Sample records for accelerometer activity counts

  1. GT3X+ accelerometer placement affects the reliability of step-counts measured during running and pedal-revolution counts measured during bicycling.

    PubMed

    Gatti, Anthony A; Stratford, Paul W; Brenneman, Elora C; Maly, Monica R

    2016-01-01

    Accelerometers provide a measure of step-count. Reliability and validity of step-count and pedal-revolution count measurements by the GT3X+ accelerometer, placed at different anatomical locations, is absent in the literature. The purpose of this study was to investigate the reliability and validity of step and pedal-revolution counts produced by the GT3X+ placed at different anatomical locations during running and bicycling. Twenty-two healthy adults (14 men and 8 women) completed running and bicycling activity bouts (5 minutes each) while wearing 6 accelerometers: 2 each at the waist, thigh and shank. Accelerometer and video data were collected during activity. Excellent reliability and validity were found for measurements taken from accelerometers mounted at the waist and shank during running (Reliability: intraclass correlation (ICC) ≥ 0.99; standard error of measurement (SEM) ≤1.0 steps; Pearson ≥ 0.99) and at the thigh and shank during bicycling (Reliability: ICC ≥ 0.99; SEM ≤1.0 revolutions; Pearson ≥ 0.99). Excellent reliability was found between measurements taken at the waist and shank during running (ICC ≥ 0.98; SEM ≤1.6 steps) and between measurements taken at the thigh and shank during bicycling (ICC ≥ 0.99; SEM ≤1.0 revolutions). These data suggest that the GT3X+ can be used for measuring step-count during running and pedal-revolution count during bicycling. Only shank placement is recommended for both activities.

  2. Accuracy of piezoelectric pedometer and accelerometer step counts.

    PubMed

    Cruz, Joana; Brooks, Dina; Marques, Alda

    2017-04-01

    This study aimed to assess step-count accuracy of a piezoeletric pedometer (Yamax PW/EX-510), when worn at different body parts, and a triaxial accelerometer (GT3X+), and to compare device accuracy; and identify the preferred location(s) to wear a pedometer. Sixty-three healthy adults (45.8±20.6 years old) wore 7 pedometers (neck, lateral right and left of the waist, front right and left of the waist, front pockets of the trousers) and 1 accelerometer (over the right hip), while walking 120 m at slow, self-preferred/normal and fast paces. Steps were recorded. Participants identified their preferred location(s) to wear the pedometer. Absolute percent error (APE) and Bland and Altman (BA) method were used to assess device accuracy (criterion measure: manual counts) and BA method for device comparisons. Pedometer APE was below 3% at normal and fast paces despite wearing location, but higher at slow pace (4.5-9.1%). Pedometers were more accurate at the front waist and inside the pockets. Accelerometer APE was higher than pedometer APE (P<0.05); nevertheless, limits of agreement between devices were relatively small. Preferred wearing locations were inside the front right (N.=25) and left (N.=20) pockets of the trousers. Yamax PW/EX-510 pedometers may be preferable than GT3X+ accelerometers to count steps, as they provide more accurate results. These pedometers should be worn at the front right or left positions of the waist or inside the front pockets of the trousers.

  3. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women.

    PubMed

    Kinnunen, Tarja I; Tennant, Peter W G; McParlin, Catherine; Poston, Lucilla; Robson, Stephen C; Bell, Ruth

    2011-06-27

    Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Pregnant women (n = 58) with body mass index ≥25 kg/m(2) at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women.

  4. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women

    PubMed Central

    2011-01-01

    Background Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Methods Pregnant women (n = 58) with body mass index ≥25 kg/m2 at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Results Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Conclusions Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women. PMID:21703033

  5. Validation of the RT3 triaxial accelerometer for the assessment of physical activity.

    PubMed

    Rowlands, Ann V; Thomas, Philip W M; Eston, Roger G; Topping, Rodney

    2004-03-01

    The aims of this study were to assess and compare the validity of the RT3 accelerometer for the assessment of physical activity in boys and men, to compare RT3 and Tritrac accelerometer counts, and to determine count cut-off values for moderate (> or =3 < 6 METs) and vigorous (> or =6 METs) activity. Nineteen boys (age: 9.5 +/- 0.8 yr) and 15 men (age: 20.7 +/- 1.4 yr) walked and ran on a treadmill, kicked a ball to and fro, played hopscotch, and sat quietly. An RT3 was worn on the right hip; boys also wore a Tritrac on the left hip. Oxygen consumption was expressed as a ratio of body mass raised to the power of 0.75 (S VO2). RT3 counts correlated significantly with S VO2 in boys (r = 0.87, P < 0.01) and men (r = 0.85, P < 0.01). However, during treadmill activities, RT3 counts were significantly higher for boys (P < 0.05). RT3 counts corresponding to "moderate" and "vigorous" activity were similar for boys and men for all activities (moderate = 970.2 for boys and 984.0 for men; vigorous = 2333.0 for boys and 2340.8 for men) but approximately 400 counts lower in men when only treadmill activities were considered. Tritrac counts correlated significantly with S VO2 in boys (r = 0.87, P < 0.01), but were significantly lower than RT3 counts across most activities (P < 0.05). The RT3 accelerometer is a good measure of physical activity for boys and men. However, moderate and vigorous intensity count thresholds differ for boys and men when the predominant activities are walking and running. RT3 counts are significantly higher than Tritrac counts for a number of activities. These findings have implications when comparing activity counts between studies using the different instruments.

  6. Physical activity and sedentary behavior during pregnancy and postpartum, measured using hip and wrist-worn accelerometers.

    PubMed

    Hesketh, Kathryn R; Evenson, Kelly R; Stroo, Marissa; Clancy, Shayna M; Østbye, Truls; Benjamin-Neelon, Sara E

    2018-06-01

    Physical activity in pregnancy and postpartum is beneficial to mothers and infants. To advance knowledge of objective physical activity measurement during these periods, this study compares hip to wrist accelerometer compliance; assesses convergent validity (correlation) between hip- and wrist-worn accelerometry; and assesses change in physical activity from pregnancy to postpartum. We recruited women during pregnancy ( n  = 100; 2014-2015), asking them to wear hip and wrist accelerometers for 7 days during Trimester 2 (T2), Trimester 3 (T3), and 3-, 6-, 9- and 12-months postpartum. We assessed average wear-time and correlations (axis-specific counts/minute, vector magnitude counts/day and step counts/day) at T2, T3, and postpartum. Compliance was higher for wrist-worn accelerometers. Hip and wrist accelerometers showed moderate to high correlations (Pearson's r 0.59 to 0.84). Hip-measured sedentary and active time differed little between T2 and T3. Moderate-to-vigorous physical activity decreased at T3 and remained low postpartum. Light physical activity increased and sedentary time decreased throughout the postpartum period. Wrist accelerometers may be preferable during pregnancy and appear comparable to hip accelerometers. As physical activity declines during later pregnancy and may not rebound post birth, support for re-engaging in physical activity earlier in the postpartum period may benefit women.

  7. Reproducibility of Accelerometer-Assessed Physical Activity and Sedentary Time.

    PubMed

    Keadle, Sarah Kozey; Shiroma, Eric J; Kamada, Masamitsu; Matthews, Charles E; Harris, Tamara B; Lee, I-Min

    2017-04-01

    Accelerometers are used increasingly in large epidemiologic studies, but, given logistic and cost constraints, most studies are restricted to a single, 7-day accelerometer monitoring period. It is unknown how well a 7-day accelerometer monitoring period estimates longer-term patterns of behavior, which is critical for interpreting, and potentially improving, disease risk estimates in etiologic studies. A subset of participants from the Women's Health Study (N=209; mean age, 70.6 [SD=5.7] years) completed at least two 7-day accelerometer administrations (ActiGraph GT3X+) within a period of 2-3 years. Monitor output was translated into total counts, steps, and time spent in sedentary, light-intensity, and moderate to vigorous-intensity activity (MVPA) and bouted-MVPA (i.e., 10-minute bouts). For each metric, intraclass correlations (ICCs) and 95% CIs were calculated using linear-mixed models and adjusted for wear time, age, BMI, and season. The data were collected in 2011-2015 and analyzed in 2015-2016. The ICCs ranged from 0.67 (95% CI=0.60, 0.73) for bouted-MVPA to 0.82 (95% CI=0.77, 0.85) for total daily counts and were similar across age, BMI, and for less and more active women. For all metrics, classification accuracy within 1 quartile was >90%. These data provide reassurance that a 7-day accelerometer-assessment protocol provides a reproducible (and practical) measure of physical activity and sedentary time. However, ICCs varied by metric; therefore, future prospective studies of chronic diseases might benefit from existing methods to adjust risk estimates for within-person variability in activity to get a better estimate of the true strength of association. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  8. Assessment of Differing Definitions of Accelerometer Nonwear Time

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  9. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals.

    PubMed

    Rhudy, Matthew B; Mahoney, Joseph M

    2018-04-01

    The goal of this work is to compare the differences between various step counting algorithms using both accelerometer and gyroscope measurements from wrist and ankle-mounted sensors. Participants completed four different conditions on a treadmill while wearing an accelerometer and gyroscope on the wrist and the ankle. Three different step counting techniques were applied to the data from each sensor type and mounting location. It was determined that using gyroscope measurements allowed for better performance than the typically used accelerometers, and that ankle-mounted sensors provided better performance than those mounted on the wrist.

  10. Validation of three short physical activity questionnaires with accelerometers among university students in Spain.

    PubMed

    Rodríguez-Muñoz, Sheila; Corella, Cristina; Abarca-Sos, Alberto; Zaragoza, Javier

    2017-12-01

    Physical activity (PA) in university students has not been analyzed with specific questionnaires tailored to this population. Therefore, the purpose of this study was to analyze the validity of three PA questionnaires developed on other populations comparing with accelerometer values: counts and moderate to vigorous PA (MVPA) calculated with uniaxial and triaxial cut points. One hundred and forty-five university students (of whom, 92 women) from Spain wore an accelerometer GT3X or GTX+ to collect PA data of 7 full days. Three questionnaires, Physical Activity Questionnaire for Adults (PAQ-AD), Assessment of Physical Activity Questionnaire (APALQ), and the International Physical Activity Questionnaire Short Form (IPAQ-SF) were administrated jointly with the collection of accelerometer values. Finally, after the application of inclusion criteria, data from 95 participants (62 women) with a mean age of 21.96±2.33 years were analyzed to compare the instruments measures. The correlational analysis showed that PAQ-AD (0.44-0.56) and IPAQ-SF (0.26-0.69) questionnaires were significantly related to accelerometers scores: counts, uniaxial MVPA and triaxial MVPA. Conversely, APALQ displayed no significant relations for males with accelerometers scores for MVPA created with both cut points. PAQ-AD and IPAQ-SF questionnaires have shown adequate validity to use with Spanish university students. The use of counts to validate self-report data in order to reduce the variability display by MVPA created with different cut points is discussed. Finally, validated instruments to measure PA in university students will allow implementation of strategies for PA promotion based on reliable data.

  11. Physical activity classification using the GENEA wrist-worn accelerometer.

    PubMed

    Zhang, Shaoyan; Rowlands, Alex V; Murray, Peter; Hurst, Tina L

    2012-04-01

    Most accelerometer-based activity monitors are worn on the waist or lower back for assessment of habitual physical activity. Output is in arbitrary counts that can be classified by activity intensity according to published thresholds. The purpose of this study was to develop methods to classify physical activities into walking, running, household, or sedentary activities based on raw acceleration data from the GENEA (Gravity Estimator of Normal Everyday Activity) and compare classification accuracy from a wrist-worn GENEA with a waist-worn GENEA. Sixty participants (age = 49.4 ± 6.5 yr, body mass index = 24.6 ± 3.4 kg·m⁻²) completed an ordered series of 10-12 semistructured activities in the laboratory and outdoor environment. Throughout, three GENEA accelerometers were worn: one at the waist, one on the left wrist, and one on the right wrist. Acceleration data were collected at 80 Hz. Features obtained from both fast Fourier transform and wavelet decomposition were extracted, and machine learning algorithms were used to classify four types of daily activities including sedentary, household, walking, and running activities. The computational results demonstrated that the algorithm we developed can accurately classify certain types of daily activities, with high overall classification accuracy for both waist-worn GENEA (0.99) and wrist-worn GENEA (right wrist = 0.97, left wrist = 0.96). We have successfully developed algorithms suitable for use with wrist-worn accelerometers for detecting certain types of physical activities; the performance is comparable to waist-worn accelerometers for assessment of physical activity.

  12. Accelerometer-measured sedentary behaviour and physical activity of inpatients with severe mental illness.

    PubMed

    Kruisdijk, Frank; Deenik, Jeroen; Tenback, Diederik; Tak, Erwin; Beekman, Aart-Jan; van Harten, Peter; Hopman-Rock, Marijke; Hendriksen, Ingrid

    2017-08-01

    Sedentary behaviour and lack of physical activity threatens health. Research concerning these behaviours of inpatients with severe mental illness is limited but urgently needed to reveal prevalence and magnitude. In total, 184 inpatients (men n =108, women n =76, mean age 57,4, 20% first generation antipsychotics, 40% second generation antipsychotics, 43% antidepressants, mean years hospitalisation 13 years), with severe mental illness of a Dutch psychiatric hospital wore an accelerometer for five days to objectively measure total activity counts per hour and percentages in sedentary behaviour, light intensity physical activity and moderate to vigorous physical activity. Accelerometer data were compared with data of 54 healthy ward employees. Patients showed significantly less activity counts per hour compared to employees (p=0.02), although the differences were small (d=0.32). Patients were sedentary during 84% of the wear time (50min/h), spend 10% in light intensity physical activity and 6% in moderate to vigorous physical activity. Age was the only significant predictor, predicting less total activity counts/h in higher ages. Decreasing sedentary behaviour and improving physical activity in this population should be a high priority in clinical practice. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Validation of accelerometer wear and nonwear time classification algorithm.

    PubMed

    Choi, Leena; Liu, Zhouwen; Matthews, Charles E; Buchowski, Maciej S

    2011-02-01

    the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001). the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.

  14. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review.

    PubMed

    Jeran, S; Steinbrecher, A; Pischon, T

    2016-08-01

    Activity-related energy expenditure (AEE) might be an important factor in the etiology of chronic diseases. However, measurement of free-living AEE is usually not feasible in large-scale epidemiological studies but instead has traditionally been estimated based on self-reported physical activity. Recently, accelerometry has been proposed for objective assessment of physical activity, but it is unclear to what extent this methods explains the variance in AEE. We conducted a systematic review searching MEDLINE database (until 2014) on studies that estimated AEE based on accelerometry-assessed physical activity in adults under free-living conditions (using doubly labeled water method). Extracted study characteristics were sample size, accelerometer (type (uniaxial, triaxial), metrics (for example, activity counts, steps, acceleration), recording period, body position, wear time), explained variance of AEE (R(2)) and number of additional predictors. The relation of univariate and multivariate R(2) with study characteristics was analyzed using nonparametric tests. Nineteen articles were identified. Examination of various accelerometers or subpopulations in one article was treated separately, resulting in 28 studies. Sample sizes ranged from 10 to 149. In most studies the accelerometer was triaxial, worn at the trunk, during waking hours and reported activity counts as output metric. Recording periods ranged from 5 to 15 days. The variance of AEE explained by accelerometer-assessed physical activity ranged from 4 to 80% (median crude R(2)=26%). Sample size was inversely related to the explained variance. Inclusion of 1 to 3 other predictors in addition to accelerometer output significantly increased the explained variance to a range of 12.5-86% (median total R(2)=41%). The increase did not depend on the number of added predictors. We conclude that there is large heterogeneity across studies in the explained variance of AEE when estimated based on accelerometry. Thus

  15. Calibration and comparison of accelerometer cut points in preschool children.

    PubMed

    van Cauwenberghe, Eveline; Labarque, Valery; Trost, Stewart G; de Bourdeaudhuij, Ilse; Cardon, Greet

    2011-06-01

    The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. To calibrate the accelerometer, 18 preschoolers (5.8 ± 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 ± 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.

  16. Concurrent validation of the Actigraph gt3x+, Polar Active accelerometer, Omron HJ-720 and Yamax Digiwalker SW-701 pedometer step counts in lab-based and free-living settings.

    PubMed

    Lee, Joey A; Williams, Skip M; Brown, Dale D; Laurson, Kelly R

    2015-01-01

    Activity monitors are frequently used to assess activity in many settings. But as technology advances, so do the mechanisms used to estimate activity causing a continuous need to validate newly developed monitors. The purpose of this study was to examine the step count validity of the Yamax Digiwalker SW-701 pedometer (YX), Omron HJ-720 T pedometer (OP), Polar Active accelerometer (PAC) and Actigraph gt3x+ accelerometer (AG) under controlled and free-living conditions. Participants completed five stages of treadmill walking (n = 43) and a subset of these completed a 3-day free-living wear period (n = 37). Manually counted (MC) steps provided a criterion measure for treadmill walking, whereas the comparative measure during free-living was the YX. During treadmill walking, the OP was the most accurate monitor across all speeds (±1.1% of MC steps), while the PAC underestimated steps by 6.7-16.0% per stage. During free-living, the OP and AG counted 97.5% and 98.5% of YX steps, respectively. The PAC overestimated steps by 44.0%, or 5,265 steps per day. The Omron pedometer seems to provide the most reliable and valid estimate of steps taken, as it was the best performer under lab-based conditions and provided comparable results to the YX in free-living. Future studies should consider these monitors in additional populations and settings.

  17. The impact of accelerometer wear location on the relationship between step counts and arterial stiffness in adults treated for hypertension and diabetes.

    PubMed

    Cooke, Alexandra B; Daskalopoulou, Stella S; Dasgupta, Kaberi

    2018-04-01

    Accelerometer placement at the wrist is convenient and increasingly adopted despite less accurate physical activity (PA) measurement than with waist placement. Capitalizing on a study that started with wrist placement and shifted to waist placement, we compared associations between PA measures derived from different accelerometer locations with a responsive arterial health indicator, carotid-femoral pulse wave velocity (cfPWV). Cross-sectional study. We previously demonstrated an inverse association between waist-worn pedometer-assessed step counts (Yamax SW-200, 7 days) and cfPWV (-0.20m/s, 95% CI -0.28, -0.12 per 1000 step/day increment) in 366 adults. Participants concurrently wore accelerometers (ActiGraph GT3X+), most at the waist but the first 46 at the wrist. We matched this subgroup with participants from the 'waist accelerometer' group (sex, age, and pedometer-assessed steps/day) and assessed associations with cfPWV (applanation tonometry, Sphygmocor) separately in each subgroup through linear regression models. Compared to the waist group, wrist group participants had higher step counts (mean difference 3980 steps/day; 95% CI 2517, 5443), energy expenditure (967kcal/day, 95% CI 755, 1179), and moderate-to-vigorous-PA (138min; 95% CI 114, 162). Accelerometer-assessed step counts (waist) suggested an association with cfPWV (-0.28m/s, 95% CI -0.58, 0.01); but no relationship was apparent with wrist-assessed steps (0.02m/s, 95% CI -0.24, 0.27). Waist but not wrist ActiGraph PA measures signal associations between PA and cfPWV. We urge researchers to consider the importance of wear location choice on relationships with health indicators. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Evolution of accelerometer methods for physical activity research.

    PubMed

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth.

    PubMed

    Belcher, Britni R; Moser, Richard P; Dodd, Kevin W; Atienza, Audie A; Ballard-Barbash, Rachel; Berrigan, David

    2015-05-01

    Discrepancies in self-report and accelerometer-measured moderate-to-vigorous physical activity (MVPA) may influence relationships with obesity-related biomarkers in youth. Data came from 2003-2006 National Health and Nutrition Examination Surveys (NHANES) for 2174 youth ages 12 to 19. Biomarkers were: body mass index (BMI, kg/m2), BMI percentile, height and waist circumference (WC, cm), triceps and subscapular skinfolds (mm), systolic & diastolic blood pressure (BP, mmHg), high-density lipoprotein (HDL, mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), insulin (μU/ml), C-reactive protein (mg/dL), and glycohemoglobin (%). In separate sex-stratified models, each biomarker was regressed on accelerometer variables [mean MVPA (min/day), nonsedentary counts, and MVPA bouts (mean min/day)] and self-reported MVPA. Covariates were age, race/ethnicity, SES, physical limitations, and asthma. In boys, correlations between self-report and accelerometer MVPA were stronger (boys: r = 0.14-0.21; girls: r = 0.07-0.11; P < .010) and there were significant associations with BMI, WC, triceps skinfold, and SBP and accelerometer MVPA (P < .01). In girls, there were no significant associations between biomarkers and any measures of physical activity. Physical activity measures should be selected based on the outcome of interest and study population; however, associations between PA and these biomarkers appear to be weak regardless of the measure used.

  20. The method of attachment influences accelerometer-based activity data in dogs.

    PubMed

    Martin, Kyle W; Olsen, Anastasia M; Duncan, Colleen G; Duerr, Felix M

    2017-02-10

    Accelerometer-based activity monitoring is a promising new tool in veterinary medicine used to objectively assess activity levels in dogs. To date, it is unknown how device orientation, attachment method, and attachment of a leash to the collar holding an accelerometer affect canine activity data. It was our goal to evaluate whether attachment methods of accelerometers affect activity counts. Eight healthy, client-owned dogs were fitted with two identical neck collars to which two identical activity monitors were attached using six different methods of attachment. These methods of attachment evaluated the use of a protective case, positioning of the activity monitor and the tightness of attachment of the accelerometer. Lastly, the effect of leash attachment to the collar was evaluated. For trials where the effect of leash attachment to the collar was not being studied, the leash was attached to a harness. Activity data obtained from separate monitors within a given experiment were compared using Pearson correlation coefficients and across all experiments using the Kruskal-Wallis Test. There was excellent correlation and low variability between activity monitors on separate collars when the leash was attached to a harness, regardless of their relative positions. There was good correlation when activity monitors were placed on the same collar regardless of orientation. There were poor correlations between activity monitors in three experiments: when the leash was fastened to the collar that held an activity monitor, when one activity monitor was housed in the protective casing, and when one activity monitor was loosely zip-tied to the collar rather than threaded on using the provided metal loop. Follow-up, pair-wise comparisons identified the correlation associated with these three methods of attachment to be statistically different from the level of correlation when monitors were placed on separate collars. While accelerometer-based activity monitors are useful

  1. Comparison of pedometer and accelerometer measures of physical activity during preschool time on 3- to 5-year-old children.

