We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.
Energy Citations Database
NASA Astrophysics Data System (ADS)
Hybrid reactors (Accelerator Driven Sub-critical Systems, ADS), coupling an accelerator with a target and a sub-critical reactor, could simultaneously burn minor actinides and transmute long-lived fission products, while producing a consistent amount of electrical energy. A group of Italian research and development ...
High intensity proton accelerators have two important applications in China in recent years: Accelerator Driven Sub-critical System for nuclear waste transmutation and China Spallation Neutron Source. This paper focuses on the R&D activities of the key technology of high intensity proton accelerators in China, ...
The most challenging issue to realize an accelerator for an Accelerator Driven Sub-critical Reactor system (ADSR) is the handling of high intensity beam�more than 1 mA. For such an application, FFAG is one of most promising candidates. To take advantage of the FFAG as a high intensity accelerator, efficient ...
The management of long-lived high-level waste, such as minor actinides (MA) and long-lived fission products (LLFP), is one of the most important issues to be solved for the utilization of the nuclear fission energy. The transmutation project of the radioactive wastes based on an accelerator driven sub-critical (ADS) ...
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of ...
In recent years, there has been an increasing worldwide interest in accelerator driven systems (ADS) due to their perceived superior safety characteristics and their potential for burning actinides and long-lived fission products. Indian interest in ADS has an additional dimension, which is related to our planned large-scale thorium ...
From FY 02-05 IAC has been a part of the DOE Advanced Fuel Cycle Initiative and its predecessor organization Advanced Accelerator Applications. In the IAC program effort has been divided into three parts; Student Research, Accelerator Driven Nuclear Research and Materials Science. Within the three parts specific research and development activities have ...
Accelerator driven nuclear transmutation system has been pursued to have a clue to the solution of high-level radioactive waste management. The concept consists of super conducting linac, sub-critical reactor and the beam window. Reference model is set up to 800MW thermal power by using 1.5GeV proton beams with ...
In November 1996, SKB started financing of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: (1) Development of a complete code for simulation ...
National Technical Information Service (NTIS)
The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic ...
DOE Information Bridge
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To acc...
A sudden drop in power after a beam interruption leads to thermal fatigue effects in structural components in the blanket of an accelerator driven system. These thermal fatigue effects limit component lifetimes. A sudden return to power after a beam inter...
There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding ...
The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste an...
The target system, whose function is to supply an external neutron source to the ADS sub-critical core to sustain the neutron chain reaction, is the most critical part of an ADS being subject to severe thermo-mechanical loading and material damage due to accelerator protons and fission neutrons. A windowless option was chosen as reference configuration for ...
The mechanical design of the target module of an accelerator driven sub- critical nuclear reactor system (ADSS) calls for an analysis of the related thermal-hydraulic issues because of large amount of heat deposition in the spallation region during the course of nuclear interactions with the ...
Since 1998, SCK�CEN, Mol, Belgium, - in partnership with many European research laboratories - is designing a multipurpose Accelerator Driven System for R&D applications - MYRRHA. In parallel, an associated R&D support program is being conducted. MYRRHA aims to serve as a basis for the European experimental ADS providing ...
Fissioning surplus weapons-grade plutonium (WG-Pu) in a reactor is an effective means of rendering this stockpile non-weapons useable. In addition the enormous energy content of the plutonium is released by the fission process and can be captured to produce valuable electric power. While no fission option has been identified that can accomplish the destruction of more than about 70% of the WG-Pu ...
A demonstration facility for Accelerator Driven Systems has been proposed to be constructed at the Joint Institute of Nuclear Research in Dubna. The Subcritical Assembly in Dubna project proposes to couple an existing proton accelerator of 660 MeV and 1 ?A current with a specially designed U-Pu MOX subcritical core. Project objectives, ...
The paper summarizes fuel cycle strategies which can call for the development of accelerator driven systems (ADS) and shows how an ADS-based transmutation strategy can be envisaged in a regional context. Finally, a path towards the demonstration of the ADS concept will be proposed, which accounts for the need of developing a consistent ...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in a subcritical device. Calculations were also made to show the rate of power changes resulting ...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from ...
