Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerat...
National Technical Information Service (NTIS)
Recent advances in accelerator technology have led to the practical realization of high-power beams. When coupled with high-power spallation target technology, these systems offer a more environmentally-friendly method of producing neutrons than reactors. We will focus our attention here on the application of spallation technology to the Accelerator Production of Tritium ...
DOE Information Bridge
In November 1996, SKB started financing of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: (1) Development of a complete code for simulation ...
The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as ...
The Los Alamos Accelerator Transmutation of Nuclear Waste (ATW) concept uses an accelerator driven neutron source (target) surrounded by a moderator and multiplying medium (blanket) for the transmutation of actinide and fission product waste. The referenc...
Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium ...
Energy Citations Database
The MEGAPIE project, aiming at the construction and operation of a megawatt liquid lead-bismuth spallation target, constitutes the first step in demonstrating the feasibility of liquid heavy metal target technologies as spallation neutron sources. In particular, MEGAPIE is meant to assess the coupling of a high power proton beam with a window-concept heavy ...
NASA Astrophysics Data System (ADS)
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different ...
Accelerator-Driven Transmutation Technology, or ADT(sup 2), is a collection of programs that share a common theme - they each have at their heart an intense source of neutrons generated by a high-energy proton beam striking a heavy metal target. The beam ...
A new concept termed ADAPT for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D.0 target. The neutrons are then absorbed in a surrounding subcri...
Understanding and predicting beam halo is a major issue for accelerator driven transmutation technologies. If strict beam loss requirements are not met, the resulting radioactivation can reduce the availability of the accelerator facility and may lead to ...
Hybrid reactors (Accelerator Driven Sub-critical Systems, ADS), coupling an accelerator with a target and a sub-critical reactor, could simultaneously burn minor actinides and transmute long-lived fission products, while producing a consistent amount of electrical energy. A group of Italian research and development (R&D) ...
RTNS-II is an accelerator driven neutron source. It was attempted to produce a larger version of the current accelerator target but experienced problems in diffusion bonding and thermal stability of the copper alloy used for target fabrication. The causes of these problems were identified, and a new technique ...
The work is aimed at measurements and computer simulations of independent and cumulative yields of residual product nuclei in thin targets relevant as target materials and structure materials for hybrid accelerator-driven systems coupled to high-energy proton accelerators.
A study of the properties of the neutron production target for the China accelerator-driven system induced from 150-MeV incident proton energy and a 3-mA beam current is performed. The selection of the material and geometry design for the target; the physics properties of the target involved in this work including ...
The LAHET Code System (LCS) is extensively used for medium energy accelerator applications, including spallation target design and deep penetration shielding problems. Current applications include Accelerator Production of Tritium (APT), Accelerator Driven Transmutation Technologies (ADTT), LANSCE and WNR spallation ...
Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of t...
Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two ...
E-print Network
Accelerator-Driven Transmutation Technology, or ADT{sup 2}, is a collection of programs that share a common theme - they each have at their heart an intense source of neutrons generated by a high-energy proton beam striking a heavy metal target. The beam energy, typically 1000 MeV, is enough for a single proton to smash a target atom ...
Several accelerator-driven neutron sources have been proposed for satisfying the requirements of a high-flux high-volume international fusion materials testing facility that could be built in the near future. This paper summarizes the features and projected performance for the three accelerator sources that are leading candidates for such a role and that are viewed by the ...
A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the {sup 7}Li(p,n){sup 7}Be reaction. The proton beam ...
The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work ...
Linear accelerator breeders (LAB) could be used to produce fissile fuel in two modes, either with fuel reprocessing or without fuel reprocessing. With fuel reprocessing, the fissile would be separated from the target and refabricated into a fuel element for use in a burner power reactor. Without reprocessing, the fissile material would be produced in-situ, either in a fresh ...
A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the US and Russia. The highly fissile plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within ...
While the potential hazards posed by large particle accelerator driven spallation targets are greatly reduced in comparison to nuclear reactors capable of similar neutron production levels, they are significant, and require a safety-by-design approach to ensure there is little likelihood of accidental releases of ...
For the accelerator production of tritium (APT), the accelerator driven transmutation facility (ADTF), and the advanced fuel cycle initiative (AFCI), tungsten is being proposed as a target material to produce neutrons. In this study, tungsten rods were irradiated at the 800MeV Los Alamos Neutron Science Center (LANSCE) proton ...
