The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To acc...
National Technical Information Service (NTIS)
A demonstration facility for Accelerator Driven Systems has been proposed to be constructed at the Joint Institute of Nuclear Research in Dubna. The Subcritical Assembly in Dubna project proposes to couple an existing proton accelerator of 660 MeV and 1 ?A current with a specially designed U-Pu MOX ...
NASA Astrophysics Data System (ADS)
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in a subcritical device. Calculations were also made to ...
Energy Citations Database
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show ...
DOE Information Bridge
We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.
Subcritical Assembly in Dubna (SAD), a project funded by the International Science and Technology Centre, driven in collaboration with many European partners, may become the first Accelerator Driven Subcritical experiment coupling an existing proton accelerator of 660 MeV with a compact MQX-fuelled ...
A series of basic experiments for an accelerator driven subcritical reactor (ADSR) has been performed at the Kyoto University Critical Assembly (KUCA) by combining a critical assembly with a Cockcroft-Walton type accelerator in view of a future plan to establish a new neutron source for research. By injecting 14 MeV neutrons into the ...
For the Thermophysical analysis of the Accelerator Driven Systems (ADS) an simplified model of ADS core was used. The neutron flux was calculated by means of diffusion theory for subcritical homogeneous reactor with an external neutron source. From this result the distribution of the heat sources was found and next ...
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and e...
The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear...
Thermal neutron reactor (LWR), fast neutron reactor (FBR), accelerator- driven subcritical system have been studied as the potential transmutation devices. Oxide fuel is considered in LWR and metal, oxide, and nitride fuels are studied in FBR. In accelera...
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for ...
Hybrid reactors (Accelerator Driven Sub-critical Systems, ADS), coupling an accelerator with a target and a sub-critical reactor, could simultaneously burn minor actinides and transmute long-lived fission products, while producing a consistent amount of electrical energy. A group of Italian ...
In order to operate accelerator driven subcritical system safely, it is necessary to monitor the subcriticality in real-time. In this paper, we propose a highly accurate real-time subcriticality-monitoring system by combining the existing multiple ...
Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, ...
E-print Network
As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens ...
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale ...
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, ...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power lev...
The paper present results of Monte Carlo modeling of an Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the Joint Institute for Nuclear Research in Dubna. The mix of oxides PuO2+UO2 MOX fuel ...
The Backward Theory of Feynman- and Rossi-Alpha Methods with Multiple Emission Sources I. P�zsit October 26, 1998 Accepted February 3, 1999 Abstract � The Feynman- and Rossi-alpha formulas are calculated accelerator-driven subcritical systems (ADS), such as the energy amplifier. The Feynman- and Rossi
High intensity proton accelerators have two important applications in China in recent years: Accelerator Driven Sub-critical System for nuclear waste transmutation and China Spallation Neutron Source. This paper focuses on the R&D activities of the key technology of high intensity proton accelerators in China, ...
The TRiga Accelerator-Driven Experiment (TRADE), to be performed in the TRIGA reactor of the ENEA-Casaccia Centre in Italy, consists of the coupling of an external proton accelerator to a target to be installed in the central channel of the reactor scrammed to subcriticality. This pilot experiment, aimed at a global demonstration of the accelerator-driven ...
The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient ...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal-fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcriticality of the system. To accomplish this, an accelerator proton ...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To accomplish this an accelerator proton ...
An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and a few tens of mA for large industrial systems. This high power accelerator requires an exceptional reliability: because of the induced ...
In recent years, there has been an increasing worldwide interest in accelerator driven systems (ADS) due to their perceived superior safety characteristics and their potential for burning actinides and long-lived fission products. Indian interest in ADS has an additional dimension, which is related to our planned large-scale thorium ...
Linear accelerator breeders (LAB) could be used to produce fissile fuel in two modes, either with fuel reprocessing or without fuel reprocessing. With fuel reprocessing, the fissile would be separated from the target and refabricated into a fuel element for use in a burner power reactor. Without reprocessing, the fissile material would be produced in-situ, either in a fresh fuel element or in a ...