A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Mod...
Developments of new reactor designs for the utilization of thorium, such as the Advanced Heavy Water Reactor, especially demand creation of new nuclear data for all the isotopes of the thorium fuel cycle. Improved nuclear data are essential to support new initiatives such as the international project on innovative nuclear reactors and fuel cycles (INPRO), which aims to support the safe, ...
This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each ...
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important ...
For the Thermophysical analysis of the Accelerator Driven Systems (ADS) an simplified model of ADS core was used. The neutron flux was calculated by means of diffusion theory for subcritical homogeneous reactor with an external neutron source. From this result the distribution of the heat sources was found and next the distribution of ...
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proli...
A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transm...
The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern Universit...
Heat deposition inside thick targets due to interaction of high energy protons (Ep � GeV) has been estimated using an improved version of the Monte Carlo simulation code CASCADE.04.h. The results are compared with the available experimental data for thick targets of Be, Al, Fe, Cu, Pb and Bi at proton energies of 0.8 GeV, 1.0 GeV and 1.2 GeV. A more continuous heat deposition approach which has ...
For transmutation systems based on externally driven sub-critical assemblies with a fast neutron spectrum, there is an incentive to expose the actinides directly to the source neutrons, since these neutrons have higher energies than the fission neutrons. ...
The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear...
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and e...
Thermal neutron reactor (LWR), fast neutron reactor (FBR), accelerator- driven subcritical system have been studied as the potential transmutation devices. Oxide fuel is considered in LWR and metal, oxide, and nitride fuels are studied in FBR. In accelera...
The Los Alamos Accelerator Transmutation of Nuclear Waste (ATW) concept uses an accelerator driven neutron source (target) surrounded by a moderator and multiplying medium (blanket) for the transmutation of actinide and fission product waste. The referenc...
I present here an overview of the main research and development topics and activities under investigation in Europe for the design of high power superconducting linear proton accelerators as drivers for nuclear waste transmutation in Accelerator Driven Systems.
A new concept termed ADAPT for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D.0 target. The neutrons are then absorbed in a surrounding subcri...
Thermal response of the multiplier of an accelerator driven system to beam trips has been calculated for sodium cooled and lead-bismuth cooled multipliers. The temperature transients caused by a beam trip lead to thermal fatigue in structural components, and restoring the beam causes an additional temperature transient that adds to ...
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for ...
There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding options for dealing with long-lived actinide wastes and fission products, and for ...
A series of basic experiments for an accelerator driven subcritical reactor (ADSR) has been performed at the Kyoto University Critical Assembly (KUCA) by combining a critical assembly with a Cockcroft-Walton type accelerator in view of a future plan to establish a new neutron source for research. By injecting 14 MeV neutrons into the subcritical assembly, ...
A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most ...
The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 ...
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for ...
Plutonium recycle in fast reactors, as well as utilization/transmutation of minor actinides and long-lived fission products in hybrid reactor systems (e.g. accelerator driven systems, ADS) offer promising nuclear fuel backend management options. Several R&D programs in various IAEA Member States are actively ...
A sudden drop in power after a beam interruption leads to thermal fatigue effects in structural components in the blanket of an accelerator driven system. These thermal fatigue effects limit component lifetimes. A sudden return to power after a beam interruption can contribute significant additional thermal fatigue and greatly reduce ...
The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National ...
Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, ...
E-print Network
As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The ...
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale ...
Accelerator Driven System (ADS) has been studied to transmute minor actinides (MA) discharged from spent fuel of commercial nuclear power plants. In Japan Atomic Energy Agency (JAEA), various R and D for an 800 MWt, lead bismuth eutectic (LBE) cooled ADS have been performed. The feasibility for the ADS is discussed in the present study ...
An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and a few tens of mA for large industrial systems. This high power accelerator requires an exceptional reliability: because of the induced ...
Nearly all risks to future generations arising from long-term disposal of used nuclear fuel are attributable to the transuranic elements and long-lived fission products, about 2% of its content. The transuranic elements of concern are plutonium, neptunium, americium, and curium. Long-lived (>100,000-year half-life) isotopes of iodine and technetium are also created by nuclear fission of ...
