW) applications

    NASA Astrophysics Data System (ADS)

    Vickers, Linda Diane

    This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal

  9. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    NASA Astrophysics Data System (ADS)

    Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  10. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    NASA Astrophysics Data System (ADS)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  11. Parametric investigations of target normal sheath acceleration experiments

    NASA Astrophysics Data System (ADS)

    Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo

    2011-10-01

    One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.

  12. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it; Ceccio, G.; Cannavò, A.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions dependingmore » on the laser parameters, the irradiation conditions, and a target optimization.« less

  13. Enhanced target normal sheath acceleration based on the laser relativistic self-focusing

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.

    2014-06-01

    The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.

  14. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantov, A. V., E-mail: brantov@lebedev.ru; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  15. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron

  16. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  17. National Ignition Facility Target Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The twomore » isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  18. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    NASA Astrophysics Data System (ADS)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  19. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    NASA Astrophysics Data System (ADS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  20. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueth, Joachim

    The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials,more » and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an

  1. An active target for the accelerator-based transmutation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebyonkin, K.F.

    1995-10-01

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less

  2. Segmented beryllium target for a 2 MW super beam facility

    DOE PAGES

    Davenne, T.; Caretta, O.; Densham, C.; ...

    2015-09-14

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for CP violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ 23. The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents amore » target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Thus simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.« less

  3. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schollmeier, M.; Harres, K.; Nuernberg, F.

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained duringmore » the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.« less

  4. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    NASA Astrophysics Data System (ADS)

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G.

    2012-12-01

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  5. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Klim, Adam; Morrison, J. T.; Orban, C.; Feister, S.; Ngirmang, G. K.; Smith, J.; Frische, K.; Peterson, A. C.; Chowdhury, E. A.; Freeman, R. R.; Roquemore, W. M.

    2016-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) water sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. We present results from liquid water targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  6. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage,more » and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.« less

  7. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target

    DOE PAGES

    Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; ...

    2015-08-28

    We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲10 14 W cm –2) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>10 16 W cm –2) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He + and H + were routinely produced,more » whilst for shorter gradients (≲20 μm), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.« less

  8. Accelerator Physics Working Group Summary

    NASA Astrophysics Data System (ADS)

    Li, D.; Uesugi, T.; Wildnerc, E.

    2010-03-01

    The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.

  9. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  10. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  11. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  12. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.

    2017-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  13. The Dust Accelerator Facility of the Colorado Center for Lunar Dust and Atmospheric Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horanyi, M.; Colette, A.; Drake, K.

    2011-11-29

    The NASA Lunar Institute's Colorado Center for Lunar Dust and Atmospheric Studies has recently completed the construction of a new experimental facility to study hypervelocity dust impacts. The installation includes a 3 MV Pelletron, accelerating small particles in the size range of 0.1 to few microns to velocities in the range of 1 to 100 km/s. Here we report the capabilities of our facility, and the results of our first experiments.

  14. Shock effects in particle beam fusion targets

    NASA Astrophysics Data System (ADS)

    Sweeney, M. A.; Perry, F. C.; Asay, J. R.; Widner, M. M.

    1982-04-01

    At Sandia National Laboratorics we are assessing the response of fusion target materials to shock loading with the particle beam accelerators HYDRA and PROTO I and the gas gun facility. Nonlinear shock-accelerated unstable growth of fabriction irregularities has been demonstrated, and jetting is found to occur in imploding targets because of asymmetric beam deposition. Cylindrical ion targets display an instability due either to beam or target nonuniformity. However, the data suggest targets with aspect ratios of 30 may implode stably. The first time- and space-resolved measurements of shock-induced vaporization have been made. A homogeneous mixed phase EOS model cannot adequately explain the results because of the kinetic effects of vapor formation and expansion.

  15. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  16. The Proton Synchrotron (PS): At the Core of the CERN Accelerators

    NASA Astrophysics Data System (ADS)

    Cundy, Donald; Gilardoni, Simone

    The following sections are included: * Introduction * Extraction: Getting the Beam to Leave the Accelerator * Acceleration and Bunch Gymnastics * Boosting PS Beam Intensity * Capacitive Energy Storage Replaces Flywheel * Taking the Neutrinos by the Horns * OMEGA: Towards the Electronic Bubble Chamber * ISOLDE: Targeting a New Era in Nuclear Physics * The CERN n_TOF Facility: Catching Neutrons on the Fly * References

  17. Prospects of target nanostructuring for laser proton acceleration

    PubMed Central

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-01-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479

  18. Prospects of target nanostructuring for laser proton acceleration.

    PubMed

    Lübcke, Andrea; Andreev, Alexander A; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-14

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  19. Prospects of target nanostructuring for laser proton acceleration

    NASA Astrophysics Data System (ADS)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  20. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.

    PubMed

    Wang, Dahui; Shou, Yinren; Wang, Pengjie; Liu, Jianbo; Li, Chengcai; Gong, Zheng; Hu, Ronghao; Ma, Wenjun; Yan, Xueqing

    2018-02-07

    We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (10 7 -10 9 ) containing nanosecond plateau amplified spontaneous emission (ASE). It's found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.

  1. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew Pitney

    preplasma increases coupling into surrogate targets this work shows a significant advantage for the fast ignition scheme. Such work gives confidence to facilities that increasing the contrast of their laser systems will increase electron coupling. Additionally, detailed investigation of these high-contrast systems will aid researchers in understanding the effect that preplasma has on the acceleration of electrons.

  2. Detection of Accelerating Targets in Clutter Using a De-Chirping Technique

    DTIC Science & Technology

    2014-06-01

    Academy, also in Canberra, working on the the- ory and simulation of spatial optical solitons and light-induced optical switching in nonlinear...signal gain in the receiver. UNCLASSIFIED 1 DSTO–RR–0399 UNCLASSIFIED target along the velocity vector , or equivalently by radar platform. The change of...the tracker uses range rate in its track initiation logic. (2) Lateral acceleration perpendicular to the velocity vector - the target is turning and

  3. Observations of radiation damage and recovery in ammonia targets

    NASA Astrophysics Data System (ADS)

    McKee, P. M.

    2004-06-01

    The Polarized Target Group at the University of Virginia has conducted experiments at both the Stanford Linear Accelerator Center (SLAC) and the Thomas Jefferson National Accelerator Facility (JLab) in which a high-intensity (100 nA) electron beam was focused on a polarized target of solid ammonia and/ or solid, deuterated ammonia. Analysis of the target polarization data have revealed several unique characteristics of ammonia. Topics discussed include the rate of polarization decay with accumulated charge, methods of recovering polarization through target annealing and damage-induced shifts in the optimum microwave frequency used to drive the polarization.

  4. Accelerator Production of Isotopes for Medical Use

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  5. Facility Targeting, Protection and Mission Decision Making Using the VISAC Code

    NASA Technical Reports Server (NTRS)

    Morris, Robert H.; Sulfredge, C. David

    2011-01-01

    The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.

  6. Influenza A Virus Hemagglutinin and Neuraminidase Mutually Accelerate Their Apical Targeting through Clustering of Lipid Rafts

    PubMed Central

    Ohkura, Takashi; Momose, Fumitaka; Ichikawa, Reiko; Takeuchi, Kaoru

    2014-01-01

    ABSTRACT In polarized epithelial cells, influenza A virus hemagglutinin (HA) and neuraminidase (NA) are intrinsically associated with lipid rafts and target the apical plasma membrane for viral assembly and budding. Previous studies have indicated that the transmembrane domain (TMD) and cytoplasmic tail (CT) of HA and NA are required for association with lipid rafts, but the raft dependencies of their apical targeting are controversial. Here, we show that coexpression of HA with NA accelerated their apical targeting through accumulation in lipid rafts. HA was targeted to the apical plasma membrane even when expressed alone, but the kinetics was much slower than that of HA in infected cells. Coexpression experiments revealed that apical targeting of HA and NA was accelerated by their coexpression. The apical targeting of HA was also accelerated by coexpression with M1 but not M2. The mutations in the outer leaflet of the TMD and the deletion of the CT in HA and NA that reduced their association with lipid rafts abolished the acceleration of their apical transport, indicating that the lipid raft association is essential for efficient apical trafficking of HA and NA. An in situ proximity ligation assay (PLA) revealed that HA and NA were accumulated and clustered in the cytoplasmic compartments only when both were associated with lipid rafts. Analysis with mutant viruses containing nonraft HA/NA confirmed these findings. We further analyzed lipid raft markers by in situ PLA and suggest a possible mechanism of the accelerated apical transport of HA and NA via clustering of lipid rafts. IMPORTANCE Lipid rafts serve as sites for viral entry, particle assembly, and budding, leading to efficient viral replication. The influenza A virus utilizes lipid rafts for apical plasma membrane targeting and particle budding. The hemagglutinin (HA) and neuraminidase (NA) of influenza virus, key players for particle assembly, contain determinants for apical sorting and lipid raft

  7. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    PubMed Central

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-01-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247

  8. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  9. Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.

    2006-01-15

    Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less

  10. Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters like fire and flooding and its environmental impacts

    NASA Astrophysics Data System (ADS)

    Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.

    2018-06-01

    The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.

  11. Assessment of candidates for target window material in accelerator-driven molybdenum-99 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strons, Philip; Bailey, James; Makarashvili, Vakhtang

    2016-10-01

    NorthStar Medical Technologies is pursuing production of an important medical isotope, Mo-99, through a photo-nuclear reaction of a Mo-100 target using a high-power electron accelerator. The current target utilizes an Inconel 718 window. The purpose of this study was to evaluate other candidate materials for the target window, which separates the high-pressure helium gas inside the target from the vacuum inside the accelerator beamline and is subjected to significant stress. Our initial analysis assessed the properties (density, thermal conductivity, maximum stress, minimum window thickness, maximum temperature, and figure of merit) for a range of materials, from which the three mostmore » promising were chosen: Inconel 718, 250 maraging steel, and standard-grade beryllium. These materials were subjected to further analysis to determine the effects of thermal and mechanical strain versus beam power at varying thicknesses. Both beryllium and the maraging steel were calculated to withstand more than twice as high beam power than Inconel 718.« less

  12. Accelerated Neuronal Cell Recovery from Botulinum Neurotoxin Intoxication by Targeted Ubiquitination

    PubMed Central

    Kuo, Chueh-Ling; Oyler, George A.; Shoemaker, Charles B.

    2011-01-01

    Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop ‘targeted F-box’ (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only VH (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable. PMID:21629663

  13. Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination.

    PubMed

    Kuo, Chueh-Ling; Oyler, George A; Shoemaker, Charles B

    2011-01-01

    Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop 'targeted F-box' (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only V(H) (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable.

  14. Analytic model of a laser-accelerated composite plasma target and its stability

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Shvets, Gennady

    2013-10-01

    A self-consistent analytical model of monoenergetic acceleration of a one and two-species ultrathin target irradiated by a circularly polarized laser pulse is developed. In the accelerated reference frame, the bulk plasma in the target is neutral and its parameters are assumed to be stationary. It is found that the structure of the target depends strongly on the temperatures of electrons and ions, which are both strongly influenced by the laser pulse pedestal. When the electron temperature is large, the hot electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials while the heavy and light ions are forced-balanced by the electrostatic and non-inertial fields forming two separated layers. In the opposite limiting case when the ion temperature is large, the hot ions are trapped in the potential well formed by the ion-sheath's electric and non-inertial potentials while the cold electrons are forced-balanced by the electrostatic and ponderomotive fields. Using PIC simulations we have determined which scenario is realized in practice depending on the initial target structure and laser intensity. Target stability with respect to Rayleigh-Taylor instability will also be discussed. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  15. Challenges/issues of NIS used in particle accelerator facilities

    NASA Astrophysics Data System (ADS)

    Faircloth, Dan

    2013-09-01

    High current, high duty cycle negative ion sources are an essential component of many high power particle accelerators. This talk gives an overview of the state-of-the-art sources used around the world. Volume, surface and charge exchange negative ion production processes are detailed. Cesiated magnetron and Penning surface plasma sources are discussed along with surface converter sources. Multicusp volume sources with filament and LaB6 cathodes are described before moving onto RF inductively coupled volume sources with internal and external antennas. The major challenges facing accelerator facilities are detailed. Beam current, source lifetime and reliability are the most pressing. The pros and cons of each source technology is discussed along with their development programs. The uncertainties and unknowns common to these sources are discussed. The dynamics of cesium surface coverage and the causes of source variability are still unknown. Minimizing beam emittance is essential to maximizing the transport of high current beams; space charge effects are very important. The basic physics of negative ion production is still not well understood, theoretical and experimental programs continue to improve this, but there are still many mysteries to be solved.

  16. Control of target-normal-sheath-accelerated protons from a guiding cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, D. B.; Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225; Zhuo, H. B., E-mail: hongbin.zhuo@gmail.com

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  17. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, L. R.

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  18. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  19. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badziak, J.; Rosiński, M.; Krousky, E.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of suchmore » pressure with other laser-based methods known so far.« less

  20. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  1. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  2. Present status of Accelerator-Based BNCT.

    PubMed

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  3. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{_}CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  4. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{ }CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  5. Local re-acceleration and a modified thick target model of solar flare electrons

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  6. BINP accelerator based epithermal neutron source.

    PubMed

    Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S

    2011-12-01

    Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. SPES and the neutron facilities at Laboratori Nazionali di Legnaro

    NASA Astrophysics Data System (ADS)

    Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.

    2016-03-01

    The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

  8. Plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Yanxia; Wang, Jiaxiang; Hora, Heinrich; Qi, Xin; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2018-04-01

    A new scheme of plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse with intensity I ˜ 1022 W/cm2 is investigated via two-dimensional particle-in-cell simulations. The targets are composed of a pre-target of low-density aluminium plasma and an overdense main-target of hydrogen plasma. Through intensive parameter optimization, we have observed highly efficient plasma block accelerations with a monochromatic proton beam peaked at GeVs. The underlying mechanism is attributed to the enhancement of the charge separation field due to the properly selected pre-target.

  9. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  10. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  11. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, Kavin; et al.

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less

  12. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    PubMed

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  13. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  14. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

    PubMed Central

    Rae, Joel; Hogan, Kate; Ejiama, Sarah; Girotti, Maria Romina; Cook, Martin; Dhomen, Nathalie; Marais, Richard

    2014-01-01

    Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear1,2. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event3. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a V600EBRAF mouse model. In mice expressing V600EBRAF in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. We show that sunscreen (UVA superior: UVB SPF50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours presented increased numbers of single nucleotide variants (SNVs) and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in ~40% of cases. TP53 is an accepted UVR target in non-melanoma skin cancer, but is not thought to play a major role in melanoma4. However, we show that mutant Trp53 accelerated V600EBRAF-driven melanomagenesis and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans5. We identify TP53/Trp53 as a UVR-target gene that cooperates with V600EBRAF to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma. PMID:24919155

  15. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  16. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young Min; Green, A.; Lumpkin, A. H.

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n 0 = ~ 10 20 – 10 23 cm -3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced andmore » the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single

  17. First neutron generation in the BINP accelerator based neutron source.

    PubMed

    Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S

    2009-07-01

    Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.

  18. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. Themore » second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected

  19. The Status of Turkish Accelerator Center Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavas, Oe.

    2007-04-23

    Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeVmore » electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.« less

  20. Enhanced laser proton acceleration by target ablation on a femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Liao, Q.; Wu, M. J.; Gong, Z.; Geng, Y. X.; Xu, X. H.; Li, D. Y.; Shou, Y. R.; Zhu, J. G.; Li, C. C.; Yang, M.; Li, T. S.; Lu, H. Y.; Ma, W. J.; Zhao, Y. Y.; Lin, C.; Yan, X. Q.