Accelerator-driven High-Energy Density Physics (HEDP) experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the 'warm dense matter' regime. Traditional...
Transmutation is a worldwide promising and feasible technology for significant reduction of the amount, and thereby, the long-term radiotoxicity of highly radioactive wastes produced by the operation of nuclear power plants such as light water reactors. Plutonium, minor actinides and long-live fission products can be transmuted in an Accelerator Driven ...
Accelerator driven transmuters use a buffer region to protect the structural and the cladding materials of the transmuter from the radiation damage caused by the high-energy spallation neutrons, to accommodate the coolant channels of the self cooled targets, and to have an insignificant effect on the neutron utilization for the ...
Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on ...
Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of these target materials as a function of the main variables and the design selections. The ...
An important ingredient in the performance of accelerator driven systems for energy production, waste transmutation and other applications are the number of spallation neutrons produced per incident proton. The neutron multiplicities, angular and energy distributions are usually calculated using simulation codes. We have presented multiplicities of the ...
This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy ...
Fissile fuel can be produced at a high rate using an accelerator driven Pu fueled fast reactor operated at deep subcriticality; this approach avoids encountering a shortage of Pu during a high rate of growth in the production of nuclear energy. Slightly reducing the acceleration field minimizes the tripping of the beam and the radiation dose from the ...
Lead-Bismuth Eutectic is under consideration as a target material with high-energy protons for generating spallation neutrons to operate actinide and fission product transmuters. An assessment has been performed to study the performance of this target material as a function of the main variables and the design selections. The assessment includes the ...
Accelerator Driven Systems (ADS) present one of the most viable solutions for transmutation and effective utilization of nuclear fuel. Spent fuel from reactors will be partitioned to separate plutonium and other minor actinides to be transmuted in the ADS. Without the ADS, minor actinides must be stored at a geologic repository for long periods of time. ...
TRASCO-ADS is a national funded program in which INFN, ENEA, and Italian industries work on the design of an accelerator driven subcritical system for nuclear waste transmutation. TRASCO is the Italian acronym for Transmutation (TRAsmutazione) of Waste (SCOrie). One of the most critical aspects in the design of an Accelerator ...
In the frame of international concern about long-lived nuclear waste, the construction of an effective accelerator driven system for the transmutation or incineration of fission products and actinides is a promising task. A spallation source consisting of a Pb target surrounded by paraffin moderator was studied by irradiation with ...
With the rapid development of particle accelerator technologies during the Strategic Defense Initiative (SDI) of the 1980s and the severe institutional and political challenges faced by the nuclear reactor community, there has been increasing interest in the use of particle accelerators to fulfill some nuclear missions in the US and abroad. This paper describes the enabling technologies, as well ...
The TRiga Accelerator-Driven Experiment (TRADE), to be performed in the TRIGA reactor of the ENEA-Casaccia Centre in Italy, consists of the coupling of an external proton accelerator to a target to be installed in the central channel of the reactor scrammed to subcriticality. This pilot experiment, aimed at a global demonstration of the accelerator-driven ...
Recent developments in W-band (-100 GHz) traveling wave tube technology at Los Alarnos may lead to a compact high-power W-band RE source. A conceptual design of a compact 8-MeV electron linac that codd be powered by this source is presented, including electromagnetic structure calculations, proposed rnicrojbbrication and manufacturing methods, supporting calculations to estimate accelerator ...
The ion acceleration driven by a laser pulse at intensity I= 10(20)-10(22) W/cm(2) x (microm/lambda)(2) from a double layer target is investigated with multiparametric particle-in-cell simulations. For targets with a wide range of thickness l and density n(e), at a given intensity, the highest ion energy gain ...
PubMed
This article presents the different activity of Ingot niobium in BARC. BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the ADSS ...
The production of stable and radioactive residual nuclides by medium-energy protons and neutrons is of importance for many fields of basic and applied sciences ranging from astrophysics over space and environmental sciences, medicine, accelerator technology, space and aviation technology to accelerator driven transmutation of nuclear waste and energy ...
Fission is the most important nuclear reaction for society at large today due to its use in energy production. However, this has raised the problem of how to treat the long-lived radioactive waste from nuclear reactors. A radical solution would be to change the composition of the waste into stable or short-lived nuclides, which could be done through nuclear transmutation. Such a concept requires ...
We have made progress in learning to use the code Hydra to do detailed modeling of targets for Accelerator Driven High Energy Density Physics. Hydra is a state-of-the-art 3D, radiative transfer hydrodynamics modeling code developed at LLNL. In particular, we have carried out two-dimensional simulations of a 23 MeV, 1 mm radius Neon ...