Different reactivity determination methods have been investigated, based on experiments performed at the subcritical assembly Yalina in Minsk, Belarus. The development of techniques for on-line monitoring of the reactivity level in a future accelerator-driven system (ADS) is of major importance for safe operation. Since an ADS is ...
The most challenging issue to realize an accelerator for an Accelerator Driven Sub-critical Reactor system (ADSR) is the handling of high intensity beam�more than 1 mA. For such an application, FFAG is one of most promising candidates. To take advantage of the FFAG as a high intensity accelerator, efficient ...
Fissile fuel can be produced at a high rate using an accelerator driven Pu fueled fast reactor operated at deep subcriticality; this approach avoids encountering a shortage of Pu during a high rate of growth in the production of nuclear energy. Slightly reducing the acceleration field minimizes the tripping of the beam and the ...
This article presents the different activity of Ingot niobium in BARC. BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has ...
Design and development of superconducting (SC) cavity having {beta}{sub g}>0.42 has been taken up as a part of the accelerator driven subcritical system project. An input coupler is designed for the SC, elliptical cavity operating at 1.056 GHz, using the Kroll-Yu method. The evaluation procedure is optimized ...
The management of long-lived high-level waste, such as minor actinides (MA) and long-lived fission products (LLFP), is one of the most important issues to be solved for the utilization of the nuclear fission energy. The transmutation project of the radioactive wastes based on an accelerator driven sub-critical (ADS) ...
To study control and safety of accelerator driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical ...
The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the ...
Subcritical nuclear reactors driven by intense neutron sources can be very suitable tools for nuclear waste transmutation, particularly in the case of minor actinides with very low fractions of delayed neutrons. A proper control of these systems needs to know at every time the absolute value of the reactor subcriticality (negative ...
The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear energy applications using low enriched uranium. The YALINA-Booster ...
An experimental neutron source facility has been developed for producing medical isotopes, training young nuclear professionals, providing capability for performing reactor physics, material research, and basic science experiments. It uses a driven subcritical assembly with an electron accelerator. The neutrons driving the subcritical assembly were ...
Historically, subcritical accelerator-driven systems have been called electronuclear devices. Interest in these devices has been revived for numerous nuclear applications, such as boron neutron capture therapy, accelerator transmutation of waste (ATW), and accelerator-based conversion (ABC). The latter systems are ...
TRASCO-ADS is a national funded program in which INFN, ENEA, and Italian industries work on the design of an accelerator driven subcritical system for nuclear waste transmutation. TRASCO is the Italian acronym for Transmutation (TRAsmutazione) of Waste (SCOrie). One of the most critical aspects in the design of an ...
The Los Alamos National Laboratory (LANL) is involved in the analysis of many different types of nuclear systems. The nuclear systems that we have analyzed have included subcritical accelerator driven systems for the transmutation of waste, fusion ...
In November 1996, SKB started financing of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: (1) Development of a complete code for simulation ...
Various transmutation concepts such as PWR, LMR, Accelerator Driven Subcritical Reactor, are under investigation. A study to decide which option is the optimum among three concepts has been performed in this project. In addition, various computer code sys...
Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early in...
Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical ...
From FY 02-05 IAC has been a part of the DOE Advanced Fuel Cycle Initiative and its predecessor organization Advanced Accelerator Applications. In the IAC program effort has been divided into three parts; Student Research, Accelerator Driven Nuclear Research and Materials Science. Within the three parts specific research and development activities have ...
A sudden drop in power after a beam interruption leads to thermal fatigue effects in structural components in the blanket of an accelerator driven system. These thermal fatigue effects limit component lifetimes. A sudden return to power after a beam inter...
The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor system in a subcritical configuration. The ...
The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic ...
There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding ...
The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste an...
Power supply is a key issue for China's further economic development. To meet the needs of our economic growth in the next century, the part of nuclear energy in the total newly increased power supply must become larger. However, the present nuclear power stations dominated by the PWR in the world are facing some troubles. Recently, a new concept, called ADS (Accelerator ...
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system ...