    2018-06-01

    Proton acceleration during the interaction of an ultraintense (6 × 1019 W/cm2) femtosecond (fs) laser pulse with a thin (2.5 μm) foil target pre-ablated by a picosecond (ps) pulse is experimentally and numerically investigated. Enhancements in both proton cut-off energy and charge are observed with the target ablation due to a large number of energetic electrons generated from the preformed preplasma in front of the target. The enhanced proton beams are successfully collected at 4-9 MeV with ±4% energy spread and then transported to the irradiating platform. The results show that for the interaction between fs laser pulse and μm-thickness target, proton energy and charge can be enhanced by target ablation using a ps laser pulse, which is valuable for application like cancer radiotherapy.

  1. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  2. Implementation of a solid target production facility

    NASA Astrophysics Data System (ADS)

    Tochon-Danguy, H. J.; Poniger, S. S.; Sachinidis, J. I.; Panopoulos, H. P.; Scott, A. M.

    2012-12-01

    The desire to utilize long-lived PET isotopes in Australia has significantly increased over the years and several research projects for labelling of peptides, proteins and biomolecules, including labelling of recombinant antibodies has been restricted due to the limited availability of suitable isotopes. This need has led to the recent installation and commissioning of a new facility dedicated to fully automated solid target isotope production, including 24I, 64Cu, 89Zr and 86Y at the Austin Health Centre for PET.

  3. Using a commercial mathematics software package for on-line analysis at the BNL Accelerator Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, R.; Wang, X.J.

    BY WRITING BOTH A CUSTOM WINDOWS(NTTM) DYNAMIC LINK LIBRARY AND GENERIC COMPANION SERVER SOFTWARE, THE INTRINSIC FUNCTIONS OF MATHSOFT MATHCAD(TM) HAVE BEEN EXTENDED WITH NEW CAPABILITIES WHICH PERMIT DIRECT ACCESS TO THE CONTROL SYSTEM DATABASES OF BROOKHAVEN NATIONAL LABORATORY ACCELERATOR TEST FACILITY. UNDER THIS SCHEME, A MATHCAD WORKSHEET EXECUTING ON A PERSONAL COMPUTER BECOMES A CLIENT WHICH CAN BOTH IMPORT AND EXPORT DATA TO A CONTROL SYSTEM SERVER VIA A NETWORK STREAM SOCKET CONNECTION. THE RESULT IS AN ALTERNATIVE, MATHEMATICALLY ORIENTED VIEW OF CONTROLLING THE ACCELERATOR INTERACTIVELY.

  4. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    NASA Astrophysics Data System (ADS)

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  5. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...

    2017-12-22

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  6. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  7. Moderator Demonstration Facility Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  8. New evaporator station for the center for accelerator target science

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  9. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  10. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  11. Optimization of the photoneutron target geometry for e-accelerator based BNCT.

    PubMed

    Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed

    2017-06-01

    Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon's incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets. Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape.

  12. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  13. Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of-concept (POC) experiments

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2017-03-01

    A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time

  14. The light ion pulsed power induction accelerator for ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.

    1994-12-31

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The {approximately} 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current permore » module is relatively modest ({approximately}300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source.« less

  15. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    NASA Astrophysics Data System (ADS)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  16. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  17. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  18. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  19. Monoenergetic ion acceleration and Rayleigh-Taylor instability of the composite target irradiated by the laser pulse

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Yi, S. Austin; Shvets, Gennady

    2012-10-01

    Acceleration of ions in the two-specie composite target irradiated by a circularly polarized laser pulse is studied analytically and via particle-in-cell (PIC) simulations. A self-consistent analytical model of the composite target is developed. In this model, target parameters are stationary in the center of mass of the system: heavy and light ions are completely separated from each other and form two layers, while electrons are bouncing in the potential well formed by the laser ponderomotive and electrostatic potentials. They are distributed in the direction of acceleration by the Boltzmann law and over velocities by the Maxwell-Juttner law. The laser pulse interacts directly only with electrons in a thin sheath layer, and these electrons transfer the laser pressure to the target ions. In the fluid approximation it is shown, the composite target is still susceptible to the Rayleigh-Taylor instability [1]. Using PIC simulations we found the growth rate of initially seeded perturbations as a function of their wavenumber for different composite target parameters and compare it with analytical results. Useful scaling laws between this rate and laser pulse pressure and target parameters are discussed.[4pt] [1] T.P. Yu, A. Pukhov, G. Shvets, M. Chen, T. H. Ratliff, S. A. Yi, and V. Khudik, Phys. Plasmas, 18, 043110 (2011).

  20. Optimization of the photoneutron target geometry for e-accelerator based BNCT

    PubMed Central

    Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed

    2017-01-01

    Background and aim Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. Methods In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. Results The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon’s incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets Conclusion Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape. PMID:28848635

  1. Laser-driven ion acceleration at BELLA

    NASA Astrophysics Data System (ADS)

    Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  2. Lithium target performance evaluation for low-energy accelerator-based in vivo measurements using gamma spectroscopy.

    PubMed

    Aslam; Prestwich, W V; McNeill, F E

    2003-03-01

    The operating conditions at McMaster KN Van de Graaf accelerator have been optimized to produce neutrons via the (7)Li(p, n)(7)Be reaction for in vivo neutron activation analysis. In a number of earlier studies (development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada; Appl. Radiat. Isot. 53 (2000) 657; in vivo measurement of some trace elements in human Bone, Ph.D. Thesis. McMaster University, Hamilton, ON, Canada), a significant discrepancy between the experimental and the calculated neutron doses has been pointed out. The hypotheses formulated in the above references to explain the deviation of the experimental results from analytical calculations, have been tested experimentally. The performance of the lithium target for neutron production has been evaluated by measuring the (7)Be activity produced as a result of (p, n) interaction with (7)Li. In contradiction to the formulated hypotheses, lithium target performance was found to be mainly affected by inefficient target cooling and the presence of oxides layer on target surface. An appropriate choice of these parameters resulted in neutron yields same as predicated by analytical calculations.

  3. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  4. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  5. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  6. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  7. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  8. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    NASA Astrophysics Data System (ADS)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  9. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator.

    PubMed

    Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng

    2010-04-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10(21)/m(3) and 2-3 mm/micros, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  10. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng

    2010-04-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 1021/m3 and 2-3 mm/μs, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  11. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  12. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  13. High Intensity Proton Accelerator Project in Japan (J-PARC).

    PubMed

    Tanaka, Shun-ichi

    2005-01-01

    The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.

  14. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried outmore » there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.« less

  15. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Haijun; Zhu Jun; Chen Nan

    2010-04-15

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10{sup 21}/m{sup 3} and 2-3 mm/{mu}s, respectively. The theoretical and experimental results of electron beam envelope with ions and without ionsmore » are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.« less

  16. Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for

  17. Skyshine photon doses from 6 and 10 MV medical linear accelerators.

    PubMed

    de Paiva, Eduardo; da Rosa, Luiz A R

    2012-01-05

    The skyshine radiation phenomenon consists of the scattering of primary photon beams in the atmosphere above the roof of a medical linear accelerator facility, generating an additional dose at ground level in the vicinity of the treatment room. Thus, with respect to radioprotection, this situation plays an important role when the roof is designed with little shielding and there are buildings next to the radiotherapy treatment room. In literature, there are few reported skyshine-measured doses and these contain poor agreement with empirical calculations. In this work, we carried out measurements of skyshine photon dose rates produced from eight different 6 and 10 MV medical accelerators. Each measurement was performed outside the room facility, with the beam positioned in the upward direction, at a horizontal distance from the target and for a 40 cm × 40 cm maximum photon field size at the accelerator isocenter. Measured dose-equivalent rates results were compared with calculations obtained by an empirical expression, and differences between them deviated in one or more order of magnitude.

  18. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Marshak Lectureship: The Turkish Accelerator Center, TAC

    NASA Astrophysics Data System (ADS)

    Yavas, Omer

    2012-02-01

    The Turkish Accelerator Center (TAC) project is comprised of five different electron and proton accelerator complexes, to be built over 15 years, with a phased approach. The Turkish Government funds the project. Currently there are 23 Universities in Turkey associated with the TAC project. The current funded project, which is to run until 2013 aims *To establish a superconducting linac based infra-red free electron laser and Bremsstrahlung Facility (TARLA) at the Golbasi Campus of Ankara University, *To establish the Institute of Accelerator Technologies in Ankara University, and *To complete the Technical Design Report of TAC. The proposed facilities are a 3^rd generation Synchrotron Radiation facility, SASE-FEL facility, a GeV scale Proton Accelerator facility and an electron-positron collider as a super charm factory. In this talk, an overview on the general status and road map of TAC project will be given. National and regional importance of TAC will be expressed and the structure of national and internatonal collaborations will be explained.

  20. Effect of target composition on proton acceleration in ultraintense laser-thin foil interaction

    NASA Astrophysics Data System (ADS)

    Liu, Qingcao; Liu, Meng; Yu, Tongpu; Ding, Pengji; Liu, Zuoye; Sun, Shaohua; Liu, Xiaoliang; Lu, Xing; Guo, Zeqin; Hu, Bitao

    2012-09-01

    The interactions of ultraintense circularly polarized laser pulses with a mixed solid target and a double-layer target are studied by two-dimensional particle-in-cell simulations. Different carbon and proton compositions in the targets are used in the simulations. It is shown that the proton acceleration mechanisms in both targets are very sensitive to the ion density ratios between protons and carbon ions. For a mixed solid target, a relatively low proton density gives rise to monoenergetic peaks in the proton energy spectrum while a high proton density leads to a large cut-off energy and wide energy spread. With the increase of the ratio, the so-called directed-Coulomb-explosion becomes dominated over the radiation pressure. Surprisingly, for a double-layer target with a front proton layer and an ultrathin rear carbon layer, a highly monoenergetic proton beam with a peak energy of 1.7 GeV/u, an energy spread of ˜4%, and a divergency angle of 2° can be obtained, which might have diverse applications in medical therepy and proton imaging in future.

  1. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  2. Acceleration of protons to above 6 MeV using H2O "snow" nanowire targets

    NASA Astrophysics Data System (ADS)

    Pomerantz, I.; Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Gordon, D.; Sprangel, P.; Zigler, A.

    2012-07-01

    A scheme is presented for using H2O "snow" nanowire targets for the generation of fast protons. This novel method may relax the requirements for very high laser intensities, thus reducing the size and cost of laser based ion acceleration system.

  3. Accelerator characterization of the new ion beam facility at MTA Atomki in Debrecen, Hungary

    NASA Astrophysics Data System (ADS)

    Rajta, I.; Vajda, I.; Gyürky, Gy.; Csedreki, L.; Kiss, Á. Z.; Biri, S.; van Oosterhout, H. A. P.; Podaru, N. C.; Mous, D. J. W.

    2018-02-01

    In this work we present the 2 MV Tandetron accelerator manufactured by High Voltage Engineering Europa (HVEE), that was installed at MTA Atomki in Debrecen, Hungary in 2015. Furthermore, we report on the first performance test of the whole facility including the calibration of the terminal voltage using accurately known resonance energies of the 27Al(p, γ)28Si and 13C(p, γ)14N reactions, as well as neutron threshold energies of the 7Li(p,n)7Be and 13C(p,n)13N reactions. The accurate energy calibration of the generating voltmeter (GVM), the good energy stability of the accelerator as well as the low energy spread of the ion beam suited the requirements of nuclear astrophysics, resonance PIGE depth profiling and the nanoprobe beamline. We have investigated whether the terminal voltage reading depends on the insulating gas pressure, and how much the stripper gas pressure modifies the beam energy.

  4. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    NASA Astrophysics Data System (ADS)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  6. Proton and Ion Acceleration using Multi-kJ Lasers

    NASA Astrophysics Data System (ADS)

    Wilks, S. C.; Ma, T.; Kemp, A. J.; Tabak, M.; Link, A. J.; Haefner, C.; Hermann, M. R.; Mariscal, D. A.; Rubenchik, S.; Sterne, P.; Kim, J.; McGuffey, C.; Bhutwala, K.; Beg, F.; Wei, M.; Kerr, S. M.; Sentoku, Y.; Iwata, N.; Norreys, P.; Sevin, A.

    2017-10-01

    Short (<50 ps) laser pulses are capable of accelerating protons and ions from solid (or dense gas jet) targets as demonstrated by a number of laser facilities around the world in the past 20 years accelerating protons to between 1 and 100 MeV, depending on specific laser parameters. Over this time, a distinct scaling with energy has emerged that shows a trend towards increasing maximum accelerated proton (ion) energy with increasing laser energy. We consider the physical basis underlying this scaling, and use this to estimate future results when multi-kJ laser systems begin operating in this new high energy regime. In particular, we consider the effects of laser prepulse, intensity, energy, and pulse length on the number and energy of the ions, as well as target size and composition. We also discuss potential uses of these ion beams in High Energy Density Physics Experiments. This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  7. Debris and shrapnel assessments for National Ignition Facility targets and diagnostics

    NASA Astrophysics Data System (ADS)

    Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.

    2016-05-01

    High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).

  8. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  9. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  10. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  11. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  12. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  13. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  14. BNL accelerator-based radiobiology facilities

    NASA Technical Reports Server (NTRS)

    Lowenstein, D. I.

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  15. BNL accelerator-based radiobiology facilities.

    PubMed

    Lowenstein, D I

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  16. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    NASA Astrophysics Data System (ADS)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  17. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    PubMed

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  18. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  19. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  20. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine

    We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.

  1. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target

    NASA Astrophysics Data System (ADS)

    Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich

    2018-04-01

    We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.

  2. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target

    DOE PAGES

    Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine; ...

    2018-02-09

    We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.

  3. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  4. Both Patient and Facility Contribute to Achieving the Centers for Medicare and Medicaid Services' Pay-for-Performance Target for Dialysis Adequacy

    PubMed Central

    Tighiouart, Hocine; Meyer, Klemens B.; Miskulin, Dana C.

    2011-01-01

    The Centers for Medicare and Medicaid Services (CMS) designated the achieved urea reduction ratio (URR) as a pay-for-performance measure, but to what extent this measure reflects patient characteristics and adherence instead of its intent to reflect facility performance is unknown. Here, we quantified the contributions of patient case-mix and adherence to the variability in achieving URR targets across dialysis facilities. We found that 92% of 10,069 hemodialysis patients treated at 173 facilities during the last quarter of 2004 achieved the target URR ≥65%. Mixed-effect models with random intercept for dialysis facility revealed a significant facility effect: 11.5% of the variation in achievement of target URR was attributable to the facility level. Adjusting for patient case-mix reduced the proportion of variation attributable to the facility level to 6.7%. Patient gender, body surface area, dialysis access, and adherence with treatment strongly associated with achievement of the URR target. We could not identify specific facility characteristics that explained the remaining variation between facilities. These data suggest that if adherence is not a modifiable patient characteristic, providers could be unfairly penalized for caring for these patients under current CMS policy. These penalties may have unintended consequences. PMID:22025629

  5. Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanami, T.; Hagiwara, M.; Iwase, H.

    2008-02-01

    The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energymore » range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar

  6. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  7. Liquid crystals as on-demand, variable thickness targets for intense laser applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick L.; Andereck, C. David; Schumacher, Douglass W.

    2014-10-01

    Laser-based ion acceleration is currently studied for its applications to advanced imaging and cancer therapy, among others. Targets for these and other high-intensity laser experiments are often small metallic foils with few to sub-micron thicknesses, where the thickness determines the physics of the dominant acceleration mechanism. We have developed liquid crystal films that preserve the planar target geometry advantageous to ion acceleration schemes while providing on-demand thickness variation between 50 and 5000 nm. This thickness control is obtained in part by varying the temperature at which films are formed, which governs the phase (and hence molecular ordering) of the liquid crystal material. Liquid crystals typically have vapor pressures well below the 10-6 Torr operating pressures of intense laser target chambers, and films formed in air maintain their thickness during chamber evacuation. Additionally, the minute volume that comprises each film makes the cost of each target well below one cent, in stark contrast to many standard solid targets. We will discuss the details of liquid crystal film control and formation, as well as characterization experiments performed at the Scarlet laser facility. This work was performed with support from DARPA and NNSA.