    PubMed

    Pagels, Peter; Boldemann, Cecilia; Raustorp, Anders

    2011-01-01

    To compare pedometer steps with accelerometer counts and to analyse minutes of engagement in light, moderate and vigorous physical activity in 3- to 5-year-old children during preschool time. Physical activity was recorded during preschool time for five consecutive days in 55 three- to five-year-old children. The children wore a Yamax SW200 pedometer and an Actigraph GTIM Monitor. The average time spent at preschool was 7.22 h/day with an average step of 7313 (±3042). Steps during preschool time increased with increasing age. The overall correlation between mean step counts and mean accelerometer counts (r = 0.67, p < 0.001), as well as time in light to vigorous activity (r = 0.76, p < 0.001), were moderately high. Step counts and moderate to vigorous physical activity minutes were poorly correlated in 3 years old (r = 0.19, p < 0.191) and moderately correlated (r = 0.50, p < 0.001) for children 4 to 5 years old. Correlation between the preschool children's pedometer-determined step counts and total engagement in physical activity during preschool time was moderately high. Children's step counts at preschool were low, and the time spent in moderate and vigorous physical activity at preschool was very short. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.

  2. Physical Activity Patterns and Sedentary Behavior in Older Women With Urinary Incontinence: an Accelerometer-based Study.

    PubMed

    Chu, Christine M; Khanijow, Kavita D; Schmitz, Kathryn H; Newman, Diane K; Arya, Lily A; Harvie, Heidi S

    2018-01-10

    Objective physical activity data for women with urinary incontinence are lacking. We investigated the relationship between physical activity, sedentary behavior, and the severity of urinary symptoms in older community-dwelling women with urinary incontinence using accelerometers. This is a secondary analysis of a study that measured physical activity (step count, moderate-to-vigorous physical activity time) and sedentary behavior (percentage of sedentary time, number of sedentary bouts per day) using a triaxial accelerometer in older community-dwelling adult women not actively seeking treatment of their urinary symptoms. The relationship between urinary symptoms and physical activity variables was measured using linear regression. Our cohort of 35 community-dwelling women (median, age, 71 years) demonstrated low physical activity (median daily step count, 2168; range, 687-5205) and high sedentary behavior (median percentage of sedentary time, 74%; range, 54%-89%). Low step count was significantly associated with nocturia (P = 0.02). Shorter duration of moderate-to-vigorous physical activity time was significantly associated with nocturia (P = 0.001), nocturnal enuresis (P = 0.04), and greater use of incontinence products (P = 0.04). Greater percentage of time spent in sedentary behavior was also significantly associated with nocturia (P = 0.016). Low levels of physical activity are associated with greater nocturia and nocturnal enuresis. Sedentary behavior is a new construct that may be associated with lower urinary tract symptoms. Physical activity and sedentary behavior represent potential new targets for treating nocturnal urinary tract symptoms.

  3. Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults.

    PubMed

    Johnson, Marquell

    2015-01-01

    Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method : Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results : There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s -1 , all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s -1 , the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s -1 , the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion : Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace.

  4. Comparison of self-reported versus accelerometer-measured physical activity.

    PubMed

    Dyrstad, Sindre M; Hansen, Bjørge H; Holme, Ingar M; Anderssen, Sigmund A

    2014-01-01

    The International Physical Activity Questionnaire (IPAQ) is one of the most widely used questionnaires to assess physical activity (PA). Validation studies for the IPAQ have been executed, but still there is a need for studies comparing absolute values between IPAQ and accelerometer in large population studies. To compare PA and sedentary time from the self-administered, short version of the IPAQ with data from ActiGraph accelerometer in a large national sample. A total of 1751 adults (19-84 yr) wore an accelerometer (ActiGraph GT1M) for seven consecutive days and completed the IPAQ-Short Form. Sedentary time, total PA, and time spent in moderate to vigorous activity were compared in relation to sex, age, and education. Men and women reported, on average, 131 min·d (SE = 4 min·d) less sedentary time compared with the accelerometer measurements. The difference between self-reported and measured sedentary time and vigorous-intensity PA was greatest among men with a lower education level and for men 65 yr and older. Although men reported 47% more moderate to vigorous physical activity (MVPA) compared with women, there were no differences between sexes in accelerometer-determined MVPA. Accelerometer-determined moderate PA was reduced from 110 to 42 min·d (62%) when analyzed in blocks of 10 min (P < 0.0001) compared with 1-min blocks. The main correlation coefficients between self-reported variables and accelerometer measures of physical activity were between 0.20 and 0.46. The participants report through IPAQ-Short Form more vigorous PA and less sedentary time compared with the accelerometer. The difference between self-reported and accelerometer-measured MVPA increased with higher activity and intensity levels. Associations between the methods were affected by sex, age, and education, but not body mass index.

  5. Comparison of Physical Activity Adult Questionnaire results with accelerometer data.

    PubMed

    Garriguet, Didier; Tremblay, Sylvain; Colley, Rachel C

    2015-07-01

    Discrepancies between self-reported and objectively measured physical activity are well-known. For the purpose of validation, this study compares a new self-reported physical activity questionnaire with an existing one and with accelerometer data. Data collected at one site of the Canadian Health Measures Survey in 2013 were used for this validation study. The International Physical Activity Questionnaire (IPAQ) was administered to respondents during the household interview, and the new Physical Activity for Adults Questionnaire (PAAQ) was administered during a subsequent visit to a mobile examination centre (MEC). At the MEC, respondents were given an accelerometer to wear for seven days. The analysis pertains to 112 respondents aged 18 to 79 who wore the accelerometer for 10 or more hours on at least four days. Moderate-to-vigorous physical activity (MVPA) measured by accelerometer had higher correlation with data from the PAAQ (r = 0.44) than with data from the IPAQ (r = 0.20). The differences between accelerometer and PAAQ data were greater based on accelerometer-measured physical activity accumulated in 10-minute bouts (30-minute difference in MVPA) than on all minutes (9-minute difference). The percentages of respondents meeting the Canadian Physical Activity Guidelines were 90% based on self-reported IPAQ minutes, 70% based on all accelerometer MVPA minutes, 29% based on accelerometer MVPA minutes accumulated in 10-minute bouts, and 61% based on self-reported PAAQ minutes. The PAAQ demonstrated reasonable validity against the accelerometer criterion. Based on correlations and absolute differences between daily minutes of MVPA and the percentages of respondents meeting the Canadian Physical Activity Guidelines, PAAQ results were closer to accelerometer data than were the IPAQ results for the study sample and previous Statistics Canada self-reported questionnaire findings.

  6. Associations between accelerometer-derived physical activity and regional adiposity in young men and women.

    PubMed

    Smith, H A; Storti, K L; Arena, V C; Kriska, A M; Gabriel, K K Pettee; Sutton-Tyrrell, K; Hames, K C; Conroy, M B

    2013-06-01

    Empirical evidence supports an inverse relationship between physical activity (PA) and adiposity, but studies using detailed measures of both are scarce. The relationship between regional adiposity and accelerometer-derived PA in men and women are described. Cross-sectional analysis included 253 participants from a weight loss study limited to ages 20-45 years and BMI 25-39.9 kg m(-2) . PA data were collected with accelerometers and expressed as total accelerometer counts and average amount of time per day accumulated in different intensity levels [sedentary, light-, and moderate-to-vigorous intensity PA (MVPA)]. Accumulation of time spent above 100 counts was expressed as total active time. Computed tomography (CT) was used to measure abdominal and adipose tissue (AT). Multivariate linear regression analyses were used to assess the relationship between regional adiposity (dependent variable) and the various PA levels (independent variable), and were executed separately for men and women, adjusting for wear time, age, race, education, and BMI. Among males, light activity was inversely associated with total AT (β = -0.19; P = 0.02) as well as visceral AT (VAT) (β = -0.30; P = 0.03). Among females sedentary time was positively associated with VAT (β = 0.11; P = 0.04) and total active time was inversely associated with VAT (β = -0.12; P = 0.04). Findings from this study suggest that PA intensity level may influence regional adiposity differently in men and women. Additional research is needed in larger samples to clarify the difference in these associations by sex, create recommendations for the frequency, duration and intensity of PA needed to target fat deposits, and determine if these recommendations should differ by sex. Copyright © 2013 The Obesity Society.

  7. Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults

    PubMed Central

    2015-01-01

    Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method: Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results: There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s−1, all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s−1, the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s−1, the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion: Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace. PMID:28138464

  8. Comparison of Compliance and Intervention Outcomes Between Hip- and Wrist-Worn Accelerometers During a Randomized Crossover Trial of an Active Video Games Intervention in Children.

    PubMed

    Howie, Erin K; McVeigh, Joanne A; Straker, Leon M

    2016-09-01

    There are several practical issues when considering the use of hip-worn or wrist-worn accelerometers. This study compared compliance and outcomes between hip- and wrist-worn accelerometers worn simultaneously by children during an active video games intervention. As part of a larger randomized crossover trial, participants (n = 73, age 10 to 12 years) wore 2 Actical accelerometers simultaneously during waking hours for 7 days, on the hip and wrist. Measurements were repeated at 4 timepoints: 1) at baseline, 2) during traditional video games condition, 3) during active video games condition, 4) during no video games condition. Compliance and intervention effects were compared between hip and wrist. There were no statistically significant differences at any timepoint in percentage compliance between hip (77% to 87%) and wrist (79% to 89%). Wrist-measured counts (difference of 64.3 counts per minute, 95% CI 4.4-124.3) and moderate-to-vigorous physical activity (MVPA) (12 min/day, 95% CI 0.3-23.7) were higher during the no video games condition compared with the traditional video games condition. There were no differences in hip-measured counts per minute or MVPA between conditions or sedentary time for hip or wrist. There were no differences in compliance between hip- and wrist-worn accelerometers during an intervention trial, however, intervention findings differed between hip and wrist.

  9. Blood pressure circadian pattern and physical exercise assessment by accelerometer and 7-day physical activity recall scale.

    PubMed

    García-Ortiz, Luis; Recio-Rodríguez, José I; Puig-Ribera, Anna; Lema-Bartolomé, Jorge; Ibáñez-Jalón, Elisa; González-Viejo, Natividad; Guenaga-Saenz, Nahia; Agudo-Conde, Cristina; Patino-Alonso, Maria C; Gomez-Marcos, Manuel A

    2014-05-01

    The relationship between regular physical activity, measured objectively and by self-report, and the circadian pattern of 24-hour ambulatory arterial blood pressure (BP) has not been clarified. We performed a cross-sectional study in a cohort of healthy patients. We included 1,345 patients from the EVIDENT study (mean age 55 ± 14 years; 59.3% women). Physical activity was assessed using the 7-day physical activity recall (PAR) questionnaire (metabolic equivalents (MET)/hour/week) and the Actigraph GT3X accelerometer (counts/minute) for 7 days; ambulatory arterial BP was measured with a radial tonometer (B-pro device). The dipper-pattern patients showed a higher level of activity than nondipper patients, as assessed by accelerometer and 7-day PAR. Physical activity measures correlated positively with the percent drop in systolic BP (SBP; ρ = 0.19 to 0.11; P < 0.01) and negatively with the systolic and diastolic sleep to wake ratios (ρ = -0.10 to -0.18; P < 0.01) and heart rate (ρ = -0.13; P < 0.01). In logistic regression, considering the circadian pattern (1, dipper; 0, nondipper) as the dependent variable, the odds ratio of the third tertile of counts/minute was 1.79 (95% confidence interval [CI], 1.35-2.38; P < 0.01) and of MET/hour/week was 1.33 (95% CI, 1.01-1.75; P = 0.04) after adjustment for confounding variables. Physical activity, as evaluated by both the accelerometer and the 7-day PAR, was associated with a more marked nocturnal BP dip and, accordingly, a lower SBP and diastolic BP sleep to wake ratio. Clinical Trials.gov Identifier: NCT01083082.

  10. Validity and Reliability of Accelerometers in Patients With COPD: A SYSTEMATIC REVIEW.

    PubMed

    Gore, Shweta; Blackwood, Jennifer; Guyette, Mary; Alsalaheen, Bara

    2018-05-01

    Reduced physical activity is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Accelerometers have greatly improved quantification of physical activity by providing information on step counts, body positions, energy expenditure, and magnitude of force. The purpose of this systematic review was to compare the validity and reliability of accelerometers used in patients with COPD. An electronic database search of MEDLINE and CINAHL was performed. Study quality was assessed with the Strengthening the Reporting of Observational Studies in Epidemiology checklist while methodological quality was assessed using the modified Quality Appraisal Tool for Reliability Studies. The search yielded 5392 studies; 25 met inclusion criteria. The SenseWear Pro armband reported high criterion validity under controlled conditions (r = 0.75-0.93) and high reliability (ICC = 0.84-0.86) for step counts. The DynaPort MiniMod demonstrated highest concurrent validity for step count using both video and manual methods. Validity of the SenseWear Pro armband varied between studies especially in free-living conditions, slower walking speeds, and with addition of weights during gait. A high degree of variability was found in the outcomes used and statistical analyses performed between studies, indicating a need for further studies to measure reliability and validity of accelerometers in COPD. The SenseWear Pro armband is the most commonly used accelerometer in COPD, but measurement properties are limited by gait speed variability and assistive device use. DynaPort MiniMod and Stepwatch accelerometers demonstrated high validity in patients with COPD but lack reliability data.

  11. Assessment of physical activity with the Computer Science and Applications, Inc., accelerometer: laboratory versus field validation.

    PubMed

    Nichols, J F; Morgan, C G; Chabot, L E; Sallis, J F; Calfas, K J

    2000-03-01

    Our purpose was to compare the validity of the Computer Science and Applications, (CSA) Inc., accelerometer in laboratory and field settings and establish CSA count ranges for light, moderate, and vigorous physical activity. Validity was determined in 60 adults during treadmill exercise, using oxygen consumption (VO2) as the criterion measure, while 30 adults walked and jogged outdoors on a 400-m track. The relationship between CSA counts and VO2 was linear (R2 = .89 SEE = 3.72 ml.kg-1.min-1), as was the relationship between velocity and counts in the field (R2 = .89, SEE = 0.89 mi.hr-1). However, significant differences were found (p < .05) between laboratory and field measures of CSA counts for light and vigorous intensity. We conclude that the CSA can be used to quantify walking and jogging outdoors on level ground; however, laboratory equations may not be appropriate for use in field settings, particularly for light and vigorous activity.

  12. Sedentary Time and Physical Activity Surveillance Through Accelerometer Pooling in Four European Countries.

    PubMed

    Loyen, Anne; Clarke-Cornwell, Alexandra M; Anderssen, Sigmund A; Hagströmer, Maria; Sardinha, Luís B; Sundquist, Kristina; Ekelund, Ulf; Steene-Johannessen, Jostein; Baptista, Fátima; Hansen, Bjørge H; Wijndaele, Katrien; Brage, Søren; Lakerveld, Jeroen; Brug, Johannes; van der Ploeg, Hidde P

    2017-07-01

    The objective of this study was to pool, harmonise and re-analyse national accelerometer data from adults in four European countries in order to describe population levels of sedentary time and physical inactivity. Five cross-sectional studies were included from England, Portugal, Norway and Sweden. ActiGraph accelerometer count data were centrally processed using the same algorithms. Multivariable logistic regression analyses were conducted to study the associations of sedentary time and physical inactivity with sex, age, weight status and educational level, in both the pooled sample and the separate study samples. Data from 9509 participants were used. On average, participants were sedentary for 530 min/day, and accumulated 36 min/day of moderate to vigorous intensity physical activity. Twenty-three percent accumulated more than 10 h of sedentary time/day, and 72% did not meet the physical activity recommendations. Nine percent of all participants were classified as high sedentary and low active. Participants from Norway showed the highest levels of sedentary time, while participants from England were the least physically active. Age and weight status were positively associated with sedentary time and not meeting the physical activity recommendations. Men and higher-educated people were more likely to be highly sedentary, while women and lower-educated people were more likely to be inactive. We found high levels of sedentary time and physical inactivity in four European countries. Older people and obese people were most likely to display these behaviours and thus deserve special attention in interventions and policy planning. In order to monitor these behaviours, accelerometer-based cross-European surveillance is recommended.

  13. Validity of Using Tri-Axial Accelerometers to Measure Human Movement – Part II: Step Counts at a Wide Range of Gait Velocities

    PubMed Central

    Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton

    2014-01-01

    A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 m/s to 4.8 m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. PMID:24656871

  14. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.

    PubMed

    Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton

    2014-06-01

    A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 to 4.8m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    PubMed Central

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was

  16. Classification of Physical Activity Cut-Points and the Estimation of Energy Expenditure during Walking Using the GT3X+ Accelerometer in Overweight and Obese Adults

    ERIC Educational Resources Information Center

    Howe, Christopher C. F.; Moir, Hannah J.; Easton, Chris

    2017-01-01

    This study establishes tri-axial activity count (AC) cut-points for the GT3X+ accelerometer to classify physical activity intensity in overweight and obese adults. Further, we examined the accuracy of established and novel energy expenditure (EE) prediction equations based on AC and other metrics. "Part 1": Twenty overweight or obese…

  17. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.

    PubMed

    Godfrey, A; Culhane, K M; Lyons, G M

    2007-10-01

    The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.

  18. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.

    PubMed

    Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Suni, Jaana; Sievänen, Harri

    2015-01-01

    Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Detecting Human Activity Using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors

    DTIC Science & Technology

    2011-09-01

    Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors by Sarah H. Walker and Geoffrey H. Goldman...Adelphi, MD 20783-1197 ARL-TR-5729 September 2011 Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors...DD-MM-YYYY) September 2011 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Detecting Human Activity using Acoustic

  20. Accelerometer-based measures in physical activity surveillance: current practices and issues.

    PubMed

    Pedišić, Željko; Bauman, Adrian

    2015-02-01

    Self-reports of physical activity (PA) have been the mainstay of measurement in most non-communicable disease (NCD) surveillance systems. To these, other measures are added to summate to a comprehensive PA surveillance system. Recently, some national NCD surveillance systems have started using accelerometers as a measure of PA. The purpose of this paper was specifically to appraise the suitability and role of accelerometers for population-level PA surveillance. A thorough literature search was conducted to examine aspects of the generalisability, reliability, validity, comprehensiveness and between-study comparability of accelerometer estimates, and to gauge the simplicity, cost-effectiveness, adaptability and sustainability of their use in NCD surveillance. Accelerometer data collected in PA surveillance systems may not provide estimates that are generalisable to the target population. Accelerometer-based estimates have adequate reliability for PA surveillance, but there are still several issues associated with their validity. Accelerometer-based prevalence estimates are largely dependent on the investigators' choice of intensity cut-off points. Maintaining standardised accelerometer data collections in long-term PA surveillance systems is difficult, which may cause discontinuity in time-trend data. The use of accelerometers does not necessarily produce useful between-study and international comparisons due to lack of standardisation of data collection and processing methods. To conclude, it appears that accelerometers still have limitations regarding generalisability, validity, comprehensiveness, simplicity, affordability, adaptability, between-study comparability and sustainability. Therefore, given the current evidence, it seems that the widespread adoption of accelerometers specifically for large-scale PA surveillance systems may be premature. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  1. Comparison of pedometer and accelerometer measures of free-living physical activity.

    PubMed

    Tudor-Locke, Catrine; Ainsworth, Barbara E; Thompson, Raymond W; Matthews, Charles E

    2002-12-01

    The purpose of this investigation was 1) to evaluate agreement between dual-mode CSA accelerometer outputs and Yamax pedometer outputs assessed concurrently under free-living conditions; 2) to determine the relationship between pedometer-steps per day and CSA-time spent in inactivity and in light-, moderate-, and vigorous-intensity activities; and 3) to identify a value of pedometer-steps per day that corresponds with a minimum of 30 CSA-min x d(-1) of moderate ambulatory activity. Data were analyzed from 52 participants (27 men, 25 women; mean age = 38.2 +/- 12.0 yr; mean BMI = 26.4 +/- 4.5 kg x m(-2)) who were enrolled in the International Physical Activity Questionnaire study and wore both motion sensors during waking hours for 7 consecutive days. Participants averaged 415.0+/-159.5 CSA-counts x min(-1) x d(-1), 357,601 +/- 138,425 CSA-counts x d(-1), 11,483 +/- 3,856 CSA-steps x d(-1), and 9,638 +/- 4,030 pedometer-steps x d(-1). There was a strong relationship between all CSA outputs and pedometer outputs (r = 0.74-0.86). The mean difference in steps detected between instruments was 1845+/-2116 steps x d(-1) (CSA > pedometer; t = 6.29, P < 0.0001). There were distinct differences (effect sizes >0.80) in mean CSA-time (min x d(-1)) in moderate and vigorous activity with increasing pedometer-determined activity quartiles; no differences were noted for inactivity or light activity. Approximately 33 CSA-min x d(-1) of moderate activity corresponded with 8000 pedometer-steps x d(-1). Differences in mean steps per day detected may be due to differences in set instrument sensitivity thresholds and/or attachment. Additional studies with different populations are needed to confirm a recommended number of steps per day associated with the duration and intensity of public health recommendations for ambulatory activity.

  2. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  3. Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment.

    PubMed

    Schnurr, Theresia M; Bech, Bianca; Nielsen, Tenna R H; Andersen, Ida G; Hjorth, Mads F; Aadahl, Mette; Fonvig, Cilius E; Hansen, Torben; Holm, Jens-Christian

    2017-08-01

    We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objectively measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th percentile for sex and age, aged 5-17 years had valid GT3X + accelerometer-assessed PA and interview-assessed self-reported information on PA engagement at the time of enrollment in a multidisciplinary outpatient tertiary treatment for childhood obesity. Accelerometer-derived mean overall PA and time spent in moderate to vigorous physical intensity were generated, applying cut-offs based on Vector Magnitude settings as defined by Romanzini et al. (2014), and a physical activity score (PAS) based on self-reported data. Overall, a higher self-reported PAS was correlated with higher accelerometer-assessed daily total PA levels ( r = 0.34, p < .01) and children who reported a high PAS were more physically active compared with children who reported a low PAS. There was a fair level of agreement between self-reported PAS and accelerometer-assessed PA (Kappa agreement = 0.23; 95% CI = [0.03, 0.43]; p = .01). PAS, derived from self-report, may be a useful instrument for evaluating PA at a group level among children and adolescents enrolled in multidisciplinary obesity treatment.

  4. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.

    PubMed

    Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W

    2016-02-01

    This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.

  5. The Impact of Accelerometers on Physical Activity and Weight Loss: A Systematic Review

    PubMed Central

    Goode, Adam P.; Hall, Katherine S.; Batch, Bryan C.; Huffman, Kim M.; Hastings, S. Nicole; Allen, Kelli D.; Shaw, Ryan J.; Kanach, Frances A.; McDuffie, Jennifer R.; Kosinski, Andrzej S.; Williams, John W.; Gierisch, Jennifer M.