A compact, accelerator driven, neutron activator based on a modified version of the Adiabatic Resonance Crossing (ARC) concept has been developed, with the aim of efficiently utilising ion-beam generated neutrons for the production of radioactive nanoparticles for brachytherapy. Extensive Monte Carlo simulations have been carried out to optimise the design ...
In the proposed accelerator driven systems (ADS) the possible use of several milliamperes of protons of about 1 GeV incident on high mass targets like the molten lead--bismuth eutectic is anticipated to pose radiological problems that have so far not been encountered by the radiation protection community. Spallation reaction products ...
In recent years, there has been an increasing worldwide interest in accelerator driven systems (ADS) due to their perceived superior safety characteristics and their potential for burning actinides and long-lived fission products. Indian interest in ADS has an additional dimension, which is related to our planned large-scale thorium utilization for future ...
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious ...
A world-class accelerator driven short pulsed neutron source is in the final stages of construction at the Oak Ridge National Laboratory. A 1.4 MW proton beam at 1 GeV energy directed on a mercury target will free neutrons through spallation reactions that will be moderated to thermal and subthermal energies and serve neutron ...
Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple ...
A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The ...
The MEGAPIE project with the aim to design, build and operate a 1 MW liquid metal target in the SINQ facility (Swiss Spallation Neutron Source, Paul Scherrer Institute, Switzerland) was a key experiment on the way to experimental accelerator driven systems (ADS) for transmutation of nuclear waste and for the development of liquid metal ...
The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor system in a subcritical configuration. The accelerator source will consist of a 40 MeV electron linear ...
A new concept termed ADAPT for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D.0 target. The neutrons are then absorbed in a surrounding subcritical (K{sub eff} {approximately} 0.95) blanket assembly, that holds small ({approximately} 0.5 cm diameter) graphite beads ...
A new concept; termed ADAPT; for the rapid and virtually complete burning of plutonium is described. ADAPT employs a high current CW linear accelerator (linac) to generate neutrons in a lead/D2O target. The neutrons are then absorbed in a surrounding subcritical (Keff{approx}0.95) blanket assembly, that holds small ({approx}0.5 cm diameter) graphite beads containing the ...
The paper present results of Monte Carlo modeling of an Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the Joint Institute for Nuclear Research in Dubna. The mix of oxides PuO2+UO2 MOX fuel designed for the reactor will be adopted for the ...
In high-energy transport codes used to design Accelerator Driven Systems or spallation neutron sources, elementary interactions are computed through nuclear physics models. Among these, Intra-Nuclear Cascade models play a major role since the excitation energy at the end of the INC stage determines the number of evaporated particles. Therefore, in ...
The cross sections for the production of long-lived 60Fe and 53Mn from thin proton-irradiated lead foils in dependence on the proton energy from thresholds up to 2.6 GeV were determined by measuring the radionuclide content with accelerator mass spectrometry (AMS). For the sample preparations subsequent chemical separation procedures were developed. The corresponding excitation functions are ...
The Japan Atomic Energy Research Institute carries out R&D on accelerator-driven transmutation systems (ADTS) under the national OMEGA program (Options Making Extra Gains from Actinides and fission products). The code system named ATRAS was developed to analyze neutronics and burnup characteristics of ADTS. It has a unique function of burnup analysis taking into account the effect of the ...
A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most ...
There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding ...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power lev...
The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To acc...
A sudden drop in power after a beam interruption leads to thermal fatigue effects in structural components in the blanket of an accelerator driven system. These thermal fatigue effects limit component lifetimes. A sudden return to power after a beam inter...
This project will analyze and design a novel oblique-detonation-wave (ODW), ram- accelerator-driven propulsion concept for the acceleration of tube-launched ...
NASA Website
The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste an...
The target system, whose function is to supply an external neutron source to the ADS sub-critical core to sustain the neutron chain reaction, is the most critical part of an ADS being subject to severe thermo-mechanical loading and material damage due to accelerator protons and fission neutrons. A windowless option was chosen as reference configuration for the ...
... Descriptors : *CARBON DIOXIDE LASERS, LASER APPLICATIONS, RAMAN SCATTERING, ELECTRON ACCELERATORS, LINEAR ...