  8. Saclay Compact Accelerator-driven Neutron Sources (SCANS)

    NASA Astrophysics Data System (ADS)

    Marchix, A.; Letourneau, A.; Tran, HN; Chauvin, N.; Menelle, A.; Ott, F.; Schwindling, J.

    2018-06-01

    For next decade, the European neutron scattering community will face of important changes, as many facilities will close, strictly fission-based sources. This statement mainly concerns France with the planned closure of Orphee and ILL. At CEA-Saclay, the project SONATE has been launched in order to provide a high intensity neutron source in Saclay site, this project is based on Compact Accelerator-driven Neutron Sources technology coupled to high-intensity beams. The goal of SONATE is to develop a 50 kW target, aiming to produce at least a neutron yield of 1013 s-1 in pulse mode with a peak current of 100 mA. We have investigated in this document the best combinations of beam/target which would lead to this substantial neutron yields. Further investigations and tests have to be carry out, especially due to sparse data on thick target and such low-energy beams considered in this document. An intermediate step to the SONATE project is under test and development, called IPHI-NEUTRON, which would lead to provide a small-size neutron facility mainly devoted to neutron imagery for industry. This step is based on the existing 3 MeV proton beam, named IPHI. Best target candidates are Lithium and Beryllium, leading respectively to a neutron yield of about 2.1013 s-1 and 4.1012 s-1.

  9. Skyshine photon doses from 6 and 10 MV medical linear accelerators

    PubMed Central

    da Rosa, Luiz A. R.

    2012-01-01

    The skyshine radiation phenomenon consists of the scattering of primary photon beams in the atmosphere above the roof of a medical linear accelerator facility, generating an additional dose at ground level in the vicinity of the treatment room. Thus, with respect to radioprotection, this situation plays an important role when the roof is designed with little shielding and there are buildings next to the radiotherapy treatment room. In literature, there are few reported skyshine‐measured doses and these contain poor agreement with empirical calculations. In this work, we carried out measurements of skyshine photon dose rates produced from eight different 6 and 10 MV medical accelerators. Each measurement was performed outside the room facility, with the beam positioned in the upward direction, at a horizontal distance from the target and for a 40 cm×40 cm maximum photon field size at the accelerator isocenter. Measured dose‐equivalent rates results were compared with calculations obtained by an empirical expression, and differences between them deviated in one or more order of magnitude. PACS numbers: 87.53.‐j, 87.53.Bn PMID:22231219

  10. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    NASA Astrophysics Data System (ADS)

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-01

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  11. Accelerator boom hones China's engineering expertise

    NASA Astrophysics Data System (ADS)

    Normile, Dennis

    2018-02-01

    In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.

  12. New Concepts and Fermilab Facilities for Antimatter Research

    NASA Astrophysics Data System (ADS)

    Jackson, Gerald

    2008-04-01

    There has long been significant interest in continuing antimatter research at the Fermi National Accelerator Laboratory. Beam kinetic energies ranging from 10 GeV all the way down to the eV scale and below are of interest. There are three physics missions currently being developed: the continuation of charmonium physics utilizing an internal target; atomic physics with in-flight generated antihydrogen atoms; and deceleration to thermal energies and paasage of antiprotons through a grating system to determine their gravitation acceleration. Non-physics missions include the study of medical applications, tests of deep-space propulsion concepts, low-risk testing of nuclear fuel elements, and active interrogation for smuggled nuclear materials in support of homeland security. This paper reviews recent beam physics and accelerator technology innovations in the development of methods and new Fermilab facilities for the above missions.

  13. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  14. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, M.; Schumaker, W.; He, Z.-H.

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on themore » HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.« less

  15. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration.

    PubMed

    Jeon, Eun Young; Choi, Bong-Hyuk; Jung, Dooyup; Hwang, Byeong Hee; Cha, Hyung Joon

    2017-07-01

    Skin scarring after deep dermal injuries is a major clinical problem due to the current therapies limited to established scars with poor understanding of healing mechanisms. From investigation of aberrations within the extracellular matrix involved in pathophysiologic scarring, it was revealed that one of the main factors responsible for impaired healing is abnormal collagen reorganization. Here, inspired by the fundamental roles of decorin, a collagen-targeting proteoglycan, in collagen remodeling, we created a scar-preventive collagen-targeting glue consisting of a newly designed collagen-binding mussel adhesive protein and a specific glycosaminoglycan. The collagen-targeting glue specifically bound to type I collagen in a dose-dependent manner and regulated the rate and the degree of fibrillogenesis. In a rat skin excisional model, the collagen-targeting glue successfully accelerated initial wound regeneration as defined by effective reepithelialization, neovascularization, and rapid collagen synthesis. Moreover, the improved dermal collagen architecture was demonstrated by uniform size of collagen fibrils, their regular packing, and a restoration of healthy tissue component. Collectively, our natural healing-inspired collagen-targeting glue may be a promising therapeutic option for improving the healing rate with high-quality and effective scar inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The accelerator neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  17. Uranium carbide fission target R&D for RIA - an update

    NASA Astrophysics Data System (ADS)

    Greene, J. P.; Levand, A.; Nolen, J.; Burtseva, T.

    2004-12-01

    For the Rare Isotope Accelerator (RIA) facility, ISOL targets employing refractory compounds of uranium are being developed to produce radioactive ions for post-acceleration. The availability of refractory uranium compounds in forms that have good thermal conductivity, relatively high density, and adequate release properties for short-lived isotopes remains an important issue. Investigations using commercially obtained uranium carbide material and prepared into targets involving various binder materials have been carried out at ANL. Thin sample pellets have been produced for measurements of thermal conductivity using a new method based on electron bombardment with the thermal radiation observed using a two-color optical pyrometer and performed on samples as a function of grain size, pressing pressure and sintering temperature. Manufacture of uranium carbide powder has now been achieved at ANL. Simulations have been carried out on the thermal behavior of the secondary target assembly incorporating various heat shield configurations.

  18. Characterization studies of prototype ISOL targets for the RIA

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Burtseva, Tatiana; Neubauer, Janelle; Nolen, Jerry A.; Villari, Antonio C. C.; Gomes, Itacil C.

    2005-12-01

    Targets employing refractory compounds are being developed for the rare isotope accelerator (RIA) facility to produce ion species far from stability. With the 100 kW beams proposed for the production targets, dissipation of heat becomes a challenging issue. In our two-step target design, neutrons are generated in a refractory primary target, inducing fission in the surrounding uranium carbide. The interplay of density, grain size, thermal conductivity and diffusion properties of the UC2 needs to be well understood before fabrication. Thin samples of uranium carbide were prepared for thermal conductivity measurements using an electron beam to heat the sample and an optical pyrometer to observe the thermal radiation. Release efficiencies and independent thermal analysis on these samples are being undertaken at Oak Ridge National Laboratory (ORNL). An alternate target concept for RIA, the tilted slab approach promises to be simple with fast ion release and capable of withstanding high beam intensities while providing considerable yields via spallation. A proposed small business innovative research (SBIR) project will design a prototype tilted target, exploring the materials needed for fabrication and testing at an irradiation facility to address issues of heat transfer and stresses within the target.

  19. Spatiospectral Analysis of Accelerated Protons from Sub-Micron Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Cochran, Ginevra; van Woerkom, Linn; Schumacher, Douglass

    2017-10-01

    Recent studies on ion acceleration have trended towards ultra-thin (<1 μm) targets due to improved ion energies and yields from these targets. As discussed here, ultra-thin targets may exhibit unusual spatial distributions in the accelerated ions, such that ion spectrometer data may not be representative of the overall distribution. More complete characterization of the ions requires spectral unfolding of radiochromic film (RCF) data, yielding spatially dependent spectra. Spatiospectral data will be presented from several experiments using sub-micron liquid crystal film targets at the Scarlet (OSU), Texas Petawatt (UT, Austin) and PHELIX (GSI, Darmstadt) laser facilities, including evidence of >75 MeV protons from 300 nm films at PHELIX. Analysis of RCF data is supported by Monte-Carlo modeling of RCF response to ions and electrons using FLUKA. Trends in the resulting ion distributions will be discussed including spatially varying slope temperature and observation of annular ring features at moderate ion energies on many shots. This material is based upon work supported by the AFOSR under award FA9550-14-1-0085, by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0003107.

  20. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  1. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  2. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  3. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets whenmore » intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at

  4. Cryogenic System for the New International Accelerator Facility for Research with Ions and Antiprotons at GSI

    NASA Astrophysics Data System (ADS)

    Kauschke, M.; Schroeder, C. H.

    2004-06-01

    The Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, is planning an extension of the existing heavy ion accelerator. The new facilities will contain two synchrotrons, four storage rings and approximately 1.4 km of beam transport, requiring different types of magnets and cooling regimes. As the magnets for the synchrotrons have to be fast-ramped magnets, the cryogenic system heat loads will be dominated by the AC-losses of the magnets. Our approach is to adopt and modify existing magnet designs to achieve a short development time for the facility. The cryogenic system has to provide 7.5 kW at 4.4 K in the two-phase cooling regime, 3 kW at 0.4 MPa and 4.2 K in forced-flow cooling for the synchrotrons. The storage ring magnets will be placed in bath cryostats and require a refrigeration capacity of 5 kW at 4.5 K. As the project will be commissioned in several steps, an economic plan for the cryogenic infrastructure is needed, which will be sufficient for every phase of the build-up and allow experiments in some parts of the facilities as well as the testing of the components for the later parts of the facility.

  5. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Accelerator target

    DOEpatents

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  7. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  8. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    PubMed

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  9. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  10. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  11. A time-of-flight system for the external target facility

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Heng; Yu, Yu-Hong; Sun, Zhi-Yu; Mao, Rui-Shi; Wang, Shi-Tao; Zhou, Yong; Yan, Duo; Liu, Long-Xiang

    2013-05-01

    A time-of-flight system with a plastic scintillator coupled to photomultipliers is developed for the external target facility (ETF). This system can satisfy the requirement of an ultrahigh vacuum (~10-9 mbar), a high counting rate (~106 particles per second) and a magnetic field environment. In the beam test experiment, a total time resolution of 580 ps FWHM was obtained for the whole system, and nuclei with a mass of up to 80 could be identified using this system.

  12. Favorable target positions for intense laser acceleration of electrons in hydrogen-like, highly-charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pi, Liang-Wen; Starace, Anthony F.; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

    2015-09-15

    Classical relativistic Monte Carlo simulations of petawatt laser acceleration of electrons bound initially in hydrogen-like, highly-charged ions show that both the angles and energies of the laser-accelerated electrons depend on the initial ion positions with respect to the laser focus. Electrons bound in ions located after the laser focus generally acquire higher (≈GeV) energies and are ejected at smaller angles with respect to the laser beam. Our simulations assume a tightly-focused linearly-polarized laser pulse with intensity approaching 10{sup 22 }W/cm{sup 2}. Up to fifth order corrections to the paraxial approximation of the laser field in the focal region are taken intomore » account. In addition to the laser intensity, the Rayleigh length in the focal region is shown to play a significant role in maximizing the final energy of the accelerated electrons. Results are presented for both Ne{sup 9+} and Ar{sup 17+} target ions.« less

  13. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less

  14. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mmmore » to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.« less

  15. AMS implications of charge-changing during acceleration

    NASA Astrophysics Data System (ADS)

    Knies, D. L.; Grabowski, K. S.; Cetina, C.; Demoranville, L. T.; Dougherty, M. R.; Mignerey, A. C.; Taylor, C. L.

    2007-08-01

    The NRL Accelerator Mass Spectrometer facility was recently reconfigured to incorporate a modified Cameca IMS 6f Secondary Ion Mass Spectrometer as a high-performance ion source. The NRL accelerator facility supplants the mass spectrometer portion of the IMS 6f instrument. As part of the initial testing of the combined instrument, charge-state scans were performed under various conditions. These provided the basis for studying the effects of terminal gas pressure on the process of charge-changing during acceleration. A combined system of transmission-micro-channel plate and energy detector was found to remove ghost beams produced from Pd charge-changing events in the accelerator tube.

  16. The status of the SNS external antenna ion source and spare RFQ test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welton, R. F., E-mail: welton@ornl.gov; Aleksandrov, A. V.; Han, B. X.

    The Oak Ridge National Laboratory operates the Spallation Neutron Source, consisting of a H{sup −} ion source, a 1 GeV linac and an accumulator ring. The accumulated <1 μs-long, ∼35 A beam pulses are extracted from the ring at 60 Hz and directed onto a liquid Hg target. Spalled neutrons are directed to ∼20 world class instruments. Currently, the facility operates routinely with ∼1.2 MW of average beam power, which soon will be raised to 1.4 MW. A future upgrade with a second target station calls for raising the power to 2.8 MW. This paper describes the status of twomore » accelerator components expected to play important roles in achieving these goals: a recently acquired RFQ accelerator and the external antenna ion source. Currently, the RFQ is being conditioned in a newly constructed 2.5 MeV Integrated Test Facility (ITF) and the external antenna source is also being tested on a separate test stand. This paper presents the results of experiments and the testing of these systems.« less

  17. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  18. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Lund, S. M.; McGuffey, C.; Alexander, N.; Aurand, B.; Barnard, J. J.; Beg, F. N.; Bellei, C.; Bieniosek, F. M.; Brabetz, C.; Cohen, R. H.; Kim, J.; Neumayer, P.; Roth, M.; Logan, B. G.

    2013-08-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the "Helmholtzzentrum für Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  19. Project definition study for the National Biomedical Tracer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roozen, K.

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendationsmore » for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.« less

  20. An accelerator-based neutron microbeam system for studies of radiation effects

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2011-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min−1. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy. PMID:21131327

  1. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  2. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T.; Nocente, M.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understandmore » neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.« less

  3. Radiological Aspects of Heavy Metal Liquid Targets for Accelerator-Driven Systems as Intense Neutron Sources

    NASA Astrophysics Data System (ADS)

    Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.; Shubin, Yu. N.

    2001-11-01

    General problems arising in development of intense neutron sources as a part of accelerator-driven systems and first experience accumulated in IPPE during last several years are briefly discussed. The calculation and analysis of nuclear-physical properties of the targets, such as the accumulation of spallation reaction products, activity and heat release for various versions of heavy liquid metal targets were performed in IPPE. The sensitivity of the results of calculations to the various sets of nuclear data was considered. The main radiology characteristics of the lead-bismuth target, which is now under construction in the frame of ISTC Project # 559, are briefly described. The production of short-lived nuclides was estimated, the total activity and volatile nuclide accumulation, residual heat release, the energies of various decay modes were analysed.

  4. Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferres, Laurent

    Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less

  5. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  6. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  7. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  8. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  9. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  10. The SPES High Power ISOL production target

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  11. Bright betatron X-ray radiation from a laser-driven-clustering gas target

    PubMed Central

    Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.

    2013-01-01

    Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033

  12. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  13. Neutron Source from Laser Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Jiao, Xuejing; Shaw, Joseph; McCary, Eddie; Downer, Mike; Hegelich, Bjorn

    2016-10-01

    Laser driven electron beams and ion beams were utilized to produce neutron sources via different mechanism. On the Texas Petawatt laser, deuterized plastic, gold and DLC foil targets of varying thickness were shot with 150 J , 150 fs laser pulses at a peak intensity of 2 ×1021W /cm2 . Ions were accelerated by either target normal sheath acceleration or Breakout Afterburner acceleration. Neutrons were produced via the 9Be(d,n) and 9Be(p,n) reactions when accelerated ions impinged on a Beryllium converter as well as by deuteron breakup reactions. We observed 2 ×1010 neutron per shot in average, corresponding to 5 ×1018n /s . The efficiencies for different targets are comparable. In another experiment, 38fs , 0.3 J UT3 laser pulse interacted with mixed gas target. Electrons with energy 40MeV were produced via laser wakefield acceleration. Neutron flux of 2 ×106 per shot was generated through bremsstrahlung and subsequent photoneutron reactions on a Copper converter.