Subcritical Assembly in Dubna (SAD), a project funded by the International Science and Technology Centre, driven in collaboration with many European partners, may become the first Accelerator Driven Subcritical experiment coupling an existing proton accelerator of 660 MeV with a compact MQX-fuelled subcritical core. The main objective of the SAD experiment ...
Linear accelerator breeders (LAB) could be used to produce fissile fuel in two modes, either with fuel reprocessing or without fuel reprocessing. With fuel reprocessing, the fissile would be separated from the target and refabricated into a fuel element for use in a burner power reactor. Without reprocessing, the fissile material would be produced in-situ, either in a fresh fuel element or in a ...
A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated ...
A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept ...
The LAHET Code System (LCS) is extensively used for medium energy accelerator applications, including spallation target design and deep penetration shielding problems. Current applications include Accelerator Production of Tritium (APT), Accelerator Driven Transmutation Technologies (ADTT), LANSCE and WNR spallation target upgrades, as ...
Transmutation is a worldwide promising and feasible technology for significant reduction of the amount, and thereby, the long-term radiotoxicity of highly radioactive wastes produced by the operation of nuclear power plants such as light water reactors. Plutonium, minor actinides and long-live fission products can be transmuted in an Accelerator Driven ...
The Backward Theory of Feynman- and Rossi-Alpha Methods with Multiple Emission Sources I. P�zsit October 26, 1998 Accepted February 3, 1999 Abstract � The Feynman- and Rossi-alpha formulas are calculated accelerator-driven subcritical systems (ADS), such as the energy amplifier. The Feynman- and Rossi
Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines. Project A.4.02: Technology advances in fast reactors and accelerator driven systems CRP Title: Analysis and Materials Technologies Subprogramme B.2 Nuclear Power Reactor Fuel Engineering Project B.2.01: Supporting
A linear accelerator for the driver of a mu-mu collider can easily be based on operating characteristics of the Los Alamos Neutron Science Center (LANSCE) linac, or can incorporate many of the advances that have been realized from the Accelerator Driven Transmutation Technologies (ADTT) studies, from the Accelerator Production of Tritium (APT) ...
Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of t...
Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as ...
All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approxim...
The work is aimed at measurements and computer simulations of independent and cumulative yields of residual product nuclei in thin targets relevant as target materials and structure materials for hybrid accelerator-driven systems coupled to high-energy proton accelerators.
Recent advances in accelerator technology have led to the practical realization of high-power beams. When coupled with high-power spallation target technology, these systems offer a more environmentally-friendly method of producing neutrons than reactors. We will focus our attention here on the application of spallation technology to the Accelerator Production of Tritium ...
facility (in 7 years) -- ESS�I Eur. spallation neutron source for n�spectroscopy -- Eur. XFEL hard X of spallation neutron sources, transmutation of nuclear waste in accelerator driven systems [21], and shielding, Oct.17�22nd, Tsukuba, Japan (1999) 8. Spallation Neutron Source SNS, http://www.ornl.gov/sns/ 9. C
Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the ...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal-fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcriticality of the system. To accomplish this, an accelerator proton beam/tungsten neutron ...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To accomplish this an accelerator proton beam/tungsten neutron ...
TRASCO-ADS is a national funded program in which INFN, ENEA, and Italian industries work on the design of an accelerator driven subcritical system for nuclear waste transmutation. TRASCO is the Italian acronym for Transmutation (TRAsmutazione) of Waste (SCOrie). One of the most critical aspects in the design of an ...
While the potential hazards posed by large particle accelerator driven spallation targets are greatly reduced in comparison to nuclear reactors capable of similar neutron production levels, they are significant, and require a safety-by-design approach to ensure there is little likelihood of accidental releases of target materials. Most postulated accident ...
Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and ...
The impact of a number of current and future nuclear systems on global plutonium inventories is assessed under realistic forecasts of nuclear power growth. Advanced systems, such as those employing Accelerator Driven Transmutation Technologies (ADTT) and liquid metal reactors, show significant promise for meeting ...