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation ...
A new concept termed ADAPT for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D.0 target. The neutrons are then absorbed in a surrounding subcritical (K{sub eff} {approximately} 0.95) blanket assembly, that holds small ({approximately} 0.5 cm diameter) graphite beads ...
A new concept; termed ADAPT; for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D2O target. The neutrons are then absorbed in a surrounding subcritical (Keff{approx}0.95) blanket assembly, that holds small ({approx}0.5 cm diameter) graphite beads containing the ...
Within the scope of the Accelerator Driven System (ADS) concept for nuclear waste management applications, the burnup uncertainty estimates due to uncertainty in the activation cross sections (XSs) are important regarding both the safety and the efficiency of the waste burning process. We have applied both sensitivity analysis and ...
Accelerator driven nuclear transmutation system has been pursued to have a clue to the solution of high-level radioactive waste management. The concept consists of super conducting linac, sub-critical reactor and the beam window. Reference model is set up to 800MW thermal power by using 1.5GeV proton beams with ...
In the thesis an absolute measurements technique for the subcriticality determination is presented. The ADS is a hybrid system where a subcritical system is fed by a proton accelerator. There are different proposals to define an ADS, one is to use plutonium and minor actinides from power plants waste as fuel to be ...
SCK.CEN, the Belgian Nuclear Research Centre, in partnership with IBA s.a., Ion Beam Applications, is designing an ADS prototype, MYRRHA, and is conducting an associated R&D programme. The project focuses primarily on research on structural materials, nuclear fuel, liquid metals and associated aspects, on subcritical reactor physics and subsequently on applications such as ...
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while ...
Study of a small accelerator-driven subcritical research reactor in the Vin?a Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium ...
The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical ...
Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven subcritical system (ADS). The ADS utilizes neutrons, which are generated by high-energy protons of giga-electron-volt-grade, but cross sections for the interaction of high-energy particles are not ...
This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical ...
... Title : SUBCRITICAL LIQUID OXYGEN STORAGE AND SUPPLY SYSTEM FOR USE IN WEIGHTLESS ENVIRONMENTS. ...
DTIC Science & Technology
... of a subcritical liquid oxygen storage and ... Descriptors : *OXYGEN, *CLOSED ECOLOGICAL SYSTEMS, LIQUIDS, STORAGE ...
Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a repository. The basic ...
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is ...
This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document ...
A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the US and Russia. The highly fissile plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly ...
The target system, whose function is to supply an external neutron source to the ADS sub-critical core to sustain the neutron chain reaction, is the most critical part of an ADS being subject to severe thermo-mechanical loading and material damage due to accelerator protons and fission neutrons. A windowless option was chosen as reference configuration for ...
As part of the effort to investigate the use of an electron accelerator driven system for TRU transmutation, the effects of TRU distributions in the core on transmuter system performance was examined in this paper. The system performance examined includes the transmutation and ...
An accelerator driven system (ADS) for transmutation of nuclear waste typically requires a 600 MeV 1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an ...
The potential to incinerate minor actinides (MA) in a sub-critical accelerator-driven system (ADS) is a subject of study in several countries where nuclear power plants are present. The performance of the MYRRHA experimental ADS, as to the transmutation of Am and Cm in the inert matrix fuel (IMF) samples consisting of 40 vol.% ...
Thorium cycle subcritical reactor driven by 800MeV protons delivered by flux coupled superconducting stack of cyclotrons can operate as a sealed unit for up to 7 years and is stable against melt-down. Small, low power units with minimum security and small crew of operators are perfect candidates for powering remote small towns. The reactor can eat long-lived waste coming from ...
A novel, highly compact, fusion neutron source (CNS) based on a coaxial electrostatic accelerator is under development at the Lawrence Berkeley National Laboratory. This source is designed to generate up to approx. 10(sup 12) D-D n/s. This source intensit...
ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes ...
In a high intensity proton accelerator complex comprising a linac and a ring, a beam chopper is often necessary in order to reduce the beam loss during injection from the linac to the ring. The China Spallation Neutron Source (CSNS) front end incorporates a pre-chopper in the Low Energy Beam Transport line (LEBT) that will remove a 530 ns section of beam at approximately 1 MHz rate. Physical ...