  14. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackintosh, Angela

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for themore » customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)« less

  15. High quality ion acceleration through the interaction of two matched counterpropagating transversely polarized Gaussian lasers with a flat foil target

    NASA Astrophysics Data System (ADS)

    Zhou, Weijun; Hong, Xueren; Xie, Baisong; Yang, Yang; Wang, Li; Tian, Jianmin; Tang, Rongan; Duan, Wenshan

    2018-02-01

    In order to generate high quality ion beams through a relatively uniform radiation pressure acceleration (RPA) of a common flat foil, a new scheme is proposed to overcome the curve of the target while being radiated by a single transversely Gaussian laser. In this scheme, two matched counterpropagating transversely Gaussian laser pulses, a main pulse and an auxiliary pulse, impinge on the foil target at the meantime. It is found that in the two-dimensional (2D) particle-in-cell (PIC) simulation, by the restraint of the auxiliary laser, the curve of the foil can be effectively suppressed. As a result, a high quality monoenergetic ion beam is generated through an efficient RPA of the foil target. For example, two counterpropagating transversely circularly polarized Gaussian lasers with normalized amplitudes a1=120 and a2=30 , respectively, impinge on the foil target at the meantime, a 1.3 GeV monoenergetic proton beam with high collimation is obtained finally. Furthermore, the effects on the ions acceleration with different parameters of the auxiliary laser are also investigated.

  16. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Lizee, Arnaud

    1996-01-01

    The object of this work, started in March of 1995, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, 1-D models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USMP-3 spaceflight which took place earlier this year (22 Feb. - 6 Mar. 1996). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification system

  17. D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility

    DOE PAGES

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas; ...

    2018-01-19

    Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less

  18. D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas

    Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less

  19. Magnetized Target Fusion Collaboration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slough, John

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent

  20. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. F.; Alvestad, H. W.; Barkley, W. C.

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion ofmore » a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.« less

  1. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki

    2007-03-01

    A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.

  2. Acceleration of deuterons with suppression of electronic conductance in a vacuum diode with a laser target on the anode

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2016-12-01

    We report new experimental results on the acceleration of deuterons in a compact coaxial diode with the suppression of electronic conductance by a constant longitudinal magnetic field. Plasma containing deuterons is created on a laser TiD target located on the anode. The pulse of accelerating voltage is formed by means of the Arkad'ev-Marx generator. The cathode symmetrically surrounds the anode and comprises a hollow permanent ring magnet with an inner radius of no more than 0.02 m and an on-axis induction of up to 0.4 T, which provides the magnetic insulation of the accelerating gap. The experiments demonstrate the possibility of obtaining accelerated deuterons with energy of up to 300 keV and a current of up to 0.5 kA with a pulse duration of 0.2 μs.

  3. Acceleration to High Velocities and Heating by Impact Using Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max

    2009-11-01

    Shock ignition, impact ignition, as well as higher intensity conventional hot spot ignition designs reduce driver energy requirement by pushing the envelope in laser intensity and target implosion velocities. This talk will describe experiments that for the first time reach target velocities in the range of 700 -- 1000 km/s. The highly accelerated planar foils of deuterated polystyrene, some with bromine doping, are made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Target acceleration and collision are diagnosed using large field of view monochromatic x-ray imaging with backlighting as well as bremsstrahlung self-emission. The impact conditions are diagnosed using DD fusion neutron yield, with over 10^6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2 -- 3 keV. The experiments are performed on the Nike facility, reconfigured specifically for high intensity operation. The short wavelength and high illumination uniformity of Nike KrF laser uniquely enable access to this new parameter regime. Intensities of (0.4 -- 1.2) x 10^15 W/cm^2 and pulse durations of 0.4 -- 2 ns were utilized. Modeling of the target acceleration, collision, and neutron production is performed using the FAST3D radiation hydrodynamics code with a non-LTE radiation model. Work is supported by US Department of Energy.

  4. Study of Corona Discharge on 160 KeV, 10 mA Electron Accelerator Facility Using FEM

    NASA Astrophysics Data System (ADS)

    Ghazali, Abu Bakar Mhd; Sobri, Rokiah Mohd

    2008-05-01

    This paper describes a method to verify the overall design of our electron accelerator. It is free from corona or spark discharge phenomenon. This locally designed electron accelerator facility is located at Nuclear Malaysia Complex, Bangi, Selangor. In this study, we describe the geometry of the pressure vessel filled with SF6 gas at 2 atm to enclose the high voltage area of the accelerating tube. The Poisson's equation is used to calculate the contours of the electric field that is created between the cathode of -160 kV maximum and the wall of the vessel. The nearest sharp edge between the cathode and the pressure wall is 163 mm apart. The calculation is based on finite element method (FEM) for electrostatic charges in order to obtain an electric field contour in two-dimensional plane. We found that the surface charge density of the cathode is 1.1×10-5 C/m2 for the corona glowing seen at -90 kV. Moreover, the highest electric field near to (about 5 mm from) the sharp edge is about 2.7 MV/m, which is less than the dielectric strength of SF6 gas, i.e. 6 MV/m and therefore, it proved that our design of the pressure vessel is save from corona or spark discharges.

  5. Plasma wakefield acceleration experiments at FACET II

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.

    2018-03-01

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.

  6. Plasma wakefield acceleration experiments at FACET II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, C.; Adli, E.; An, W.

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  7. Plasma wakefield acceleration experiments at FACET II

    DOE PAGES

    Joshi, C.; Adli, E.; An, W.; ...

    2018-01-12

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  8. Final report on the Magnetized Target Fusion Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Slough

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was

  9. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  10. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tom

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films weremore » smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.« less

  11. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    NASA Astrophysics Data System (ADS)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  12. Consortium of accelerated pavement testers (CAPT).

    DOT National Transportation Integrated Search

    2016-05-01

    FHWA and a group of state Departments of Transportation from nine of the 14 US Accelerated : Pavement Testing (APT) facilities have proposed the creation of a joint or pooled funded program to : encourage coordination among the various facilities and...

  13. Poster - Thur Eve - 02: Regulatory oversight of the robotic radiosurgery facilities.

    PubMed

    Broda, K

    2012-07-01

    Following a recent review of the Class II Nuclear Facilities and Prescribed Equipment Regulations and regulatory oversight of particle accelerators, the Canadian Nuclear Safety Commission (CNSC) has changed its policy concerning the regulation of particle accelerators. In November 2011, the CNSC began to exercise its regulatory authority with respect to all particle accelerators operating at a beam energy of 1 (one) MeV or greater. The CNSC already licences and inspects particle accelerators capable of operating at or above 10 MeV. The decision to now include low energy particle accelerators (i.e., those operating at or above 1 MeV) ensures adequate, uniform and consistent regulatory oversight for all Class II accelerators. The CNSC expects these facilities to comply with CNSC requirements by December 2013. Besides conventional linear accelerators of lower energy (6 MeV or below) typically found in cancer clinics, two types of equipment now fall under the CNSC's regulatory oversight as a result of the above change: robotic radiosurgery and tomotherapy equipment and facilities. A number of clinics in Canada already operates these types of equipment and facilities. The safety aspects of radiosurgery equipment differ slightly from those for conventional linear accelerators. This poster aims to present an approach taken by the CNSC to regulate robotic radiosurgery equipment and facilities. The presentation will explain how to meet regulatory requirements of the Class II Nuclear Facilities and Prescribed Equipment Regulations by licensees operating or planning to acquire these types of equipment and facilities. © 2012 American Association of Physicists in Medicine.

  14. The Spallation Neutron Source (SNS) project accelerator systems

    NASA Astrophysics Data System (ADS)

    Holmes, Jeffrey A.; Alonso, Jose R.

    1999-06-01

    The SNS will be the world's leading accelerator-based neutron-scattering research facility when it begins operation in 2005. By delivering 1-MW of beam power to a heavy-metal target in short (<1 μs) bursts of 1-GeV protons, the SNS will provide intense neutron beams with flux levels at least a factor of five over present spallation sources. A multi-laboratory (LBNL, LANL, BNL, ANL and ORNL) collaboration, led by Oak Ridge National Laboratory, has developed a reference design that addresses the challenging technology issues associated with this project. This paper discusses the requirements, issues, and constraints that led to the present design choices.

  15. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  16. Effects of online cone-beam computed tomography with active breath control in determining planning target volume during accelerated partial breast irradiation.

    PubMed

    Li, Y; Zhong, R; Wang, X; Ai, P; Henderson, F; Chen, N; Luo, F

    2017-04-01

    To test if active breath control during cone-beam computed tomography (CBCT) could improve planning target volume during accelerated partial breast radiotherapy for breast cancer. Patients who were more than 40 years old, underwent breast-conserving dissection and planned for accelerated partial breast irradiation, and with postoperative staging limited to T1-2 N0 M0, or postoperative staging T2 lesion no larger than 3cm with a negative surgical margin greater than 2mm were enrolled. Patients with lobular carcinoma or extensive ductal carcinoma in situ were excluded. CBCT images were obtained pre-correction, post-correction and post-treatment. Set-up errors were recorded at left-right, anterior-posterior and superior-inferior directions. The differences between these CBCT images, as well as calculated radiation doses, were compared between patients with active breath control or free breathing. Forty patients were enrolled, among them 25 had active breath control. A total of 836 CBCT images were obtained for analysis. CBCT significantly reduced planning target volume. However, active breath control did not show significant benefit in decreasing planning target volume margin and the doses of organ-at-risk when compared to free breathing. CBCT, but not active breath control, could reduce planning target volume during accelerated partial breast irradiation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  19. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  20. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  1. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  2. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  3. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991; Esirkepov, T. Zh.

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  4. Holifield Heavy-Ion Research Facility at Oak Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, C.M.

    1977-01-01

    A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described.

  5. The drift chamber array at the external target facility in HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.

    2018-06-01

    A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.

  6. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  7. High-flux neutron source based on a liquid-lithium target

    NASA Astrophysics Data System (ADS)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  8. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Daniel; Jacobson, B.; Murokh, A.

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less

  9. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  10. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    DOE PAGES

    Mihalcea, Daniel; Jacobson, B.; Murokh, A.; ...

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less

  11. Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry

    PubMed Central

    2010-01-01

    Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals. PMID:20163100

  12. Development of a single ion hit facility at the Pierre Sue Laboratory: a collimated microbeam to study radiological effects on targeted living cells.

    PubMed

    Daudin, L; Carrière, M; Gouget, B; Hoarau, J; Khodja, H

    2006-01-01

    A single ion hit facility is being developed at the Pierre Süe Laboratory (LPS) since 2004. This set-up will be dedicated to the study of ionising radiation effects on living cells, which will complete current research conducted on uranium chemical toxicity on renal and osteoblastic cells. The study of the response to an exposure to alpha particles will allow us to distinguish radiological and chemical toxicities of uranium, with a special emphasis on the bystander effect at low doses. Designed and installed on the LPS Nuclear microprobe, up to now dedicated to ion beam microanalysis, this set-up will enable us to deliver an exact number of light ions accelerated by a 3.75 MV electrostatic accelerator. An 'in air' vertical beam permits the irradiation of cells in conditions compatible with cell culture techniques. Furthermore, cellular monolayer will be kept in controlled conditions of temperature and atmosphere in order to diminish stress. The beam is collimated with a fused silica capillary tubing to target pre-selected cells. Motorisation of the collimator with piezo-electric actuators should enable fast irradiation without moving the sample, thus avoiding mechanical stress. An automated epifluorescence microscope, mounted on an antivibration table, allows pre- and post-irradiation cell observation. An ultra thin silicon surface barrier detector has been developed and tested to be able to shoot a cell with a single alpha particle.

  13. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  14. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  15. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.

    PubMed

    Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J

    2012-04-01

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics

  16. Wavefront correction by target-phase-locking technology in a 500 TW laser facility

    NASA Astrophysics Data System (ADS)

    Wang, D. E.; Dai, W. J.; Zhou, K. N.; Su, J. Q.; Xue, Q.; Yuan, Q.; Zhang, X.; Deng, X. W.; Yang, Y.; Wang, Y. C.; Xie, N.; Sun, L.; Hu, D. X.; Zhu, Q. H.

    2017-03-01

    We demonstrate a novel approach termed target-phase-locking that could improve the entire beam wavefront quality of a 500 TW Nd3+:phosphate glass laser facility. The thermal and static wavefront from front-end to target is corrected by using one deformable mirror that receives feedback from both the focal-spot sensor and wavefront sensor, and only the main laser of the laser system is employed in the correction process, with auxiliary calibration light no longer necessary. As a result, a static focal spot with full width at half maximum of 8.87  ×  5.74 µm is achieved, the thermal wavefront induced by flash-lamp-pumped Nd3+:phosphate glass is compensated with PV from 3.54-0.43 µm, and a dynamic focal spot with intensity exceeding 1020 W cm-2 is precisely predicted at the target with such an approach.

  17. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  18. Acceleration of recovery in acute renal failure: from cellular mechanisms of tubular repair to innovative targeted therapies.

    PubMed

    Abbate, M; Remuzzi, G

    1996-05-01

    Kidney repair from injury is a major focus of interest for research, both clinical and basic, in the field of acute renal failure. This is so because very little progress has been made during the past several years to improve mortality in hospitalized patients with acute renal failure despite the unique potential of the kidney for complete structural and functional recovery. Novel therapeutic options have recently emerged from the knowledge of molecular mechanisms of tissue injury after ischemia, including pathways of endothelial-leukocyte interaction and epithelial cell aggregation mediated by integrin molecules. These strategies are promising because they may target early mechanisms of leukocyte infiltration and tubular obstruction. However, it seems clear that additional interventions should address the reparative program that potentially leads to the full restoration of kidney structure and function. Thus, acceleration of repair from acute renal failure is achieved experimentally by growth factors which besides different renal actions seem to have in common the ability to stimulate proliferation of surviving tubular epithelial cells. We direct attention to cellular processes which characterize, and possibly have role in, renal repair from acute tubular injury as potential targets of therapy. In addition to proliferation, they include epithelial differentiation and apoptosis. Further investigation in the biology of repair should set the stage for rational design of targeted therapies which may accelerate the pace of recovery and hopefully decrease mortality in such a dramatic and potentially reversible setting.

  19. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  20. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  1. High-power liquid-lithium jet target for neutron production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based onmore » a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.« less

  2. A feasibility study of a hypersonic real-gas facility

    NASA Technical Reports Server (NTRS)

    Gully, J. H.; Driga, M. D.; Weldon, W. F.

    1987-01-01

    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.

  3. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE PAGES

    Simos, N.; Ludewig, H.; Kirk, H.; ...

    2018-05-29

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  4. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    NASA Astrophysics Data System (ADS)

    Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.

    2018-05-01

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.

  5. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Ludewig, H.; Kirk, H.

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  6. Proton acceleration to above 5.5 MeV by interaction of 1017 W/cm2 laser pulse with H2O nano-wire targets

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Bruner, N.; Eisenmann, S.; Botton, M.; Pikuz, S. A., Jr.; Faenov, A. Y.; Gordon, D.; Zigler, A.

    2011-05-01

    Compact sources of high energy protons (50-500MeV) are expected to be key technology in a wide range of scientific applications 1-8. Particularly promising is the target normal sheah acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Enhancing the energy of generated protons using compact laser sources is very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13. Here we report on the first generation of 5.5-7.5MeV protons by modest laser intensities (4.5 × 1017 W/cm2) interacting with H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the plasma near the tip of the nano-wire is subject to locally enhanced laser intensity with high spatial gradients, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. Nano-wire engineered targets will relax the demand of peak energy from laser based sources.