Liquid lead and lead-bismuth have drawn the attention as one of the candidate coolants of the fast breeder reactors (FBRs), and the accelerator driven transmutation systems (ADSs). In order to use the coolant to the systems, the physical and chemical characteristics of the heavy metals are necessary. This plan has ...
This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy ...
Studies in nuclear energy and transmutation of radioactive waste require neutron data for conceptual and performance studies, to determine the viability of advanced ideas such as an Accelerator Driven System and to fix the safety margins of any new concepts. IRMM's neutron data-measurement program addresses data needs ...
Studies in nuclear energy and transmutation of radioactive waste require neutron data for conceptual and performance studies, to determine the viability of advanced ideas such as an Accelerator Driven System and to fix the safety margins of any new concepts. IRMM's neutron data-measurement program addresses data needs associated with ...
In order to investigate the fluid dynamic mechanisms of the gas driven circulation, with reference to the accelerator driven systems (ADS), an experimental research with water driven by air injected at the inlet of the vertical riser in an adiabatic test rig has been carried out. The present experimental apparatus consists essentially ...
The US policy on the disposition of weapons and commercial plutonium by geologic storage is examined and compared with destruction in reactors or accelerator-driven systems. The close coupling with Russian weapons plutonium is considered. Strong emphasis is placed on the preference by terrorists and rogue states for commercial plutonium over weapons plutonium for fast and ...
A study of the properties of the neutron production target for the China accelerator-driven system induced from 150-MeV incident proton energy and a 3-mA beam current is performed. The selection of the material and geometry design for the target; the physics properties of the target involved in this work including the neutron yield, energy, and space ...
In the frame of international concern about long-lived nuclear waste, the construction of an effective accelerator driven system for the transmutation or incineration of fission products and actinides is a promising task. A spallation source consisting of a Pb target surrounded by paraffin moderator was studied by irradiation with ...
The TRiga Accelerator-Driven Experiment (TRADE), to be performed in the TRIGA reactor of the ENEA-Casaccia Centre in Italy, consists of the coupling of an external proton accelerator to a target to be installed in the central channel of the reactor scrammed to subcriticality. This pilot experiment, aimed at a global demonstration of the accelerator-driven ...
An important ingredient in the performance of accelerator driven systems for energy production, waste transmutation and other applications are the number of spallation neutrons produced per incident proton. The neutron multiplicities, angular and energy distributions are usually calculated using simulation codes. We have presented ...
This article presents the different activity of Ingot niobium in BARC. BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a ...
This work intends to be a starting point for the extension of the TRANSURANUS fuel rod performance code to the modelling of the T91 steel, which is designed to be the cladding material in LBE (lead-bismuth eutectic) accelerator-driven systems (ADS). On the basis of the experimental data available in the recent literature on LBE and T91, a preliminary ...
Design and development of superconducting (SC) cavity having {beta}{sub g}>0.42 has been taken up as a part of the accelerator driven subcritical system project. An input coupler is designed for the SC, elliptical cavity operating at 1.056 GHz, using the Kroll-Yu method. The evaluation procedure is optimized and the method has ...
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Accelerator Driven Transmutation Technology (ADTT) offers a means of generating nuclear energy in a clean, safe way that can be attractive to the general public. However, there are issues associated with the ...
Nuclear waste management involves many issues. ATW is an option that can assist a repository by enhancing its capability and thereby assist nuclear waste management. Technology advances and the recent release of liquid metal coolant information from Russia has had an enormous impact on the viability of an ATW system. It now appears economic with many repository enhancing ...
The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient keff between 0.94 and ...
Fissile fuel can be produced at a high rate using an accelerator driven Pu fueled fast reactor operated at deep subcriticality; this approach avoids encountering a shortage of Pu during a high rate of growth in the production of nuclear energy. Slightly reducing the acceleration field minimizes the tripping of the beam and the radiation dose from the ...
In the proposed accelerator driven systems (ADS) the possible use of several milliamperes of protons of about 1 GeV incident on high mass targets like the molten lead--bismuth eutectic is anticipated to pose radiological problems that have so far not been encountered by the radiation protection community. Spallation reaction products ...