    2016-01-01

    Background Regular physical activity is important for improving and maintaining health, but sedentary behavior is difficult to change. Providing objective, real-time feedback on physical activity with wearable motion-sensing technologies (activity monitors) may be a promising, scalable strategy to increase physical activity or decrease weight. Purpose We synthesized the literature on the use of wearable activity monitors for improving physical activity and weight-related outcomes and evaluated moderating factors that may have an impact on effectiveness. Methods We searched five databases from January 2000 to January 2015 for peer-reviewed, English-language randomized controlled trials among adults. Random-effects models were used to produce standardized mean differences (SMDs) for physical activity outcomes and mean differences (MDs) for weight outcomes. Heterogeneity was measured with I2. Results Fourteen trials (2,972 total participants) met eligibility criteria; accelerometers were used in all trials. Twelve trials examined accelerometer interventions for increasing physical activity. A small significant effect was found for increasing physical activity (SMD 0.26; 95% CI 0.04 to 0.49; I2=64.7%). Intervention duration was the only moderator found to significantly explain high heterogeneity for physical activity. Eleven trials examined effects of accelerometer interventions on weight. Pooled estimates showed a small significant effect for weight loss (MD −1.65 kg; 95% CI −3.03 to −0.28; I2=81%), and no moderators were significant. Conclusions Accelerometers demonstrated small positive effects on physical activity and weight loss. The small sample sizes with moderate to high heterogeneity in the current studies limit the conclusions that may be drawn. Future studies should focus on how best to integrate accelerometers with other strategies to increase physical activity and weight loss. PMID:27565168

  6. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  7. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample.

    PubMed

    Freedson, Patty S; Lyden, Kate; Kozey-Keadle, Sarah; Staudenmayer, John

    2011-12-01

    Previous work from our laboratory provided a "proof of concept" for use of artificial neural networks (nnets) to estimate metabolic equivalents (METs) and identify activity type from accelerometer data (Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P, J Appl Physiol 107: 1330-1307, 2009). The purpose of this study was to develop new nnets based on a larger, more diverse, training data set and apply these nnet prediction models to an independent sample to evaluate the robustness and flexibility of this machine-learning modeling technique. The nnet training data set (University of Massachusetts) included 277 participants who each completed 11 activities. The independent validation sample (n = 65) (University of Tennessee) completed one of three activity routines. Criterion measures were 1) measured METs assessed using open-circuit indirect calorimetry; and 2) observed activity to identify activity type. The nnet input variables included five accelerometer count distribution features and the lag-1 autocorrelation. The bias and root mean square errors for the nnet MET trained on University of Massachusetts and applied to University of Tennessee were +0.32 and 1.90 METs, respectively. Seventy-seven percent of the activities were correctly classified as sedentary/light, moderate, or vigorous intensity. For activity type, household and locomotion activities were correctly classified by the nnet activity type 98.1 and 89.5% of the time, respectively, and sport was correctly classified 23.7% of the time. Use of this machine-learning technique operates reasonably well when applied to an independent sample. We propose the creation of an open-access activity dictionary, including accelerometer data from a broad array of activities, leading to further improvements in prediction accuracy for METs, activity intensity, and activity type.

  8. Individual characteristics associated with mismatches between self-reported and accelerometer-measured physical activity.

    PubMed

    Tully, Mark A; Panter, Jenna; Ogilvie, David

    2014-01-01

    Accurate assessment tools are required for the surveillance of physical activity (PA) levels and the assessment of the effect of interventions. In addition, increasing awareness of PA is often used as the first step in pragmatic behavioural interventions, as discrepancies between the amount of activity an individual perceives they do and the amount actually undertaken may act as a barrier to change. Previous research has demonstrated differences in the amount of activity individuals report doing, compared to their level of physical activity when measured with an accelerometer. Understanding the characteristics of those whose PA level is ranked differently when measured with either self-report or accelerometry is important as it may inform the choice of instrument for future research. The aim of this project was to determine which individual characteristics are associated with differences between self-reported and accelerometer measured physical activity. Participant data from the 2009 wave of the Commuting and Health in Cambridge study were used. Quartiles of self-reported and accelerometer-measured PA were derived by ranking each measure from lowest to highest. These quartiles were compared to determine whether individuals' physical activity was ranked higher by either method. Multinomial logistic regression models were used to investigate the individual characteristics associated with different categories of mismatch. Data from 486 participants (70% female) were included in the analysis. In adjusted analyses, the physical activity of overweight or obese individuals was significantly more likely to be ranked higher by self-report than by accelerometer than that of normal-weight individuals (OR = 2.07, 95%CI = 1.28-3.34), particularly among women (OR = 3.97, 95%CI = 2.11-7.47). There was a greater likelihood of mismatch between self-reported and accelerometer measured physical activity levels in overweight or obese adults. Future studies in overweight or obese

  9. Accelerometer-determined physical activity level among government employees in Penang, Malaysia.

    PubMed

    Hazizi, A S; Aina, Mardiah B; Mohd, Nasir M T; Zaitun, Y; Hamid, Jan J M; Tabata, I

    2012-04-01

    A cross-sectional study was carried out to investigate accelerometer-determined physical activity level of 233 Malay government employees (104 men, 129 women) working in the Federal Government Building Penang, Malaysia. Body weight, height, waist and hip circumference, body fat percentage and blood pressure were measured for each respondent. All the respondents were asked to wear an accelerometer for 3 days. Body mass index (BMI) and waist-hip ratio (WHR) were calculated using a standard formulas. Fasting blood sample was obtained to determine the lipid profile and glucose levels of the respondents. Based on the accelerometer-determined physical activity level, almost 65% of the respondents were categorised as sedentary. Approximately 50.2% of the respondents were overweight or obese. There were negative but significant relationships between body mass index (BMI) (r = -0.353, p < 0.05), body fat percentage (r = -0.394, p < 0.05), waist circumference (WC) (r = -0.198, p < 0.05) and physical activity level. Sedentary individuals had a higher risk than moderate to active individuals of having a BMI more than or equal to 25 kg/m2 (OR = 2.80, 95% CI 1.55-5.05), an-risk classified WC (OR = 1.79, 95% CI 1.01-3.20), and a body fat percentage classified as unhealthy (OR = 3.01, 95% CI 1.41-6.44). The results of this study suggest that accelerometer-determined physical activity level is a significant factor associated with obesity in this study. The high prevalence of physical inactivity and obesity found among respondents of this study indicate a need for implementing intervention programmes among this population.

  10. Cognitive function and the agreement between self-reported and accelerometer-accessed physical activity.

    PubMed

    Herbolsheimer, Florian; Riepe, Matthias W; Peter, Richard

    2018-02-21

    Numerous studies have reported weak or moderate correlations between self-reported and accelerometer-assessed physical activity. One explanation is that self-reported physical activity might be biased by demographic, cognitive or other factors. Cognitive function is one factor that could be associated with either overreporting or underreporting of daily physical activity. Difficulties in remembering past physical activities might result in recall bias. Thus, the current study examines whether the cognitive function is associated with differences between self-reported and accelerometer-assessed physical activity. Cross-sectional data from the population-based Activity and Function in the Elderly in Ulm study (ActiFE) were used. A total of 1172 community-dwelling older adults (aged 65-90 years) wore a uniaxial accelerometer (activPAL unit) for a week. Additionally, self-reported physical activity was assessed using the LASA Physical Activity Questionnaire (LAPAQ). Cognitive function was measured with four items (immediate memory, delayed memory, recognition memory, and semantic fluency) from the Consortium to Establish a Registry for Alzheimer's Disease Total Score (CERAD-TS). Mean differences of self-reported and accelerometer-assessed physical activity (MPA) were associated with cognitive function in men (r s  = -.12, p = .002) but not in women. Sex-stratified multiple linear regression analyses showed that MPA declined with high cognitive function in men (β = -.13; p = .015). Results suggest that self-reported physical activity should be interpreted with caution in older populations, as cognitive function was one factor that explained the differences between objective and subjective physical activity measurements.

  11. Use of population-referenced total activity counts percentiles to assess and classify physical activity of population groups.

    PubMed

    Wolff-Hughes, Dana L; Troiano, Richard P; Boyer, William R; Fitzhugh, Eugene C; McClain, James J

    2016-06-01

    Population-referenced total activity counts per day (TAC/d) percentiles provide public health practitioners a standardized measure of physical activity (PA) volume obtained from an accelerometer that can be compared across populations. The purpose of this study was to describe the application of TAC/d population-referenced percentiles to characterize the PA levels of population groups relative to US estimates. A total of 679 adults participating in the 2011 NYC Physical Activity Transit survey wore an ActiGraph accelerometer on their hip for seven consecutive days. Accelerometer-derived TAC/d was classified into age- and gender-specific quartiles of US population-referenced TAC/d to compare differences in the distributions by borough (N=5). Males in Brooklyn, Manhattan, and Staten Island had significantly greater TAC/d than US males. Females in Brooklyn and Queens had significantly greater levels of TAC/d compared to US females. The proportion of males in each population-referenced TAC/d quartile varied significantly by borough (χ(2)(12)=2.63, p=0.002), with disproportionately more men in Manhattan and the Bronx found to be in the highest and lowest US population-referenced TAC/d quartiles, respectively. For females, there was no significant difference in US population-reference TAC/d quartile by borough (χ(2)(12)=1.09, p=0.36). These results demonstrate the utility of population-referenced TAC/d percentiles in public health monitoring and surveillance. These findings also provide insights into the PA levels of NYC residents relative to the broader US population, which can be used to guide health promotion efforts. Published by Elsevier Inc.

  12. Use of population-referenced total activity counts percentiles to assess and classify physical activity of population groups

    PubMed Central

    Wolff-Hughes, Dana L.; Troiano, Richard P.; Boyer, William R.; Fitzhugh, Eugene C.; McClain, James J.

    2016-01-01

    Objectives Population-referenced total activity counts per day (TAC/d) percentiles provide public health practitioners a standardized measure of physical activity (PA) volume obtained from an accelerometer that can be compared across populations. The purpose of this study was to describe the application of TAC/d population-referenced percentiles to characterize the PA levels of population groups relative to US estimates. Methods A total of 679 adults participating in the 2011 NYC Physical Activity Transit survey wore an ActiGraph accelerometer on their hip for seven consecutive days. Accelerometer-derived TAC/d was classified into age- and gender-specific quartiles of US population-referenced TAC/d to compare differences in the distributions by borough (N=5). Results Males in Brooklyn, Manhattan, and Staten Island had significantly greater TAC/d than US males. Females in Brooklyn and Queens had significantly greater levels of TAC/d compared to US females. The proportion of males in each population-referenced TAC/d quartile varied significantly by borough (χ2(12)=2.63, p=0.002), with disproportionately more men in Manhattan and the Bronx found to be in the highest and lowest US population-referenced TAC/d quartiles, respectively. For females, there was no significant difference in US population-reference TAC/d quartile by borough (χ2(12)=1.09, p=0.36). Conclusions These results demonstrate the utility of population-referenced TAC/d percentiles in public health monitoring and surveillance. These findings also provide insights into the PA levels of NYC residents relative to the broader US population, which can be used to guide health promotion efforts. PMID:26876630

  13. Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer

    PubMed Central

    Gomes, Edimar Pedrosa; Reboredo, Maycon Moura; Carvalho, Erich Vidal; Teixeira, Daniel Rodrigues; Carvalho, Laís Fernanda Caldi d'Ornellas; Filho, Gilberto Francisco Ferreira; de Oliveira, Julio César Abreu; Sanders-Pinheiro, Helady; Chebli, Júlio Maria Fonseca; de Paula, Rogério Baumgratz; Pinheiro, Bruno do Valle

    2015-01-01

    Different factors can contribute to a sedentary lifestyle among hemodialysis (HD) patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity. PMID:26090432

  14. Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer.

    PubMed

    Barnett, Anthony; van den Hoek, Daniel; Barnett, David; Cerin, Ester

    2016-12-08

    Accelerometry is the method of choice for objectively assessing physical activity in older adults. Many studies have used an accelerometer count cut point corresponding to 3 metabolic equivalents (METs) derived in young adults during treadmill walking and running with a resting metabolic rate (RMR) assumed at 3.5 mL · kg -1  · min -1 (corresponding to 1 MET). RMR is lower in older adults; therefore, their 3 MET level occurs at a lower absolute energy expenditure making the cut point derived from young adults inappropriate for this population. The few studies determining older adult specific moderate-to-vigorous intensity physical activity (MVPA) cut points had methodological limitations, such as not measuring RMR and using treadmill walking. This study determined a MVPA hip-worn accelerometer cut point for older adults using measured RMR and overground walking. Following determination of RMR, 45 older adults (mean age 70.2 ± 7 years, range 60-87.6 years) undertook an outdoor, overground walking protocol with accelerometer count and energy expenditure determined at five walking speeds. Mean RMR was 2.8 ± 0.6 mL · kg -1  · min -1 . The MVPA cut points (95% CI) determined using linear mixed models were: vertical axis 1013 (734, 1292) counts · min -1 ; vector magnitude 1924 (1657, 2192) counts · min -1 ; and walking speed 2.5 (2.2, 2.8) km · hr -1 . High levels of inter-individual variability in cut points were found. These MVPA accelerometer and speed cut points for walking, the most popular physical activity in older adults, were lower than those for younger adults. Using cut points determined in younger adults for older adult population studies is likely to underestimate time spent engaged in MVPA. In addition, prescription of walking speed based on the adult cut point is likely to result in older adults working at a higher intensity than intended.

  15. Using open source accelerometer analysis to assess physical activity and sedentary behaviour in overweight and obese adults.

    PubMed

    Innerd, Paul; Harrison, Rory; Coulson, Morc

    2018-04-23

    Physical activity and sedentary behaviour are difficult to assess in overweight and obese adults. However, the use of open-source, raw accelerometer data analysis could overcome this. This study compared raw accelerometer and questionnaire-assessed moderate-to-vigorous physical activity (MVPA), walking and sedentary behaviour in normal, overweight and obese adults, and determined the effect of using different methods to categorise overweight and obesity, namely body mass index (BMI), bioelectrical impedance analysis (BIA) and waist-to-hip ratio (WHR). One hundred twenty adults, aged 24-60 years, wore a raw, tri-axial accelerometer (Actigraph GT3X+), for 3 days and completed a physical activity questionnaire (IPAQ-S). We used open-source accelerometer analyses to estimate MVPA, walking and sedentary behaviour from a single raw accelerometer signal. Accelerometer and questionnaire-assessed measures were compared in normal, overweight and obese adults categorised using BMI, BIA and WHR. Relationships between accelerometer and questionnaire-assessed MVPA (Rs = 0.30 to 0.48) and walking (Rs = 0.43 to 0.58) were stronger in normal and overweight groups whilst sedentary behaviour were modest (Rs = 0.22 to 0.38) in normal, overweight and obese groups. The use of WHR resulted in stronger agreement between the questionnaire and accelerometer than BMI and BIA. Finally, accelerometer data showed stronger associations with BMI, BIA and WHR (Rs = 0.40 to 0.77) than questionnaire data (Rs = 0.24 to 0.37). Open-source, raw accelerometer data analysis can be used to estimate MVPA, walking and sedentary behaviour from a single acceleration signal in normal, overweight and obese adults. Our data supports the use of WHR to categorise overweight and obese adults. This evidence helps researchers obtain more accurate measures of physical activity and sedentary behaviour in overweight and obese populations.

  16. Comparison of IPAQ-SF and Two Other Physical Activity Questionnaires with Accelerometer in Adolescent Boys.

    PubMed

    Rääsk, Triin; Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Jürimäe, Toivo; Vainik, Uku; Konstabel, Kenn

    2017-01-01

    Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively).

  17. Assessing Physical Activity in Children with Asthma: Convergent Validity between Accelerometer and Electronic Diary Data

    ERIC Educational Resources Information Center

    Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.

    2009-01-01

    Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…

  18. A calibration protocol for population-specific accelerometer cut-points in children.

    PubMed

    Mackintosh, Kelly A; Fairclough, Stuart J; Stratton, Gareth; Ridgers, Nicola D

    2012-01-01

    To test a field-based protocol using intermittent activities representative of children's physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity. Twenty-eight children (46% boys) aged 10-11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children's play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC) curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities. Cut-points of ≤ 372, >2160 and >4806 counts • min(-1) representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of the activity). Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62), and a high classification agreement (98.6%; 89.0%; 87.2%), respectively. Specificity values of 96-97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89-99%) indicated that minutes of activity were seldom incorrectly classified as inactivity. The development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.

  19. Combining global positioning system and accelerometer data to determine the locations of physical activity in children.

    PubMed

    Oreskovic, Nicolas M; Blossom, Jeff; Field, Alison E; Chiang, Sylvia R; Winickoff, Jonathan P; Kleinman, Ronald E

    2012-05-01

    National trends indicate that children and adolescents are not achieving sufficient levels of physical activity. Combining global positioning system (GPS) technology with accelerometers has the potential to provide an objective determination in locations where youth engage in physical activity. The aim of this study was to identify the optimal methods for collecting combined accelerometer and GPS data in youth, to best locate where children spend time and are physically active. A convenience sample of 24 mid-school children in Massachusetts was included. Accelerometers and GPS units were used to quantify and locate childhood physical activity over 5 weekdays and 2 weekend days. Accelerometer and GPS data were joined by time and mapped with a geographical information system (GIS) using ArcGIS software. Data were collected in winter, spring, summer in 2009-2010, collecting a total of 26,406 matched datapoints overall. Matched data yield was low (19.1% total), regardless of season (winter, 12.8%; spring, 30.1%; summer, 14.3%). Teacher-provided, pre-charged equipment yielded the most matched (30.1%; range: 10.1-52.3%) and greatest average days (6.1 days) of data. Across all seasons, children spent most of their time at home. Outdoor use patterns appeared to vary by season, with street use increasing in spring, and park and playground use increasing in summer. Children spent equal amounts of physical activity time at home and walking in the streets. Overall, the various methods for combining GPS and accelerometer data provided similarly low amounts of combined data. No combined GPS and accelerometer data collection method proved superior in every data return category, but use of GIS to map joined accelerometer and GPS data can demarcate childhood physical activity locations.

  20. Do Young People Ever Sit Still? Variations in Accelerometer Counts, Muscle Activity and Heart Rate across Various Sedentary Activities in Youth.

    PubMed

    van Ekris, Evi; Chinapaw, Mai J M; Rotteveel, Joost; Altenburg, Teatske M

    2018-05-17

    Evidence of adverse health effects of TV viewing is stronger than for overall sedentary behaviour in youth. One explanation may be that TV viewing involves less body movement than other sedentary activities. Variations in body movement across sedentary activities are currently unknown, as are age differences in such variations. This study examined body movement differences across various sedentary activities in children and adolescents, assessed by hip-, thigh- and wrist-worn accelerometers, muscle activity and heart rate. Body movement differences between sedentary activities and standing were also examined. Fifty-three children (aged 10⁻12 years) and 37 adolescents (aged 16⁻18 years) performed seven different sedentary activities, a standing activity, and a dancing activity (as a control activity) in a controlled setting. Each activity lasted 10 minutes. Participants wore an Actigraph on their hip and both wrists, an activPAL on their thigh and a heart rate monitor. The muscle activity of weight-bearing leg muscles was measured in a subgroup ( n = 38) by surface electromyography. Variations in body movement across activities were examined using general estimation equations analysis. Children showed significantly more body movement during sedentary activities and standing than adolescents. In both age groups, screen-based sedentary activities involved less body movement than non-screen-based sedentary activities. This may explain the stronger evidence for detrimental health effects of TV viewing while evidence for child sedentary behaviour in general is inconsistent. Differences in body movement during standing and sedentary activities were relatively small. Future research should examine the potential health effects of differences in body movement between screen-based versus non-screen based and standing versus sedentary activities.

  1. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers.

    PubMed

    García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J

    2015-10-01

    This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.

  2. Toddler physical activity study: laboratory and community studies to evaluate accelerometer validity and correlates.

    PubMed

    Hager, Erin R; Gormley, Candice E; Latta, Laura W; Treuth, Margarita S; Caulfield, Laura E; Black, Maureen M

    2016-09-06

    Toddlerhood is an important age for physical activity (PA) promotion to prevent obesity and support a physically active lifestyle throughout childhood. Accurate assessment of PA is needed to determine trends/correlates of PA, time spent in sedentary, light, or moderate-vigorous PA (MVPA), and the effectiveness of PA promotion programs. Due to the limited availability of objective measures that have been validated and evaluated for feasibility in community studies, it is unclear which subgroups of toddlers are at the highest risk for inactivity. Using Actical ankle accelerometry, the objectives of this study are to develop valid thresholds, examine feasibility, and examine demographic/ anthropometric PA correlates of MVPA among toddlers from low-income families. Two studies were conducted with toddlers (12-36 months). Laboratory Study (n = 24)- Two Actical accelerometers were placed on the ankle. PA was observed using the Child Activity Rating Scale (CARS, prescribed activities). Analyses included device equivalence reliability (correlation: activity counts of two Acticals), criterion-related validity (correlation: activity counts and CARS ratings), and sensitivity/specificity for thresholds. Community Study (n = 277, low-income mother-toddler dyads recruited)- An Actical was worn on the ankle for > 7 days (goal >5, 24-h days). Height/weight was measured. Mothers reported demographics. Analyses included frequencies (feasibility) and stepwise multiple linear regression (sMLR). Laboratory Study- Acticals demonstrated reliability (r = 0.980) and validity (r = 0.75). Thresholds demonstrated sensitivity (86 %) and specificity (88 %). Community Study- 86 % wore accelerometer, 69 % had valid data (mean = 5.2 days). Primary reasons for missing/invalid data: refusal (14 %) and wear-time ≤2 days (11 %). The MVPA threshold (>2200 cpm) yielded 54 min/day. In sMLR, MVPA was associated with age (older > younger, β = 32.8, p < 0

  3. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior.

    PubMed

    Montoye, Alexander H K; Pivarnik, James M; Mudd, Lanay M; Biswas, Subir; Pfeiffer, Karin A

    2016-01-01

    Recent evidence suggests that physical activity (PA) and sedentary behavior (SB) exert independent effects on health. Therefore, measurement methods that can accurately assess both constructs are needed. To compare the accuracy of accelerometers placed on the hip, thigh, and wrists, coupled with machine learning models, for measurement of PA intensity category (SB, light-intensity PA [LPA], and moderate- to vigorous-intensity PA [MVPA]) and breaks in SB. Forty young adults (21 female; age 22.0 ± 4.2 years) participated in a 90-minute semi-structured protocol, performing 13 activities (three sedentary, 10 non-sedentary) for 3-10 minutes each. Participants chose activity order, duration, and intensity. Direct observation (DO) was used as a criterion measure of PA intensity category, and transitions from SB to a non-sedentary activity were breaks in SB. Participants wore four accelerometers (right hip, right thigh, and both wrists), and a machine learning model was created for each accelerometer to predict PA intensity category. Sensitivity and specificity for PA intensity category classification were calculated and compared across accelerometers using repeated measures analysis of variance, and the number of breaks in SB was compared using repeated measures analysis of variance. Sensitivity and specificity values for the thigh-worn accelerometer were higher than for wrist- or hip-worn accelerometers, > 99% for all PA intensity categories. Sensitivity and specificity for the hip-worn accelerometer were 87-95% and 93-97%. The left wrist-worn accelerometer had sensitivities and specificities of > 97% for SB and LPA and 91-95% for MVPA, whereas the right wrist-worn accelerometer had sensitivities and specificities of 93-99% for SB and LPA but 67-84% for MVPA. The thigh-worn accelerometer had high accuracy for breaks in SB; all other accelerometers overestimated breaks in SB. Coupled with machine learning modeling, the thigh-worn accelerometer should be considered when

  4. Activity recognition in planetary navigation field tests using classification algorithms applied to accelerometer data.