  7. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-02-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  8. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  9. High-flux neutron source based on a liquid-lithium target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Paul, M.

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less

  10. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    PubMed Central

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic

  11. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  12. Onset of turbulence in accelerated high-Reynolds-number flow

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.

    2003-05-01

    A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types

  13. Using Rutherford Backscattering Spectroscopy to Characterize Targets for MTW

    NASA Astrophysics Data System (ADS)

    Brown, Gunnar; Stockler, Barak; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Stillman, Collin; Ivancic, Steven; Reagan, S. P.; Sangster, T. C.

    2017-10-01

    A study is underway to determine the composition and thickness of targets used at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) using Rutherford backscattering spectroscopy (RBS). In RBS, an ion beam is incident on a sample and the scattered ions are detected with a surface barrier detector. The resulting energy spectra of the scattered ions can be analyzed to determine important parameters of the target including elemental composition and thickness. Proton, helium and deuterium beams from the 1.7 MV Pelletron accelerator at SUNY Geneseo have been used to characterize several different targets for MTW, including CH and aluminum foils of varying thickness. RBS spectra were also obtained for a cylindrical iron buried-layer target with aluminum dopant which was mounted on a silicon carbide stalk. The computer program SIMNRA is used to analyze the spectra. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.

  14. Commissioning for the European XFEL facility

    NASA Astrophysics Data System (ADS)

    Nölle, D.

    2017-06-01

    The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.

  15. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  16. Nuclotron-Based Ion Collider Facility (nica)

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sissakian, A.; Sorin, A.

    2008-09-01

    The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).

  17. Monitoring System for the Gold Target by Radiation Detectors in Hadron Experimental Facility at J-PARC

    NASA Astrophysics Data System (ADS)

    Muto, Ryotaro; Agari, Keizo; Aoki, Kazuya; Bessho, Kotaro; Hagiwara, Masayuki; Hirose, Erina; Ieiri, Masaharu; Iwasaki, Ruri; Katoh, Yohji; Kitagawa, Jun-ichi; Minakawa, Michifumi; Morino, Yuhei; Saito, Kiwamu; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka

    2017-09-01

    At the Hadron Experimental Facility in J-PARC, we inject a 30-GeV proton beam into a gold target to produce secondary particle beams required for various particle and nuclear physics experiments. The gold target is placed in a hermetic chamber, and helium gas is circulated in the chamber to monitor the soundness of the target. The radioactivity in helium gas is continuously monitored by gamma-ray detectors such as a germanium detector and a NaI(Tl) detector. Beam operations with those target-monitoring systems were successfully performed from April to June and October to December 2015, and from May to June 2016. In this paper, the details of the helium gas circulation system and gamma-ray detectors and the analysis results of the obtained gamma-ray spectra are reported.

  18. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  19. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  20. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.

    2012-04-15

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile,more » made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.« less

  1. Definition of Capabilities Needed for a Single Event Effects Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X.

    The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options formore » SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 10 6 are applicable for component testing, whereas for systems testing acceleration factors of 10 4 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 10 2 - 10 4 n/cm²/s for systems testing and from 10 4 - 10 7 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would allow for simultaneous testing activity effectively

  2. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  3. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  4. Computational Accelerator Physics. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognano, J.J.; Mondelli, A.A.

    1997-04-01

    The sixty two papers appearing in this volume were presented at CAP96, the Computational Accelerator Physics Conference held in Williamsburg, Virginia from September 24{minus}27,1996. Science Applications International Corporation (SAIC) and the Thomas Jefferson National Accelerator Facility (Jefferson lab) jointly hosted CAP96, with financial support from the U.S. department of Energy`s Office of Energy Research and the Office of Naval reasearch. Topics ranged from descriptions of specific codes to advanced computing techniques and numerical methods. Update talks were presented on nearly all of the accelerator community`s major electromagnetic and particle tracking codes. Among all papers, thirty of them are abstracted formore » the Energy Science and Technology database.(AIP)« less

  5. Hospital to Post-Acute Care Facility Transfers: Identifying Targets for Information Exchange Quality Improvement.

    PubMed

    Jones, Christine D; Cumbler, Ethan; Honigman, Benjamin; Burke, Robert E; Boxer, Rebecca S; Levy, Cari; Coleman, Eric A; Wald, Heidi L

    2017-01-01

    Information exchange is critical to high-quality care transitions from hospitals to post-acute care (PAC) facilities. We conducted a survey to evaluate the completeness and timeliness of information transfer and communication between a tertiary-care academic hospital and its related PAC facilities. This was a cross-sectional Web-based 36-question survey of 110 PAC clinicians and staff representing 31 PAC facilities conducted between October and December 2013. We received responses from 71 of 110 individuals representing 29 of 31 facilities (65% and 94% response rates). We collapsed 4-point Likert responses into dichotomous variables to reflect completeness (sufficient vs insufficient) and timeliness (timely vs not timely) for information transfer and communication. Among respondents, 32% reported insufficient information about discharge medical conditions and management plan, and 83% reported at least occasionally encountering problems directly related to inadequate information from the hospital. Hospital clinician contact information was the most common insufficient domain. With respect to timeliness, 86% of respondents desired receipt of a discharge summary on or before the day of discharge, but only 58% reported receiving the summary within this time frame. Through free-text responses, several participants expressed the need for paper prescriptions for controlled pain medications to be sent with patients at the time of transfer. Staff and clinicians at PAC facilities perceive substantial deficits in content and timeliness of information exchange between the hospital and facilities. Such deficits are particularly relevant in the context of the increasing prevalence of bundled payments for care across settings as well as forthcoming readmissions penalties for PAC facilities. Targets identified for quality improvement include structuring discharge summary information to include information identified as deficient by respondents, completion of discharge summaries

  6. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  7. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  8. Towards ion beam therapy based on laser plasma accelerators.

    PubMed

    Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg

    2017-11-01

    Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.

  9. Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Weick, H.; Iwase, H.; Geissel, H.; Hoffmann, D. H. H.; Kindler, B.; Lommel, B.; Radon, T.; Münzenberg, G.; Shutov, A.; Sümmerer, K.; Winkler, M.

    2005-06-01

    A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump.

  10. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  11. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  12. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    PASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less

  13. Upgrade of the cryogenic CERN RF test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirotte, O.; Benda, V.; Brunner, O.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less

  14. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    DOE PAGES

    Cherkashyna, Nataliia; Di Julio, Douglas D.; Panzner, Tobias; ...

    2015-08-09

    The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolithmore » wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code Geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates Geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS.« less

  15. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...

  16. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  18. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE PAGES

    Spielman, R. B.; Froula, D. H.; Brent, G.; ...

    2017-06-21

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  19. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, R. B.; Froula, D. H.; Brent, G.

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  20. Synchronized chaotic targeting and acceleration of surface chemistry in prebiotic hydrothermal microenvironments

    PubMed Central

    Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.

    2017-01-01

    Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504

  1. The Fair Facility

    NASA Astrophysics Data System (ADS)

    Nilsson, Thomas

    2015-03-01

    The FAIR (Facility for Antiproton and Ion Beams), under construction at the GSI site in Darmstadt, Germany, will be addressing a wealth of outstanding questions within the realm of subatomic, atomic and plasma physics through a combination of novel accelerators, storage rings and innovative experimental setups. The envisaged programme of FAIR yields a breadth that is unprecedented at an accelerator-based infrastructure. A brief review of the FAIR infrastructure and scientific reach is made, together with an update of the status of the construction.

  2. Mechanical engineering and design criteria for the Magnetically Insulated Transmission Experiment Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staller, G.E.; Hamilton, I.D.; Aker, M.F.

    1978-02-01

    A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.

  3. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.

    PubMed

    Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.

  4. Two-stage acceleration of protons from relativistic laser-solid interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jinlu; Sheng, Z. M.; Zheng, J.

    2012-12-21

    A two-stage proton acceleration scheme using present-day intense lasers and a unique target design is proposed. The target system consists of a hollow cylinder, inside which is a hollow cone, which is followed by the main target with a flat front and dish-like flared rear surface. At the center of the latter is a tapered proton layer, which is surrounded by outer proton layers at an angle to it. In the first acceleration stage, protons in both layers are accelerated by target normal sheath acceleration. The center-layer protons are accelerated forward along the axis and the side protons are acceleratedmore » and focused towards them. As a result, the side-layer protons radially compress as well as axially further accelerate the front part of the accelerating center-layer protons in the second stage, which are also radially confined and guided by the field of the fast electrons surrounding them. Two-dimensional particle-incell simulation shows that a 79fs 8.5 Multiplication-Sign 10{sup 20} W/cm{sup 2} laser pulse can produce a proton bunch with {approx} 267MeV maximum energy and {approx} 9.5% energy spread, which may find many applications, including cancer therapy.« less

  5. Fifty years of accelerator based physics at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  6. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  7. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    NASA Astrophysics Data System (ADS)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  8. Targets and methods for target preparation for radionuclide production

    DOEpatents

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  9. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen

    NASA Astrophysics Data System (ADS)

    Psikal, J.; Matys, M.

    2018-04-01

    Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.

  10. Evaluation of proton cross-sections for radiation sources in the proton accelerator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sik; Lee, Cheol-Woo; Lee, Young-Ouk

    2007-08-01

    Proton Engineering Frontier Project (PEFP) is currently building a proton accelerator in Korea which consists of a proton linear accelerator with 100 MeV of energy, 20 mA of current and various particle beam facilities. The final goal of this project consists of the production of 1 GeV proton beams, which will be used for various medical and industrial applications as well as for research in basic and applied sciences. Carbon and copper in the proton accelerator for PEPP, through activation, become radionuclides such as 7Be and 64Cu. Copper is a major element of the accelerator components and the carbon is planned to be used as a target material of the beam dump. A recent survey showed that the currently available cross-sections create a large difference from the experimental data in the production of some residual nuclides by the proton-induced reactions for carbon and copper. To more accurately estimate the production of radioactive nuclides in the accelerator, proton cross-sections for carbon and copper are evaluated. The TALYS code was used for the evaluation of the cross-sections for the proton-induced reactions. To obtain the cross-sections which best fits the experimental data, optical model parameters for the neutron, proton and other complex particles such as the deuteron and alpha were successively adjusted. The evaluated cross-sections in this study are compared with the measurements and other evaluations .

  11. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  12. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introducedmore » briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.« less

  13. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  14. Ion acceleration via TNSA near and beyond the relativistic transparency limit

    NASA Astrophysics Data System (ADS)

    Schumacher, Douglass; Poole, Patrick; Cochran, Ginevra; Willis, Christopher

    2017-10-01

    Ultra-intense laser-based ion acceleration can proceed via several mechanisms whose fundamental operation and interplay with each other are still not well understood. The details of Relativistically Induced Transparency (RIT) and its impact on ultra-thin target acceleration are of interest for fundamental studies and to progress toward applications requiring controlled, high energy secondary radiation, e.g. hadron cancer therapy. Liquid crystal film targets formed in-situ with thickness control between 10 nm and > 50 μm uniquely allow study of how ion acceleration varies with target thickness. Several recent studies have investigated Target Normal Sheath Acceleration (TNSA) down to the thickness at which RIT occurs, with a wide range of laser conditions (energy, pulse duration, and contrast), using various ion and optical diagnostics to ascertain acceleration mechanisms and quality. Observation of target-normal directed ion acceleration enhancement at the RIT thickness onset will be discussed, including analysis of ion spatial and spectral features as well as particle-in-cell simulations investigating the underlying physical processes. This material is based upon work supported by the AFOSR under Award Number FA9550-14-1-0085, by the NNSA under DE-NA0003107, and by computing time from the Ohio Supercomputer Center.

  15. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Michael James

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less

  16. First results with the novel petawatt laser acceleration facility in Dresden

    NASA Astrophysics Data System (ADS)

    Schramm, U.; Bussmann, M.; Irman, A.; Siebold, M.; Zeil, K.; Albach, D.; Bernert, C.; Bock, S.; Brack, F.; Branco, J.; Couperus, JP; Cowan, TE; Debus, A.; Eisenmann, C.; Garten, M.; Gebhardt, R.; Grams, S.; Helbig, U.; Huebl, A.; Kluge, T.; Köhler, A.; Krämer, JM; Kraft, S.; Kroll, F.; Kuntzsch, M.; Lehnert, U.; Loeser, M.; Metzkes, J.; Michel, P.; Obst, L.; Pausch, R.; Rehwald, M.; Sauerbrey, R.; Schlenvoigt, HP; Steiniger, K.; Zarini, O.

    2017-07-01

    We report on first commissioning results of the DRACO Petawatt ultra-short pulse laser system implemented at the ELBE center for high power radiation sources of Helmholtz-Zentrum Dresden-Rossendorf. Key parameters of the laser system essential for efficient and reproducible performance of plasma accelerators are presented and discussed with the demonstration of 40 MeV proton acceleration under TNSA conditions as well as peaked electron spectra with unprecedented bunch charge in the 0.5 nC range.

  17. Scientific opportunities at SARAF with a liquid lithium jet target neutron source

    NASA Astrophysics Data System (ADS)

    Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.

  18. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  19. Radiation Safety System for SPIDER Neutral Beam Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandri, S.; Poggi, C.; Coniglio, A.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less

  20. Accelerator performance analysis of the Fermilab Muon Campus

    DOE PAGES

    Stratakis, Diktys; Convery, Mary E.; Johnstone, Carol; ...

    2017-11-21

    Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstreammore » beam line optics, as well as transport of muon polarization. Lastly, we finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.« less

  1. JAERI R & D on accelerator-based transmutation under OMEGA program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takizuka, T.; Nishida, T.; Mizumoto, M.

    1995-10-01

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts alsomore » as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.« less

  2. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  3. Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration

    NASA Technical Reports Server (NTRS)

    Hamerman, J. A.

    1979-01-01

    This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.

  4. Development of laboratory testing facility for evaluation of base-soil behavior under repeated loading : phase-1 : feasibility study.

    DOT National Transportation Integrated Search

    2008-03-01

    The main objective of this study was to determine the most beneficial and cost-effective accelerated load facility that can be used in conjunction with LTRCs Accelerated Load Facility (ALF). The facility will be used primarily for conducting preli...

  5. The ISOLDE facility and the HIE-HISOLDE project: Recent highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borge, M. J. G.

    2014-07-23

    The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less

  6. SHiP: a new facility with a dedicated detector for studying tau neutrino properties

    NASA Astrophysics Data System (ADS)

    Komatsu, M.; SHiP Collaboration

    2017-06-01

    SHiP (Search for Hidden Particles) is a new general purpose fixed target facility at the CERN SPS accelerator, with the aim of search for New Physics which has small coupling with standard particles by searching for long lived beyond standard model particles with masses below a few GeV/c2. The SHiP facility is a high intensity beam bump, the 400GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2 ×1020 pot in 5 years. A dedicated detector, based on the OPERA-like ECC (Emulsion Cloud Chamber), will provide tau and anti-tau neutrino detection capability to study ντ and ν‾τ cross-sections with a statistics a few 100 times larger than the DONUT experiment. Moreover, the structure functions F4 and F5 which is only accessible by tau neutrino interactions can be measured first time. SHiP is the unique chance to study tau and anti tau neutrino properties.