A fully self-consistent theory of ferromagnetic waveguide accelerators driven by a relativistic electron beam is developed. The theoretical analysis is based on Faraday's law, which provides a second-order partial-differential equation of the azimuthal magnetic field, under the assumption that [mu][epsilon][much gt]1. Here [mu] and [epsilon] are ...
The Los Alamos National Laboratory (LANL) is involved in the analysis of many different types of nuclear systems. The nuclear systems that we have analyzed have included subcritical accelerator driven systems for the transmutation of waste, fusion systems, critical ...
In order to operate accelerator driven subcritical system safely, it is necessary to monitor the subcriticality in real-time. In this paper, we propose a highly accurate real-time subcriticality-monitoring system by combining the existing multiple measurement techniques, a number of neutron detectors, and ...
Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerat...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power lev...
This project will analyze and design a novel oblique-detonation-wave (ODW), ram- accelerator-driven propulsion concept for the acceleration of tube-launched ...
NASA Website
... Descriptors : *CARBON DIOXIDE LASERS, LASER APPLICATIONS, RAMAN SCATTERING, ELECTRON ACCELERATORS, LINEAR ...
DTIC Science & Technology
Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed ...
We are currently developing a high-energy (10 - 15 MeV) neutron imaging system for use in NDE applications. Our goal is to develop an imaging system capable of detecting cubic-mm-scale voids or other structural defects in heavily-shielded low-Z materials within thick sealed objects. The system will be relatively compact (suitable for ...
Some years ago, within the framework of the study for the International Thermonuclear Experimental Reactor (ITER), ENEA assessed the RELAP5 code capability to simulate Helium cooled systems on the experimental data provided by the helium facility HEFUS3 (Brasimone, Italy). This activity allowed acquiring a certain experience on the limits and capabilities of the code that, in ...
Recent work at Los Alamos has revealed new techniques leading to greatly enhanced feasibility for using intense particle accelerators to drive systems for burning existing radioactive waste, and for electrical power generation with a much reduced waste stream in the future. The system requires the intense flux levels that can only be provided by an ...
A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently ...
Recently, analytical formulas have been derived for the Feynman- and Rossi-Alpha measurements in accelerator-driven systems. In such systems, due to the multiplicity of the sources, the Feynman- and Rossi-Alpha formulas contain additional terms as compared with the traditional cases. A numerical evaluation of these formulas for systems ...
We are continuing with the development of fast ({approx} 12 MeV) neutron imaging techniques for use in NDE applications. Our goal is to develop a neutron imaging system capable of detecting sub-mm-scale cracks, cubic-mm-scale voids and other structural defects in heavily-shielded low-Z materials within thick sealed objects. The final system will be ...
We are proceeding with the development of fast (~12 MeV) neutron imaging techniques for use in NDE applications. Our goal is to develop a neutron imaging system capable of detecting sub-mm-scale cracks, cubic-mm-scale voids and other structural defects in heavily-shielded low-Z materials within thick sealed objects. The final system will be relatively ...
The actinide management has become a key issue in nuclear energy. Recovering and fissioning transuranium elements reduce the long-term proliferation risks and the environmental burden. The better way of waste management will be made by system symbiosis: a combination of light-water reactor and fast reactor and/or accelerator-driven transmutation ...
The Japan Atomic Energy Research Institute carries out R&D on accelerator-driven transmutation systems (ADTS) under the national OMEGA program (Options Making Extra Gains from Actinides and fission products). The code system named ATRAS was developed to analyze neutronics and burnup characteristics of ADTS. It has a unique function of burnup analysis ...
Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical ...
The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR >0.238) as objective parameters, and based on the three-dimensional Monte Carlo ...
In Europe, uranium-free fuels for minor actinide burning in Accelerator-Driven Systems (ADS) are under development in the frame of the CONFIRM, FUTURE and MATINE projects. In the present paper, the status of these projects is reviewed. Transuranium oxide and nitride fuel samples have been fabricated and characterized. Their performance has been modelled under normal operation ...
This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document we try to go one step ...
Accelerator Driven Systems (ADS) for nuclear waste transmutation require proton drivers with energies between 600 and 800 MeV and beam currents of several mA for demonstrators and up to 25 mA for large industrial systems. Within the EUROTRANS project a 600 MeV linac has been designed to meet the stringent ...