DTIC Science & Technology
Understanding and predicting beam halo is a major issue for accelerator driven transmutation technologies. If strict beam loss requirements are not met, the resulting radioactivation can reduce the availability of the accelerator facility and may lead to the necessity for time-consuming remote maintenance. Recently there has been much ...
The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the ...
High-power proton linacs for nuclear materials transmutation and production, and new accelerator-driven neutron spallation sources must be designed to control beam-halo formation, which leads to beam loss. The study of particle-core models is leading to a better understanding of the causes and characteristics of beam halo produced by space-charge forces in ...
... Accession Number : ADA471177. Title : Understanding Radar Phenomenology of Relocatable Targets. Descriptive Note : Briefing charts. ...
The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with ...
This study is part of a complex research of Accelerator Driven Transmutation Technologies (ADTT) carried out by a collaboration of the NPI ASCR in Rez with the JINR in Dubna. The aim of the experiment was to check the validity of the model descriptions and the cross-section libraries used in the corresponding Monte-Carlo simulations of spallation ...
This study is part of a complex research of Accelerator Driven Transmutation Technologies (ADTT) carried out by a collaboration of the NPI ASCR in ?e� with the JINR in Dubna. The aim of the experiment was to check the validity of the model descriptions and the cross-section libraries used in the corresponding Monte-Carlo simulations of spallation ...
Measurement of Lead Bismuth Eutectic (LBE) flow by Ultrasonic Velocity Profiler (UVP) technique was successfully realized in the mockup loop of shield annular tube type spallation target, JLBL-2 (JAEA Lead-Bismuth Loop-2), for Accelerator Driven System (ADS) target test facility in J-PARC (Japan Proton Accelerator ...
The mechanical design of the target module of an accelerator driven sub- critical nuclear reactor system (ADSS) calls for an analysis of the related thermal-hydraulic issues because of large amount of heat deposition in the spallation region during the course of nuclear interactions with the molten lead bismuth eutectic (LBE) ...
Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven subcritical system (ADS). The ADS utilizes neutrons, which are generated by high-energy protons of giga-electron-volt-grade, but cross sections for the interaction of high-energy particles are not available for use in current ADS engineering ...
Diffraction radiation (DR) is one of the most promising candidates for electron beam diagnostics for International Linear Collider and x-ray free electron lasers due to its nonintercepting characteristic. One of the potential problems that may restrict its applications in real-time monitoring beam parameters is the wakefield generated by the presence of the DR target. In this ...
Accelerator-driven High-Energy Density Physics (HEDP) experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the warm dense matter regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent ...
Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are ...
The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear ...
The potential to incinerate minor actinides (MA) in a sub-critical accelerator-driven system (ADS) is a subject of study in several countries where nuclear power plants are present. The performance of the MYRRHA experimental ADS, as to the transmutation of Am and Cm in the inert matrix fuel (IMF) samples consisting of 40 vol.% (Cm0.1Am0.5Pu0.4)O1.88 fuel and 60 vol.% MgO ...
The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties ...
Accelerator-driven neutron technologies use spallation neutron sources (SNS`s) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window ...
A lead-bismuth eutectic (LBE) target design concept has been developed to drive the subcritical multiplier (SCM) of the accelerator-driven test facility (ADTF). This report gives the target design description, the results from the parametric studies, and the design analyses including physics, heat-transfer, hydraulics, structural, radiological, and safety ...
Heat deposition inside thick targets due to interaction of high energy protons (Ep � GeV) has been estimated using an improved version of the Monte Carlo simulation code CASCADE.04.h. The results are compared with the available experimental data for thick targets of Be, Al, Fe, Cu, Pb and Bi at proton energies of 0.8 GeV, 1.0 GeV and 1.2 GeV. A more ...
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is a MW-class accelerator-driven pulsed neutron source. The SNS began formal operations in October 2006. Since then, the beam power has been increased to 1 MW, the number of operating hours per year has increased to nearly 5000, the availability has increased to 85%, and the number of operating neutron ...
The APT project office is conducting a preconceptual design study for an accelerator driven concept to produce tritium. The facility will require new technology in many areas, since the scale of this accelerator is significantly larger then any in operation to date. The facility is composed of four subsystems: accelerator, target & ...
Spallation sources are able to produce intense neutron fluxes using massive targets when irradiated by relativistic proton beams. Such sub-critical Accelerator Driven Systems (ADSystem) can be used for transmutation or incineration of long-lived radioactive waste by neutron captures or neutron induced fission. In the present study a ...