  7. Extrapolation of vertical target motion through a brief visual occlusion.

    PubMed

    Zago, Myrka; Iosa, Marco; Maffei, Vincenzo; Lacquaniti, Francesco

    2010-03-01

    It is known that arbitrary target accelerations along the horizontal generally are extrapolated much less accurately than target speed through a visual occlusion. The extent to which vertical accelerations can be extrapolated through an occlusion is much less understood. Here, we presented a virtual target rapidly descending on a blank screen with different motion laws. The target accelerated under gravity (1g), decelerated under reversed gravity (-1g), or moved at constant speed (0g). Probability of each type of acceleration differed across experiments: one acceleration at a time, or two to three different accelerations randomly intermingled could be presented. After a given viewing period, the target disappeared for a brief, variable period until arrival (occluded trials) or it remained visible throughout (visible trials). Subjects were asked to press a button when the target arrived at destination. We found that, in visible trials, the average performance with 1g targets could be better or worse than that with 0g targets depending on the acceleration probability, and both were always superior to the performance with -1g targets. By contrast, the average performance with 1g targets was always superior to that with 0g and -1g targets in occluded trials. Moreover, the response times of 1g trials tended to approach the ideal value with practice in occluded protocols. To gain insight into the mechanisms of extrapolation, we modeled the response timing based on different types of threshold models. We found that occlusion was accompanied by an adaptation of model parameters (threshold time and central processing time) in a direction that suggests a strategy oriented to the interception of 1g targets at the expense of the interception of the other types of tested targets. We argue that the prediction of occluded vertical motion may incorporate an expectation of gravity effects.

  8. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].

    PubMed

    Nakamura, T; Uwamino, Y

    1986-02-01

    The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.

  9. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    DOE PAGES

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; ...

    2016-04-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as wellmore » as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.« less

  10. Future Facility: FAIR at GSI

    NASA Astrophysics Data System (ADS)

    Rosner, Guenther

    2007-05-01

    The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

  11. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less

  12. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less

  13. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    PubMed

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    PubMed

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  16. Inertial fusion energy target injection, tracking, and beam pointing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzoldt, Ronald Wayne

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s 2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s 2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration.more » Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.« less

  17. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo

    2004-12-01

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  18. Neutron Source Facility Training Simulator Based on EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less

  19. Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Pfeifer, M.; Krousky, E.; Krasa, J.; Cikhardt, J.; Klir, D.; Nassisi, V.

    2014-04-01

    We describe the radiofrequency emission taking place when 300 ps laser pulses irradiate various solid targets with an intensity of 1016 W/cm2. The emission of intense electromagnetic pulses was observed outside the laser target chamber by two loop antennas up to 1 GHz. Electromagnetic pulses can be 800 MHz transients, which decay from a peak electromagnetic field of E0 ≊ 7 kV/m and H0 ≊ 15 A/m. The occurrence of these electromagnetic pulses is associated with generation of hard x-rays with photon energies extending beyond 1 MeV. This contribution reports the first observation of this effect at the PALS facility.

  20. Radiation protection design for the Super-FRS and SIS100 at the international FAIR facility

    NASA Astrophysics Data System (ADS)

    Kozlova, Ekaterina; Sokolov, Alexey; Radon, Torsten; Lang, Rupert; Conrad, Inna; Fehrenbacher, Georg; Weick, Helmut; Winkler, Martin

    2017-09-01

    The new accelerator SIS100 and the Super-FRS will be built at the international Facility for Antiprotons and Ion Research FAIR. The synchrotron SIS100 is a core part of the FAIR facility which serves for acceleration of ions like Uranium up to 2.7 GeV/u with intensities of 3x1011 particles per second or protons up to 30 GeV with intensities of 5x1012 particles per second. The Super-FRS is a superconducting fragment separator, it will be able to separate all kinds of nuclear projectile fragments of primary heavy ion beams including Uranium with energies up to 1.5 GeV/u and intensities up to 3x1011 particles per second. During operation activation of several components, especially the production target and the beam catchers will take place. For handling of highly activated components it is foreseen to have a hot cell with connected storage place. All calculations for the optimisation of the shielding design of the SIS100, the Super-FRS and the hot cell were performed using the Monte Carlo code FLUKA, results are presented.

  1. Accelerated Photobleaching of a Cyanine Dye in the Presence of a Ternary Target DNA, PNA Probe, Dye Catalytic Complex: A Molecular Diagnostic

    PubMed Central

    Wang, M.; Holmes-Davis, R.; Rafinski, Z.; Jedrzejewska, B.; Choi, K. Y.; Zwick, M.; Bupp, C.; Izmailov, A.; Paczkowski, J.; Warner, B.; Koshinsky, H.

    2009-01-01

    In many settings, molecular testing is needed but unavailable due to complexity and cost. Simple, rapid, and specific DNA detection technologies would provide important alternatives to existing detection methods. Here we report a novel, rapid nucleic acid detection method based on the accelerated photobleaching of the light-sensitive cyanine dye, 3,3′-diethylthiacarbocyanine iodide (DiSC2(3) I−), in the presence of a target genomic DNA and a complementary peptide nucleic acid (PNA) probe. On the basis of the UV–vis, circular dichroism, and fluorescence spectra of DiSC2(3) with PNA–DNA oligomer duplexes and on characterization of a product of photolysis of DiSC2(3) I−, a possible reaction mechanism is proposed. We propose that (1) a novel complex forms between dye, PNA, and DNA, (2) this complex functions as a photosensitizer producing 1O2, and (3) the 1O2 produced promotes photobleaching of dye molecules in the mixture. Similar cyanine dyes (DiSC3(3), DiSC4(3), DiSC5(3), and DiSCpy(3)) interact with preformed PNA–DNA oligomer duplexes but do not demonstrate an equivalent accelerated photobleaching effect in the presence of PNA and target genomic DNA. The feasibility of developing molecular diagnostic assays based on the accelerated photobleaching (the smartDNA assay) that results from the novel complex formed between DiSC2(3) and PNA–DNA is under way. PMID:19231844

  2. SIN accelerator, operational experience and improvement programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joho, W.; Olivo, M.; Stammbach, T.

    1977-06-01

    The SIN meson facility, in operation since 1974, consists of a 590 MeV ring cyclotron for protons and a 72 MeV injector cyclotron. The average beam current on target is presently about 50 ..mu..A, the peak being 112 ..mu..A. Extraction efficiency, once considered a severe handicap for cyclotrons, is now 99.6 to 99.9% for the ring cyclotron and about 90% for the injector. Many improvements in both accelerators allow single turn extraction in the ring cyclotron. The present current limit is given by the injector, while the ring itself could accept now a 600 ..mu..A beam, with 2 to 4more » mA as an ultimate limit. Some muon experiments require a pulsed beam with on-off times in the order of the lifetime of the muon. First trials with beam pulse frequencies of 200 and 400 kHz and a 50% duty cycle have been successful.« less

  3. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  4. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirolf, P. G., E-mail: Peter.Thirolf@lmu.de

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanismsmore » for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to

  5. An inventory of aeronautical ground research facilities. Volume 3: Structural

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    An inventory of test facilities for conducting acceleration, environmental, impact, structural shock, load, heat, vibration, and noise tests is presented. The facility is identified with a description of the equipment, the testing capabilities, and cost of operation. Performance data for the facility are presented in charts and tables.

  6. High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dollar, F.; Zulick, C.; Matsuoka, T.

    2013-05-15

    Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affectsmore » the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.« less

  7. Thermal limits on MV x-ray production by bremsstrahlung targets in the context of novel linear accelerators.

    PubMed

    Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca

    2017-12-01

    To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.

  8. IRIS : A reaction spectroscopy facility with solid H2 /D2 target

    NASA Astrophysics Data System (ADS)

    Holl, Matthias; Kanungo, Ritu; Alcorta, Martin; Andreoiu, Corina; Bidaman, Harris; Burbadge, Christina; Burke, Devin; Chen, Alan; Davids, Barry; Diaz Varela, Alejandra; Garrett, Paul; Hackman, Greg; Ishimoto, Shigeru; Kaur, Satbir; Keefe, Matthew; Kruecken, Reiner; Mansour, Iymad; Randhawa, Jaspreet; Sanetullaev, Alisher; Shotter, Alan; Smith, Jenna; Tanaka, Junki; Tanihata, Isao; Turko, Joseph; Workman, Orry

    2016-09-01

    The charged particle reaction spectroscopy station IRIS at TRIUMF is designed to allow studies of inelastic scattering and transfer reactions for low intensity beams. To do so, a novel solid H2 /D2 target is used in combination with a low pressure ionization chamber for the identification of incoming beam particles. The light ejectiles are measured using a ΔE - E telescope consisting of an annular silicon detector followed by CsI(Tl) array. Another ΔE - E telescope, consisting of two segmented silicon detectors, is used to identify the heavy outgoing particles. An overview of the faciltity will be given and examples from recent experiments that illustrate that facility's capability for reaction studies of exotic nuclei will be shown. Support from Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust and NSERC.

  9. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  10. Plasma Wake-field Acceleration in the Blow-out Regime

    NASA Astrophysics Data System (ADS)

    Barov, Nikolai; Rosenzweig, James

    1999-11-01

    Recent experiments at Argonne National Laboratory, investigating the blow-out regime of the plasma wake-field accelerator, are discussed. These experiments achieved stable underdense (beam denser than the ambient plasma density) beam transport, and measured average acceleration of 25 MV/m, corresponding to peak wave fields of over 60 MVm. A comparison of the results to simulation is given, and the physics of the system is discussed. Potential for improvements in performance and achieved acceleration gradient, as well as accelerated beam quality are examined within the context of the next generation of experiments at the Fermilab Test Facility. The status of these experiments will be given.

  11. Preliminary research on flow rate and free surface of the accelerator driven subcritical system gravity-driven dense granular-flow target

    PubMed Central

    Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian’an

    2017-01-01

    A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn’t influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT. PMID:29095910

  12. Preliminary research on flow rate and free surface of the accelerator driven subcritical system gravity-driven dense granular-flow target.

    PubMed

    Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian'an; Yang, Lei

    2017-01-01

    A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn't influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT.

  13. Enhancements to the Low-Energy Ion Facility at SUNY Geneseo

    NASA Astrophysics Data System (ADS)

    Barfield, Zachariah; Kostick, Steven; Nagasing, Ethan; Fletcher, Kurt; Padalino, Stephen

    2017-10-01

    The Low Energy Ion Facility at SUNY Geneseo is used for detector development and characterization for inertial confinement fusion diagnostics. The system has been upgraded to improve the ion beam quality by reducing contaminant ions. In the new configuration, ions produced by the Peabody Scientific duoplasmatron ion source are accelerated through a potential, focused into a new NEC analyzing magnet and directed to an angle of 30°. A new einzel lens on the output of the magnet chamber focuses the beam into a scattering chamber with a water-cooled target mount and rotatable detector mount plates. The analyzing magnet has been calibrated for deuteron, 4He+, and 4He2+ ion beams at a range of energies, and no significant hysteresis has been observed. The system can accelerate deuterons to energies up to 25 keV to initiate d-d fusion using a deuterated polymer target. Charged particle spectra with protons, tritons, and 3He ions from d-d fusion have been measured at scattering angles ranging from 55° to 135°. A time-of-flight beamline has been designed to measure the energies of ions elastically scattered at 135°. CEM detectors initiate start and stop signals from secondary electrons produced when low energy ions pass through very thin carbon foils. Funded in part by the U.S. Department of Energy through the Laboratory for Laser Energetics.

  14. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  15. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  16. Progress report of the innovated KIST ion beam facility

    NASA Astrophysics Data System (ADS)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan

    2017-01-01

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for 10Be, 14C, 26Al, 36 Cl, 41Ca and 129I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  17. Research with Radioactive Targets

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2004-10-01

    Obtaining precise information about neutron capture cross-sections for s-process branch points is a key goal of nuclear astrophysics. Since these nuclei are unstable and neutron targets do not exist, performing these measurements require a facility that can produce the nuclei of interest at a sufficient rate to allow formation of a meaningful target (at least 1015 atoms). The Rare Isotope Accelerator (RIA) promises such rates, often enabling collection of greater than 1016 atoms after only of few days of production running. By properly designing both the ISOL and fragmentation lines, these collections will often be possible to obtained parasitically to other radioactive ion beam production. But given a target, performing the neutron capture cross-section measurement also presents its own challenges. In many cases, activation measurements are feasible, providing one obtains a target of sufficient purity. But for many branch point nuclei, the capture product is stable or long enough lived that no radiation signature is available for detection. Measurements for these nuclei will require a BaF2 array like DANCE at Los Alamos National Laboratory, which uses gamma calorimetry to detect neutron capture events. Plans and issues associated with isotope harvesting will be discussed, as well as challenges associated with performing theses measurements. Current plans for doing DANCE type measurements at RIA will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  18. Pulsed-focusing recirculating linacs for muon acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a

  19. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.

    PubMed

    Jaffray, D A; Drake, D G; Moreau, M; Martinez, A A; Wong, J W

    1999-10-01

    Dose escalation in conformal radiation therapy requires accurate field placement. Electronic portal imaging devices are used to verify field placement but are limited by the low subject contrast of bony anatomy at megavoltage (MV) energies, the large imaging dose, and the small size of the radiation fields. In this article, we describe the in-house modification of a medical linear accelerator to provide radiographic and tomographic localization of bone and soft-tissue targets in the reference frame of the accelerator. This system separates the verification of beam delivery (machine settings, field shaping) from patient and target localization. A kilovoltage (kV) x-ray source is mounted on the drum assembly of an Elekta SL-20 medical linear accelerator, maintaining the same isocenter as the treatment beam with the central axis at 90 degrees to the treatment beam axis. The x-ray tube is powered by a high-frequency generator and can be retracted to the drum-face. Two CCD-based fluoroscopic imaging systems are mounted on the accelerator to collect MV and kV radiographic images. The system is also capable of cone-beam tomographic imaging at both MV and kV energies. The gain stages of the two imaging systems have been modeled to assess imaging performance. The contrast-resolution of the kV and MV systems was measured using a contrast-detail (C-D) phantom. The dosimetric advantage of using the kV imaging system over the MV system for the detection of bone-like objects is quantified for a specific imaging geometry using a C-D phantom. Accurate guidance of the treatment beam requires registration of the imaging and treatment coordinate systems. The mechanical characteristics of the treatment and imaging gantries are examined to determine a localizing precision assuming an unambiguous object. MV and kV radiographs of patients receiving radiation therapy are acquired to demonstrate the radiographic performance of the system. The tomographic performance is demonstrated on

  20. The Neutrons for Science Facility at SPIRAL-2

    NASA Astrophysics Data System (ADS)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.

    2014-05-01

    The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.

  1. Introduction to spallation physics and spallation-target design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L.

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incidentmore » particle type and energy, and target material and geometry.« less

  2. Fermilab proton accelerator complex status and improvement plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2017-05-30

    Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a n umber of fixed target experiments. Routine operation with a world-record 700kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as the result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power to 900 – 1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2MW beammore » power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40-years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to >2.4MW after replacement of the existing 8 GeV Booster synchrotron. In this article we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.« less

  3. DIANA - A deep underground accelerator for nuclear astrophysics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklehner, Daniel; Leitner, Daniela; Lemut, Alberto

    DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulombmore » barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.« less

  4. The status and road map of Turkish Accelerator Center (TAC)

    NASA Astrophysics Data System (ADS)

    Yavaş, Ö.

    2012-02-01

    Turkish Accelerator Center (TAC) project is supported by the State Planning Organization (SPO) of Turkey and coordinated by Ankara University. After having completed the Feasibility Report (FR) in 2000 and the Conceptual Design Report (CDR) in 2005, third phase of the project started in 2006 as an inter-universities project including ten Turkish Universities with the support of SPO. Third phase of the project has two main scientific goals: to prepare the Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility, named as Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) as a first step. The facility is planned to be completed in 2015 and will be based on 15-40 MeV superconducting linac. In this paper, main aims, national and regional importance, main parts main parameters, status and road map of Turkish Accelerator Center will be presented.