To study control and safety of accelerator driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical ...
The current status of molten salt reactor development is discussed with reference to the experience from the Oak Ridge Molten Salt Reactor Experiment. Assessment of the future for this reactor system is reviewed with consideration of both advantages and disadvantages. Application of this concept to ADTT (accelerator driven ...
Power supply is a key issue for China's further economic development. To meet the needs of our economic growth in the next century, the part of nuclear energy in the total newly increased power supply must become larger. However, the present nuclear power stations dominated by the PWR in the world are facing some troubles. Recently, a new concept, called ADS (Accelerator ...
The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the ...
Accurate and reliable neutron capture cross section data for actinides are necessary for the proper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems. In particular, the neutron capture cross sections of 237Np, 240Pu and 243Am play a key ...
Accurate and reliable neutron-capture cross-section data for actinides are necessary for the proper design, safety regulation, and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems. In particular, the neutron-capture cross sections of 237Np, 240Pu, and 243Am play a key ...
The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction ...
The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical ...
Subcritical nuclear reactors driven by intense neutron sources can be very suitable tools for nuclear waste transmutation, particularly in the case of minor actinides with very low fractions of delayed neutrons. A proper control of these systems needs to know at every time the absolute value of the reactor subcriticality (negative reactivity), which must be measured by fully ...
A growing interest in accelerator-driven systems (ADSs) has led to the establishment in Italy of a basic research and development program aimed at the study of the physics and technological development needed to design an ADS for nuclear waste transmutation. In the framework of this program, ENEA and Politecnico di Torino are carrying out some neutronic analyses focused on an ...
An important international effort is devoted to find a suitable solution to incinerate radioactive nuclear waste issued from conventional power plants and from nuclear disarmament. Practically all innovative projects consist of a sub critical system driven by an external neutron source obtained by spallation induced by a high intensity ...
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates ...
A new concept termed ADAPT for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D.0 target. The neutrons are then absorbed in a surrounding subcritical (K{sub eff} {approximately} 0.95) blanket assembly, that holds small ({approximately} 0.5 cm diameter) graphite beads containing the ...
A new concept; termed ADAPT; for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D2O target. The neutrons are then absorbed in a surrounding subcritical (Keff{approx}0.95) blanket assembly, that holds small ({approx}0.5 cm diameter) graphite beads containing the plutonium to be burned. The ...
Within the scope of the Accelerator Driven System (ADS) concept for nuclear waste management applications, the burnup uncertainty estimates due to uncertainty in the activation cross sections (XSs) are important regarding both the safety and the efficiency of the waste burning process. We have applied both sensitivity analysis and ...
The paper present results of Monte Carlo modeling of an Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the Joint Institute for Nuclear Research in Dubna. The mix of oxides PuO2+UO2 MOX fuel designed for the reactor ...
Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of these target materials as a function of the main variables and the design selections. The characterization includes the neutron yield, the spatial ...
In high-energy transport codes used to design Accelerator Driven Systems or spallation neutron sources, elementary interactions are computed through nuclear physics models. Among these, Intra-Nuclear Cascade models play a major role since the excitation energy at the end of the INC stage determines the number of evaporated particles. ...
The Los Alamos design approach to Accelerator driven transmutation applications is based on high power proton linacs. Most of the accelerators that have been studied have one important element in common. That component is a funnel, where beams from two separate but identical front end linac systems are merged to form a collinear beam ...
The cross sections for the production of long-lived 60Fe and 53Mn from thin proton-irradiated lead foils in dependence on the proton energy from thresholds up to 2.6 GeV were determined by measuring the radionuclide content with accelerator mass spectrometry (AMS). For the sample preparations subsequent chemical separation procedures were developed. The corresponding excitation functions are ...
The DEWPOINT (Directed Energy POwer INTegration) program was aimed at providing the large amounts of electric power required for a laser or accelerator based in space, or on an aircraft or satellite platform. This is our final report on our efforts as a part of this program which was cancelled before completion. This report summarizes the entire scope of effort funded by this program. It also ...