Fission product cross sections of (p,f)-reaction in thin samples of {sup 208}Pb, {sup nat}HgO, {sup nat}W irradiated with high-energy protons are measured. The irradiations were made using proton beams extracted from the ITEP synchrotron. The nuclide yields were {gamma}-spectrometered directly using a high-resolution Ge-detector. The GENIE2000 code was used to process the measured {gamma}-spectra ...
An experimental neutron source facility has been developed for producing medical isotopes, training young nuclear professionals, providing capability for performing reactor physics, material research, and basic science experiments. It uses a driven subcritical assembly with an electron accelerator. The neutrons driving the subcritical assembly were generated from the electron interactions with a ...
We measured integral thin target cross sections for the proton-induced production of 3He, 4He, 21Ne, 22Ne, 36Ar and 38Ar from Fe and Ni from the respective reaction thresholds up to 1.6 GeV. The production of noble gas isotopes, especially 4He, from Fe and Ni is of special importance for design studies of accelerator driven systems ...
Reactions of protons induced on {sup 208}Pb and {sup 209}Bi, the important target materials in accelerator- driven systems, are studied. First, a set of proton optical model potential parameters for heavy elements is obtained up to 500 MeV. Theoretical total reaction cross sections and elastic scattering angular distributions ...
Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies (e.g. using the D-Li reaction) or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target ...
Researchers at Los Alamos have been developing transmutation concepts involving accelerator-driven nuclear systems. A medium energy, high current proton beam strikes a heavy metal target, producing a high flux of spallation neutrons. These neutrons are moderated to near-thermal energies in a blanket surrounding the target. Materials to ...
The Workshop has made enormous gains in our understanding. Many scaling laws of linac behavior with wavelength have been defined, some probably for the first time. A comparison has been made between a conventional and grating linac, also probably for the first time. A problem in transverse stability of the grating accelerator was exposed but also solved at the workshop with a ...
... Pseudoresonant Laser Wakefield Acceleration ... these mechanisms have practical limits to the max - imum length of the acceleration regions. ...
We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.
Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated.
NASA Technical Reports Server (NTRS)
... The simulation can l- used to determine the effect of design changes made to the escapemeit , trali, and acceleration driven rotor. ...
Energy measurement in coaxial plasma accelerator determining current, voltage on gun and at open end
A pilot project is being undertaken at the Paul Scherrer Institute in Switzerland to test the feasibility of installing a Lead-Bismuth Eutectic (LBE) spallation target in the SINQ facility. Efforts are coordinated under the MEGAPIE project, the main objectives of which are to design, build, operate and decommission a 1 MW spallation neutron source. The technology and ...
Among different heavy liquid metals, lead (Pb) and lead bismuth eutectic (Pb Bi) are considered at present as the potential candidates for the liquid spallation targets of neutron sources and accelerated driven systems and for the coolant of new generation fast reactors due to their very good neutron and thermal features. Up to now, ...
For the accelerator production of tritium (APT), the accelerator driven transmutation facility (ADTF), and the advanced fuel cycle initiative (AFCI), tungsten is being proposed as a target material to produce neutrons. In this study, tungsten rods were irradiated at the 800 MeV Los Alamos Neutron Science Center (LANSCE) proton ...
The MUSE-4 experiment, dedicated to the Accelerator Driven System (ADS) development studies, was achieved in the MASURCA nuclear reactor facility from 2000 to 2004. An external neutron source was introduced in a lead buffer zone located at the centre of the reactor core in order to simulate the spallation source. This paper deals with the GENEPI ...
The predicted operating conditions for a lead bismuth eutectic target to be used in an accelerator driven system for the Advanced Fuel Cycle Initiative spans a temperature range of 300 600 �C while being irradiated by a high energy (�600 MeV) proton beam. Such spallation conditions lead to high displacement rates coupled with high ...
A neutron imaging facility, PKUNIFTY, based on a radio frequency quadrupole (RFQ) accelerator-driven compact neutron source, presently under construction at the Peking University, is described. It consists of a deuteron linear accelerator, a neutron target-moderator-reflector assembly, and a thermal neutron imaging system. Neutrons are generated via the ...
Since 1998, SCK�CEN, Mol, Belgium, - in partnership with many European research laboratories - is designing a multipurpose Accelerator Driven System for R&D applications - MYRRHA. In parallel, an associated R&D support program is being conducted. MYRRHA aims to serve as a basis for the European experimental ADS providing protons and neutrons for ...