    PubMed

    Song, Wen; Ade, Carl; Broxterman, Ryan; Barstow, Thomas; Nelson, Thomas; Warren, Steve

    2012-01-01

    Accelerometer data provide useful information about subject activity in many different application scenarios. For this study, single-accelerometer data were acquired from subjects participating in field tests that mimic tasks that astronauts might encounter in reduced gravity environments. The primary goal of this effort was to apply classification algorithms that could identify these tasks based on features present in their corresponding accelerometer data, where the end goal is to establish methods to unobtrusively gauge subject well-being based on sensors that reside in their local environment. In this initial analysis, six different activities that involve leg movement are classified. The k-Nearest Neighbors (kNN) algorithm was found to be the most effective, with an overall classification success rate of 90.8%.

  5. Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears

    USGS Publications Warehouse

    Jasmine Ware,; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Robbins, Charles T.; Joy Erlenbach,; Shannon Jensen,; Amy Cutting,; Nicole Nicassio-Hiskey,; Amy Hash,; Owen, Megan A.; Heiko Jansen,

    2015-01-01

    Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.

  6. Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey.

    PubMed

    Colley, Rachel C; Garriguet, Didier; Janssen, Ian; Craig, Cora L; Clarke, Janine; Tremblay, Mark S

    2011-03-01

    Physical activity is an important determinant of health and fitness. This study provides contemporary estimates of the physical activity levels of Canadians aged 6 to 19 years. Data are from the 2007 to 2009 Canadian Health Measures Survey. The physical activity of a nationally representative sample was measured using accelerometers. Data are presented as time spent in sedentary, light, moderate and vigorous intensity movement, and in steps accumulated per day. An estimated 9% of boys and 4% of girls accumulate 60 minutes of moderate-to-vigorous physical activity on at least 6 days a week. Regardless of age group, boys are more active than girls. Canadian children and youth spend 8.6 hours per day-62% of their waking hours-in sedentary pursuits. Daily step counts average 12,100 for boys and 10,300 for girls. Based on objective and robust measures, physical activity levels of Canadian children and youth are low.

  7. A sensitivity analysis on the variability in accelerometer data processing for monitoring physical activity.

    PubMed

    Lee, Paul H

    2015-02-01

    Accelerometers are gaining popularity for measuring physical activity, but there are many different ways to process accelerometer data. A sensitivity analysis was conducted to study the effect of varying accelerometer data processing protocols on estimating the association between PA level and socio-demographic characteristics using the National Health and Nutrition Examination Survey (NHANES) accelerometer data. The NHANES waves 2003-2004 and 2005-2006 accelerometer data (n=14,072) were used to investigate the effect of changing the accelerometer non-wearing time and valid day definitions on the demographic composition of the filtered datasets and the association between physical activity (PA) and socio-demographic characteristics (sex, age, race, educational level, marital status). Under different filtering rules (minimum number of valid day and definition of non-wear time), the demographic characteristics of the final sample varied. The proportion of participants aged 20-29 decreased from 18.9% to 15.8% when the minimum number of valid days required increased from 1 to 4 (p for trend<0.001), whereas that for aged ≥70 years increased from 18.9% to 20.6% (p for trend<0.001). Furthermore, with different filters, the effect of these demographic variables and PA varied, with some variables being significant under certain filtering rules but becoming insignificant under some other rules. The sensitivity analysis showed that the significance of the association between socio-demographic variables and PA could be varied with the definition of non-wearing time and minimum number of valid days. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water.

    PubMed

    Chomistek, Andrea K; Yuan, Changzheng; Matthews, Charles E; Troiano, Richard P; Bowles, Heather R; Rood, Jennifer; Barnett, Junaidah B; Willett, Walter C; Rimm, Eric B; Bassett, David R

    2017-09-01

    To compare the degree to which four accelerometer metrics-total activity counts per day (TAC per day), steps per day (steps per day), physical activity energy expenditure (PAEE) (kcal·kg·d), and moderate- to vigorous-intensity physical activity (MVPA) (min·d)-were correlated with PAEE measured by doubly labeled water (DLW). Additionally, accelerometer metrics based on vertical axis counts and triaxial counts were compared. This analysis included 684 women and 611 men age 43 to 83 yr. Participants wore the Actigraph GT3X on the hip for 7 d twice during the study and the average of the two measurements was used. Each participant also completed one DLW measurement, with a subset having a repeat. PAEE was estimated by subtracting resting metabolic rate and the thermic effect of food from total daily energy expenditure estimated by DLW. Partial Spearman correlations were used to estimate associations between PAEE and each accelerometer metric. Correlations between the accelerometer metrics and DLW-determined PAEE were higher for triaxial counts than vertical axis counts. After adjusting for weight, age, accelerometer wear time, and fat free mass, the correlation between TAC per day based on triaxial counts and DLW-determined PAEE was 0.44 in women and 0.41 in men. Correlations for steps per day and accelerometer-estimated PAEE with DLW-determined PAEE were similar. After adjustment for within-person variation in DLW-determined PAEE, the correlations for TAC per day increased to 0.61 and 0.49, respectively. Correlations between MVPA and DLW-determined PAEE were lower, particularly for modified bouts of ≥10 min. Accelerometer measures that represent total activity volume, including TAC per day, steps per day, and PAEE, were more highly correlated with DLW-determined PAEE than MVPA using traditional thresholds and should be considered by researchers seeking to reduce accelerometer data to a single metric.

  9. Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms.

    PubMed

    Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline

    2014-01-01

    Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel.

  10. How many days of accelerometer monitoring predict weekly physical activity behaviour in obese youth?

    PubMed

    Vanhelst, Jérémy; Fardy, Paul S; Duhamel, Alain; Béghin, Laurent

    2014-09-01

    The aim of this study was to determine the type and the number of accelerometer monitoring days needed to predict weekly sedentary behaviour and physical activity in obese youth. Fifty-three obese youth wore a triaxial accelerometer for 7 days to measure physical activity in free-living conditions. Analyses of variance for repeated measures, Intraclass coefficient (ICC) and regression linear analyses were used. Obese youth spent significantly less time in physical activity on weekends or free days compared with school days. ICC analyses indicated a minimum of 2 days is needed to estimate physical activity behaviour. ICC were 0·80 between weekly physical activity and weekdays and 0·92 between physical activity and weekend days. The model has to include a weekday and a weekend day. Using any combination of one weekday and one weekend day, the percentage of variance explained is >90%. Results indicate that 2 days of monitoring are needed to estimate the weekly physical activity behaviour in obese youth with an accelerometer. Our results also showed the importance of taking into consideration school day versus free day and weekday versus weekend day in assessing physical activity in obese youth. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Validity and reliability of the Fitbit Zip as a measure of preschool children’s step count

    PubMed Central

    Sharp, Catherine A; Mackintosh, Kelly A; Erjavec, Mihela; Pascoe, Duncan M; Horne, Pauline J

    2017-01-01

    Objectives Validation of physical activity measurement tools is essential to determine the relationship between physical activity and health in preschool children, but research to date has not focused on this priority. The aims of this study were to ascertain inter-rater reliability of observer step count, and interdevice reliability and validity of Fitbit Zip accelerometer step counts in preschool children. Methods Fifty-six children aged 3–4 years (29 girls) recruited from 10 nurseries in North Wales, UK, wore two Fitbit Zip accelerometers while performing a timed walking task in their childcare settings. Accelerometers were worn in secure pockets inside a custom-made tabard. Video recordings enabled two observers to independently code the number of steps performed in 3 min by each child during the walking task. Intraclass correlations (ICCs), concordance correlation coefficients, Bland-Altman plots and absolute per cent error were calculated to assess the reliability and validity of the consumer-grade device. Results An excellent ICC was found between the two observer codings (ICC=1.00) and the two Fitbit Zips (ICC=0.91). Concordance between the Fitbit Zips and observer counts was also high (r=0.77), with an acceptable absolute per cent error (6%–7%). Bland-Altman analyses identified a bias for Fitbit 1 of 22.8±19.1 steps with limits of agreement between −14.7 and 60.2 steps, and a bias for Fitbit 2 of 25.2±23.2 steps with limits of agreement between −20.2 and 70.5 steps. Conclusions Fitbit Zip accelerometers are a reliable and valid method of recording preschool children’s step count in a childcare setting. PMID:29081984

  12. GT3X+ accelerometer, Yamax pedometer and SC-StepMX pedometer step count accuracy in community-dwelling older adults.

    PubMed

    Webber, Sandra C; Magill, Sheila M; Schafer, Jenessa L; Wilson, Kaylie C S

    2014-07-01

    The purpose was to compare step count accuracy of an accelerometer (ActiGraph GT3X+), a mechanical pedometer (Yamax SW200), and a piezoelectric pedometer (SC-StepMX). Older adults (n = 13 with walking aids, n = 22 without; M = 81.5 years old, SD = 5.0) walked 100 m wearing the devices. Device-detected steps were compared with manually counted steps. We found no significant differences among monitors for those who walked without aids (p = .063). However, individuals who used walking aids exhibited slower gait speeds (M = 0.83 m/s, SD = 0.2) than non-walking aid users (M = 1.21 m/s, SD = 0.2, p < .001), and for them the SC-StepMX demonstrated a significantly lower percentage of error (Mdn = 1.0, interquartile range [IQR] = 0.5-2.0) than the other devices (Yamax SW200, Mdn = 68.9, IQR = 35.9-89.3; left GT3X+, Mdn = 52.0, IQR = 37.1-58.9; right GT3X+, Mdn = 51.0, IQR = 32.3-66.5; p < .05). These results support using a piezoelectric pedometer for measuring steps in older adults who use walking aids and who walk slowly.

  13. Activity recognition using a single accelerometer placed at the wrist or ankle.

    PubMed

    Mannini, Andrea; Intille, Stephen S; Rosenberger, Mary; Sabatini, Angelo M; Haskell, William

    2013-11-01

    Large physical activity surveillance projects such as the UK Biobank and NHANES are using wrist-worn accelerometer-based activity monitors that collect raw data. The goal is to increase wear time by asking subjects to wear the monitors on the wrist instead of the hip, and then to use information in the raw signal to improve activity type and intensity estimation. The purposes of this work was to obtain an algorithm to process wrist and ankle raw data and to classify behavior into four broad activity classes: ambulation, cycling, sedentary, and other activities. Participants (N = 33) wearing accelerometers on the wrist and ankle performed 26 daily activities. The accelerometer data were collected, cleaned, and preprocessed to extract features that characterize 2-, 4-, and 12.8-s data windows. Feature vectors encoding information about frequency and intensity of motion extracted from analysis of the raw signal were used with a support vector machine classifier to identify a subject's activity. Results were compared with categories classified by a human observer. Algorithms were validated using a leave-one-subject-out strategy. The computational complexity of each processing step was also evaluated. With 12.8-s windows, the proposed strategy showed high classification accuracies for ankle data (95.0%) that decreased to 84.7% for wrist data. Shorter (4 s) windows only minimally decreased performances of the algorithm on the wrist to 84.2%. A classification algorithm using 13 features shows good classification into the four classes given the complexity of the activities in the original data set. The algorithm is computationally efficient and could be implemented in real time on mobile devices with only 4-s latency.

  14. Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms

    PubMed Central

    Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline

    2014-01-01

    Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. Methods: We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Conclusion: Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel. PMID:24795875

  15. Comparison of home and away-from-home physical activity using accelerometers and cellular network-based tracking devices.

    PubMed

    Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S

    2012-08-01

    Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.

  16. Calibration of GENEActiv accelerometer wrist cut-points for the assessment of physical activity intensity of preschool aged children.

    PubMed

    Roscoe, Clare M P; James, Rob S; Duncan, Michael J

    2017-08-01

    This study sought to validate cut-points for use of wrist-worn GENEActiv accelerometer data, to analyse preschool children's (4 to 5 year olds) physical activity (PA) levels via calibration with oxygen consumption values (VO 2 ). This was a laboratory-based calibration study. Twenty-one preschool children, aged 4.7 ± 0.5 years old, completed six activities (ranging from lying supine to running) whilst wearing the GENEActiv accelerometers at two locations (left and right wrist), these being the participants' non-dominant and dominant wrist, and a Cortex face mask for gas analysis. VO 2 data was used for the assessment of criterion validity. Location specific activity intensity cut-points were established via receiver operator characteristic curve (ROC) analysis. The GENEActiv accelerometers, irrespective of their location, accurately discriminated between all PA intensities (sedentary, light, and moderate and above), with the dominant wrist monitor providing a slightly more precise discrimination at light PA and the non-dominant at the sedentary behaviour and moderate and above intensity levels (area under the curve (AUC) for non-dominant = 0.749-0.993, compared to AUC dominant = 0.760-0.988). This study establishes wrist-worn physical activity cut-points for the GENEActiv accelerometer in preschoolers. What is Known: • GENEActiv accelerometers have been validated as a PA measurement tool in adolescents and adults. • No study to date has validated the GENEActiv accelerometers in preschoolers. What is New: • Cut-points were determined for the wrist-worn GENEActiv accelerometer in preschoolers. • These cut-points can be used in future research to help classify and increase preschoolers' compliance rates with PA.

  17. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  18. Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women.

    PubMed

    Tudor-Locke, Catrine; Brashear, Meghan M; Johnson, William D; Katzmarzyk, Peter T

    2010-08-03

    The 2005-2006 National Health and Nutrition Examination Survey (NHANES) is used to describe an accelerometer-derived physical activity/inactivity profile in normal weight (BMI < 25 kg/m2), overweight (25 /= 30 kg/m2) U.S. adults. We computed physical activity volume indicators (activity counts/day, uncensored and censored steps/day), rate indicators (e.g., steps/minute), time indicators (employing NHANES activity counts/minute cut points to infer time in non-wear, sedentary, low, light, moderate, and vigorous intensities), the number of breaks in sedentary time (occasions when activity counts rose from < 100 activity/counts in one minute to >/= 100 activity counts in the subsequent minute), achievement of public health guidelines, and classification by step-defined physical activity levels. Data were examined for evidence of consistent and significant gradients across BMI-defined categories. In 2005-2006, U.S adults averaged 6,564 +/- SE 107 censored steps/day, and after considering non-wear time, they spent approximately 56.8% of the rest of the waking day in sedentary time, 23.7% in low intensity, 16.7% in light intensity, 2.6% in moderate intensity, and 0.2% in vigorous intensity. Overall, approximately 3.2% of U.S. adults achieved public health guidelines. The normal weight category took 7,190 +/- SE 157 steps/day, and spent 25.7 +/- 0.9 minutes/day in moderate intensity and 7.3 +/- 0.4 minutes/day in vigorous intensity physical activity. The corresponding numbers for the overweight category were 6,879 +/- 140 steps/day, 25.3 +/- 0.9 minutes/day, and 5.3 +/- 0.5 minutes/day and for the obese category 5,784 +/- 124 steps/day, 17.3 +/- 0.7 minutes/day and 3.2 +/- 0.4 minutes/day. Across BMI categories, increasing gradients and significant trends were apparent in males for sedentary time and decreasing gradients and significant trends were evident in time spent in light intensity, moderate intensity, and vigorous intensity. For

  19. Single-accelerometer-based daily physical activity classification.

    PubMed

    Long, Xi; Yin, Bin; Aarts, Ronald M

    2009-01-01

    In this study, a single tri-axial accelerometer placed on the waist was used to record the acceleration data for human physical activity classification. The data collection involved 24 subjects performing daily real-life activities in a naturalistic environment without researchers' intervention. For the purpose of assessing customers' daily energy expenditure, walking, running, cycling, driving, and sports were chosen as target activities for classification. This study compared a Bayesian classification with that of a Decision Tree based approach. A Bayes classifier has the advantage to be more extensible, requiring little effort in classifier retraining and software update upon further expansion or modification of the target activities. Principal components analysis was applied to remove the correlation among features and to reduce the feature vector dimension. Experiments using leave-one-subject-out and 10-fold cross validation protocols revealed a classification accuracy of approximately 80%, which was comparable with that obtained by a Decision Tree classifier.

  20. Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct.

    PubMed

    Murphy, Susan L

    2009-02-01

    Accelerometers are being increasingly used in studies of physical activity (PA) among older adults, however the use of these monitors requires some specialized knowledge and up-to-date information on technological innovations. The purpose of this review article is to provide researchers with a guide to some commonly-used accelerometers in order to better design and conduct PA research with older adults. A literature search was conducted to obtain all available literature on commonly-used accelerometers in older adult samples with specific attention to articles discussing research design. The use of accelerometers in older adults requires a basic understanding of the type being used, rationale for their placement, and attention to calibration when needed. The updated technology in some monitors should make study conduct less difficult, however comparison studies of the newer versus the older generation models will be needed. Careful considerations for design and conduct of accelerometer research as outlined in this review should help to enhance the quality and comparability of future research studies.

  1. Machine learning methods for classifying human physical activity from on-body accelerometers.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2010-01-01

    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.

  2. Evaluation of a wireless activity monitoring system to quantify locomotor activity in horses in experimental settings.

    PubMed

    Fries, M; Montavon, S; Spadavecchia, C; Levionnois, O L

    2017-03-01

    Methods of evaluating locomotor activity can be useful in efforts to quantify behavioural activity in horses objectively. To evaluate whether an accelerometric device would be adequate to quantify locomotor activity and step frequency in horses, and to distinguish between different levels of activity and different gaits. Observational study in an experimental setting. Dual-mode (activity and step count) piezo-electric accelerometric devices were placed at each of 4 locations (head, withers, forelimb and hindlimb) in each of 6 horses performing different controlled activities including grazing, walking at different speeds, trotting and cantering. Both the activity count and step count were recorded and compared by the various activities. Statistical analyses included analysis of variance for repeated measures, receiver operating characteristic curves, Bland-Altman analysis and linear regression. The accelerometric device was able to quantify locomotor activity at each of the 4 locations investigated and to distinguish between gaits and speeds. The activity count recorded by the accelerometer placed on the hindlimb was the most accurate, displaying a clear discrimination between the different levels of activity and a linear correlation to speed. The accelerometer placed on the head was the only one to distinguish specifically grazing behaviour from standing. The accelerometer placed on the withers was unable to differentiate different gaits and activity levels. The step count function measured at the hindlimb was reliable but the count was doubled at the walk. The dual-mode accelerometric device was sufficiently accurate to quantify and compare locomotor activity in horses moving at different speeds and gaits. Positioning the device on the hindlimb allowed for the most accurate results. The step count function can be useful but must be manually corrected, especially at the walk. © 2016 EVJ Ltd.

  3. Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries

    PubMed Central

    Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E.

    2013-01-01

    Purpose This study developed and tested an algorithm to classify accelerometer data as walking or non-walking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods Participants wore an accelerometer and a GPS unit, and concurrently completed a travel diary for 7 consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or non-walking based on a decision-tree algorithm consisting of 7 classification scenarios. Algorithm reliability was examined relative to two independent analysts’ classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results The 706 participants’ (mean age 51 years, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4,702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified physical activity into 8,170 (58.5 %) walking bouts and 5,337 (38.2%) non-walking bouts; 464 (3.3%) bouts were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the non-walking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean duration of PA bouts classified as walking was 15.2 min (SD=12.9). On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or non-walking behavior. PMID:23439414

  4. Physical activity discrimination improvement using accelerometers and wireless sensor network localization - biomed 2013.

    PubMed

    Bashford, Gregory R; Burnfield, Judith M; Perez, Lance C

    2013-01-01

    Automating documentation of physical activity data (e.g., duration and speed of walking or propelling a wheelchair) into the electronic medical record (EMR) offers promise for improving efficiency of documentation and understanding of best practices in the rehabilitation and home health settings. Commercially available devices which could be used to automate documentation of physical activities are either cumbersome to wear or lack the specificity required to differentiate activities. We have designed a novel system to differentiate and quantify physical activities, using inexpensive accelerometer-based biomechanical data technology and wireless sensor networks, a technology combination that has not been used in a rehabilitation setting to date. As a first step, a feasibility study was performed where 14 healthy young adults (mean age = 22.6 ± 2.5 years, mean height = 173 ± 10.0 cm, mean mass = 70.7 ± 11.3 kg) carried out eight different activities while wearing a biaxial accelerometer sensor. Activities were performed at each participant’s self-selected pace during a single testing session in a controlled environment. Linear discriminant analysis was performed by extracting spectral parameters from the subjects’ accelerometer patterns. It is shown that physical activity classification alone results in an average accuracy of 49.5%, but when combined with rule-based constraints using a wireless sensor network with localization capabilities in an in silico simulated room, accuracy improves to 99.3%. When fully implemented, our technology package is expected to improve goal setting, treatment interventions and patient outcomes by enhancing clinicians’ understanding of patients’ physical performance within a day and across the rehabilitation program.

  5. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.

    PubMed

    Della Mea, Vincenzo; Quattrin, Omar; Parpinel, Maria

    2017-12-01

    Obesity and physical inactivity are the most important risk factors for chronic diseases. The present study aimed at (i) developing and testing a method for classifying household activities based on a smartphone accelerometer; (ii) evaluating the influence of smartphone position; and (iii) evaluating the acceptability of wearing a smartphone for activity recognition. An Android application was developed to record accelerometer data and calculate descriptive features on 5-second time blocks, then classified with nine algorithms. Household activities were: sitting, working at the computer, walking, ironing, sweeping the floor, going down stairs with a shopping bag, walking while carrying a large box, and climbing stairs with a shopping bag. Ten volunteers carried out the activities for three times, each one with a smartphone in a different position (pocket, arm, and wrist). Users were then asked to answer a questionnaire. 1440 time blocks were collected. Three algorithms demonstrated an accuracy greater than 80% for all smartphone positions. While for some subjects the smartphone was uncomfortable, it seems that it did not really affect activity. Smartphones can be used to recognize household activities. A further development is to measure metabolic equivalent tasks starting from accelerometer data only.

  6. Validating Pedometer-Based Physical Activity Time against Accelerometer in Middle School Physical Education

    ERIC Educational Resources Information Center

    Gao, Zan; Lee, Amelia M.; Solmon, Melinda A.; Kosma, Maria; Carson, Russell L.; Zhang, Tao; Domangue, Elizabeth; Moore, Delilah

    2010-01-01

    The purpose of this study was to validate physical activity time in middle school physical education as measured by pedometers in relation to a criterion measure, namely, students' accelerometer determined moderate to vigorous physical activity (MVPA). Participants were 155 sixth to eighth graders participating in regularly scheduled physical…

  7. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.