The coupling between an accelerator, a spallation target and a subcritical core has been studied for the first time at SCK�CEN in collaboration with Ion Beam Applications (IBA, Louvain-la-Neuve) in the frame of the ADONIS project (1995-1997). ADONIS was a small irradiation facility, based on the ADS concept, having a dedicated objective to produce radioisotopes for medical ...
Since 1998, SCK*CEN, in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose accelerator driven system (ADS) for Research and Development (R&D) applications-MYRRHA-and is conducting an associated R&D support programme. MYRRHA is an ADS under development at Mol in Belgium and is aiming ...
PubMed
Evaluated data are adjusted on experimental measurements using nuclear reaction models. Among these data, those concerning alpha-particle interactions on light nuclei are not well known, although crucial for neutron emission problems via ({alpha},n) processes in nuclear fuels (oxide, carbide, nitride). Examples of applications are reprocessing, packaging and storage of radioactive waste, and ...
Since 1998, SCK�CEN, Mol, Belgium, - in partnership with many European research laboratories - is designing a multipurpose Accelerator Driven System for R&D applications - MYRRHA. In parallel, an associated R&D support program is being conducted. MYRRHA aims to serve as a basis for the European experimental ADS providing ...
Spallation sources are able to produce intense neutron fluxes using massive targets when irradiated by relativistic proton beams. Such sub-critical Accelerator Driven Systems (ADSystem) can be used for transmutation or incineration of long-lived radioactive waste by neutron captures or neutron induced fission. In ...
Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the ...
Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of ...
The paper summarizes fuel cycle strategies which can call for the development of accelerator driven systems (ADS) and shows how an ADS-based transmutation strategy can be envisaged in a regional context. Finally, a path towards the demonstration of the ADS concept will be proposed, which accounts for the need of developing a consistent ...
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing ...
The TRADE project (TRiga Accelerator Driven Experiment), to be performed at the existing TRIGA reactor at ENEA Casaccia, has been proposed as a validation of the accelerator-driven system (ADS) concept. TRADE will be the first experiment in which the three main components of an ADS--the accelerator, spallation target and ...
Fissioning surplus weapons-grade plutonium (WG-Pu) in a reactor is an effective means of rendering this stockpile non-weapons useable. In addition the enormous energy content of the plutonium is released by the fission process and can be captured to produce valuable electric power. While no fission option has been identified that can accomplish the destruction of more than about 70% of the WG-Pu ...
A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Mod...
This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each ...
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important ...
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proli...
A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transm...
The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern Universit...
This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and ...
Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten ...
A review is presented on reactor physics experiments using subcritical systems. Experimental facilities and techniques are described, and the correlations of theory and experiments are discussed. Some of the interesting pulsed neutron experiments utilizing subcritical systems are also discussed. (auth)
The Los Alamos Accelerator Transmutation of Nuclear Waste (ATW) concept uses an accelerator driven neutron source (target) surrounded by a moderator and multiplying medium (blanket) for the transmutation of actinide and fission product waste. The referenc...
I present here an overview of the main research and development topics and activities under investigation in Europe for the design of high power superconducting linear proton accelerators as drivers for nuclear waste transmutation in Accelerator Driven Systems.
A new concept termed ADAPT for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D.0 target. The neutrons are then absorbed in a surrounding subcri...
A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, ...
Thermal response of the multiplier of an accelerator driven system to beam trips has been calculated for sodium cooled and lead-bismuth cooled multipliers. The temperature transients caused by a beam trip lead to thermal fatigue in structural components, and restoring the beam causes an additional temperature transient that adds to ...
In the recently completed RACE Project of the AFCI, accelerator-driven subcritical systems (ADS) experiments were conducted to develop technology of coupling accelerators to nuclear reactors. In these experiments electron accelerators induced photon-neutron reactions in heavy-metal targets to initiate fission reactions in ADS. Although ...