One of the concerns facing accelerator-driven transmutation systems (ADSs) is whether the radiotoxicity of materials produced during the transmutation process poses more of a concern than does the radiotoxicity of the spent nuclear fuel (SNF) itself. Most of the common fission products (or FPs) are emitters of beta radiation, but additionally, some of the radionuclides ...
Significant progress has been achieved within a Conceptual Design Activity (CDA) phase in establishing for the fusion materials community a suitable and feasible concept for an accelerator driven D-Li stripping source that produces neutrons with a suitable energy spectrum at high intensity and sufficient irradiation volume to perform all kinds of ...
The Accelerator Driven Test Facility (ADTF) is being developed as a reactor concepts test bed for transmutation of nuclear waste. A 13.3 mA continuous-wave (CW) proton beam will be accelerated to 600 MeV and impinged on a spallation target. The subsequent neutron shower is used to create a nuclear reaction within a subcritical assembly ...
... Abstract : Radar Cross Section (RCS) measurements are quintessential in understanding target scattering phenomenon. ...
Page 1. AD_____ Award Number: W81XWH-08-1-0178 TITLE: Understanding and targeting cell growth networks in breast cancer ...
Spallation reactions are important due to their applications in various fields such as astrophysics, neutron sources, accelerator driven systems, and production of radioactive beams. To improve our understanding of the spallation mechanism a complete experiment, called SPALADIN, has been proposed, which aims at measuring as exclusively ...
Short pulse accelerator-driven neutron sources such as the Spallation Neutron Source (SNS) employ high-energy proton beam energy deposition in heavy metal (such as mercury) over microsecond time frames. The interaction of the energetic proton beam with the mercury target leads to very high heating rates in the target. Although the ...
One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of ...
A demonstration facility for Accelerator Driven Systems has been proposed to be constructed at the Joint Institute of Nuclear Research in Dubna. The Subcritical Assembly in Dubna project proposes to couple an existing proton accelerator of 660 MeV and 1 ?A current with a specially designed U-Pu MOX subcritical core. Project objectives, technical ...
On October 26-29, 2004, the Heavy Ion Fusion (HIF) Virtual National Laboratory (VNL) hosted a workshop at Lawrence Berkeley National Laboratory (LBNL) on 'Accelerator- Driven High Energy Density Physics (HEDP).' The workshop was attended by sixty five res...
It is discussed the interest of Russian Federal Nuclear Center-Institute of Technical Physics at Chelyabinsk-70 in the research of Accelerator Driven Technologies applications for radioactive waste transmutation, cumulated actinides burning, energy production. The ITP background and opportunities for this research are presented. It is shown the ITP ...
and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven acceleration driven instabilities (Rayleigh-Taylor for continuous acceleration and Richtmyer) to obtain these results. Commonly, Rayleigh-Taylor mixing simulations show a factor of two or more
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in a subcritical device. Calculations were also made to show the rate of power changes resulting ...
Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from ...
The paper summarizes fuel cycle strategies which can call for the development of accelerator driven systems (ADS) and shows how an ADS-based transmutation strategy can be envisaged in a regional context. Finally, a path towards the demonstration of the ADS concept will be proposed, which accounts for the need of developing a consistent strategy of ...
The superconducting accelerator driven free electron laser (SCA/FEL) has been funded as a versatile source of infrared and visible photons for biomedical and materials research. The funding program includes a new helium refrigerator which will permit the ...
The ATW Program Plan provides a detailed plan to implement the vision of ATW Road Map (DOE/RW-0519, Oct. 1999) that was developed during Fiscal Year 1999. It outlines a science-based program to assess accelerator-driven transmutation of waste technology, ...
A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The ...
As part of the effort to investigate the use of an electron accelerator driven system for TRU transmutation, the effects of TRU distributions in the core on transmuter system performance was examined in this paper. The system performance examined includes the transmutation and system power efficiency and changes in power peaking. The transmutation benefits ...
... TARGET RECOGNITION, IMAGES, RECOGNITION, VISION, ADAPTERS, INVARIANCE, EDGES, HUMANS, CONVEX BODIES, MODELS, REAL ...
A reliable modeling of GeV proton-induced spallation reactions is indispensable for the design of the spallation module and the target station of future accelerator driven hybrid reactors (ADS) or spallation neutron sources (ESS), in particular, to provide precise predictions for the neutron production, the radiation damage of ...