    PubMed

    Imboden, Mary T; Nelson, Michael B; Kaminsky, Leonard A; Montoye, Alexander Hk

    2017-05-08

    Consumer-based physical activity (PA) monitors have become popular tools to track PA behaviours. Currently, little is known about the validity of the measurements provided by consumer monitors. We aimed to compare measures of steps, energy expenditure (EE) and active minutes of four consumer monitors with one research-grade accelerometer within a semistructured protocol. Thirty men and women (18-80 years old) wore Fitbit One (worn at the waist), Fitbit Zip (waist), Fitbit Flex (wrist), Jawbone UP24 (wrist) and one waist-worn research-grade accelerometer (ActiGraph) while participating in an 80 min protocol. A validated EE prediction equation and active minute cut-points were applied to ActiGraph data. Criterion measures were assessed using direct observation (step count) and portable metabolic analyser (EE, active minutes). A repeated measures analysis of variance (ANOVA) was used to compare differences between consumer monitors, ActiGraph, and criterion measures. Similarly, a repeated measures ANOVA was applied to a subgroup of subjects who didn't cycle. Participants took 3321±571 steps, had 28±6 active min and expended 294±56 kcal based on criterion measures. Comparatively, all monitors underestimated steps and EE by 13%-32% (p<0.01); additionally the Fitbit Flex, UP24, and ActiGraph underestimated active minutes by 35%-65% (p<0.05). Underestimations of PA and EE variables were found to be similar in the subgroup analysis. Consumer monitors had similar accuracy for PA assessment as the ActiGraph, which suggests that consumer monitors may serve to track personal PA behaviours and EE. However, due to discrepancies among monitors, individuals should be cautious when comparing relative and absolute differences in PA values obtained using different monitors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Intensity Classification Accuracy of Accelerometer-Measured Physical Activities in Chinese Children and Youth

    ERIC Educational Resources Information Center

    Zhu, Zheng; Chen, Peijie; Zhuang, Jie

    2013-01-01

    Purpose: Many ActiGraph accelerometer cutoff points and equations have been developed to classify children and youth's physical activity (PA) into different intensity levels. Using a sample from the Chinese City Children and Youth Physical Activity Study, this study was to develop new ActiGraph cutoff points for moderate-to-vigorous physical…

  9. Comparison of accelerometer cut points for predicting activity intensity in youth.

    PubMed

    Trost, Stewart G; Loprinzi, Paul D; Moore, Rebecca; Pfeiffer, Karin A

    2011-07-01

    The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents. This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard. A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and V˙O2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC). Across all four intensity levels, the EV (κ=0.68) and FT (κ=0.66) cut points exhibited significantly better agreement than TR (κ=0.62), MT (κ=0.54), and PU (κ=0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate- to vigorous-intensity physical activity (ROC-AUC=0.90) than TR, PU, or MT cut points (ROC-AUC=0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC=0.90). On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in

  10. Optimal Sensor Placement for Measuring Physical Activity with a 3D Accelerometer

    PubMed Central

    Boerema, Simone T.; van Velsen, Lex; Schaake, Leendert; Tönis, Thijs M.; Hermens, Hermie J.

    2014-01-01

    Accelerometer-based activity monitors are popular for monitoring physical activity. In this study, we investigated optimal sensor placement for increasing the quality of studies that utilize accelerometer data to assess physical activity. We performed a two-staged study, focused on sensor location and type of mounting. Ten subjects walked at various walking speeds on a treadmill, performed a deskwork protocol, and walked on level ground, while simultaneously wearing five ProMove2 sensors with a snug fit on an elastic waist belt. We found that sensor location, type of activity, and their interaction-effect affected sensor output. The most lateral positions on the waist belt were the least sensitive for interference. The effect of mounting was explored, by making two subjects repeat the experimental protocol with sensors more loosely fitted to the elastic belt. The loose fit resulted in lower sensor output, except for the deskwork protocol, where output was higher. In order to increase the reliability and to reduce the variability of sensor output, researchers should place activity sensors on the most lateral position of a participant's waist belt. If the sensor hampers free movement, it may be positioned slightly more forward on the belt. Finally, sensors should be fitted tightly to the body. PMID:24553085

  11. Accelerometer use during field-based physical activity research in children and adolescents with intellectual disabilities: a systematic review.

    PubMed

    McGarty, Arlene M; Penpraze, Victoria; Melville, Craig A

    2014-05-01

    Many methodological questions and issues surround the use of accelerometers as a measure of physical activity during field-based research. To ensure overall research quality and the accuracy of results, methodological decisions should be based on study research questions. This paper aims to systematically review accelerometer use during field-based research in children and adolescents with intellectual disabilities. Medline, Embase, Cochrane Library, Web of Knowledge, PsycINFO, PubMed, and a thesis database (up to May 2013) were searched to identify relevant articles. Articles which used accelerometry-based monitors, quantified activity levels, and included ambulatory children and adolescents (≤ 18 years) with intellectual disabilities were included. Based on best practice guidelines, a form was developed to extract data based on 17 research components of accelerometer use. The search identified 429 articles. Ten full-text articles met the criteria and were included in the review. Many shortcomings in accelerometer use were identified, with the percentage of review criteria met ranging from 12% to 47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. However, a lack of measurement research, e.g., calibration/validation, for children and adolescents with intellectual disabilities is limiting the ability of field-based researchers to make to the most appropriate accelerometer use decisions. The methods of accelerometer use employed can have significant effects on the quality and validity of results produced, which researchers should be more aware of. To allow informed use decisions, there should be a greater focus on measurement research related to children and adolescents with intellectual disabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Validation of uniaxial and triaxial accelerometers for the assessment of physical activity in preschool children

    USDA-ARS?s Scientific Manuscript database

    Given the unique physical activity patterns of preschoolers, wearable electronic devices for quantitative assessment of physical activity require validation in this population. Study objective was to validate uniaxial and triaxial accelerometers in preschoolers. Room calorimetry was performed over 3...

  13. Visual field loss and accelerometer-measured physical activity in the United States.

    PubMed

    van Landingham, Suzanne W; Willis, Jeffrey R; Vitale, Susan; Ramulu, Pradeep Y

    2012-12-01

    To determine whether visual field (VF) loss is associated with lower levels of accelerometer-defined walking or physical activity in a nationally representative sample of American adults. Cross-sectional study. A total of 2934 adults aged 40 years or older who participated in the examination component of the 2005-2006 National Health and Nutritional Examination Survey. Frequency-doubling technology (FDT) testing was performed in both eyes and used to categorize subjects as having no VF loss, unilateral VF loss, or bilateral VF loss. Accelerometer data were collected over 7 days of normal activity. Steps per day and daily minutes of moderate or vigorous physical activity (MVPA). A total of 1468 participants (50.0%) had complete FDT and accelerometer data. Individuals without VF loss averaged 9751 steps/day and 20.8 minutes/day of MVPA, compared with 8023 steps/day and 14.5 minutes/day for subjects with unilateral VF loss (age-adjusted P = 0.11 and P = 0.51) and 6840 steps/day and 10.1 minutes/day for subjects with bilateral VF loss (age-adjusted P = 0.02 and 0.09, respectively). In multivariable models adjusted for age, sex, race/ethnicity, education, and several comorbid illnesses, individuals with bilateral VF loss took 17% fewer steps per day (P < 0.01) and engaged in 30% less MVPA (P = 0.02) than individuals without VF loss. No significant difference in steps per day or MVPA was observed between individuals with unilateral VF loss and no VF loss (P > 0.05). In addition to VF loss, older age, female sex, arthritis, diabetes, congestive heart failure (CHF), and stroke were significantly associated with fewer daily steps and minutes of MVPA (P < 0.05). Bilateral VF loss is associated with less walking and physical activity in American adults. Patients with bilateral VF loss should be encouraged to engage safely in more physical activity. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2012 American

  14. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults.

    PubMed

    Matthews, Charles E; Keadle, Sarah Kozey; Troiano, Richard P; Kahle, Lisa; Koster, Annemarie; Brychta, Robert; Van Domelen, Dane; Caserotti, Paolo; Chen, Kong Y; Harris, Tamara B; Berrigan, David

    2016-11-01

    Moderate-to-vigorous-intensity physical activity is recommended to maintain and improve health, but the mortality benefits of light activity and risk for sedentary time remain uncertain. Using accelerometer-based measures, we 1) described the mortality dose-response for sedentary time and light- and moderate-to-vigorous-intensity activity using restricted cubic splines, and 2) estimated the mortality benefits associated with replacing sedentary time with physical activity, accounting for total activity. US adults (n = 4840) from NHANES (2003-2006) wore an accelerometer for ≤7 d and were followed prospectively for mortality. Proportional hazards models were used to estimate adjusted HRs and 95% CIs for mortality associations with time spent sedentary and in light- and moderate-to-vigorous-intensity physical activity. Splines were used to graphically present behavior-mortality relation. Isotemporal models estimated replacement associations for sedentary time, and separate models were fit for low- (<5.8 h total activity/d) and high-active participants to account for nonlinear associations. Over a mean of 6.6 y, 700 deaths occurred. Compared with less-sedentary adults (6 sedentary h/d), those who spent 10 sedentary h/d had 29% greater risk (HR: 1.29; 95% CI: 1.1, 1.5). Compared with those who did less light activity (3 h/d), those who did 5 h of light activity/d had 23% lower risk (HR: 0.77; 95% CI: 0.6, 1.0). There was no association with mortality for sedentary time or light or moderate-to-vigorous activity in highly active adults. In less-active adults, replacing 1 h of sedentary time with either light- or moderate-to-vigorous-intensity activity was associated with 18% and 42% lower mortality, respectively. Health promotion efforts for physical activity have mostly focused on moderate-to-vigorous activity. However, our findings derived from accelerometer-based measurements suggest that increasing light-intensity activity and reducing sedentary time are also

  15. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong

    2010-09-01

    Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.

  16. A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

    PubMed

    Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E

    2017-11-10

    A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.

  17. A Comparison of Two Motion Sensors for the Assessment of Free-Living Physical Activity of Adolescents

    PubMed Central

    Cuberek, Roman; Ansari, Walid El; Frömel, Karel; Skalik, Krzysztof; Sigmund, Erik

    2010-01-01

    This study assessed and compared the daily step counts recorded by two different motion sensors in order to estimate the free-living physical activity of 135 adolescent girls. Each girl concurrently wore a Yamax pedometer and an ActiGraph accelerometer (criterion measure) every day for seven consecutive days. The convergent validity of the pedometer can be considered intermediate when used to measure the step counts in free-living physical activity; but should be considered with caution when used to classify participants’ step counts into corresponding physical activity categories because of a likelihood of ‘erroneous’ classification in comparison with the accelerometer. PMID:20617046

  18. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  19. White blood cell counts mediate the effects of physical activity on prostate-specific antigen levels.

    PubMed

    Loprinzi, Paul D; Richart, Sarah M

    2014-09-01

    The purpose of this study was to examine whether white blood cell (WBC) level mediated the relationship between physical activity and prostate-specific antigen (PSA) levels. Data from the 2003-2006 National Health and Nutrition Examination Survey were used; 1,726 U.S. adult men (aged 40 years or older) provided complete data on the study variables. Participants wore an ActiGraph 7164 accelerometer for a 7-day period to measure their physical activity behavior, and PSA and WBC levels were obtained from a blood sample. After adjustments, results showed that moderate-to-vigorous physical activity (MVPA) was inversely associated with WBC count (b = - .03; 95% CI [ - 0.04, - 0.006; p = .01), and WBC count (b = .10; 95% CI [0.009, 0.18; p = .04) was positively associated with PSA. Both the Sobel (coef. = - .004, SE = .002; z = - 2.0; p = .03) and the Aroian (coef. = - .004, SE = .002; z = - 1.9; p = .03) tests demonstrated that WBC mediated the relationship between physical activity and PSA. Additionally, among 107 participants with prostate cancer, survivors engaging in more MVPA had lower levels of WBC (b = - .04; 95% CI [ - 0.09, - 0.0009; p = .04). Conclusion Physical activity may influence PSA levels through WBC modulation; however, future research is needed to determine the direction of causality. Additionally, prostate cancer survivors engaging in higher levels of MVPA had lower levels of WBC, underscoring the importance of promoting physical activity among prostate cancer survivors.

  20. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  1. Classification of motor activities through derivative dynamic time warping applied on accelerometer data.

    PubMed

    Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso

    2007-01-01

    In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).

  2. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data

    PubMed Central

    Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.

    2016-01-01

    Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679

  3. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  4. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.

    PubMed

    Pavey, Toby G; Gilson, Nicholas D; Gomersall, Sjaan R; Clark, Bronwyn; Trost, Stewart G

    2017-01-01

    Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions. Twenty-one participants (mean age=27.6±6.2) completed seven lab-based activity trials and a 24h free-living trial (N=16). Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors. Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI=0.75-0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3min/d (95% LOA=-46.0 to 25.4min/d). The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion

  5. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.

    PubMed

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert

    2016-05-01

    Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.

  6. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age

    PubMed Central

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2016-01-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  7. Accelerometer-Measured versus Self-Reported Physical Activity in College Students: Implications for Research and Practice

    ERIC Educational Resources Information Center

    Downs, Andrew; Van Hoomissen, Jacqueline; Lafrenz, Andrew; Julka, Deana L.

    2014-01-01

    Objective: To determine the level of moderate-vigorous-intensity physical activity (MVPA) assessed via self-report and accelerometer in the college population, and to examine intrapersonal and contextual variables associated with physical activity (PA). Participants: Participants were 77 college students at a university in the northwest sampled…

  8. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity.

    PubMed

    Zhou, Shang-Ming; Hill, Rebecca A; Morgan, Kelly; Stratton, Gareth; Gravenor, Mike B; Bijlsma, Gunnar; Brophy, Sinead

    2015-05-11

    To classify wear and non-wear time of accelerometer data for accurately quantifying physical activity in public health or population level research. A bi-moving-window-based approach was used to combine acceleration and skin temperature data to identify wear and non-wear time events in triaxial accelerometer data that monitor physical activity. Local residents in Swansea, Wales, UK. 50 participants aged under 16 years (n=23) and over 17 years (n=27) were recruited in two phases: phase 1: design of the wear/non-wear algorithm (n=20) and phase 2: validation of the algorithm (n=30). Participants wore a triaxial accelerometer (GeneActiv) against the skin surface on the wrist (adults) or ankle (children). Participants kept a diary to record the timings of wear and non-wear and were asked to ensure that events of wear/non-wear last for a minimum of 15 min. The overall sensitivity of the proposed method was 0.94 (95% CI 0.90 to 0.98) and specificity 0.91 (95% CI 0.88 to 0.94). It performed equally well for children compared with adults, and females compared with males. Using surface skin temperature data in combination with acceleration data significantly improved the classification of wear/non-wear time when compared with methods that used acceleration data only (p<0.01). Using either accelerometer seismic information or temperature information alone is prone to considerable error. Combining both sources of data can give accurate estimates of non-wear periods thus giving better classification of sedentary behaviour. This method can be used in population studies of physical activity in free-living environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity

    PubMed Central

    Zhou, Shang-Ming; Hill, Rebecca A; Morgan, Kelly; Stratton, Gareth; Gravenor, Mike B; Bijlsma, Gunnar; Brophy, Sinead

    2015-01-01

    Objective To classify wear and non-wear time of accelerometer data for accurately quantifying physical activity in public health or population level research. Design A bi-moving-window-based approach was used to combine acceleration and skin temperature data to identify wear and non-wear time events in triaxial accelerometer data that monitor physical activity. Setting Local residents in Swansea, Wales, UK. Participants 50 participants aged under 16 years (n=23) and over 17 years (n=27) were recruited in two phases: phase 1: design of the wear/non-wear algorithm (n=20) and phase 2: validation of the algorithm (n=30). Methods Participants wore a triaxial accelerometer (GeneActiv) against the skin surface on the wrist (adults) or ankle (children). Participants kept a diary to record the timings of wear and non-wear and were asked to ensure that events of wear/non-wear last for a minimum of 15 min. Results The overall sensitivity of the proposed method was 0.94 (95% CI 0.90 to 0.98) and specificity 0.91 (95% CI 0.88 to 0.94). It performed equally well for children compared with adults, and females compared with males. Using surface skin temperature data in combination with acceleration data significantly improved the classification of wear/non-wear time when compared with methods that used acceleration data only (p<0.01). Conclusions Using either accelerometer seismic information or temperature information alone is prone to considerable error. Combining both sources of data can give accurate estimates of non-wear periods thus giving better classification of sedentary behaviour. This method can be used in population studies of physical activity in free-living environments. PMID:25968000

  10. Accelerometry in persons with multiple sclerosis: measurement of physical activity or walking mobility?

    PubMed

    Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel

    2010-03-15

    Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.

  11. Statistical approaches to account for missing values in accelerometer data: Applications to modeling physical activity.

    PubMed

    Yue Xu, Selene; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki

    2018-04-01

    Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.

  12. Establishing school day pedometer step count cut-points using ROC curves in low-income children.

    PubMed

    Burns, Ryan D; Brusseau, Timothy A; Fu, You; Hannon, James C

    2016-05-01

    Previous research has not established pedometer step count cut-points that discriminate children that meet school day physical activity recommendations using a tri-axial ActiGraph accelerometer criterion. The purpose of this study was to determine step count cut-points that associate with 30min of school day moderate-to-vigorous physical activity (MVPA) in school-aged children. Participants included 1053 school-aged children (mean age=8.4±1.8years) recruited from three low-income schools from the state of Utah in the U.S. Physical activity was assessed using Yamax DigiWalker CW600 pedometers and ActiGraph wGT3X-BT triaxial accelerometers that were concurrently worn during school hours. Data were collected at each school during the 2014-2015 school year. Receiver operating characteristic (ROC) curves were used to determine pedometer step count cut-points that associated with at least 30min of MVPA during school hours. Cut-points were determined using the maximum Youden's J statistic (J max). For the total sample, the area-under-the-curve (AUC) was 0.77 (p<0.001) with a pedometer cut-point of 5505 steps (J max=0.46, Sensitivity=63%, Specificity=84%; Accuracy=76%). Step counts showed greater diagnostic ability in girls (AUC=0.81, p<0.001; Cut-point=5306 steps; Accuracy=78.8%) compared to boys (AUC=0.72, p<0.01; Cut-point=5786 steps; Accuracy=71.4%). Pedometer step counts showed good diagnostic ability in girls and fair diagnostic ability in boys for discriminating children that met at least 30min of MVPA during school hours. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Off-the-shelf mobile handset environments for deploying accelerometer based gait and activity analysis algorithms.

    PubMed

    Hynes, Martin; Wang, Han; Kilmartin, Liam

    2009-01-01

    Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.

  14. Identifying walking trips from GPS and accelerometer data in adolescent females

    PubMed Central

    Rodriguez, Daniel; Cho, GH; Elder, John; Conway, Terry; Evenson, Kelly R; Ghosh-Dastidar, Bonnie; Shay, Elizabeth; Cohen, Deborah A; Veblen-Mortenson, Sarah; Pickrell, Julie; Lytle, Leslie

    2013-01-01

    Background Studies that have combined accelerometers and global positioning systems (GPS) to identify walking have done so in carefully controlled conditions. This study tested algorithms for identifying walking trips from accelerometer and GPS data in free-living conditions. The study also assessed the accuracy of the locations where walking occurred compared to what participants reported in a diary. Methods A convenience sample of high school females was recruited (N=42) in 2007. Participants wore a GPS unit and an accelerometer, and recorded their out-of-school travel for six days. Split-sample validation was used to examine agreement in the daily and total number of walking trips with Kappa statistics and count regression models, while agreement in locations visited by walking was examined with geographic information systems. Results Agreement varied based on the parameters of the algorithm, with algorithms exhibiting moderate to substantial agreement with self-reported daily (Kappa = 0.33–0.48) and weekly (Kappa = 0.41–0.64) walking trips. Comparison of reported locations reached by walking and GPS data suggest that reported locations are accurate. Conclusions The use of GPS and accelerometers is promising for assessing the number of walking trips and the walking locations of adolescent females. PMID:21934163

  15. Hierarchical classifier approach to physical activity recognition via wearable smartphone tri-axial accelerometer.

    PubMed

    Yusuf, Feridun; Maeder, Anthony; Basilakis, Jim

    2013-01-01

    Physical activity recognition has emerged as an active area of research which has drawn increasing interest from researchers in a variety of fields. It can support many different applications such as safety surveillance, fraud detection, and clinical management. Accelerometers have emerged as the most useful and extensive tool to capture and assess human physical activities in a continuous, unobtrusive and reliable manner. The need for objective physical activity data arises strongly in health related research. With the shift to a sedentary lifestyle, where work and leisure tend to be less physically demanding, research on the health effects of low physical activity has become a necessity. The increased availability of small, inexpensive components has led to the development of mobile devices such as smartphones, providing platforms for new opportunities in healthcare applications. In this study 3 subjects performed directed activity routines wearing a smartphone with a built in tri-axial accelerometer, attached on a belt around the waist. The data was collected to classify 11 basic physical activities such as sitting, lying, standing, walking, and the transitions in between them. A hierarchical classifier approach was utilised with Artificial Neural Networks integrated in a rule-based system, to classify the activities. Based on our evaluation, recognition accuracy of over 89.6% between subjects and over 91.5% within subject was achieved. These results show that activities such as these can be recognised with a high accuracy rate; hence the approach is promising for use in future work.

  16. The Feasibility of Using Questionnaires and Accelerometers to Measure Physical Activity and Sedentary Behavior Among Inpatient Adults With Mental Illness.

    PubMed

    Fraser, Sarah J; Chapman, Justin J; Brown, Wendy J; Whiteford, Harvey A; Burton, Nicola W

    2016-05-01

    The aim of this study was to assess the feasibility of using questionnaires and accelerometers to measure physical activity and sedentary behavior among inpatient adults with mental illness. Participants completed a physical activity and sitting time questionnaire and wore an accelerometer for 7 consecutive days. Feasibility was assessed in terms of participant engagement, self-reported ease/ difficulty of completing study components, extreme self-report data values and adherence to accelerometer wear time criteria. Ease/difficulty ratings were examined by level of distress. 177 inpatients were invited to the study, 101 completed the questionnaires and 36 provided valid accelerometry data. Participants found it more difficult to complete sitting time and physical activity questionnaires than to wear the accelerometer during waking hours (z = 3.787, P < .001; z = 2.824, P = .005 respectively). No significant differences were found in ease/ difficulty ratings by level of distress for any of the study components. Extreme values for self-reported sitting time were identified in 27% of participants. Inpatient adults with mental illness can engage with self-report and objective methods of measuring physical activity and sedentary behavior. They were initially less willing to participate in objective measurement, which may however be more feasible than self-report measures.

  17. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  18. Convergent Validity of Four Accelerometer Cutpoints with Direct Observation of Preschool Children's Outdoor Physical Activity

    ERIC Educational Resources Information Center

    Kahan, David; Nicaise, Virginie; Reuben, Karen

    2013-01-01

    Purpose: More than one fifth of American preschool-aged children are classified as overweight/obese. Increasing physical activity is one means of slowing/reversing progression to overweight or obesity. Measurement of physical activity in this age group relies heavily on motion sensors such as accelerometers. Output is typically interpreted through…

  19. The Physical Activity Scale for Individuals with Physical Disabilities: test-retest reliability and comparison with an accelerometer.