There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding options for dealing with long-lived actinide wastes and fission products, and for ...
The thermo-physical properties of Heavy Liquid Metals (Pb and Pb-Bi Eutectic) such as the low melting and high boiling temperatures, the chemical inertness in direct contact with typical reactor coolants, makes HLMs to relevant candidates as core coolant of critical and sub-critical nuclear systems. In addition the high neutron yield obtained by proton ...
Developments of new reactor designs for the utilization of thorium, such as the Advanced Heavy Water Reactor, especially demand creation of new nuclear data for all the isotopes of the thorium fuel cycle. Improved nuclear data are essential to support new initiatives such as the international project on innovative nuclear reactors and fuel cycles (INPRO), which aims to support the safe, ...
Heat deposition inside thick targets due to interaction of high energy protons (Ep � GeV) has been estimated using an improved version of the Monte Carlo simulation code CASCADE.04.h. The results are compared with the available experimental data for thick targets of Be, Al, Fe, Cu, Pb and Bi at proton energies of 0.8 GeV, 1.0 GeV and 1.2 GeV. A more continuous heat deposition approach which has ...
Experiments have been made to obtain the reliable values of reactivity of far subcritical fast systems. Of the five methods used for subcriticality measurements, the source jerk method is described. The five subcritical systems of -2S to -7S were construc...
It is desirable to have only a small reactivity change in the large burn-up of a solid fuel fast reactor, so that the number of replacements or shuffling of the fuel can be reduced, and plant factor accordingly increased. Also, this reduces the number of control rods needed for the change in burn-up reactivity. In subcritical operation, power controlled by beam power is ...
In future planned accelerator-driven subcritical systems, as well as in some recent related experiments, the neutron source to be used will be a pulsed accelerator. For such cases the application of the Feynman-alpha method for measuring the reactivity is not straightforward. The dependence of the Feynman Y(T) curve (variance-to-mean ...
Accelerator driven systems (ADS) are aimed at incineration of long living radioactive isotopes of spent nuclear reactor fuel, thus providing a solution for nuclear waste utilization. The idea is to couple a subcritical nuclear reactor with a high-energy proton accelerator. Protons interacting with the liquid metal ...
A long-term strategy based on existing technological, ecological, economical, and geopolitical realities is urgently needed to develop a sustainable energy economy, which should be designed with adaptability to unpredicted changes in any of these aspects. While only a highly diverse energy portfolio and conservation can ultimately guarantee optimum sustainability, based on a comparison of current ...
Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, ...
The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 ...
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for ...
Plutonium recycle in fast reactors, as well as utilization/transmutation of minor actinides and long-lived fission products in hybrid reactor systems (e.g. accelerator driven systems, ADS) offer promising nuclear fuel backend management options. Several R&D programs in various IAEA Member States are actively ...
Steady development in SRF accelerator technology combined with the success of large scale installations such as CEBAF at Jefferson Laboratory and the SNS Linac at ORNL gives credibility to the concept of very high average power CW machines for light sources or Proton drivers. Such machines would be powerful tools for discovery science in themselves but could also pave the way to reliable cost ...
We seek to develop accelerator-driven subcritical (ADS) nuclear power stations operating at more than 5 to 10 GW in an inherently safe region below criticality, generating no greenhouse gases, producing minimal nuclear waste and no byproducts that are useful to rogue nations or terrorists, incinerating waste from conventional nuclear reactors, and ...
A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by ...
A sudden drop in power after a beam interruption leads to thermal fatigue effects in structural components in the blanket of an accelerator driven system. These thermal fatigue effects limit component lifetimes. A sudden return to power after a beam interruption can contribute significant additional thermal fatigue and greatly reduce ...
The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National ...
Accelerator Driven System (ADS) has been studied to transmute minor actinides (MA) discharged from spent fuel of commercial nuclear power plants. In Japan Atomic Energy Agency (JAEA), various R and D for an 800 MWt, lead bismuth eutectic (LBE) cooled ADS have been performed. The feasibility for the ADS is discussed in the present study ...