Advanced neutron interrogation systems for screening sea-land cargo containers for shielded special nuclear materials (SNM) require a high-yield neutron source to achieve the desired detection probability, false alarm rate, and throughput. The design of an accelerator-driven neutron source is described that utilizes the D(d,n)3He reaction to produce a forward directed beam of up to 8.5 MeV ...
Protein targeting to and translocation across the membrane of the endoplasmic reticulum Jodi targeting to and translocation across the membrane of the endoplasmic reticulum. Two experimental systems understanding of how proteins are targeted to the endoplasmic reticulum membrane. Current Opinion in Cell
Joint targeting is an extremely important and complex function which has understandably resulted in inter-service rivalry. This conflict has historically manifested itself the creation of joint targeting boards. These boards, including the Joint Targeting...
The work presents results on computer simulations of two experiments whose aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside a 0.8-GeV proton-irradiated 4-cm thick W ...
The coupling between an accelerator, a spallation target and a subcritical core has been studied for the first time at SCK�CEN in collaboration with Ion Beam Applications (IBA, Louvain-la-Neuve) in the frame of the ADONIS project (1995-1997). ADONIS was a small irradiation facility, based on the ADS concept, having a dedicated objective to produce radioisotopes for medical ...
The work presents the results of computer simulation of two experiments which aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside the 0.8-GeV proton-irradiated 4-cm thick W ...
The work presents results of computer simulation of two experiments whose aim was measuring the threshold activation reaction rates in 12C, 19F, 27Al, 59Co, 63Cu, 65Cu, 64Zn, 93Nb, 115In, 169Tm, 181Ta, 197Au, and 209Bi thin samples placed inside and outside a 0.8-GeV proton-irradiated 4-cm thick W target and a 92-cm thick W-Na composite target of 15-cm ...
Accelerator driven systems (ADS) are aimed at incineration of long living radioactive isotopes of spent nuclear reactor fuel, thus providing a solution for nuclear waste utilization. The idea is to couple a subcritical nuclear reactor with a high-energy proton accelerator. Protons interacting with the liquid metal target inside the ...
Advanced neutron interrogation systems for the screening ofsea-land cargo containers for shielded special nuclear materials (SNM)require a high-yield neutron source to achieve the desired detectionprobability, false alarm rate, and throughput. An accelerator-drivenneutron source is described that produces a forward directed beam ofhigh-energy (up to 8.5 MeV) neutrons utilizing the D(d,n)3He ...
Short-pulse accelerator-driven neutron sources such as the Spallation Neutron Source (SNS) employ high-energy proton beam energy deposition in heavy metal (such as mercury) over microsecond time frames. The interaction of the energetic proton beam with the mercury target leads to very high heating rates in the target. Although the ...
... If the theater target board approves the PA, the board ... to focus SOF on the e-:isting data base of fixed ... He must understand his quarry, its doctrine, its ...
A design has been developed for using accelerator-driven thorium fission to produce electric power. A thorium-cycle reactor works by electro-breeding. A pattern of thorium fuel rods is supported in a vessel containing molten lead. A beam of high-energy (1 GeV) protons is targeted in the center of the vessel, and produces a copious flux of energetic ...
The TRADE project (TRiga Accelerator Driven Experiment), to be performed at the existing TRIGA reactor at ENEA Casaccia, has been proposed as a validation of the accelerator-driven system (ADS) concept. TRADE will be the first experiment in which the three main components of an ADS--the accelerator, spallation target and sub-critical ...
Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of ...
A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a ...
Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept ...
The long-term future of ISOL facilities will be governed by the quest for ever increasing secondary beam intensities. One important aspect concerns a new generation of high-power driver accelerators which aim at multi-megawatt beam powers, used in a two-step production scheme for fission products. Within the EURISOL study, e.g. a 1 GeV, 5 mA proton has been investigated in some detail. It would be ...
The use of an external neutron source, generated via an accelerator, represents a potential means for producing the fissile isotopes /sup 233/U and /sup 239/Pu. One promising accelerator-breeder concept employs a sodium-cooled ternary metal fertile blanket (/sup 239/Pu, /sup 238/U, and /sup 232/Th) surrounding a central column of sodium. A preliminary assessment of the neutronic characteristics ...
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW ...
The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear...
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important ...
Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.
For the Thermophysical analysis of the Accelerator Driven Systems (ADS) an simplified model of ADS core was used. The neutron flux was calculated by means of diffusion theory for subcritical homogeneous reactor with an external neutron source. From this result the distribution of the heat sources was found and next the distribution of temperatures was ...