    PubMed

    van der Ploeg, Hidde P; Streppel, Kitty R M; van der Beek, Allard J; van der Woude, Luc H V; Vollenbroek-Hutten, Miriam; van Mechelen, Willem

    2007-01-01

    The objective was to determine the test-retest reliability and criterion validity of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). Forty-five non-wheelchair dependent subjects were recruited from three Dutch rehabilitation centers. Subjects' diagnoses were: stroke, spinal cord injury, whiplash, and neurological-, orthopedic- or back disorders. The PASIPD is a 7-d recall physical activity questionnaire that was completed twice, 1 wk apart. During this week, physical activity was also measured with an Actigraph accelerometer. The test-retest reliability Spearman correlation of the PASIPD was 0.77. The criterion validity Spearman correlation was 0.30 when compared to the accelerometer. The PASIPD had test-retest reliability and criterion validity that is comparable to well established self-report physical activity questionnaires from the general population.

  20. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study.

    PubMed

    Chaix, Basile; Kestens, Yan; Duncan, Scott; Merrien, Claire; Thierry, Benoît; Pannier, Bruno; Brondeel, Ruben; Lewin, Antoine; Karusisi, Noëlla; Perchoux, Camille; Thomas, Frédérique; Méline, Julie

    2014-09-27

    Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations. In 2012-2013, 234 participants of the RECORD GPS Study (French Paris region, median age = 58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate = 57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models. Participants spent a median of 1 h 58 min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation. Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation

  1. Superconducting Rebalance Accelerometer

    NASA Technical Reports Server (NTRS)

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  2. The Relationship Between Time of Day of Physical Activity and Obesity in Older Women.

    PubMed

    Chomistek, Andrea K; Shiroma, Eric J; Lee, I-Min

    2016-04-01

    Physical activity is important for maintaining healthy weight. The time of day when exercise is performed-a highly discretionary aspect of behavior-may impact weight control, but evidence is limited. Thus, we examined the association between the timing of physical activity and obesity risk in women. A cross-sectional analysis was conducted among 7157 Women's Health Study participants who participated in an ancillary study begun in 2011 that is measuring physical activity using accelerometers. The exposure was percentage of total accelerometer counts accumulated before 12:00 noon and the outcome was obesity. Mean (±SD) BMI among participants was 26.1 (±4.9) kg/m2 and 1322 women were obese. The mean activity counts per day was 203,870 (±95,811) of which a mean 47.1% (±11.5%) were recorded in the morning. In multivariable-adjusted models, women who recorded < 39% (lowest quartile) of accelerometer counts before 12:00 noon had a 26% higher odds of being obese, compared with those recording ≥ 54% (highest quartile) of counts before noon (Ptrend = 0.02). These study findings-that women who are less active during morning hours may be at higher risk of obesity-if confirmed can provide a novel strategy to help combat the important health problem of obesity.

  3. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  4. Accelerometer thresholds: Accounting for body mass reduces discrepancies between measures of physical activity for individuals with overweight and obesity.

    PubMed

    Raiber, Lilian; Christensen, Rebecca A G; Jamnik, Veronica K; Kuk, Jennifer L

    2017-01-01

    The objective of this study was to explore whether accelerometer thresholds that are adjusted to account for differences in body mass influence discrepancies between self-report and accelerometer-measured physical activity (PA) volume for individuals with overweight and obesity. We analyzed 6164 adults from the National Health and Nutrition Examination Survey between 2003-2006. Established accelerometer thresholds were adjusted to account for differences in body mass to produce a similar energy expenditure (EE) rate as individuals with normal weight. Moderate-, vigorous-, and moderate- to vigorous-intensity PA (MVPA) durations were measured using established and adjusted accelerometer thresholds and compared with self-report. Durations of self-report were longer than accelerometer-measured MVPA using established thresholds (normal weight: 57.8 ± 2.4 vs 9.0 ± 0.5 min/day, overweight: 56.1 ± 2.7 vs 7.4 ± 0.5 min/day, and obesity: 46.5 ± 2.2 vs 3.7 ± 0.3 min/day). Durations of subjective and objective PA were negatively associated with body mass index (BMI) (P < 0.05). Using adjusted thresholds increased MVPA durations, and reduced discrepancies between accelerometer and self-report measures for overweight and obese groups by 6.0 ± 0.3 min/day and 17.7 ± 0.8 min/day, respectively (P < 0.05). Using accelerometer thresholds that represent equal EE rates across BMI categories reduced the discrepancies between durations of subjective and objective PA for overweight and obese groups. However, accelerometer-measured PA generally remained shorter than durations of self-report within all BMI categories. Further research may be necessary to improve analytical approaches when using objective measures of PA for individuals with overweight or obesity.

  5. Accelerometer-Measured Physical Activity and Mortality in Women Aged 63 to 99.

    PubMed

    LaMonte, Michael J; Buchner, David M; Rillamas-Sun, Eileen; Di, Chongzhi; Evenson, Kelley R; Bellettiere, John; Lewis, Cora E; Lee, I-Min; Tinker, Lesly F; Seguin, Rebecca; Zaslovsky, Oleg; Eaton, Charles B; Stefanick, Marcia L; LaCroix, Andrea Z

    2018-05-01

    To prospectively examine associations between accelerometer-measured physical activity (PA) and mortality in older women, with an emphasis on light-intensity PA. Prospective cohort study with baseline data collection between March 2012 and April 2014. Women's Health Initiative cohort in the United States. Community-dwelling women aged 63 to 99 (N = 6,382). Minutes per day of usual PA measured using hip-worn triaxial accelerometers, physical functioning measured using the Short Physical Performance Battery, mortality follow-up for a mean 3.1 years through September 2016 (450 deaths). When adjusted for accelerometer wear time, age, race-ethnicity, education, smoking, alcohol, self-rated health, and comorbidities, relative risks (95% confidence intervals) for all-cause mortality across PA tertiles were 1.00 (referent), 0.86 (0.69, 1.08), 0.80 (0.62, 1.03) trend P = .07, for low light; 1.00, 0.57 (0.45, 0.71), 0.47 (0.35, 0.61) trend P < .001, for high light; and, 1.00, 0.63 (0.50, 0.79), 0.42 (0.30, 0.57) trend P < .001, for moderate-to-vigorous PA (MVPA). Associations remained significant for high light-intensity PA and MVPA (P < .001) after further adjustment for physical function. Each 30-min/d increment in light-intensity (low and high combined) PA and MVPA was associated, on average, with multivariable relative risk reductions of 12% and 39%, respectively (P < .01). After further simultaneous adjusting for light intensity and MVPA, the inverse associations remained significant (light-intensity PA: RR = 0.93, 95% CI = 0.89-0.97; MVPA: RR = 0.67, 95% CI = 0.58-0.78). These relative risks did not differ between subgroups for age or race and ethnicity (interaction, P ≥ .14, all). When measured using accelerometers, light-intensity and MVPA are associated with lower mortality in older women. These findings suggest that replacing sedentary time with light-intensity PA is a public health strategy that could benefit an aging society and warrants further investigation

  6. Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Olivier, Patrick

    Within the context of an endeavor to provide situated support for people with cognitive impairments in the kitchen, we developed and evaluated classifiers for recognizing 11 actions involved in food preparation. Data was collected from 20 lay subjects using four specially designed kitchen utensils incorporating embedded 3-axis accelerometers. Subjects were asked to prepare a mixed salad in our laboratory-based instrumented kitchen environment. Video of each subject's food preparation activities were independently annotated by three different coders. Several classifiers were trained and tested using these features. With an overall accuracy of 82.9% our investigation demonstrated that a broad set of food preparation actions can be reliably recognized using sensors embedded in kitchen utensils.

  7. Evaluation of a novel canine activity monitor for at-home physical activity analysis.

    PubMed

    Yashari, Jonathan M; Duncan, Colleen G; Duerr, Felix M

    2015-07-04

    Accelerometers are motion-sensing devices that have been used to assess physical activity in dogs. However, the lack of a user-friendly, inexpensive accelerometer has hindered the widespread use of this objective outcome measure in veterinary research. Recently, a smartphone-based, affordable activity monitor (Whistle) has become available for measurement of at-home physical activity in dogs. The aim of this research was to evaluate this novel accelerometer. Eleven large breed, privately owned dogs wore a collar fitted with both the Whistle device and a previously validated accelerometer-based activity monitor (Actical) for a 24-h time period. Owners were asked to have their dogs resume normal daily activities. Total activity time obtained from the Whistle device in minutes was compared to the total activity count from the Actical device. Activity intensity from the Whistle device was calculated manually from screenshots of the activity bars displayed in the smartphone-application and compared to the activity count recorded by the Actical in the same 3-min time period. A total of 3740 time points were compared. There was a strong correlation between activity intensity of both devices for individual time points (Pearson's correlation coefficient 0.81, p < 0.0001). An even stronger correlation was observed between the total activity data between the two devices (Pearson's correlation coefficient 0.925, p < 0.0001). Activity data provided by the Whistle activity monitor may be used as an objective outcome measurement in dogs. The total activity time provided by the Whistle application offers an inexpensive method for obtaining at-home, canine, real-time physical activity data. Limitations of the Whistle device include the limited battery life, the need for manual derivation of activity intensity data and data transfer, and the requirement of Wi-Fi and Bluetooth availability for data transmission.

  8. Are context-specific measures of parental-reported physical activity and sedentary behaviour associated with accelerometer data in 2-9-year-old European children?

    PubMed

    Verbestel, Vera; De Henauw, Stefaan; Bammann, Karin; Barba, Gianvincenzo; Hadjigeorgiou, Charalambos; Eiben, Gabriele; Konstabel, Kenn; Kovács, Eva; Pitsiladis, Yannis; Reisch, Lucia; Santaliestra-Pasías, Alba M; Maes, Lea; De Bourdeaudhuij, Ilse

    2015-04-01

    The aim of the present study was to investigate if context-specific measures of parental-reported physical activity and sedentary behaviour are associated with objectively measured physical activity and sedentary time in children. Cross-sectional study. Seven European countries taking part in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants) study. Data were analysed from 2-9-year-old children (n 5982) who provided both parental-reported and accelerometer-derived physical activity/sedentary behaviour measures. Parents reported their children's daily screen-time, weekly sports participation and daily outdoor playtime by means of the Outdoor Playtime Checklist (OPC) and Outdoor Playtime Recall Questions (OPRQ). Sports participation, OPC- and OPRQ-derived outdoor play were positively associated with accelerometer-derived physical activity. Television viewing and computer use were positively associated with accelerometer-derived sedentary time. All parental-reported measures that were significantly associated with accelerometer outcomes explained only a minor part of the variance in accelerometer-derived physical activity or sedentary time. Parental-reported measures of physical activity and sedentary behaviour are not useful as a proxy for 2-9-year-old children's physical activity and sedentary time. Findings do not preclude the use of context-specific measures but imply that conclusions should be limited to the context-specific behaviours that are actually measured. Depending on the aim of the study, future research should carefully consider the choice of measurements, including the use of subjective or objective measures of the behaviour of interest or a combination of both.

  9. Step-Count Accuracy of 3 Motion Sensors for Older and Frail Medical Inpatients.

    PubMed

    McCullagh, Ruth; Dillon, Christina; O'Connell, Ann Marie; Horgan, N Frances; Timmons, Suzanne

    2017-02-01

    To measure the step-count accuracy of an ankle-worn accelerometer, a thigh-worn accelerometer, and a pedometer in older and frail inpatients. Cross-sectional design study. Research room within a hospital. Convenience sample of inpatients (N=32; age, ≥65 years) who were able to walk 20m independently with or without a walking aid. Patients completed a 40-minute program of predetermined tasks while wearing the 3 motion sensors simultaneously. Video recording of the procedure provided the criterion measurement of step count. Mean percentage errors were calculated for all tasks, for slow versus fast walkers, for independent walkers versus walking-aid users, and over shorter versus longer distances. The intraclass correlation was calculated, and accuracy was graphically displayed by Bland-Altman plots. Thirty-two patients (mean age, 78.1±7.8y) completed the study. Fifteen (47%) were women, and 17 (51%) used walking aids. Their median speed was .46m/s (interquartile range [IQR], .36-.66m/s). The ankle-worn accelerometer overestimated steps (median error, 1% [IQR, -3% to 13%]). The other motion sensors underestimated steps (median error, 40% [IQR, -51% to -35%] and 38% [IQR -93% to -27%], respectively). The ankle-worn accelerometer proved to be more accurate over longer distances (median error, 3% [IQR, 0%-9%]) than over shorter distances (median error, 10% [IQR, -23% to 9%]). The ankle-worn accelerometer gave the most accurate step-count measurement and was most accurate over longer distances. Neither of the other motion sensors had acceptable margins of error. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Characterizing performance of ultra-sensitive accelerometers

    NASA Technical Reports Server (NTRS)

    Sebesta, Henry

    1990-01-01

    An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.

  11. Accelerometer-Measured Physical Activity and Sedentary Time Differ According to Education Level in Young Adults

    PubMed Central

    Kantomaa, Marko T.; Tikanmäki, Marjaana; Kankaanpää, Anna; Vääräsmäki, Marja; Sipola-Leppänen, Marika; Ekelund, Ulf; Hakonen, Harto; Järvelin, Marjo-Riitta; Kajantie, Eero; Tammelin, Tuija H.

    2016-01-01

    This study examined the association of education level with objectively measured physical activity and sedentary time in young adults. Data from the Finnish ESTER study (2009–2011) (n = 538) was used to examine the association between educational attainment and different subcomponents of physical activity and sedentary time measured using hip-worn accelerometers (ActiGraph GT1M) for seven consecutive days. Overall physical activity, moderate-to-vigorous physical activity (MVPA), light-intensity physical activity and sedentary time were calculated separately for weekdays and weekend days. A latent profile analysis was conducted to identify the different profiles of sedentary time and the subcomponents of physical activity. The educational differences in accelerometer-measured physical activity and sedentary time varied according to the subcomponents of physical activity, and between weekdays and weekend days. A high education level was associated with high MVPA during weekdays and weekend days in both sexes, high sedentary time during weekdays in both sexes, and a low amount of light-intensity physical activity during weekdays in males and during weekdays and weekend days in females. The results indicate different challenges related to unhealthy behaviours in young adults with low and high education: low education is associated with a lack of MVPA, whereas high education is associated with a lack of light-intensity physical activity and high sedentary time especially during weekdays. PMID:27403958

  12. Strategies for Dealing with Missing Accelerometer Data.

    PubMed

    Stephens, Samantha; Beyene, Joseph; Tremblay, Mark S; Faulkner, Guy; Pullnayegum, Eleanor; Feldman, Brian M

    2018-05-01

    Missing data is a universal research problem that can affect studies examining the relationship between physical activity measured with accelerometers and health outcomes. Statistical techniques are available to deal with missing data; however, available techniques have not been synthesized. A scoping review was conducted to summarize the advantages and disadvantages of identified methods of dealing with missing data from accelerometers. Missing data poses a threat to the validity and interpretation of trials using physical activity data from accelerometry. Imputation using multiple imputation techniques is recommended to deal with missing data and improve the validity and interpretation of studies using accelerometry. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Validation of parent-reported physical activity and sedentary time by accelerometry in young children.

    PubMed

    Sarker, Hrishov; Anderson, Laura N; Borkhoff, Cornelia M; Abreo, Kathleen; Tremblay, Mark S; Lebovic, Gerald; Maguire, Jonathon L; Parkin, Patricia C; Birken, Catherine S

    2015-11-30

    It is unknown if young children's parent-reported physical activity and sedentary time are correlated with direct measures. The study objectives were to compare parent-reported physical and sedentary activity versus directly measured accelerometer data in early childhood. From 2013 to 2014, 117 healthy children less than 6 years of age were recruited to wear Actical accelerometers for 7 days. Accelerometer data and questionnaires were available on 87 children (74%). Average daily physical activity was defined as the sum of activity ≥100 counts per minute, and sedentary time as the sum of activity <100 counts per minute during waking hours. Parents reported daily physical activity (unstructured free play in and out of school, and organized activities) and selected sedentary behaviors (screen time, stroller time, time in motor vehicle). Spearman correlation coefficients and Bland-Altman plots were used to assess the validity of parent-reported measures compared to accelerometer data. Total physical activity was significantly greater when measured by accelerometer than parent-report; the median difference was 131 min/day (p < 0.001). Parent-reported child physical activity was weak to moderately correlated with directly measured total physical activity (r = 0.39, 95% CI 0.19, 0.56). The correlations between types of physical activity (unstructured free play in and outside of school/daycare, and organized structured activity) and accelerometer were r = 0.30 (95% CI 0.09, 0.49); r = 0.42 (95% CI 0.23, 0.58); r = 0.26 (95% CI 0.05, 0.46), respectively. There was no correlation between parent-reported and accelerometer-measured total sedentary time in children (r = 0.10, 95% CI -0.12, 0.33). When the results were stratified by age group (<18, 18-47, and 48-70 months of age) no statistically significant correlations were observed and some inverse associations were observed. The correlation between parent-report of young children's physical activity and accelerometer

  14. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Treesearch

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  15. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  16. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    USGS Publications Warehouse

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  17. Implementation of accelerometer sensor module and fall detection monitoring system based on wireless sensor network.

    PubMed

    Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho

    2007-01-01

    This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.

  18. Capturing Ultraviolet Radiation Exposure and Physical Activity: Feasibility Study and Comparison Between Self-Reports, Mobile Apps, Dosimeters, and Accelerometers.

    PubMed

    Hacker, Elke; Horsham, Caitlin; Allen, Martin; Nathan, Andrea; Lowe, John; Janda, Monika

    2018-04-17

    Skin cancer is the most prevalent cancer in Australia. Skin cancer prevention programs aim to reduce sun exposure and increase sun protection behaviors. Effectiveness is usually assessed through self-report. It was the aim of this study to test the acceptance and validity of a newly developed ultraviolet radiation (UVR) exposure app, designed to reduce the data collection burden to research participants. Physical activity data was collected because a strong focus on sun avoidance may result in unhealthy reductions in physical activity. This paper provides lessons learned from collecting data from participants using paper diaries, a mobile app, dosimeters, and accelerometers for measuring end-points of UVR exposure and physical activity. Two participant groups were recruited through social and traditional media campaigns 1) Group A-UVR Diaries and 2) Group B-Physical Activity. In Group A, nineteen participants wore an UVR dosimeter wristwatch (University of Canterbury, New Zealand) when outside for 7 days. They also recorded their sun exposure and physical activity levels using both 1) the UVR diary app and 2) a paper UVR diary. In Group B, 55 participants wore an accelerometer (Actigraph, Pensacola, FL, USA) for 14 days and completed the UVR diary app. Data from the UVR diary app were compared with UVR dosimeter wristwatch, accelerometer, and paper UVR diary data. Cohen kappa coefficient score was used to determine if there was agreement between categorical variables for different UVR data collection methods and Spearman rank correlation coefficient was used to determine agreement between continuous accelerometer data and app-collected self-report physical activity. The mean age of participants in Groups A (n=19) and B (n=55) was 29.3 and 25.4 years, and 63% (12/19) and 75% (41/55) were females, respectively. Self-reported sun exposure data in the UVR app correlated highly with UVR dosimetry (κ=0.83, 95% CI 0.64-1.00, P<.001). Correlation between self-reported UVR

  19. Capturing Ultraviolet Radiation Exposure and Physical Activity: Feasibility Study and Comparison Between Self-Reports, Mobile Apps, Dosimeters, and Accelerometers

    PubMed Central

    Allen, Martin; Nathan, Andrea; Lowe, John; Janda, Monika

    2018-01-01

    Background Skin cancer is the most prevalent cancer in Australia. Skin cancer prevention programs aim to reduce sun exposure and increase sun protection behaviors. Effectiveness is usually assessed through self-report. Objective It was the aim of this study to test the acceptance and validity of a newly developed ultraviolet radiation (UVR) exposure app, designed to reduce the data collection burden to research participants. Physical activity data was collected because a strong focus on sun avoidance may result in unhealthy reductions in physical activity. This paper provides lessons learned from collecting data from participants using paper diaries, a mobile app, dosimeters, and accelerometers for measuring end-points of UVR exposure and physical activity. Methods Two participant groups were recruited through social and traditional media campaigns 1) Group A—UVR Diaries and 2) Group B—Physical Activity. In Group A, nineteen participants wore an UVR dosimeter wristwatch (University of Canterbury, New Zealand) when outside for 7 days. They also recorded their sun exposure and physical activity levels using both 1) the UVR diary app and 2) a paper UVR diary. In Group B, 55 participants wore an accelerometer (Actigraph, Pensacola, FL, USA) for 14 days and completed the UVR diary app. Data from the UVR diary app were compared with UVR dosimeter wristwatch, accelerometer, and paper UVR diary data. Cohen kappa coefficient score was used to determine if there was agreement between categorical variables for different UVR data collection methods and Spearman rank correlation coefficient was used to determine agreement between continuous accelerometer data and app-collected self-report physical activity. Results The mean age of participants in Groups A (n=19) and B (n=55) was 29.3 and 25.4 years, and 63% (12/19) and 75% (41/55) were females, respectively. Self-reported sun exposure data in the UVR app correlated highly with UVR dosimetry (κ=0.83, 95% CI 0.64-1.00, P

  20. New Validated Thresholds for Various Intensities of Physical Activity in Adolescents Using the Actigraph Accelerometer

    ERIC Educational Resources Information Center

    Vanhelst, Jeremy; Beghin, Laurent; Turck, Dominique; Gottrand, Frederic

    2011-01-01

    The aim of this study was to determine and validate the new thresholds for various intensities of physical activity in adolescents using the Actigraph accelerometer. Sixty healthy participants aged 10-16 years were recruited. Forty participants participated in the calibration study whereas the others participated in the validation study.…

  1. ACCELEROMETER

    DOEpatents

    Pope, K.E.

    1958-11-25

    A device, commonly known as an accelerometer, is described which may be utllized for measuring acceleratlon with high sensitivity and accuracy tbroughout a relatively wlde range of values. In general, the accelerometer consists of an assembly, including an electric motor stator and a mass element located away from the axis of rotation of the stator, rotatably mounted on a support, and an electric motor rotor positioned within the stator and rotatable thereln. An electrlcal switching circuit controlled by the movement of the stator lntermittently energizes the rotor winding and retards move ment of the stator, and a centrifugal switch is rotatable with the rotor to operate upon attainment of a predetermined rotor rotational velocity.