Nearly all risks to future generations arising from long-term disposal of used nuclear fuel are attributable to the transuranic elements and long-lived fission products, about 2% of its content. The transuranic elements of concern are plutonium, neptunium, americium, and curium. Long-lived (>100,000-year half-life) isotopes of iodine and technetium are also created by nuclear fission of ...
In supercritical systems the design inlet and outlet pressures are maintained ... in heat transfer, fluid mechanics, and thermophysical property variations. ...
NASA Website
Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven ...
A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated ...
A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept ...
The LAHET Code System (LCS) is extensively used for medium energy accelerator applications, including spallation target design and deep penetration shielding problems. Current applications include Accelerator Production of Tritium (APT), Accelerator Driven Transmutation Technologies (ADTT), LANSCE and WNR spallation target upgrades, as ...
Transmutation is a worldwide promising and feasible technology for significant reduction of the amount, and thereby, the long-term radiotoxicity of highly radioactive wastes produced by the operation of nuclear power plants such as light water reactors. Plutonium, minor actinides and long-live fission products can be transmuted in an Accelerator Driven ...
A subcritical liquid oxygen storage and supply system for use in weightless environments was designed, combining the properties of the capillary-wick to displace gas phase from a two-phase mixture, thus assuring liquid phase delivery, with the dominant su...
A method is proposed for measuring the effective reproduction factor, k, in subcritical systems. The method uses the transient response of a subcritical system to the sudden removal of an extraneous neutron source (i.e., a source jerk). The response is an...
This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting stati...
The effects of a neutronic pulse applied to a subcritical multiplicative medium are analyzed on the basis of the diffusion theory for one and two groups. The decay constants of the system were determined from the experimental data, for various values geom...
12.11-3200 912099 A Subcritical Liquid Oxygen System Foster-Miller, Inc. 350 Second Avenue Waltham MA 02154-1196 David H Walker 617-890-3200 JSC NAS9-18666 ...
Metallic and Metalloceramic Coating by Thermal Decomposition � Nested Subcritical Flows Within Supercritical Systems ...
... VENTURI AIRFLOW METERING SYSTEMS WITH STING-MOUNTED CENTERBODIES AT CRITICAL AND SUBCRITICAL FLOW CONDITIONS. ...
Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines. Project A.4.02: Technology advances in fast reactors and accelerator driven systems CRP Title: Analysis and Materials Technologies Subprogramme B.2 Nuclear Power Reactor Fuel Engineering Project B.2.01: Supporting
A linear accelerator for the driver of a mu-mu collider can easily be based on operating characteristics of the Los Alamos Neutron Science Center (LANSCE) linac, or can incorporate many of the advances that have been realized from the Accelerator Driven Transmutation Technologies (ADTT) studies, from the Accelerator Production of Tritium (APT) ...
Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of t...
Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as ...
All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approxim...
The work is aimed at measurements and computer simulations of independent and cumulative yields of residual product nuclei in thin targets relevant as target materials and structure materials for hybrid accelerator-driven systems coupled to high-energy proton accelerators.
Recent advances in accelerator technology have led to the practical realization of high-power beams. When coupled with high-power spallation target technology, these systems offer a more environmentally-friendly method of producing neutrons than reactors. We will focus our attention here on the application of spallation technology to the Accelerator Production of Tritium ...
facility (in 7 years) -- ESS�I Eur. spallation neutron source for n�spectroscopy -- Eur. XFEL hard X of spallation neutron sources, transmutation of nuclear waste in accelerator driven systems [21], and shielding, Oct.17�22nd, Tsukuba, Japan (1999) 8. Spallation Neutron Source SNS, http://www.ornl.gov/sns/ 9. C
The subcritical neutron multiplication factor has been measured previously by the sup 252 Cf-source-driven neutron noise analysis method for a variety of noninteracting single systems with a wide variety of materials and geometries. For these single syste...
For transmutation systems based on externally driven sub-critical assemblies with a fast neutron spectrum, there is an incentive to expose the actinides directly to the source neutrons, since these neutrons have higher energies than the fission neutrons. ...
