The physics of photon and neutron active interrogation of highly enriched uranium (HEU) using the delayed neutron reinterrogation method is described in this paper. Two sets of active interrogation experiments were performed using a set of subcritical configurations of cocentric HEU metal hemishells. One set of ...
Energy Citations Database
The physics of photon and neutron active interrogation of highly enriched uranium (HEU) using the delayed neutron reinterrogation method is described in this paper. Two sets of active interrogation experiments were performed using a set of subcritical configurations of concentric HEU metal hemishells. One set of ...
NASA Astrophysics Data System (ADS)
Cosmic rauon induced neutrons are a major source of background for low count rate experiments like neutrino oscillation or dark matter searches. Especially at shallow sites these neutrons are the limiting factor for the ultimate sensitivity of the measurement. Measurements of the neutron rate and counter measures including ...
lithium hydride layer needs dry gas medium. So, lithium nitride and lithium oxide are preferable because of neutron producing matter (hydride, nitride, oxide or fluoride of lithium) on the substrate. The active lithium targets with intense liquid cooling are used now for accelerator based boron ...
E-print Network
The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H{sup -} linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial ...
Thirty-one neutron activation cross sections have been extrapolated to 44 MeV for dosimetry applications at high-energy, accelerator-based neutron sources. All cross sections have undergone integral testing in Be(d,n) fields at E/sub d/ = 14, 16, and 40 MeV. The integral activities for most of ...
DOE Information Bridge
. Scott. The design and testing high power lithium target for accelerator-based boron neutron capture therapy. Research and Development in Neutron Capture Therapy, Eds.: W. Sauerwein, R. Moss, and A. Wittig . - , , . , . [1] B. Bayanov, et al. Accelerator based neutron source for the ...
Oak Ridge National Laboratory Physics Division The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source...
Science.gov Websites
for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, NovosibirskAccelerator based neutron source for neutron capture therapy B. Bayanov, Yu. Belchenko, V. Belov, V Physics, Novosibirsk, Russia The Budker Institute of Nuclear Physics (Novosibirsk) and ...
The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based ...
A comprehensive program is in progress at the Los Alamos National Laboratory for the development of sensitive, practical, nondestructive assay techniques for the quantification of low-level transuranics in bulk solid wastes. The program encompasses a broad range of techniques, including sophisticated active and passive gamma-ray spectroscopy, passive ...
In this work we present an optimized neutron beam shaping assembly for epithermal Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) and discuss the simulations leading to its design.
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF ...
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 ...
A complete assay system for 208-liter barrels contianing transuranic wastes has been developed. The system consists of an 8-MeV commercial electron accelerator, neutron moderating cavity housing the waste barrel and containing neutron detectors, high resolution germanium gamma spectrometer, and x-ray radiography camera (both film and real time). The ...
The absolute measurement of neutron emission rate from the whole plasma is a very important diagnostics as a fusion power monitor in fusion experimental devices with D-T or D-T operations. Here measurement techniques of time-resolved and time-integrated absolute neutron emission on the present tokamaks and ITER are reviewed. In the present tokamaks, ...
Fast and thermal neutron intensity distributions have been measured at an accelerator based prompt gamma ray neutron activation analysis (PGNAA) setup. The setup is built at the 350 keV accelerator laboratory of King Fahd University of Petroleum and Minerals (KFUPM). The setup is mainly ...
The technologies that are being utilized to design and build the target systems for a state-of-the-art accelerator-based neutron source, the Spallation Neutron Source (SNS), are discussed. Emphasis is given to the technology issues that present the greate...
National Technical Information Service (NTIS)
Results are summarized for measurements of the production rates for long-lived radioisotopes and helium in fusion reactor materials. Measurements have been performed at T(d,n) generators, near 14 MeV; at broad-spectrum Be(d,n) accelerator-based neutron fields; and in various fission reactors. These activation data are used to predict ...
The International Fusion Materials Irradiation Facility (IFMIF) employs an accelerator based D-Li intense neutron source as defined in the 1995-96 Conceptual Design Activity (CDA) study under the direction of the IEA's Executive Committee on Fusion Materials. Full performance operation (2 MW/m2 at 500 cm3) allows ...
Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is under construction now at the Budker Institute. One of the main elements of the facility is lithium target producing neutrons via threshold 7Li(p, n)7Be reaction at 10 mA proton beam with energies of ...
The availability of high D-T fusion neutron yields at TFTR has provided a useful opportunity to directly measure D-T neutron-induced radioactivity in a realistic tokamak fusion reactor environment for materials of vital interest to ITER. These measurements are valuable for characterizing radioactivity in various ITER candidate materials. for validating ...
A pilot accelerator-based source of epithermal neutrons, which is intended for wide application in clinics for boron neutron capture therapy, has been constructed at the Budker Institute of Nuclear Physics (Novosibirsk). A stationary proton beam has been obtained and near-threshold neutron generation regime has ...
A comprehensive program is currently in progress for the development of sensitive, practical nondestructive assay techniques for the quantification of low level transuranics in bulk solid wastes. This program encompasses a broad range of nuclear and nonnuclear techniques including sophisticated passive gamma-ray and passive neutron detection systems, isotopic ...
UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of th...