  2. A Preliminary Investigation of Accelerometer-Derived Sleep and Physical Activity Following Sport-Related Concussion.

    PubMed

    Sufrinko, Alicia M; Howie, Erin K; Elbin, R J; Collins, Michael W; Kontos, Anthony P

    2018-03-29

    Describe changes in postconcussion activity levels and sleep throughout recovery in a sample of pediatric sport-related concussion (SRC) patients, and examine the predictive value of accelerometer-derived activity and sleep on subsequent clinical outcomes at a follow-up clinic visit. Outpatient concussion clinic. Twenty athletes aged 12 to 19 years with diagnosed SRC. Prospective study including visit 1 (<72 hours postinjury) and visit 2 (6-18 days postinjury). Linear regressions used to predict scores (ie, neurocognitive, vestibular/oculomotor) at visit 2 from accelerometer-derived data collected 0 to 6 days postinjury. Linear mixed models evaluated changes in activity and sleep across recovery. Symptom, neurocognitive, and vestibular/oculomotor scores; sleep and activity data (Actigraph GT3x+) RESULTS:: The maximum intensity of physical activity increased (P = .009) and time in bed decreased throughout recovery (P = .026). Several physical activity metrics from 0 to 6 days postinjury were predictive of worse vestibular/oculomotor scores at visit 2 (P < .05). Metrics indicative of poor sleep 0 to 6 days postinjury were associated with worse reaction time at visit 2 (P < .05). This exploratory study suggests physical activity and sleep change from the acute to subacute postinjury time period in adolescent SRC patients. In our small sample, excess physical activity and poor sleep the first week postinjury may be associated with worse outcomes at follow-up in the subacute stage of recovery. This study further supported the feasibility of research utilizing wearable technology in concussion patients, and future research in a large, diverse sample of concussion patients examined at concise time intervals postinjury is needed.

  3. Evaluation of the MyWellness Key accelerometer.

    PubMed

    Herrmann, S D; Hart, T L; Lee, C D; Ainsworth, B E

    2011-02-01

    to examine the concurrent validity of the Technogym MyWellness Key accelerometer against objective and subjective physical activity (PA) measures. randomised, cross-sectional design with two phases. The laboratory phase compared the MyWellness Key with the ActiGraph GT1M and the Yamax SW200 Digiwalker pedometer during graded treadmill walking, increasing speed each minute. The free-living phase compared the MyWellness Key with the ActiGraph, Digiwalker, Bouchard Activity cord (BAR) and Global Physical Activity Questionnaire (GPAQ) for seven continuous days. Data were analysed using Spearman rank-order correlation coefficients for all comparisons. laboratory and free-living phases. sixteen participants randomly stratified from 41 eligible respondents by sex (n=8 men; n=8 women) and PA levels (n=4 low, n=8 middle and n=4 high active). there was a strong association between the MyWellness Key and the ActiGraph accelerometer during controlled graded treadmill walking (r=0.91, p<0.01) and in free-living settings (r=0.73-0.76 for light to vigorous PA, respectively, p<0.01). No associations were observed between the MyWellness Key and the BAR and GPAQ (p>0.05). the MyWellness Key has a high concurrent validity with the ActiGraph accelerometer to detect PA in both controlled laboratory and free-living settings.

  4. Accelerometer measured daily physical activity and sedentary pursuits--comparison between two models of the Actigraph and the importance of data reduction.

    PubMed

    Tanha, Tina; Tornberg, Åsa; Dencker, Magnus; Wollmer, Per

    2013-10-31

    Very few validation studies have been performed between different generations of the commonly used Actigraph accelerometers. We compared daily physical activity data generated from the old generation Actigraph model 7164 with the new generation Actigraph GT1M accelerometer in 15 young females for eight consecutive days. We also investigated if different wear time thresholds had any impact on the findings. Minutes per day of moderate and vigorous physical activity (MVPA), vigorous physical activity (VPA) and very vigorous physical activity (VVPA) were calculated. Moreover, minutes of sedentary pursuits per day were calculated. There were significant (P < 0.05) differences between the Actigraph 7164 and the GT1M concerning MVPA (61 ± 21vs. 56 ± 23 min/day), VPA (12 ± 8 vs. 9 ± 3 min/day) and VVPA (3.2 ± 3.0 vs. 0.3 ± 1.1 min/day). The different wear time thresholds had little impact on minutes per day in different intensities. Median minutes of sedentary pursuits per day ranged from 159 to 438 minutes depending on which wear time threshold was used (i.e. 10, 30 or 60 minutes), whereas very small differences were observed between the two different models. Data from the old generation Actigraph 7164 and the new generation Actigraph GT1M accelerometers differ, where the Actigraph GT1M generates lower minutes spent in free living physical activity. Median minutes of sedentary pursuits per day are highly dependent on which wear time threshold that is used, and not by accelerometer model.

  5. Associations of lifetime walking and weight bearing exercise with accelerometer-measured high impact physical activity in later life.

    PubMed

    Elhakeem, Ahmed; Hannam, Kimberly; Deere, Kevin C; Hartley, April; Clark, Emma M; Moss, Charlotte; Edwards, Mark H; Dennison, Elaine; Gaysin, Tim; Kuh, Diana; Wong, Andrew; Fox, Kenneth R; Cooper, Cyrus; Cooper, Rachel; Tobias, Jon H

    2017-12-01

    High impact physical activity (PA) is thought to benefit bone. We examined associations of lifetime walking and weight bearing exercise with accelerometer-measured high impact and overall PA in later life. Data were from 848 participants (66.2% female, mean age = 72.4 years) from the Cohort for Skeletal Health in Bristol and Avon, Hertfordshire Cohort Study and MRC National Survey of Health and Development. Acceleration peaks from seven-day hip-worn accelerometer recordings were used to derive counts of high impact and overall PA. Walking and weight bearing exercise up to age 18, between 18-29, 30-49 and since age 50 were recalled using questionnaires. Responses in each age category were dichotomised and cumulative scores derived. Linear regression was used for analysis. Greater lifetime walking was related to higher overall, but not high impact PA, whereas greater lifetime weight bearing exercise was related to higher overall and high impact PA. For example, fully-adjusted differences in log-overall and log-high impact PA respectively for highest versus lowest lifetime scores were: walking [0.224 (0.087, 0.362) and 0.239 (- 0.058, 0.536)], and weight bearing exercise [0.754 (0.432, 1.076) and 0.587 (0.270, 0.904)]. For both walking and weight bearing exercise, associations were strongest in the 'since age 50' category. Those reporting the most walking and weight bearing exercise since age 50 had highest overall and high impact PA, e.g. fully-adjusted difference in log-high impact PA versus least walking and weight bearing exercise = 0.588 (0.226, 0.951). Promoting walking and weight bearing exercise from midlife may help increase potentially osteogenic PA levels in later life.

  6. Using tri-axial accelerometers to identify wild polar bear behaviors

    USGS Publications Warehouse

    Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.

    2017-01-01

    Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.

  7. Accelerometer telemetry system

    NASA Technical Reports Server (NTRS)

    Konigsberg, E. (Inventor)

    1976-01-01

    An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.

  8. Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.

    PubMed

    Kerr, Jacqueline; Carlson, Jordan; Godbole, Suneeta; Cadmus-Bertram, Lisa; Bellettiere, John; Hartman, Sheri

    2018-02-13

    To improve estimates of sitting time from hip worn accelerometers used in large cohort studies by employing machine learning methods developed on free living activPAL data. Thirty breast cancer survivors concurrently wore a hip worn accelerometer and a thigh worn activPAL for 7 days. A random forest classifier, trained on the activPAL data, was employed to detect sitting, standing and sit-stand transitions in 5 second windows in the hip worn accelerometer. The classifier estimates were compared to the standard accelerometer cut point and significant differences across different bout lengths were investigated using mixed effect models. Overall, the algorithm predicted the postures with moderate accuracy (stepping 77%, standing 63%, sitting 67%, sit to stand 52% and stand to sit 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of 2 minutes or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts and underestimating long bouts. This is among the first algorithms for sitting and standing for hip worn accelerometer data to be trained from entirely free living activPAL data. The new algorithm detected prolonged sitting which has been shown to be most detrimental to health. Further validation and training in larger cohorts is warranted.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  9. Does school physical education really contribute to accelerometer-measured daily physical activity and non sedentary behaviour in high school students?

    PubMed

    Mayorga-Vega, Daniel; Martínez-Baena, Alejandro; Viciana, Jesús

    2018-09-01

    Physical education has been highlighted as an important environment for physical activity promotion, however, to our knowledge there are no previous studies examining the contribution of physical education to daily accelerometer-measured physical activity and non sedentary behaviour. The purpose was to compare the accelerometer-measured physical activity and sedentary behaviour between physical education, non-physical education and weekend days in adolescents. Of the 394 students from a Spanish high school that were invited to participate, 158 students (83 boys and 75 girls) aged 13-16 years were analyzed (wear time ≥ 600 min). Participants' physical activity and sedentary behaviour were objectively-measured by GT3X+ accelerometers during physical education (one session), non-physical education and weekend days. Results indicated that overall adolescents had statistically significant greater physical activity levels and lower values of sedentary behaviour on physical education days than on non-physical education and weekend days (e.g., moderate-to-vigorous physical activity = 71, 54 and 57 min; sedentary = 710, 740 and 723 min) (p < 0.05). Physical education contributes significantly to reducing students' daily physical inactivity and sedentary behaviour. Increasing the number of physical education classes seems to be an effective strategy to reduce the high current prevalence of physical inactivity and sedentary behaviour in adolescence.

  10. The validity of the ActiPed for physical activity monitoring.

    PubMed

    Brown, D K; Grimwade, D; Martinez-Bussion, D; Taylor, M J D; Gladwell, V F

    2013-05-01

    The ActiPed (FitLinxx) is a uniaxial accelerometer, which objectively measures physical activity, uploads the data wirelessly to a website, allowing participants and researchers to view activity levels remotely. The aim was to validate ActiPed's step count, distance travelled and activity time against direct observation. Further, to compare against pedometer (YAMAX), accelerometer (ActiGraph) and manufacturer's guidelines. 22 participants, aged 28±7 years, undertook 4 protocols, including walking on different surfaces and incremental running protocol (from 2 mph to 8 mph). Bland-Altman plots allowed comparison of direct observation against ActiPed estimates. For step count, the ActiPed showed a low % bias in all protocols: walking on a treadmill (-1.30%), incremental treadmill protocol (-1.98%), walking over grass (-1.67%), and walking over concrete (-0.93%). When differentiating between walking and running step count the ActiPed showed a % bias of 4.10% and -6.30%, respectively. The ActiPed showed >95% accuracy for distance and duration estimations overall, although underestimated distance (p<0.01) for walking over grass and concrete. Overall, the ActiPed showed acceptable levels of accuracy comparable to previous validated pedometers and accelerometers. The accuracy combined with the simple and informative remote gathering of data, suggests that the ActiPed could be a useful tool in objective physical activity monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis

    PubMed Central

    Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora

    2017-01-01

    Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760

  12. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm.

    PubMed

    Hikihara, Yuki; Tanaka, Chiaki; Oshima, Yoshitake; Ohkawara, Kazunori; Ishikawa-Takata, Kazuko; Tanaka, Shigeho

    2014-01-01

    The aims of our study were to examine whether a gravity-removal physical activity classification algorithm (GRPACA) is applicable for discrimination between nonlocomotive and locomotive activities for various physical activities (PAs) of children and to prove that this approach improves the estimation accuracy of a prediction model for children using an accelerometer. Japanese children (42 boys and 26 girls) attending primary school were invited to participate in this study. We used a triaxial accelerometer with a sampling interval of 32 Hz and within a measurement range of ±6 G. Participants were asked to perform 6 nonlocomotive and 5 locomotive activities. We measured raw synthetic acceleration with the triaxial accelerometer and monitored oxygen consumption and carbon dioxide production during each activity with the Douglas bag method. In addition, the resting metabolic rate (RMR) was measured with the subject sitting on a chair to calculate metabolic equivalents (METs). When the ratio of unfiltered synthetic acceleration (USA) and filtered synthetic acceleration (FSA) was 1.12, the rate of correct discrimination between nonlocomotive and locomotive activities was excellent, at 99.1% on average. As a result, a strong linear relationship was found for both nonlocomotive (METs = 0.013×synthetic acceleration +1.220, R2 = 0.772) and locomotive (METs = 0.005×synthetic acceleration +0.944, R2 = 0.880) activities, except for climbing down and up. The mean differences between the values predicted by our model and measured METs were -0.50 to 0.23 for moderate to vigorous intensity (>3.5 METs) PAs like running, ball throwing and washing the floor, which were regarded as unpredictable PAs. In addition, the difference was within 0.25 METs for sedentary to mild moderate PAs (<3.5 METs). Our specific calibration model that discriminates between nonlocomotive and locomotive activities for children can be useful to evaluate the sedentary to vigorous PAs

  13. Prediction Models Discriminating between Nonlocomotive and Locomotive Activities in Children Using a Triaxial Accelerometer with a Gravity-removal Physical Activity Classification Algorithm

    PubMed Central

    Hikihara, Yuki; Tanaka, Chiaki; Oshima, Yoshitake; Ohkawara, Kazunori; Ishikawa-Takata, Kazuko; Tanaka, Shigeho

    2014-01-01

    The aims of our study were to examine whether a gravity-removal physical activity classification algorithm (GRPACA) is applicable for discrimination between nonlocomotive and locomotive activities for various physical activities (PAs) of children and to prove that this approach improves the estimation accuracy of a prediction model for children using an accelerometer. Japanese children (42 boys and 26 girls) attending primary school were invited to participate in this study. We used a triaxial accelerometer with a sampling interval of 32 Hz and within a measurement range of ±6 G. Participants were asked to perform 6 nonlocomotive and 5 locomotive activities. We measured raw synthetic acceleration with the triaxial accelerometer and monitored oxygen consumption and carbon dioxide production during each activity with the Douglas bag method. In addition, the resting metabolic rate (RMR) was measured with the subject sitting on a chair to calculate metabolic equivalents (METs). When the ratio of unfiltered synthetic acceleration (USA) and filtered synthetic acceleration (FSA) was 1.12, the rate of correct discrimination between nonlocomotive and locomotive activities was excellent, at 99.1% on average. As a result, a strong linear relationship was found for both nonlocomotive (METs = 0.013×synthetic acceleration +1.220, R2 = 0.772) and locomotive (METs = 0.005×synthetic acceleration +0.944, R2 = 0.880) activities, except for climbing down and up. The mean differences between the values predicted by our model and measured METs were −0.50 to 0.23 for moderate to vigorous intensity (>3.5 METs) PAs like running, ball throwing and washing the floor, which were regarded as unpredictable PAs. In addition, the difference was within 0.25 METs for sedentary to mild moderate PAs (<3.5 METs). Our specific calibration model that discriminates between nonlocomotive and locomotive activities for children can be useful to evaluate the sedentary to vigorous PAs

  14. Validation of the human activity profile questionnaire as a measure of physical activity levels in older community-dwelling women.

    PubMed

    Bastone, Alessandra de Carvalho; Moreira, Bruno de Souza; Vieira, Renata Alvarenga; Kirkwood, Renata Noce; Dias, João Marcos Domingues; Dias, Rosângela Corrêa

    2014-07-01

    The purpose of this study was to assess the validity of the Human Activity Profile (HAP) by comparing scores with accelerometer data and by objectively testing its cutoff points. This study included 120 older women (age 60-90 years). Average daily time spent in sedentary, moderate, and hard activity; counts; number of steps; and energy expenditure were measured using an accelerometer. Spearman rank order correlations were used to evaluate the correlation between the HAP scores and accelerometer variables. Significant relationships were detected (rho = .47-.75, p < .001), indicating that the HAP estimates physical activity at a group level well; however, scatterplots showed individual errors. Receiver operating characteristic curves were constructed to determine HAP cutoff points on the basis of physical activity level recommendations, and the cutoff points found were similar to the original HAP cutoff points. The HAP is a useful indicator of physical activity levels in older women.

  15. Using Accelerometers to Measure Physical Activity in Large-Scale Epidemiologic Studies: Issues and Challenges

    PubMed Central

    Lee, I-Min; Shiroma, Eric J

    2013-01-01

    Background Current guidelines for aerobic activity require that adults carry out ≥150 minutes/week of moderate-intensity physical activity, with a large body of epidemiologic evidence showing this level of activity to decrease the incidence of many chronic diseases. Less is known about whether light-intensity activities also have such benefits, and whether sedentary behavior is an independent predictor of increased risks of these chronic diseases, as imprecise assessments of these behaviours and cross-sectional study designs have limited knowledge to date. Methods Recent technological advances in assessment methods have made the use of movement sensors, such as the accelerometer, feasible for use in longitudinal, large-scale epidemiologic studies. Several such studies are collecting sensor-assessed, objective measures of physical activity with the aim of relating these to the development of clinical endpoints. This is a relatively new area of research; thus, in this paper, we use the Women’s Health Study (WHS) as a case study to illustrate challenges related to data collection, data processing, and analyses of the vast amount of data collected. Results The WHS plans to collect 7 days of accelerometer-assessed physical activity and sedentary behavior in ~18,000 women aged ≥62 years. Several logistical challenges exist in collecting data; nonetheless as of 31 August 2013, 11,590 women have already provided some data. Additionally, the WHS experience on data reduction and data analyses can help inform other similar large-scale epidemiologic studies. Conclusions Important data on the health effects of light-intensity activity and sedentary behaviour will emerge from large-scale epidemiologic studies collecting objective assessments of these behaviours. PMID:24297837

  16. Development of an accelerometer-linked online intervention system to promote physical activity in adolescents.

    PubMed

    Guthrie, Nicole; Bradlyn, Andrew; Thompson, Sharon K; Yen, Sophia; Haritatos, Jana; Dillon, Fred; Cole, Steve W

    2015-01-01

    Most adolescents do not achieve the recommended levels of moderate-to-vigorous physical activity (MVPA), placing them at increased risk for a diverse array of chronic diseases in adulthood. There is a great need for scalable and effective interventions that can increase MVPA in adolescents. Here we report the results of a measurement validation study and a preliminary proof-of-concept experiment testing the impact of Zamzee, an accelerometer-linked online intervention system that combines proximal performance feedback and incentive motivation features to promote MVPA. In a calibration study that parametrically varied levels of physical activity in 31 12-14 year-old children, the Zamzee activity meter was shown to provide a valid measure of MVPA (sensitivity in detecting MVPA = 85.9%, specificity = 97.5%, and r = .94 correspondence with the benchmark RT3 accelerometer system; all p < .0001). In a subsequent randomized controlled multi-site experiment involving 182 middle school-aged children assessed for MVPA over 6 wks, intent-to-treat analyses found that those who received access to the Zamzee intervention had average MVPA levels 54% greater than those of a passive control group (p < 0.0001) and 68% greater than those of an active control group that received access to a commercially available active videogame (p < .0001). Zamzee's effects on MVPA did not diminish significantly over the course of the 6-wk study period, and were statistically significant in both females and males, and in normal- vs. high-BMI subgroups. These results provide promising initial indications that combining the Zamzee activity meter with online proximal performance feedback and incentive motivation features can positively impact MVPA levels in adolescents.

  17. Development of an Accelerometer-Linked Online Intervention System to Promote Physical Activity in Adolescents

    PubMed Central

    Guthrie, Nicole; Bradlyn, Andrew; Thompson, Sharon K.; Yen, Sophia; Haritatos, Jana; Dillon, Fred; Cole, Steve W.

    2015-01-01

    Most adolescents do not achieve the recommended levels of moderate-to-vigorous physical activity (MVPA), placing them at increased risk for a diverse array of chronic diseases in adulthood. There is a great need for scalable and effective interventions that can increase MVPA in adolescents. Here we report the results of a measurement validation study and a preliminary proof-of-concept experiment testing the impact of Zamzee, an accelerometer-linked online intervention system that combines proximal performance feedback and incentive motivation features to promote MVPA. In a calibration study that parametrically varied levels of physical activity in 31 12-14 year-old children, the Zamzee activity meter was shown to provide a valid measure of MVPA (sensitivity in detecting MVPA = 85.9%, specificity = 97.5%, and r = .94 correspondence with the benchmark RT3 accelerometer system; all p < .0001). In a subsequent randomized controlled multi-site experiment involving 182 middle school-aged children assessed for MVPA over 6 wks, intent-to-treat analyses found that those who received access to the Zamzee intervention had average MVPA levels 54% greater than those of a passive control group (p < 0.0001) and 68% greater than those of an active control group that received access to a commercially available active videogame (p < .0001). Zamzee’s effects on MVPA did not diminish significantly over the course of the 6-wk study period, and were statistically significant in both females and males, and in normal- vs. high-BMI subgroups. These results provide promising initial indications that combining the Zamzee activity meter with online proximal performance feedback and incentive motivation features can positively impact MVPA levels in adolescents. PMID:26010359

  18. Validation of Accelerometer Prediction Equations in Children with Chronic Disease.

    PubMed

    Stephens, Samantha; Takken, Tim; Esliger, Dale W; Pullenayegum, Eleanor; Beyene, Joseph; Tremblay, Mark; Schneiderman, Jane; Biggar, Doug; Longmuir, Pat; McCrindle, Brian; Abad, Audrey; Ignas, Dan; Van Der Net, Janjaap; Feldman, Brian

    2016-02-01

    The purpose of this study was to assess the criterion validity of existing accelerometer-based energy expenditure (EE) prediction equations among children with chronic conditions, and to develop new prediction equations. Children with congenital heart disease (CHD), cystic fibrosis (CF), dermatomyositis (JDM), juvenile arthritis (JA), inherited muscle disease (IMD), and hemophilia (HE) completed 7 tasks while EE was measured using indirect calorimetry with counts determined by accelerometer. Agreement between predicted EE and measured EE was assessed. Disease-specific equations and cut points were developed and cross-validated. In total, 196 subjects participated. One participant dropped out before testing due to time constraints, while 15 CHD, 32 CF, 31 JDM, 31 JA, 30 IMD, 28 HE, and 29 healthy controls completed the study. Agreement between predicted and measured EE varied across disease group and ranged from (ICC) .13-.46. Disease-specific prediction equations exhibited a range of results (ICC .62-.88) (SE 0.45-0.78). In conclusion, poor agreement was demonstrated using current prediction equations in children with chronic conditions. Disease-specific equations and cut points were developed.

  19. The use of MP3 recorders to log data from equine hoof mounted accelerometers.

    PubMed

    Parsons, K J; Wilson, A M

    2006-11-01

    MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction

  20. Accelerometer-based step initiation control for gait-assist neuroprostheses.

    PubMed

    Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J

    2016-01-01

    Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.