  5. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  6. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  7. GeV Electrons due to a Transition from Laser Wakefield Acceleration to Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Masson-Laborde, P.-E.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J.-C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-10-01

    The Laser Wakefield Acceleration (LWFA) experiments performed with the 200 TW laser system located at the Canadian Advanced Laser Light Source facility at INRS, Varennes (Québec) observed at relatively high plasma densities (1 × 1019cm-3) electron bunches of GeV energy gain, more than double of the predicted energy using Lu's scaling law. This energy boost phenomena can be attributed to a transition from LWFA regime to a plasma wakefield acceleration (PWFA) regime. In the first stage, the acceleration mechanism is dominated by the bubble created by the laser in the regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, where the laser pulse is depleted and it can no longer sustain the bubble anymore, the dense bunch of high energy electrons propagating inside the bubble will drive its own wakefield in the PWFA regime that can trap and accelerate a secondary population of electrons up to the GeV level. 3D particle-in-cell simulations support this analysis, and confirm the scenario.

  8. COBRA accelerator for Sandia ICF diode research at Cornell University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.

    1995-05-01

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse formingmore » lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.« less

  9. Use of a spatial scan statistic to identify clusters of births occurring outside Ghanaian health facilities for targeted intervention.

    PubMed

    Bosomprah, Samuel; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-11-01

    To identify and evaluate clusters of births that occurred outside health facilities in Ghana for targeted intervention. A retrospective study was conducted using a convenience sample of live births registered in Ghanaian health facilities from January 1 to December 31, 2014. Data were extracted from the district health information system. A spatial scan statistic was used to investigate clusters of home births through a discrete Poisson probability model. Scanning with a circular spatial window was conducted only for clusters with high rates of such deliveries. The district was used as the geographic unit of analysis. The likelihood P value was estimated using Monte Carlo simulations. Ten statistically significant clusters with a high rate of home birth were identified. The relative risks ranged from 1.43 ("least likely" cluster; P=0.001) to 1.95 ("most likely" cluster; P=0.001). The relative risks of the top five "most likely" clusters ranged from 1.68 to 1.95; these clusters were located in Ashanti, Brong Ahafo, and the Western, Eastern, and Greater regions of Accra. Health facility records, geospatial techniques, and geographic information systems provided locally relevant information to assist policy makers in delivering targeted interventions to small geographic areas. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Acceleration of planar foils by the indirect-direct drive scheme

    NASA Astrophysics Data System (ADS)

    Honrubia, J. J.; Martínez-Val, J. M.; Bocher, J. L.; Faucheux, G.

    1996-05-01

    We have investigated the hydrodynamic response of plastic and aluminum foils accelerated by a pulse formed by an x-ray prepulse followed by the main laser pulse. This illumination scheme, so-called indirect-direct drive scheme, has been proposed as an alternative to the direct and indirect drive. The advantages of such a scheme are that it can contribute to solve the problem of uniformity of the direct drive and, at the same time, it can be much more efficient and use simpler targets than the indirect-drive. Experiments about this hybrid drive scheme have been performed at Limeil with the PHEBUS facility and the standard experimental set-up and diagnostics. The agreement between experiments and simulations is good for quantities such as the energy of the laser converted into x-rays and the burnthrough time of the converter foil. To simulate the full hydrodynamic evolution of the converter and target foils separated a distance of 1 mm, 2-D effects should be taken into account. The basic goals have been to check the simulation codes developed by the Institute of Nuclear Fusion and to determine the hydrodynamic response of the target foil to the hybrid pulse. These goals have been fulfilled.

  11. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  12. Challenging developments in three decades of accelerator mass spectrometry at ETH: from large particle accelerators to table size instruments.

    PubMed

    Suter, Martin

    2010-01-01

    Accelerator mass spectrometry (AMS) was invented for the detection of radiocarbon at natural isotopic concentrations (10(-12) to 10(-15)) more than 30 years ago. Meanwhile this method has also been applied for the analysis of many other long-lived radioisotopes, which are found at very low concentrations. The first investigations were made at large tandem accelerators originally built for nuclear physics research and operating at voltages of 6-12 MV. Today dedicated instruments are mostly used for AMS, which are optimized for associated applications. In the past 15 years, a new generation of much smaller instruments has been developed. For many years it was believed that accelerators with voltages of 2 MV or higher are needed to eliminate the molecular interferences. At these energies the ions are predominantly stripped to charge state 3+, thereby removing the binding electrons of the molecules. In contrast, the new compact facilities use 1+ or 2+ ions. In this case the molecular destruction process is based on molecule-atom collisions in the gas cell. The cross sections for this destruction are sufficiently large that the intensity of molecular components such as (12)CH(2) and (13)CH can be reduced by 10 orders of magnitude. These new facilities can be built much smaller due to the lower energies. Universal instruments providing analysis for many isotopes over the whole range of periodic table have a space requirement of about 4 x 6 m(2); dedicated radiocarbon facilities based on a 200 kV accelerator have a footprint of about 2.5 x 3 m(2). This smallest category of instruments use special technologies: The high voltage terminal with the gas stripper canal is vacuum insulated and the gas is pumped to ground potential through a ceramic pipe. A conventional 200 kV power supply provides the terminal voltage from outside. A review of this new generation of compact AMS facilities is given. Design considerations and performance of these new instruments will be presented

  13. UCx target preparations and characterizations

    NASA Astrophysics Data System (ADS)

    Andrighetto, Alberto; Corradetti, Stefano; Manzolaro, Mattia; Scarpa, Daniele; Monetti, Alberto; Rossignoli, Massimo; Borgna, Francesca; Ballan, Michele; Agostini, Mattia; D'Agostini, Fabio; Ferrari, Matteo; Zenoni, Aldo

    2018-05-01

    The Target-Ion Source unit is the core of an ISOL-RIB facility. Many international ISOL facilities have chosen different layouts of this unit. Many research groups are involved in research and development of targets capable of dissipating high power and, at the same time, be able to have a fast isotope release. This is mandatory in order to produce beams of short half-life isotopes. The research of new materials with advanced microstructural features is crucial in this field. The design of a proper target is indeed strictly related to the obtainment of porous refractory materials, which are capable to work under extreme conditions (temperatures up to 2000 °C in high vacuum) with a high release efficiency. For SPES, the second generation Italian ISOL-RIB Facility, the target will be made of uranium carbide (UCx) in which, by fission induced by a proton beam of 40 MeV of energy (8 kW of power), isotopes in the 60-160 amu mass region are produced. The current technological developments are also crucial in the study of third generation ISOL facilities.

  14. 7 CFR 1436.13 - Loan installments, delinquency, and acceleration of maturity date.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Loan installments, delinquency, and acceleration of... FACILITY LOAN PROGRAM REGULATIONS § 1436.13 Loan installments, delinquency, and acceleration of maturity... delinquency, CCC may permit a rescheduling of the debt or other measures consistent with the collection of...

  15. Overview of the Neutron experimental facilities at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  16. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  17. Facilities for Biological Research Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

    1996-01-01

    A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

  18. X-ray burst studies with the JENSA gas jet target

    NASA Astrophysics Data System (ADS)

    Schmidt, Konrad; Chipps, Kelly A.; Ahn, Sunghoon; Allen, Jacob M.; Ayoub, Sara; Bardayan, Daniel W.; Blackmon, Jeffrey C.; Blankstein, Drew; Browne, Justin; Cha, Soomi; Chae, Kyung YUK; Cizewski, Jolie; Deibel, Catherine M.; Deleeuw, Eric; Gomez, Orlando; Greife, Uwe; Hager, Ulrike; Hall, Matthew R.; Jones, Katherine L.; Kontos, Antonios; Kozub, Raymond L.; Lee, Eunji; Lepailleur, Alex; Linhardt, Laura E.; Matos, Milan; Meisel, Zach; Montes, Fernando; O'Malley, Patrick D.; Ong, Wei Jia; Pain, Steven D.; Sachs, Alison; Schatz, Hendrik; Schmitt, Kyle T.; Smith, Karl; Smith, Michael S.; Soares de Bem, Natã F.; Thompson, Paul J.; Toomey, Rebecca; Walter, David

    2018-01-01

    When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p) reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target enables the direct measurement of previously inaccessible (α,p) reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL), USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR) at the Facility for Rare Isotope Beams (FRIB). Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL) showed a highly localized, pure gas target with a density of ˜1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p)37 K reaction at NSCL.

  19. Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.

    2016-10-01

    We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.

  20. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; ...

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > Tc Nb and H c > HcNb, (e.g., Nb 3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above Hc Nb, thus enabling higher field gradients. Although Nb 3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (H c1) and higher critical temperature (T c) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving H c1 values larger than bulk for films thinner than their London penetration depths.« less

  1. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morneau, Rachel Anne; Klasky, Marc Louis

    The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axismore » Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.« less

  2. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  3. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  4. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  5. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  6. Analysis of Residual Acceleration Effects on Transport and Segregation During Directional Solidification of Tin-Bismuth in the MEPHISTO Furnace Facility

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1998-01-01

    The research accomplishments summarized in this Final Report during the period from 3/95 to 3/98, which included a 12 months no-cost extension granted at the end of the nominal 2 year period of performance. The report has 5 sections, in section 1 the objectives are presented, a task description is given and the background and significance of the work is outlined. In section 2 the research accomplishments are summarized. In section 3 publications and presentations are listed. Student participation is listed in 4. The work is summarized in section 5. and references for sections 1 and 2 are supplied in section 6. The object of this work, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involved using a combination of 2- and 3-D numerical models, scaling analyses, ID models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USW-3 space flight which took place between February 22 through March 6, 199). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification

  7. Skyshine radiation resulting from 6 MV and 10 MV photon beams from a medical accelerator.

    PubMed

    Elder, Deirdre H; Harmon, Joseph F; Borak, Thomas B

    2010-07-01

    Skyshine radiation scattered in the atmosphere above a radiation therapy accelerator facility can result in measurable dose rates at locations near the facility on the ground and at roof level. A Reuter Stokes RSS-120 pressurized ion chamber was used to measure exposure rates in the vicinity of a Varian Trilogy Linear Accelerator at the Colorado State University Veterinary Medical Center. The linear accelerator was used to deliver bremsstrahlung photons from 6 MeV and 10 MeV electron beams with several combinations of field sizes and gantry angles. An equation for modeling skyshine radiation in the vicinity of medical accelerators was published by the National Council on Radiation Protection and Measurements in 2005. However, this model did not provide a good fit to the observed dose rates at ground level or on the roof. A more accurate method of estimating skyshine may be to measure the exposure rate of the radiation exiting the roof of the facility and to scale the results using the graphs presented in this paper.

  8. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility.

    PubMed

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-06-01

    This article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2 , for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  9. Femtosecond Electron and Photon Pulses Facility in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimjaem, S.; Thongbai, C.; Jinamoon, V.

    Femtosecond electron and photon pulses facility has been established as SURIYA project at the Fast Neutron Research Facility (FNRF). Femtosecond electron bunches can be generated from a system consisting of an RF gun with a thermionic cathode, an alpha magnet as an magnetic bunch compressor, and a linear accelerator as a post acceleration section. Femtosecond electron pulses can be used directly or used as a source to produce equally short electromagnetic (EM) radiation pulses via certain kind of radiation production processes. At SURIYA project, we are interested especially in production of radiation in Far-infrared (FIR) regime. At these wavelengths, themore » radiation from femtosecond electron pulses is emitted coherently resulting in high intensity radiation. Overview of the facility, the generation of femtosecond electron bunches, the theoretical background of coherent transition radiation and the recent experimental results will be presented and discussed in this paper.« less

  10. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  11. Light ion production for a future radiobiological facility at CERN: Preliminary studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford-Haworth, Joshua, E-mail: Joshua.Stafford-Haworth@cern.ch; John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX; Bellodi, Giulia

    2014-02-15

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented alongmore » with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.« less

  12. Chapter in book "Many Body Structure of Strongly Interacting Systems, Refereed and Selected Contributions from the Symposium '20 Years of Physics at the Mainz Microtron MAMI,'" Part I, Editors: Arenhövel, H.; Backe, H.; Drechsel, D.; Friedrich, J.; Kaiser, K.-H.; Walcher, Th., p.7-17 (contribution entitled Physics at the Thomas Jefferson National Accelerator Facility)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Cardman

    2006-09-01

    The Continuous Electron Accelerator Facility, CEBAF, located at the Thomas Jefferson National Accelerator Facility, is devoted to the investigation of the electromagnetic structure of mesons, nucleons, and nuclei using high energy, high duty-cycle electron and photon beams. Selected experimental results of particular interest to the MAMI community are presented.

  13. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less

  14. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator.

    PubMed

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A; Munsat, Tobin; Plane, John M C; Sternovsky, Zoltan

    2017-03-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N 2 , air, CO 2 , and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  15. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator

    NASA Astrophysics Data System (ADS)

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan

    2017-03-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  16. Experimental Setup for the Laboratory Investigation of Micrometeoroid Ablation Using a Dust Accelerator

    NASA Technical Reports Server (NTRS)

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan

    2017-01-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 kilometers. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 centimeters along the ablating particles path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities greater than 20 kilometers per second, and are reported by Thomas et al. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 centimeters and 90 nanoseconds. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  17. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    NASA Astrophysics Data System (ADS)

    Rakhno, I. L.; Hylen, J.; Kasper, P.; Mokhov, N. V.; Quinn, M.; Striganov, S. I.; Vaziri, K.

    2018-01-01

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides - 11C, 13N, 15O and 41Ar - are in a good agreement with those calculated with the improved MARS15 code.

  18. Theoretical and Experimental Studies in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James

    accelerator firm. We note also that PBPL graduates remain as close elaborators for the program after leaving UCLA. The UCLA PBPL program is a foremost developer of on-campus facilities, such as the Neptune and Pegasus Laboratories, providing a uniquely strong environment for student-based research. In addition, the PBPL is a strong user of off-campus national lab facilities, such as SLAC FACET and NLCTA, and the BNL ATF. UCLA has also vigorously participated in the development of these facilities. The dual emphases on off- and on-campus opportunities permit the PBPL to address in an agile way a wide selection of cutting-edge research topics. The topics embraced by this proposal illustrate this program aspect well. These include: GV/m dielectric wakefield acceleration/coherent Cerenkov radiation experiments at FACET (E-201) and the ATF; synergistic laser-excited dielectric accelerator and light source development; plasma wakefield (PWFA) experiments on “Trojan horse” ionization injection (FACET E-210), quasi-nonlinear PWFA at BNL and the production at Neptune high transformer ratio plasma wakes; the inauguration of a new type of RF photoinjector termed “hybrid” at UCLA, and application to PWFA; space-charge dominated beam and cathode/near cathode physics; the study of advanced IFEL systems, for very high energy gain and utilization of novel OAM modes; the physcis of inverse Compton scattering (ICS), with applications to e+ production and γγ colliders; electron diffraction; and advanced beam diagnostics using coherent imaging techniques. These subjects are addressed under the leadership of PBPL director Prof. James Rosenzweig in Task A, and Prof. Pietro Musumeci in Task J, which was initiated following his OHEP Outstanding Junior Investigator award.« less

  19. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (<10° half-angle), high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  20. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  1. Fully Implict Magneto-hydrodynamics Simulations of Coaxial Plasma Accelerators

    DOE PAGES

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-01-05

    The resistive Magneto-Hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. We developed a fully implicit MHD simulation tool to solve the resistive MHD governing equations in the context of a cell-centered finite-volume scheme. The primary objective of this study is to use the fully-implicit algorithm to obtain insights into the plasma acceleration and jet formation processes in Coaxial Plasma accelerators; electromagnetic acceleration devices that utilize self-induced magnetic fields to accelerate thermal plasmas to large velocities. We also carry out plasma-surface simulations in order to study the impact interactionsmore » when these high velocity plasma jets impinge on target material surfaces. Scaling studies are carried out to establish some basic functional relationships between the target-stagnation conditions and the current discharged between the coaxial electrodes.« less

  2. Transverse beam motion on the second axis of the dual axis radiographic hydrodynamic test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, G J; Chen, Y J; Fawley, W M