Recent measurements at Sandia Laboratories have demonstrated that a laser gas excited solely by fission products can be made to lase. This paper explores the concept of a subcritical nuclear driven laser (NDL) system excited by a fast pulse reactor of the...
A methodology has been developed to account for spatial effects in subcriticality measurements. Using experimental data, this new analysis methodology allows estimation of model contamination without previous knowledge about the system, neither in the form of neutronic or geometric factor calculations. 5 refs., 1 fig.
A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the ...
{Z, 0} denote the positive and negative part of Z. #12;ON THE GLOBAL REGULARITY OF SUB-CRITICAL EULER-POISSONON THE GLOBAL REGULARITY OF SUB-CRITICAL EULER-POISSON EQUATIONS WITH PRESSURE EITAN TADMOR AND DONGMING WEI Abstract. We prove that the one-dimensional Euler-Poisson system driven by the Poisson forcing
Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The ...
The /sup 252/Cf-source-driven noise analysis method determines the subcriticality of a system containing fissionable material from the ratio of cross power spectral densities between the detectors that detect particles from the fission process and between these detectors and an ionization chamber containing a spontaneously fissioning neutron source which ...
Within the framework of the neutronic characterization of the TRIGA RC-1 reactor in support to the TRADE (TRiga Accelerator Driven Experiment) program, the interpretation of the subcriticality level measurements performed in static regime during the TRADE In-Pile experimental program is presented. Different levels of ...
... equations (1.4) as a first order quasilinear system ... the isothermal Euler-Poisson system to the ... solutions of nonlinear hyperbolic partial differential ...
While the potential hazards posed by large particle accelerator driven spallation targets are greatly reduced in comparison to nuclear reactors capable of similar neutron production levels, they are significant, and require a safety-by-design approach to ensure there is little likelihood of accidental releases of target materials. Most postulated accident ...
The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The ...
There are many possible applications for the non-scaling Fixed Field Alternating Gradient (NS-FFAG): accelerating non-relativistic ions, ion cancer therapy, proton drivers, accelerator driven subcritical reactors, heavy radioactive ions, recirculating linacs, and etc. They are confronted with two significant challenges: first is ...
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to ...
DOEpatents
The Accelerator Driven Test Facility (ADTF) is being developed as a reactor concepts test bed for transmutation of nuclear waste. A 13.3 mA continuous-wave (CW) proton beam will be accelerated to 600 MeV and impinged on a spallation target. The subsequent neutron shower is used to create a nuclear reaction within a subcritical assembly ...
Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and ...
The impact of a number of current and future nuclear systems on global plutonium inventories is assessed under realistic forecasts of nuclear power growth. Advanced systems, such as those employing Accelerator Driven Transmutation Technologies (ADTT) and liquid metal reactors, show significant promise for meeting ...
Liquid lead and lead-bismuth have drawn the attention as one of the candidate coolants of the fast breeder reactors (FBRs), and the accelerator driven transmutation systems (ADSs). In order to use the coolant to the systems, the physical and chemical characteristics of the heavy metals are necessary. This plan has ...
This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy ...
Evaluation of nuclear data typically includes validation of the data through computation of k{sub eff}for critical assemblies. The sensitivity of the computed k{sub eff} values to the nuclear data is used as an indicator in determining the adequacy of an evaluation. Subcritical measurements offer an alternative to critical experiments as a means to evaluate nuclear data ...
Indentation crack-shape evolution during subcritical crack growth was examined in soda-lime glass. Crack-arrest markings were generated on the fracture surfaces by temporary unloading during subcritical crack growth. Crack shapes were determined from these crack-arrest markings by optical microscopy. The shapes were found to be semi-elliptical, but the ...
Studies in nuclear energy and transmutation of radioactive waste require neutron data for conceptual and performance studies, to determine the viability of advanced ideas such as an Accelerator Driven System and to fix the safety margins of any new concepts. IRMM's neutron data-measurement program addresses data needs ...