Different reactivity determination methods have been investigated, based on experiments performed at the subcritical assembly Yalina in Minsk, Belarus. The development of techniques for on-line monitoring of the reactivity level in a future accelerator-driven system (ADS) is of major importance for safe operation. Since an ADS is operating in a subcritical ...
The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor system in a subcritical configuration. The accelerator source will consist of a 40 MeV ...
Good multigroup cross-section data is necessary if accurate analyses of critical or slightly sub-critical systems are performed. How the flux spectrum as calculated by the Nordheim method and by a more exact method can ultimately affect the calculated mul...
] St�epan, G., 1989. "Retarded dynamical systems: Stability and characteristic functions". Longman Scientific & Tech- nical. [14] Kalmar-Nagy, T., Stepan, G., and Moon, F. C., 2001. "Sub- critical hopf
The work reported here makes use of scattering models to understand the high sub-critical-grazing-angle target detection performance initially observed at the SAX99 field test using NSWC PC's synthetic aperture sonar (SAS) system. In this test, cylindrica...
The plants envisioned in this ATW technology roadmap would contain multiple sub-critical fission assemblies (burners) driven by two high-power proton linear accelerators. The accelerator technology and design are similar to those proposed for the Accelera...
The Addendum considered an increase in the limit of fissile material in a stacked container array to 500 grams. In other words, the sum of fissile material in an array of containers is limited to 500 grams, regardless of whether the containers are stacked or not. The results of this evaluation indicates that with the modification of the fissile limits described, the system of ...
The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear energy applications using low enriched uranium. The YALINA-Booster ...
The potential to incinerate minor actinides (MA) in a sub-critical accelerator-driven system (ADS) is a subject of study in several countries where nuclear power plants are present. The performance of the MYRRHA experimental ADS, as to the transmutation of Am and Cm in the inert matrix fuel (IMF) samples consisting of 40 vol.% (Cm0.1Am0.5Pu0.4)O1.88 fuel ...
An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally ...
One of the main SCKCEN research facility, namely BR2, is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B-Mol), HFR (EU-Petten), OSIRIS (F-Saclay), R2 (S-Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal ...
One of the main SCK�CEN research facility, namely BR2, is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B-Mol), HFR (EU-Petten), OSIRIS (F-Saclay), R2 (S-Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal ...
Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven subcritical system (ADS). The ADS utilizes neutrons, which are generated by high-energy protons of giga-electron-volt-grade, but cross sections for the interaction of high-energy particles are not available for use in ...
This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an ...
Historically, subcritical accelerator-driven systems have been called electronuclear devices. Interest in these devices has been revived for numerous nuclear applications, such as boron neutron capture therapy, accelerator transmutation of waste (ATW), and accelerator-based conversion (ABC). The latter systems are being investigated at ...
... Pseudoresonant Laser Wakefield Acceleration ... these mechanisms have practical limits to the max - imum length of the acceleration regions. ...
Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated.
NASA Technical Reports Server (NTRS)
... The simulation can l- used to determine the effect of design changes made to the escapemeit , trali, and acceleration driven rotor. ...
Energy measurement in coaxial plasma accelerator determining current, voltage on gun and at open end
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system ...
This article discusses the potential safety and energy efficiency benefits of nuclear reactors enhanced with particle accelerator technology. It explains how particle accelerators have the ability to produce extra neutrons (in order to sustain a chain reaction for longer periods of time), a feature that makes the technology safer than ordinary reactors in that it renders the ...
NSDL National Science Digital Library
As part of the effort to investigate the use of an electron accelerator driven system for TRU transmutation, the effects of TRU distributions in the core on transmuter system performance was examined in this paper. The system performance examined includes the transmutation and ...
One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the ...
SCK.CEN, the Belgian Nuclear Research Centre, in partnership with IBA s.a., Ion Beam Applications, is designing an ADS prototype, MYRRHA, and is conducting an associated R&D programme. The project focuses primarily on research on structural materials, nuclear fuel, liquid metals and associated aspects, on subcritical reactor physics and subsequently on applications such as nuclear waste ...
We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear ...
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while ...