We are here today to testify on the Department of Energy's (DOE) management of the Spallation Neutron Source Project (project). This billion- dollar complex, to be built in Oak Ridge, Tennessee, is designed to be the world's most powerful accelerator-base...
All accelerator-based fast-neutron contraband interrogation systems have many closely interrelated subsystems, whose performance parameters will be critically interdependent. For optimal overall performance, a systems analysis design approach is required....
Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer ce...
Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to ...
Neutron activation cross section data are needed for fusion reactor materials to facilitate neutron dosimetry and to determine activity levels for waste disposal, safety, and reactor maintenance applications. Measurements are reviewed for 36 different reactions, many leading to long-lived nuclides. Irradiations ...
Fast neutron activation analysis (FNAA) carried out with the use of small accelerator-based neutron generators is routinely used for major/minor element determinations in industry, mineral and petroleum exploration, and to some extent in research. While the method shares many of the operational procedures and ...
At Los Alamos, a comprehensive program is underway for the development of sensitive, practical, nondestructive assay techniques for the quantification of low-level transuranics in bulk solid wastes. The program encompasses a broad range of techniques, including sophisticated active and passive gamma-ray spectroscopy, passive neutron detection systems, ...
The use of a tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 microm diameter tissue sphere has been investigated to estimate the radiation quality factor of the neutron fields used in in vivo neutron activation measurements at the McMaster University 3 MV Van de Graaff ...
PubMed
Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and ...
... Title : NEUTRON DOSIMETRY, SPECTROMETRY, AND NEUTRON ACTIVATION ANALYSIS. Descriptive Note : Final rept. ...
DTIC Science & Technology
When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: ...
Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum ...
We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produc...
The Spallation Neutron Source (SNS) is a Department of Energy, accelerator-based neutron source proposed for construction at the Oak Ridge National Laboratory. The project is currently nearing the end of the conceptual design stage. The objective of the target facility is to provide beams of pulsed thermal and sub-thermal ...
... (Author). Descriptors : (*NEUTRON CROSS SECTIONS, *NEUTRON ACTIVATION), NEUTRON FLUX, NEUTRON SPECTRUM, FOILS(MATERIALS ...
... INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS FOR IODINE IN SEAWEEDS. ... FOR DETERMINING IODINE IN SEAWEED BY NEUTRON ...
threshold for accelerator boron neutron capture therapy. Med. Phys. 27(1), 192�202 (2000). 11. Schmid, EAN ACCELERATOR-BASED NEUTRON MICROBEAM SYSTEM FOR STUDIES OF RADIATION EFFECTS Yanping Xu1 2010 A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility
Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based ...
Low-energy neutrons from reactor and spallation neutron sources have been employed in a wide variety of investigations that shed light on important issues in nuclear, particle, and astrophysics; in the elucidation of quantum mechanics; in the determination of fundamental constants; and in the study of fundamental symmetry violation (Appendix A, Glossary). ...
This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.
Boron Neutron Capture Therapy (BNCT) is being studied as a possible radiotherapic treatment for some cancer types. Neutron energy for penetrating into tissue should be in the epithermal range. Different methods are used for neutron production. Electron accelerators are an alternative way for producing neutrons in ...
The National Spallation Neutron Source is a collaborative project or perform the conceptual design for a next generation neutron source for the Department of Energy. This paper reviews the need and justification for a new neutron source, the origins and structure of the collaboration formed to address this need, and the community input ...
The Australian Nuclear Science and Technology Organisation (ANSTO) in collaboration with the NSW Environment Protection Authority (EPA), Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 60,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP commenced sampling on 1 July 1991. The ...
The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the ...
Transportable accelerator based sources are the only means by which large structures such as aircraft or industrial components can be inspected practically using neutron radiography. Since such sources are generally considerably lower in flux than reactors, the entire system must be designed for high imaging efficiency. We describe an ...
The technologies that are being utilized to design and build the target systems for a state-of-the-art accelerator- based neutron source, the Spallation Neutron Source (SNS), are discussed. Emphasis is given to the technology issues that present the greatest challenges. The present facility configuration, ...
... SUCH AS COPPER ACTIVATION FOR 14 MEV NEUTRONS, AND TRACK ... WAS CONCLUDED THAT FAST-NEUTRON RADIOGRAPHY WITH ...
... Descriptors : *COMPUTER PROGRAMS), *NEUTRON ACTIVATION), (*NEUTRON FLUX, (*NEUTRON SPECTRUM, DETERMINATION), (*FOILS ...
Current accelerator-based neutron source concepts for boron neutron capture therapy (BNCT) are centered on the lithium (p,n) reaction. The near lithium threshold source concept uses proton energies <~100 keV above the reaction threshold energy (1.88 MeV). For deeply seated brain tumors, epithermal (1 eV to 10 keV) ...
... Descriptors : *Neutron detectors, *Neutron activation, Calibration, Measurement, Neutron flux, Neutron spectrum, Dosage, Radioactive isotopes ...
This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) at the Los Alamos National Laboratory (LANL). The development of next generation, accelerator based neutron sources calls for the design of new instruments for neutron scattering studies of materials. It will be necessary, ...
Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be ...
Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10mA. Epithermal neutrons are proposed to be generated by 1.915-2.5MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, ...