Studies in nuclear energy and transmutation of radioactive waste require neutron data for conceptual and performance studies, to determine the viability of advanced ideas such as an Accelerator Driven System and to fix the safety margins of any new concepts. IRMM's neutron data-measurement program addresses data needs associated with ...
In order to investigate the fluid dynamic mechanisms of the gas driven circulation, with reference to the accelerator driven systems (ADS), an experimental research with water driven by air injected at the inlet of the vertical riser in an adiabatic test rig has been carried out. The present experimental apparatus consists essentially ...
In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the ...
The US policy on the disposition of weapons and commercial plutonium by geologic storage is examined and compared with destruction in reactors or accelerator-driven systems. The close coupling with Russian weapons plutonium is considered. Strong emphasis is placed on the preference by terrorists and rogue states for commercial plutonium over weapons plutonium for fast and ...
A study of the properties of the neutron production target for the China accelerator-driven system induced from 150-MeV incident proton energy and a 3-mA beam current is performed. The selection of the material and geometry design for the target; the physics properties of the target involved in this work including the neutron yield, energy, and space ...
In the frame of international concern about long-lived nuclear waste, the construction of an effective accelerator driven system for the transmutation or incineration of fission products and actinides is a promising task. A spallation source consisting of a Pb target surrounded by paraffin moderator was studied by irradiation with ...
An important ingredient in the performance of accelerator driven systems for energy production, waste transmutation and other applications are the number of spallation neutrons produced per incident proton. The neutron multiplicities, angular and energy distributions are usually calculated using simulation codes. We have presented ...
This work intends to be a starting point for the extension of the TRANSURANUS fuel rod performance code to the modelling of the T91 steel, which is designed to be the cladding material in LBE (lead-bismuth eutectic) accelerator-driven systems (ADS). On the basis of the experimental data available in the recent literature on LBE and T91, a preliminary ...
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Accelerator Driven Transmutation Technology (ADTT) offers a means of generating nuclear energy in a clean, safe way that can be attractive to the general public. However, there are issues associated with the ...
Nuclear waste management involves many issues. ATW is an option that can assist a repository by enhancing its capability and thereby assist nuclear waste management. Technology advances and the recent release of liquid metal coolant information from Russia has had an enormous impact on the viability of an ATW system. It now appears economic with many repository enhancing ...
Online Source: Click to View PDF File [PDF Size: 25 KB] ... Development of Subcritical Cryogenic Nitrogen Storage Systems for Orbital Flight Demonstration ...
two fuels and nitrogen. However, the relevance of the ternary system is ...... J ., The d2 variation for isolated LOX drops in hydrogen and n-heptane ...
Historical and recent examples of the application of in situ measurements to provide knowledge for specific operations and general criticality safety guidance are reviewed. The importance of the American National Standard, Safety in Conducting Subcritical...
... the burnout heat flux of MHF-5 at subcritical and supercritical pressures are ... performed on MHF-5 samples taken from the heat transfer test system ...
... of video images for processing. The images for processing were mapped to a set ... Chemistry of Subcritical Crack Growth in AISI 4340 Steel. Met. ...
In the proposed accelerator driven systems (ADS) the possible use of several milliamperes of protons of about 1 GeV incident on high mass targets like the molten lead--bismuth eutectic is anticipated to pose radiological problems that have so far not been encountered by the radiation protection community. Spallation reaction products ...
A fully self-consistent theory of ferromagnetic waveguide accelerators driven by a relativistic electron beam is developed. The theoretical analysis is based on Faraday's law, which provides a second-order partial-differential equation of the azimuthal magnetic field, under the assumption that [mu][epsilon][much gt]1. Here [mu] and [epsilon] are ...
Using an importance function describing the capability of a system for producing fission neutrons, a new definition of the subcriticality is proposed, which has the physical meaning of a multiplication factor in a real subcritical system with external sources. This multiplication factor k{sub s}, which expresses ...
Core subcriticality can play an important role if the safety enhancement of a nuclear system is necessary, in particular, when minor actinides submitted for transmutation cause essential degradation of the reactivity feedback effects or/and significant reduction of the delayed neutron fraction. The present work shows that core ...
The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of re...