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and e...
Thermal neutron reactor (LWR), fast neutron reactor (FBR), accelerator- driven subcritical system have been studied as the potential transmutation devices. Oxide fuel is considered in LWR and metal, oxide, and nitride fuels are studied in FBR. In accelera...
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proli...
A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transm...
A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Mod...
The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern Universit...
We reconsider the idea of a solid-state laser-driven linac in view of the latest development in the creation of super-intense subpicosecond laser pulses and studying their interaction with surfaces. We suggest that by guiding such pulses in a disposable m...
We present an investigation of a class of particle accelerators driven by the mechanical implosion of an electrically conducting cylindrical liner onto a ring of charged particles embedded in an axial magnetic field. We have performed a number of two-dime...
Several countries are now involved in efforts aimed at utilizing accelerator-driven technologies to solve problems of national and international importance. These technologies have both economic and environmental implications. The technologies include was...
The photoinjectors for future short wavelength high brightness accelerator driven light sources need to produce an electron beam with ultra-low emittance. At the DUVFEL facility at BNL, we studied the effect of longitudinally shaping the photocathode lase...
I present here an overview of the main research and development topics and activities under investigation in Europe for the design of high power superconducting linear proton accelerators as drivers for nuclear waste transmutation in Accelerator Driven Systems.
Various transmutation concepts such as PWR, LMR, Accelerator Driven Subcritical Reactor, are under investigation. A study to decide which option is the optimum among three concepts has been performed in this project. In addition, various computer code sys...
One type of HLW associated with the procedures of spent fuel reprocessing or conditioning as would be required in order to implement accelerator driven transmutation of waste, is the insoluble residue, which remains after the majority of the fuel, is diss...
Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early in...
Our understanding of wood and the specific nature of wood--coating interfaces is thus what limits our ability to design coatings in a highly targeted fashion. ...
Treesearch
To be able to understand and predict the concentration of a target compound in the atmosphere one must understand the atmospheric chemistry involved. The transformation of volatile organic compounds (VOCs) in the troposphere is predominantly driven by the...
Thermal response of the multiplier of an accelerator driven system to beam trips has been calculated for sodium cooled and lead-bismuth cooled multipliers. The temperature transients caused by a beam trip lead to thermal fatigue in structural components, and restoring the beam causes an additional temperature transient that adds to thermal fatigue. Design ...
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation ...
There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding options for dealing with long-lived actinide wastes and fission products, and for power production. ...
A series of basic experiments for an accelerator driven subcritical reactor (ADSR) has been performed at the Kyoto University Critical Assembly (KUCA) by combining a critical assembly with a Cockcroft-Walton type accelerator in view of a future plan to establish a new neutron source for research. By injecting 14 MeV neutrons into the subcritical assembly, ...
This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel ...
There are several potential uses for a high-flux thermal neutron source in both industrial and clinical applications. The viable commercial implementation of these applications requires a low cost, high-flux thermal neutron generator suitable for installation in industrial and clinical environments. This dissertation describes the MCNP modeling results of a high-flux thermal neutron source driven ...
Energetic proton impact ionization data for atomic targets is useful in testing our theoretical understanding of atomic collisions. In general, our understanding of bare projectile impact leading to single target ionization is quite good. Multiple ionizat...
In order to understand what areas can be used for spaceborne scatterometer calibration and to aid in
... 3-D imaging, microwave tomography ... RESOLUTION, DIELECTRICS, MICROWAVES, TARGETS ... RESOLUTION, QUALITY, IMAGES, CAMERAS ...
... constant source of happiness. I thank my talented and gifted children, Luerne and Kristian, for their understanding why ...
... Therefore, to understand Islamic radical terrorism and its related violence and ... and perceptions of Islam specifically targeting Islamic radicals will be ...
The autonomous target recognition (ATR) system helps the robots and autonomous vehicles to understand the environment, and perform autonomous maneuvers.
to substantially improved understanding of the nature of food insecurity. 1 A combination of economic growth and targeted programs resulted in
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at ...
We present our gain predictions for indirect-drive ICF targets, based on current target physics knowledge. In order to understand the uncertainties involved in predicting the performance of future ICF targets, we have constructed a simple model that conta...
Indirect drive ignition target simulations are described as they are used to determine target fabrication specifications. Simulations are being used to explore options for making the targets more robust, and to develop more detailed understanding of the performance of a few point designs. The current array of ...