    1999-03-23

    The accelerator on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility will generate a 20 MeV, 2-4 kA, 2 µs long electron beam with an energy variation {<=} ± 0.5%. Four short current pulses with various lengths will be selected out of this 2 µs long current pulse and delivered to an x-ray converter target. The DARHT-II radiographic resolution requires these electron pulses to be focused to sub-millimeter spots on Bremsstrahlung targets with peak-to-peak transverse beam motion less than a few hundred microns. We have modeled the transverse beam motion, including the beam breakup instability, corkscrew motion, transversemore » resistive wall instability and beam induced transverse deflection in the kicker system, from the DARHT-II injector exit to the x-ray converter target. Simulations show that the transverse motion at the x-ray converters satisfies the DARHT-II radiographic requirements.« less

  3. A detailed examination of laser-ion acceleration mechanisms in the relativistic transparency regime using tracers

    NASA Astrophysics Data System (ADS)

    Stark, David J.; Yin, Lin; Albright, Brian J.; Nystrom, William; Bird, Robert

    2018-04-01

    We present a particle-in-cell study of linearly polarized laser-ion acceleration systems, in which we use both two-dimensional (2D) and three-dimensional (3D) simulations to characterize the ion acceleration mechanisms in targets which become transparent to the laser pulse during irradiation. First, we perform a target length scan to optimize the peak ion energies in both 2D and 3D, and the predictive capabilities of 2D simulations are discussed. Tracer analysis allows us to isolate the acceleration into stages of target normal sheath acceleration (TNSA), hole boring (HB), and break-out afterburner (BOA) acceleration, which vary in effectiveness based on the simulation parameters. The thinnest targets reveal that enhanced TNSA is responsible for accelerating the most energetic ions, whereas the thickest targets have ions undergoing successive phases of HB and TNSA (in 2D) or BOA and TNSA (in 3D); HB is not observed to be a dominant acceleration mechanism in the 3D simulations. It is in the intermediate optimal regime, both when the laser breaks through the target with appreciable amplitude and when there is enough plasma to form a sustained high density flow, that BOA is most effective and is responsible for the most energetic ions. Eliminating the transverse laser spot size effects by performing a plane wave simulation, we can isolate with greater confidence the underlying physics behind the ion dynamics we observe. Specifically, supplemented by wavelet and FFT analyses, we match the post-transparency BOA acceleration with a wave-particle resonance with a high-amplitude low-frequency electrostatic wave of increasing phase velocity, consistent with that predicted by the Buneman instability.

  4. Construction comparison of Louisiana's conventional and alternative base courses under accelerated loading : final report.

    DOT National Transportation Integrated Search

    2001-11-01

    This report describes the test results of the first project at the Louisiana Transportation Research Center's Accelerated Loading Facility (ALF). In 1995, 9 test lanes were constructed at the Louisiana Pavement Research Facility in Port Allen. These ...

  5. The changing role of accelerators in radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, W.F.

    Conventional low energy x-rays have been used in radiation therapy since the turn of the century. Van de Graaff and Betatron accelerators changed the complexion of radiation therapy in the mid 1940's by providing significantly deeper penetrating photon beams and also providing therapeutic quality electron beams. The development of Cobalt-60 teletherapy in the mid 1950's suppressed the role of accelerators in radiation therapy for nearly 20 years. However, with the development of reliable isocentric rotating linear accelerators, accelerators are rapidly becoming the most popular conventional therapy devices. Following unfavorable clinical results with fast neutron therapy in the late 1930's andmore » early 1940's, the role of cyclotron produced fast neutrons is presently experiencing a renewal in radiation therapy. Several facilities are also experimenting with heavy charged particle beams for therapy.« less

  6. Accelerating Radioactive Ion Beams With REX-ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, F.; Emhofer, S.; Habs, D.

    2003-08-26

    The post accelerator REX-ISOLDE is installed at the ISOLDE facility at CERN, where a broad variety of radioactive ions can be addressed. Since the end of 2001 beams at the final energy of 2.2 MeV/u are available. REX-ISOLDE uses a unique system of beam bunching and charge breeding. First a Penning trap accumulates and bunches the ions, which are delivered as a quasi-continuous beam from the ISOLDE target-ion-source, and then an electron beam ion source (EBIS) charge-breeds them to a mass-to-charge ratio below 4.5. This enables a very compact design for the following LINAC, consisting of a 4 rod RFQ,more » an IH structure and three 7-gap-resonators. The later ones allow a variation of the final energy between 0.8 and 2.2 MeV/u. Although the machine is still in the commissioning phase, first physics experiments have been done with neutron rich Na and Mg isotopes and 9Li. A total efficiency of several percent has already been obtained.« less

  7. Improvement of the High Fluence Irradiation Facility at the University of Tokyo

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto

    2016-08-01

    This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.

  8. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.« less

  9. Improvement Plans of Fermilab’s Proton Accelerator Complex

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-09-01

    The flagship of Fermilab’s long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab’s Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  10. Pavement testing facility : effects of tire pressure on flexible pavement response performance

    DOT National Transportation Integrated Search

    1989-08-01

    The effects of tire pressure on flexible pavement response and performance were evaluated using data from the first phase of research at the Federal Highway Administration's Pavement Testing Facility. The Accelerated Loading Facility testing machine ...

  11. A proton medical accelerator by the SBIR route — an example of technology transfer

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  12. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  13. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  14. Experimental Study of Proton Acceleration from Ultra Intense Laser Matter Interactions

    NASA Astrophysics Data System (ADS)

    Paudel, Yadab Kumar

    This dissertation describes proton and ion acceleration measurements from high intensity (˜ 1019 Wcm-2) laser interactions with thin foil targets. Protons and ions accelerated from the back surface of a target driven by a high intensity laser are detected using solid-state nuclear track detector CR39. A simple digital imaging technique, with an adjustable halogen light source shined on CR39 and use of a digital camera with suitable f-number and exposure time, is used to detect particles tracks. This new technique improves the quality 2D image with vivid track patterns in CR39. Our technique allows us to quickly record and sort CR39 pieces for further analysis. This is followed by detailed quantitative information on the protons and ions. Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time a self-radiograph of the target with a glass stalk holding the target itself in the stacked radiochromic films (RCF) placed behind the target. The self-radiography indicates that the fast ions accelerated backward, in a direction opposite to the laser propagation, are turning around in strong magnetic fields. This unique result is a signature of long-living (ns time scale) magnetic fields in the expanding plasma, which are important in energy transport during the intense laser irradiation and have never been considered in the previous studies. The magnetic fields induced by the main pulse near the absorption point expand rapidly with the backward accelerated protons in the pre-formed plasma. The protons are rotated by these magnetic fields and they are recorded in the RCF, making the self-radiography. Angular profiles of protons and multicharged ions accelerated from the target rear surface have been studied with the subpicosecond

  15. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  16. Absolute acceleration measurements on STS-50 from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1994-01-01

    Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.

  17. The Four Lives of a Nuclear Accelerator

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2017-06-01

    Electrostatic accelerators have emerged as a major tool in research and industry in the second half of the twentieth century. In particular in low energy nuclear physics they have been essential for addressing a number of critical research questions from nuclear structure to nuclear astrophysics. This article describes this development on the example of a single machine which has been used for nearly sixty years at the forefront of scientific research in nuclear physics. The article summarizes the concept of electrostatic accelerators and outlines how this accelerator developed from a bare support function to an independent research tool that has been utilized in different research environments and institutions and now looks forward to a new life as part of the experiment CASPAR at the 4,850" level of the Sanford Underground Research Facility.

  18. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  19. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  20. Improvement of voltage holding and high current beam acceleration by MeV accelerator for ITER NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, M.; Kashiwagi, M.; Inoue, T.

    Voltage holding of -1 MV is an essential issue in development of a multi-aperture multi-grid (MAMuG) negative ion accelerator, of which target is to accelerate 200 A/m{sup 2} H{sup -} ion beam up to the energy of 1 MeV for several tens seconds. Review of voltage holding results ever obtained with various geometries of the accelerators showed that the voltage holding capability was about a half of designed value based on the experiment obtained from ideal small electrode. This is considered due to local electric field concentration in the accelerators, such as edge and steps between multi-aperture grids and itsmore » support structures. Based on the detailed investigation with electric field analysis, accelerator was modified to reduce the electric field concentration by reshaping the support structures and expanding the gap length between the grid supports. After the modifications, the accelerator succeeded in sustaining -1 MV for more than one hour in vacuum. Improvement of the voltage holding characteristics progressed the energy and current accelerated by the MeV accelerator. Up to 2010, beam parameters achieved by the MAMuG accelerator were increased to 879 keV, 0.36 A (157 A/m{sup 2}) at perveance matched condition and 937 keV, 0.33 A (144 A/m{sup 2}) slightly under perveance.« less

  1. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    PubMed

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  2. Proceedings of: 2005 Particle Acceleration Confence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Stuart

    2006-01-01

    The 21st Particle Accelerator Conference, PAC05, took place at the Knoxville Convention Center (KCC) from Monday through Friday, May 16-20, 2005. Sponsored by the American Physical Society (APS), the Institute of Electrics and Electronics Engineers (IEEE) with its subdivision of Nuclear and Plasma Sciences Society (NPSS), the conference was hosted by the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) Project and Thomas Jefferson National Accelerator Facility (JLab). The conference was chaired by Norbert Holtkamp, and the Local Organizing Committee was made up of staff from the ORNL SNS Project under the chairmanship of Stuart Henderson. The conference welcomedmore » over 1400 delegates from the United States, Europe, Asia, the Middle East, South America and from as far away as Australia. Almost 1400 papers where processed during the conference and will be published on the Joint Accelerator Conferences Website (JACoW) page.« less

  3. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  4. Microparticle acceleration by a Van de Graaff accelerator and application to space and material sciences

    NASA Astrophysics Data System (ADS)

    Shibata, Hiromi; Kobayashi, Koichi; Iwai, Takeo; Hamabe, Yoshimi; Sasaki, Sho; Hasegawa, Sunao; Yano, Hajime; Fujiwara, Akira; Ohashi, Hideo; Kawamura, Toru; Nogami, Ken-ichi

    2001-01-01

    A microparticle (dust) ion source has been installed in the 3.75 MV Van de Graaff electrostatic accelerator and a new beam line for microparticle experiments has been built at the HIT facility of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron- or submicron-sized particles. Development of in situ dust detectors on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time-of-flight mass spectrometry, impact flash measurement and scanning electron microscope observation for metals, polymers and semiconductors bombarded by micron-sized particles have been started.

  5. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  6. Converting an AEG Cyclotron to H- Acceleration and Extraction

    NASA Astrophysics Data System (ADS)

    Ramsey, Fred; Carroll, Lewis; Rathmann, Tom; Huenges, Ernst; Bechtold, Matthias Mentler Volker

    2009-03-01

    Clinical Trials are under way to evaluate agents labeled with the nuclide 225Ac and its decay product 213Bi, in targeted alpha-immuno-therapy [1]. 225Ac can be produced on a medium-energy cyclotron via the nuclear reaction 226Ra(p,n)225Ac. To demonstrate proof-of-principle, a vintage AEG cyclotron, Model E33 [2], with an internal target, had been employed in a pilot production program at the Technical University of Munich (TUM). To enhance production capability and further support the clinical studies, the TUM facility has recently been refurbished and upgraded, adding a new external beam-line, automated target irradiation and transport systems, new laboratories, hot cells, etc. [3]. An improved high-power rotating target has been built and installed [4]. The AEG cyclotron itself has also been modified and upgraded to accelerate and extract H- ions. We have designed, built, and tested a new axial Penning-type ion source which is optimized for the production of H- ions. The ion source has continued to evolve through experiment and experience. Steady improvements in materials and mechanics have led to enhanced source stability, life-time, and H- production. We have also designed and built a precision H- charge-exchange beam-extraction system which is equipped with a vacuum lock. To fit within the tight mechanical constraint imposed by the narrow magnet gap, the system incorporates a novel chain-drive foil holder and foil-changer mechanism. The reconfigured cyclotron system has now been in operation for more than 1 year. Three long-duration target irradiations have been conducted. The most recent bombardment ran 160 continuous hours at a beam on target of ˜80 microamperes for a total yield of ˜70 milli-curies of 225Ac.

  7. Extrapolating target tracks

    NASA Astrophysics Data System (ADS)

    Van Zandt, James R.

    2012-05-01

    Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.

  8. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhno, I. L.; Hylen, J.; Kasper, P.

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15Omore » and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.« less

  9. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    DOE PAGES

    Rakhno, I. L.; Hylen, J.; Kasper, P.; ...

    2017-10-04

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15Omore » and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.« less

  10. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainas, B.; Eliyahu, I.; Weissman, L.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, whichmore » is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.« less

  11. Betatron x-ray radiation in the self-modulated wakefield acceleration regime (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2017-05-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation in the self modulated regime of laser wakefield acceleration. We observed multi keV Betatron x-rays from a self-modulated laser wakefield accelerator. The experiment was performed at the Jupiter Laser Facility, LLNL, by focusing the Titan short pulse beam (4-150 J, 1 ps) onto the edge of a Helium gas jet at electronic densities around 1019 cm-3. For the first time on this laser system, we used a long focal length optic, which produced a laser normalized potential a0 in the range 1-3. Under these conditions, electrons are accelerated by the plasma wave created in the wake of the light pulse. As a result, intense Raman satellites, which measured shifts depend on the electron plasma density, were observed on the laser spectrum transmitted through the target. Electrons with energies up to 200 MeV, as well as Betatron x-rays with critical energies around 20 keV, were measured. OSIRIS 2D PIC simulations confirm that the electrons gain energy both from the plasma wave and from their interaction with the laser field.

  12. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan-nan, Bai; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, Fujian Province; Zhao-yan, Yu

    2014-01-17

    Highlights: •miRNAs-expression patterns of primary hepatocytes under proliferative status. •miR-21 expression level peaked at 12 h after stimulated by EGF. •miR-21 drive rapid S phase entry of primary hepatocytes. •PI3K/Akt signaling was modulated via targeting PTEN by miR-21. -- Abstract: MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitromore » transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.« less

  13. A high yield neutron target

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.; Weisenbach, P.

    1974-01-01

    Target, in cylinder form, rotates rapidly in front of beam. Titanium tritide film is much thicker than range of accelerated deutron. Sputtering electrode permits full use of thick film. Stream of high-velocity coolant provides efficient transfer of heat from target.

  14. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE PAGES

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; ...

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  15. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility

    DOE PAGES

    Paik, Samuel Y.; Epperson, Patrick M.; Kasper, Kenneth M.

    2017-02-28

    Here, this article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measuresmore » in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2, for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was

  16. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  17. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  18. The Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)

    1983-01-01

    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.

  19. Accelerators for Discovery Science and Security applications

    NASA Astrophysics Data System (ADS)

    Todd, A. M. M.; Bluem, H. P.; Jarvis, J. D.; Park, J. H.; Rathke, J. W.; Schultheiss, T. J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15-50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug-cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  20. Feasibility study on the use of uranium in photoneutron target and BSA optimization for Linac based BNCT

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Shahriari, Majid; Minoochehr, Abdolhamid; Nedaie, Hasan

    2011-06-01

    A hybrid photoneutron target including natural uranium has been studied for a 20 MeV linear electron accelerator (Linac) based Boron Neutron Capture Therapy (BNCT) facility. In this study the possibility of using uranium to increase the neutron intensity has been investigated by focusing on the time dependence behavior of the build-up and decay of the delayed gamma rays from fission fragments and activation products through photo-fission reactions in the BSA (Beam Shaping Assembly) configuration design. Delayed components of neutrons and photons were calculated. The obtained BSA parameters are in agreement with the IAEA recommendation and compared to the hybrid photoneutron target without U. The epithermal flux in the suggested design is 2.67E9 (n/cm 2s/mA).