Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to ...
National Technical Information Service (NTIS)
Boron Neutron Capture Therapy (BNCT) is being studied as a possible radiotherapic treatment for some cancer types. Neutron energy for penetrating into tissue should be in the epithermal range. Different methods are used for neutron production. Electron accelerators are an alternative way for producing neutrons in electron-photon-neutron processes. Optimization of ...
NASA Astrophysics Data System (ADS)
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby ...
Energy Citations Database
DOEpatents
Calculations of the epithermal-neutron yield of photoneutrons from a uranium-beryllium converter using a 27 MeV electron linear accelerator have been investigated. In this concept, relativistic electron beams from a 30 MeV LINAC impinge upon a small uranium sphere surrounded by a cylindrical tank of circulating heavy water (D2O) nested in a beryllium cube. ...
Since 1986, the Idaho National Engineering Laboratory (INEL) has been involved in the development of epithermal neutron sources for BNCT. The INEL effort was instrumental in the implementation of an epithermal neutron beam at the Brookhaven Medical Research Reactor at Brookhaven National Laboratory. Recently, the INEL's effort has been directed toward ...
The Idaho National Engineering Laboratory (INEL) has been investigating the feasibility of a concept for an accelerator-based source of epithermal neutrons for BNCT that is based on the use of a two-stage photoneutron production process driven by an elect...
In this work we present an optimized neutron beam shaping assembly for epithermal Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) and discuss the simulations leading to its design.
The Idaho National Engineering Laboratory (INEL) has been investigating the feasibility of a concept for an accelerator-based source of epithermal neutrons for BNCT that is based on the use of a two-stage photoneutron production process driven by an electron accelerator. In this concept, relativistic electron beams impinge upon heavily-shielded tungsten ...
A hybrid photoneutron target including natural uranium has been studied for a 20 MeV linear electron accelerator (Linac) based Boron Neutron Capture Therapy (BNCT) facility. In this study the possibility of using uranium to increase the neutron intensity has been investigated by focusing on the time dependence behavior of the build-up and decay of the delayed gamma rays from ...
The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the ...
DOE Information Bridge
The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic compon...
Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10mA. Epithermal neutrons are proposed to be generated by 1.915-2.5MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for ...
PubMed
A pilot accelerator-based source of epithermal neutrons, which is intended for wide application in clinics for boron neutron capture therapy, has been constructed at the Budker Institute of Nuclear Physics (Novosibirsk). A stationary proton beam has been obtained and near-threshold neutron generation regime has been realized. Results of the first ...
Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the ...
Accelerator-based neutron sources are an attractive alternative to nuclear reactors for providing epithermal neutron beams for Boron Neutron Capture Therapy. Based on clinical requirements and neutronics modeling the use of proton and deuteron induced reactions in {sup 7}Li and {sup 9}Be targets has been compared. Excellent epithermal ...
Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. ...
Neutron production in radiotherapy facilities has been studied from the early days of modern linacs. Detailed studies are now possible using photoneutron capabilities of general-purpose Monte Carlo codes at energies of interest in medical physics. The present work studies the effects of modelling different accelerator head and room geometries on the neutron fluence and spectra ...
The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are ...
Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. We report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron. Electrons were accelerated to energies up to 10MeV and produced ...
Accelerator-based photoneutron sources have enjoyed wide use and offer the advantages of long term stability, ease of control and absence of radioactive materials. The authors report here measurements of the yield of photoneutrons from a neutron generator using a compact betatron (466 kg total weight, 900 by 560 by 350 mm betatron ...
Previously, the authors have developed the in-phantom neutron field assessment parameters T and D (Tumor) for the evaluation of epithermal neutron fields for use in BNCT. These parameters are based on an energy-spectrum-dependent neutron normal-tissue RBE and the treatment planning methodology of Gahbauer and his co-workers, which includes the effects of dose fractionation. In ...
This is the progress report and proposed research objectives for the project entitled An Accelerator Neutron Source for BNCT.'' The progress report is for the time period from July 15, 1990 to date. The proposal is for the upcoming budget period from July 15, 1991 to July 14, 1992. The objectives of this project are to design and test the target assembly and the moderator ...
Current accelerator-based neutron source concepts for boron neutron capture therapy (BNCT) are centered on the lithium (p,n) reaction. The near lithium threshold source concept uses proton energies <~100 keV above the reaction threshold energy (1.88 MeV). For deeply seated brain tumors, epithermal (1 eV to 10 keV) neutrons are needed to penetrate the ...
We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of ...
A conceptual design of a beam-shaping assembly for boron neutron capture therapy using deuterium-tritium accelerator based neutrons source is developed. Calculations based on a simple geometry model for the radiation transport are initially performed to estimate the assembly materials and their linear dimensions. Afterward, the assembly geometry is ...
photoneutron cross section, mb total photoneutron yield cross section, mb photonuclear ..... that the photoneutrons are pro- duced via statistical ...
NASA Website
Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In ...
Accelerator-based intense epithermal neutron sources for Neutron Capture Therapy (NCT) have been considered as an alternative to nuclear reactors. Lithium (Li) has generally received the widest attention for this application, since the threshold energy is low and neutron yield is high. Because of the poor thermal and chemical properties of Li and the need ...
To realize the accelerator-based boron neutron capture therapy (BNCT) at the Cyclotron and Radioisotope Center of Tohoku University, the feasibility of a cyclotron-based BNCT was evaluated. This study focuses on optimizing the epithermal neutron field with an energy spectrum and intensity suitable for BNCT for various combinations of neutron-producing reactions and moderator ...
At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We ...
was calibrated in place by using the Be' and D photoneutron threshold ..... two previously determined photoneutron threshold energies and then computing the ...
The physical approach (I.P.Eremeev. Proc. of the PAC-95. Vol.1, p.98.) is applied for technology of nuclear fuel cycle. It is proposed the cycle to be closed by such an accelerator based process link, which would allow, on the one hand, the most hazardous of "equilibrium" radionuclides to be transmuted to stable isotopes or incinerated and, on the other ...
Stability of supply in the medical radioisotope market is now of overriding importance. One of the most commonly used radioisotopes is 99mTc, which is produced from 99Mo decay. 99Mo has been produced in nuclear reactors before, however these reactors are aging and have been not reliable lately and there is a great need to find an alternative for the production. In the current project, ...
The CWDD (Continuous Wave Deuterium Demonstrator) accelerator was designed to accelerate 80 mA cw of D{sup {minus}} to 7.5 MeV. Most of the hardware for the first 2 MeV was installed at Argonne and major subsystems had been commissioned when program funding from the Ballistic Missile Defense Organization ended in October 1993. Renamed the Argonne Continuous Wave Linac (ACWL), we are proposing to ...
In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam ...
In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam ...
Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) ...