  1. Compulsory School In- and Outdoors—Implications for School Children’s Physical Activity and Health during One Academic Year

    PubMed Central

    Pagels, Peter; Raustorp, Anders; Guban, Peter; Fröberg, Andreas; Boldemann, Cecilia

    2016-01-01

    Regulated school days entail less free-living physical activity (PA) and outdoor stay, which may jeopardize the opportunities for cohesive moderate-to-vigorous physical activity (MVPA) and, by extension, children’s health. The role of outdoor stay during school time for pupils’ free-living PA vs. physical education (PE) and indoor stay was studied during one academic year in 196 pupils aged 7–14 years at four schools in mid-southern Sweden during five consecutive days each in September, March, and May. Actigraph GT3X+ Activity monitors were used. Predictors for PA during school stay were expressed as mean daily accelerometer counts and were measured per season, day, grade, gender, weather, and time outdoors. Overall, free-living PA outdoors generated the highest mean accelerometer counts for moderate and vigorous PA. Outdoor PA and PE, representing 23.7% of the total school time contributed to 50.4% of total mean accelerometer counts, and were the greatest contributors to moderate and vigorous PA. Age and weather impacted PA, with less PA in inclement weather and among older pupils. More time outdoors, at all seasons, would favorably increase school children’s chances of reaching recommended levels of PA. PMID:27420079

  2. Energy Expenditure in Playground Games in Primary School Children Measured by Accelerometer and Heart Rate Monitors.

    PubMed

    García-Prieto, Jorge Cañete; Martinez-Vizcaino, Vicente; García-Hermoso, Antonio; Sánchez-López, Mairena; Arias-Palencia, Natalia; Fonseca, Juan Fernando Ortega; Mora-Rodriguez, Ricardo

    2017-10-01

    The aim of this study was to examine the energy expenditure (EE) measured using indirect calorimetry (IC) during playground games and to assess the validity of heart rate (HR) and accelerometry counts as indirect indicators of EE in children´s physical activity games. 32 primary school children (9.9 ± 0.6 years old, 19.8 ± 4.9 kg · m -2 BMI and 37.6 ± 7.2 ml · kg -1 · min -1 VO 2max ). Indirect calorimetry (IC), accelerometry and HR data were simultaneously collected for each child during a 90 min session of 30 playground games. Thirty-eight sessions were recorded in 32 different children. Each game was recorded at least in three occasions in other three children. The intersubject coefficient of variation within a game was 27% for IC, 37% for accelerometry and 13% for HR. The overall mean EE in the games was 4.2 ± 1.4 kcals · min -1 per game, totaling to 375 ± 122 kcals/per 90 min/session. The correlation coefficient between indirect calorimetry and accelerometer counts was 0.48 (p = .026) for endurance games and 0.21 (p = .574) for strength games. The correlation coefficient between indirect calorimetry and HR was 0.71 (p = .032) for endurance games and 0.48 (p = .026) for strength games. Our data indicate that both accelerometer and HR monitors are useful devices for estimating EE during endurance games, but only HR monitors estimates are accurate for endurance games.

  3. Mapping GRACE Accelerometer Error

    NASA Astrophysics Data System (ADS)

    Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.

    2017-12-01

    After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.

  4. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    PubMed

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao; Gejl, Anne Kær; Andersen, Lars Bo; Froberg, Karsten; Bugge, Anna

    2016-01-01

    To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive performance.

  5. Validation of Physical Activity Tracking via Android Smartphones Compared to ActiGraph Accelerometer: Laboratory-Based and Free-Living Validation Studies.

    PubMed

    Hekler, Eric B; Buman, Matthew P; Grieco, Lauren; Rosenberger, Mary; Winter, Sandra J; Haskell, William; King, Abby C

    2015-04-15

    There is increasing interest in using smartphones as stand-alone physical activity monitors via their built-in accelerometers, but there is presently limited data on the validity of this approach. The purpose of this work was to determine the validity and reliability of 3 Android smartphones for measuring physical activity among midlife and older adults. A laboratory (study 1) and a free-living (study 2) protocol were conducted. In study 1, individuals engaged in prescribed activities including sedentary (eg, sitting), light (sweeping), moderate (eg, walking 3 mph on a treadmill), and vigorous (eg, jogging 5 mph on a treadmill) activity over a 2-hour period wearing both an ActiGraph and 3 Android smartphones (ie, HTC MyTouch, Google Nexus One, and Motorola Cliq). In the free-living study, individuals engaged in usual daily activities over 7 days while wearing an Android smartphone (Google Nexus One) and an ActiGraph. Study 1 included 15 participants (age: mean 55.5, SD 6.6 years; women: 56%, 8/15). Correlations between the ActiGraph and the 3 phones were strong to very strong (ρ=.77-.82). Further, after excluding bicycling and standing, cut-point derived classifications of activities yielded a high percentage of activities classified correctly according to intensity level (eg, 78%-91% by phone) that were similar to the ActiGraph's percent correctly classified (ie, 91%). Study 2 included 23 participants (age: mean 57.0, SD 6.4 years; women: 74%, 17/23). Within the free-living context, results suggested a moderate correlation (ie, ρ=.59, P<.001) between the raw ActiGraph counts/minute and the phone's raw counts/minute and a strong correlation on minutes of moderate-to-vigorous physical activity (MVPA; ie, ρ=.67, P<.001). Results from Bland-Altman plots suggested close mean absolute estimates of sedentary (mean difference=-26 min/day of sedentary behavior) and MVPA (mean difference=-1.3 min/day of MVPA) although there was large variation. Overall, results suggest

  6. Accelerometer-determined physical activity and walking capacity in persons with Down syndrome, Williams syndrome and Prader-Willi syndrome.

    PubMed

    Nordstrøm, Marianne; Hansen, Bjørge Herman; Paus, Benedicte; Kolset, Svein Olav

    2013-12-01

    In this study we describe by use of accelerometers the total physical activity (PA), intensity pattern and walking capacity in 87 persons age 16-45 years with Down syndrome (DS), Williams syndrome (WS) and Prader-Willi syndrome (PWS). Participants were recruited from all over Norway, and lived either with their parents or in community residences with support. On average the participants generated 294 counts per minute (cpm) or 6712 steps per day, with most of the day spent in sedentary activity, 522 min/day, followed by 212 min/day in light PA, 71 min/day in lifestyle activity and 27 min/day in moderate-to-vigorous physical activity (MVPA). Inactivity was prevalent, as only 12% meet the current Nordic recommendations for PA. When compared, no differences for total physical activity or time in MVPA were observed between the three groups. However, participant with DS spent a mean of 73 min/day less and 43 min/day less in sedentary activities compared to participants with PWS and WS, respectively, (p=0.011, 95% CI: -10.9; -80.1). In addition the DS-group spent a mean of 66 min/day more in light PA than the PWS-group and 41 min/day more than the WS-group, (p<0.001, 95% CI: 29.3; 79.7). Participants with PWS spent on average 30 min/day less in lifestyle activities compared to both participants with DS and WS, (p<0.001, 95% CI: -14.2; -45.4). No association between total PA and BMI were observed. Males were more active than females across all diagnoses. Males accumulated on average 85 counts per minutes more than females, (p=0.002, 95% CI: 33.3; 136.7), 2137 more steps per day, (p=0.002, 95% CI: 778; 3496). The mean walking capacity during six-minutes was 507 m (SD 112 m) for males and 466 m (SD 88 m) for females. Distance walked during testing decreased with 33.6 m when comparing normal or underweight participants to overweight participants, and 78.1 m when comparing overweight to obese participants (p<0.001 95% CI: -40.4; -85.8). When adjusted for BMI no differences in

  7. Measurement of peak impact loads differ between accelerometers - Effects of system operating range and sampling rate.

    PubMed

    Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C

    2017-06-14

    A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Comparability of children's sedentary time estimates derived from wrist worn GENEActiv and hip worn ActiGraph accelerometer thresholds.

    PubMed

    Boddy, Lynne M; Noonan, Robert J; Kim, Youngwon; Rowlands, Alex V; Welk, Greg J; Knowles, Zoe R; Fairclough, Stuart J

    2018-03-28

    To examine the comparability of children's free-living sedentary time (ST) derived from raw acceleration thresholds for wrist mounted GENEActiv accelerometer data, with ST estimated using the waist mounted ActiGraph 100count·min -1 threshold. Secondary data analysis. 108 10-11-year-old children (n=43 boys) from Liverpool, UK wore one ActiGraph GT3X+ and one GENEActiv accelerometer on their right hip and left wrist, respectively for seven days. Signal vector magnitude (SVM; mg) was calculated using the ENMO approach for GENEActiv data. ST was estimated from hip-worn ActiGraph data, applying the widely used 100count·min -1 threshold. ROC analysis using 10-fold hold-out cross-validation was conducted to establish a wrist-worn GENEActiv threshold comparable to the hip ActiGraph 100count·min -1 threshold. GENEActiv data were also classified using three empirical wrist thresholds and equivalence testing was completed. Analysis indicated that a GENEActiv SVM value of 51mg demonstrated fair to moderate agreement (Kappa: 0.32-0.41) with the 100count·min -1 threshold. However, the generated and empirical thresholds for GENEActiv devices were not significantly equivalent to ActiGraph 100count·min -1 . GENEActiv data classified using the 35.6mg threshold intended for ActiGraph devices generated significantly equivalent ST estimates as the ActiGraph 100count·min -1 . The newly generated and empirical GENEActiv wrist thresholds do not provide equivalent estimates of ST to the ActiGraph 100count·min -1 approach. More investigation is required to assess the validity of applying ActiGraph cutpoints to GENEActiv data. Future studies are needed to examine the backward compatibility of ST data and to produce a robust method of classifying SVM-derived ST. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions

    PubMed Central

    Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance

  10. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

    PubMed

    Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from

  11. C-arm rotation encoding with accelerometers.

    PubMed

    Grzeda, Victor; Fichtinger, Gabor

    2010-07-01

    Fluoroscopic C-arms are being incorporated in computer-assisted interventions in increasing number. For these applications to work, the relative poses of imaging must be known. To find the pose, tracking methods such as optical cameras, electromagnetic trackers, and radiographic fiducials have been used-all hampered by significant shortcomings. We propose to recover the rotational pose of the C-arm using the angle-sensing ability of accelerometers, by exploiting the capability of the accelerometer to measure tilt angles. By affixing the accelerometer to a C-arm, the accelerometer tracks the C-arm pose during rotations of the C-arm. To demonstrate this concept, a C-arm analogue was constructed with a webcam device affixed to the C-arm model to mimic X-ray imaging. Then, measuring the offset between the accelerometer angle readings to the webcam pose angle, an angle correction equation (ACE) was created to properly tracking the C-arm rotational pose. Several tests were performed on the webcam C-arm model using the ACEs to tracking the primary and secondary angle rotations of the model. We evaluated the capability of linear and polynomial ACEs to tracking the webcam C-arm pose angle for different rotational scenarios. The test results showed that the accelerometer could track the pose of the webcam C-arm model with an accuracy of less than 1.0 degree. The accelerometer was successful in sensing the C-arm's rotation with clinically adequate accuracy in the C-arm webcam model.

  12. Silicon microengineering for accelerometers

    NASA Astrophysics Data System (ADS)

    Satchell, D. W.

    Silicon microengineering enables the excellent mechanical properties of silicon to be combined with electronic ones to produce accelerometers of good performance, small size and low cost. The design and fabrication of two types of analogue accelerometer, using this technique, are described. One employs implanted strain gauges to give a dc output, while the other has a strain-sensitive resonant structure which gives a varying frequency signal.

  13. Evaluation of two-dimensional accelerometers to monitor behavior of beef calves after castration.

    PubMed

    White, Brad J; Coetzee, Johann F; Renter, David G; Babcock, Abram H; Thomson, Daniel U; Andresen, Daniel

    2008-08-01

    To determine the accuracy of accelerometers for measuring behavior changes in calves and to determine differences in beef calf behavior from before to after castration. 3 healthy Holstein calves and 12 healthy beef calves. 2-dimensional accelerometers were placed on 3 calves, and data were logged simultaneous to video recording of animal behavior. Resulting data were used to generate and validate predictive models to classify posture (standing or lying) and type of activity (standing in place, walking, eating, getting up, lying awake, or lying sleeping). The algorithms developed were used to conduct a prospective trial to compare calf behavior in the first 24 hours after castration (n = 6) with behavior of noncastrated control calves (6) and with presurgical readings from the same castrated calves. On the basis of the analysis of the 2-dimensional accelerometer signal, posture was classified with a high degree of accuracy (98.3%) and the specific activity was estimated with a reasonably low misclassification rate (23.5%). Use of the system to compare behavior after castration revealed that castrated calves spent a significantly larger amount of time standing (82.2%), compared with presurgical readings (46.2%). 2-dimensional accelerometers provided accurate classification of posture and reasonable classification of activity. Applying the system in a castration trial illustrated the usefulness of accelerometers for measuring behavioral changes in individual calves.

  14. Multiple Imputation of Completely Missing Repeated Measures Data within Person from a Complex Sample: Application to Accelerometer Data in the National Health and Nutrition Examination Survey

    PubMed Central

    Liu, Benmei; Yu, Mandi; Graubard, Barry I; Troiano, Richard P; Schenker, Nathaniel

    2016-01-01

    The Physical Activity Monitor (PAM) component was introduced into the 2003-2004 National Health and Nutrition Examination Survey (NHANES) to collect objective information on physical activity including both movement intensity counts and ambulatory steps. Due to an error in the accelerometer device initialization process, the steps data were missing for all participants in several primary sampling units (PSUs), typically a single county or group of contiguous counties, who had intensity count data from their accelerometers. To avoid potential bias and loss in efficiency in estimation and inference involving the steps data, we considered methods to accurately impute the missing values for steps collected in the 2003-2004 NHANES. The objective was to come up with an efficient imputation method which minimized model-based assumptions. We adopted a multiple imputation approach based on Additive Regression, Bootstrapping and Predictive mean matching (ARBP) methods. This method fits alternative conditional expectation (ace) models, which use an automated procedure to estimate optimal transformations for both the predictor and response variables. This paper describes the approaches used in this imputation and evaluates the methods by comparing the distributions of the original and the imputed data. A simulation study using the observed data is also conducted as part of the model diagnostics. Finally some real data analyses are performed to compare the before and after imputation results. PMID:27488606

  15. Validation of the Actigraph GT3X and ActivPAL Accelerometers for the Assessment of Sedentary Behavior

    ERIC Educational Resources Information Center

    Kim, Youngdeok; Barry, Vaughn W.; Kang, Minsoo

    2015-01-01

    This study examined (a) the validity of two accelerometers (ActiGraph GT3X [ActiGraph LLC, Pensacola, FL, USA] and activPAL [PAL Technologies Ltd., Glasgow, Scotland]) for the assessment of sedentary behavior; and (b) the variations in assessment accuracy by setting minimum sedentary bout durations against a proxy for direct observation using an…

  16. Visual impairment, uncorrected refractive error, and accelerometer-defined physical activity in the United States.

    PubMed

    Willis, Jeffrey R; Jefferys, Joan L; Vitale, Susan; Ramulu, Pradeep Y

    2012-03-01

    To examine how accelerometer-measured physical activity is affected by visual impairment (VI) and uncorrected refractive error (URE). Cross-sectional study using data from the 2003-2004/2005-2006 National Health and Nutritional Examination Survey. Visual impairment was defined as better-eye postrefraction visual acuity worse than 20/40. Uncorrected refractive error was defined as better-eye presenting visual acuity of 20/50 or worse, improving to 20/40 or better with refraction. Adults older than 20 years with normal sight, URE, and VI were analyzed. The main outcome measures were steps per day and daily minutes of moderate or vigorous physical activity (MVPA). Five thousand seven hundred twenty-two participants (57.1%) had complete visual acuity and accelerometer data. Individuals with normal sight took an average of 9964 steps per day and engaged in an average of 23.5 minutes per day of MVPA, as compared with 9742 steps per day and 23.1 minutes per day of MVPA in individuals with URE (P > .50 for both) and 5992 steps per day and 9.3 minutes/d of MVPA in individuals with VI (P < .01 for both). In multivariable models, individuals with VI took 26% fewer steps per day (P < .01; 95% CI, 18%-34%) and spent 48% less time in MVPA (P < .01; 95% CI, 37%-57%) than individuals with normal sight. The decrement in steps and MVPA associated with VI equaled or exceeded that associated with self-reported chronic obstructive pulmonary disease, diabetes mellitus, arthritis, stroke, or congestive heart failure. Visual impairment, but not URE, impacts physical activity equal to or greater than other serious medical conditions. The substantial decrement in physical activity observed in nonrefractive vision loss highlights a need for better strategies to safely improve mobility and increase physical activity in this group.

  17. Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus

    2018-05-01

    Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from

  18. Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications.

    PubMed

    Taraldsen, Kristin; Chastin, Sebastien F M; Riphagen, Ingrid I; Vereijken, Beatrix; Helbostad, Jorunn L

    2012-01-01

    To systematically review the literature on physical activity variables derived from body-worn sensors during long term monitoring in healthy and in-care older adults. Using pre-designed inclusion and exclusion criteria, a PubMed search strategy was designed to trace relevant reports of studies. Last search date was March 8, 2011. Studies that included persons with mean or median age of >65 years, used accelerometer-based body-worn sensors with a monitoring length of >24h, and reported values on physical activity in the samples assessed. 1403 abstracts were revealed and 134 full-text papers included in the final review. A variety of variables derived from activity counts or recognition of performed activities were reported in healthy older adults as well as in in-care older adults. Three variables were possible to compare across studies, level of Energy Expenditure in kcal per day and activity recognition in terms of total time in walking and total activity. However, physical activity measured by these variables demonstrated large variation between studies and did not distinguish activity between healthy and in-care samples. There is a rich variety in methods used for data collection and analysis as well as in reported variables. Different aspects of physical activity can be described, but the variety makes it challenging to compare across studies. There is an urgent need for developing consensus on activity monitoring protocols and which variables to report. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Parenting styles, parenting practices, and physical activity in 10- to 11-year olds.

    PubMed

    Jago, Russell; Davison, Kirsten K; Brockman, Rowan; Page, Angie S; Thompson, Janice L; Fox, Kenneth R

    2011-01-01

    The objective of this study was to determine whether parenting styles and practices are associated with children's physical activity. Cross-sectional survey of seven hundred ninety-two 10- to 11-year-old UK children in Bristol (UK) in 2008-2009 was conducted. Accelerometer-assessed physical activity and mean minutes of moderate-to-vigorous physical activity (mean MVPA) and mean counts per minute (mean CPM) were obtained. Maternal parenting style and physical activity parenting practices were self-reported. In regression analyses, permissive parenting was associated with higher mean MVPA among girls (+6.0 min/day, p<0.001) and greater mean CPM (+98.9 accelerometer counts/min, p=0.014) among boys when compared to children with authoritative parents. Maternal logistic support was associated with mean CPM for girls (+36.2 counts/min, p=0.001), while paternal logistic support was associated with boys' mean MVPA (+4.0 min/day, p=0.049) and mean CPM (+55.7 counts/min, p=0.014). Maternal permissive parenting was associated with higher levels of physical activity than authoritative parenting, but associations differed by child gender and type of physical activity. Maternal logistic support was associated with girls' physical activity, while paternal logistic support was associated with boys' physical activity. Health professionals could encourage parents to increase logistic support for their children's physical activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    PubMed Central

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  1. [Relationship between physical activity and hemodynamic parameters in adults].

    PubMed

    Gómez-Sánchez, L; García-Ortiz, L; Recio-Rodríguez, J I; Patino-Alonso, M C; Agudo-Conde, C; Gómez-Marcos, M A

    2015-01-01

    To analyze the relationship between physical activity, as assessed by accelerometer, with central and peripheral augmentation index and carotid intima media thickness (IMT) in adults. This study analyzed 263 subjects who were included in the EVIDENT study. Physical activity was assessed during 7 days using the ActigraphGT3X accelerometer (counts/min). Carotid ultrasound was used to measure carotid IMT. The Sphygmo Cor System was used to measure central and peripheral augmentation index (CAIx and PAIx). Mean age 55.85±12 years; 59.30% female; 26.7 body mass index and blood pressure 120/77mmHg. Mean physician activity counts/min was 244.37 and 2.63±10.26min/day of vigorous or very vigorous activity. Physical activity showed an inverse correlation with PAIx (r=-0.179; P<.01) and vigorous activity day time with IMT(r=-0.174; P<.01), CAIx (r=-0.217; P<.01) and PAIx (r=-0.324; P<.01). After adjusting for confounding factors in the multiple regression analysis, the inverse association of CAIx with counts/min and the time spent in vigorous/very vigorous activity was maintained. The results suggest that both physical activity and time spent in vigorous or vigorous activity are associated with the central augmentation index in adults. Copyright © 2015 SEHLELHA. Published by Elsevier Espana. All rights reserved.

  2. Comparison of accelerometer-measured sedentary behavior, and light- and moderate-to-vigorous-intensity physical activity in white- and blue-collar workers in a Japanese manufacturing plant.

    PubMed

    Fukushima, Noritoshi; Kitabayashi, Makiko; Kikuchi, Hiroyuki; Sasai, Hiroyuki; Oka, Koichiro; Nakata, Yoshio; Tanaka, Shigeho; Inoue, Shigeru

    2018-05-25

    The times spent in sedentary behavior (SB) and moderate-to-vigorous physical activity (MVPA) are independently associated with health outcomes; however, objective data on physical activity levels including SB among different occupations is limited. We compared accelerometer-measured times spent in SB, light-intensity physical activity (LPA), and MVPA, and the patterns associated with prolonged bouts of SB between white- and blue-collar workers. The study population consisted of 102 full-time plant workers (54 white-collar and 48 blue-collar) who wore a triaxial accelerometer during waking hours for 5 working days. Accelerometer-measured activity levels were categorized as SB (≤1.5 metabolic equivalents (METs)), LPA (1.6-2.9 METs), and MVPA (≥3.0 METs). A sedentary bout was defined as consecutive minutes during which the accelerometer registered less than ≤1.5 METs. Accelerometer variables were compared between white- and blue-collar workers through analysis of covariance. During working hours, white-collar workers spent significantly more time in SB and less time in LPA than blue-collar workers (SB: 6.4 h vs. 4.8 h, 73% vs. 55% of total work time; LPA: 1.9 h vs. 3.5 h, 22% vs. 40% of total work time, p<.001), whereas the MVPA time was similar between the groups. White-collar workers spent significantly more SB time in prolonged sedentary bouts (≥30 min) compared to blue-collar workers. During leisure time, the SB, LPA, and MVPA times were similar between the groups. White-collar workers have significantly longer SB times than blue-collar workers during work hours, and do not compensate for their excess SB during work by reducing SB during leisure time.

  3. Watch-Dog: Detecting Self-Harming Activities From Wrist Worn Accelerometers.

    PubMed

    Bharti, Pratool; Panwar, Anurag; Gopalakrishna, Ganesh; Chellappan, Sriram

    2018-05-01

    In a 2012 survey, in the United States alone, there were more than 35 000 reported suicides with approximately 1800 of being psychiatric inpatients. Recent Centers for Disease Control and Prevention (CDC) reports indicate an upward trend in these numbers. In psychiatric facilities, staff perform intermittent or continuous observation of patients manually in order to prevent such tragedies, but studies show that they are insufficient, and also consume staff time and resources. In this paper, we present the Watch-Dog system, to address the problem of detecting self-harming activities when attempted by in-patients in clinical settings. Watch-Dog comprises of three key components-Data sensed by tiny accelerometer sensors worn on wrists of subjects; an efficient algorithm to classify whether a user is active versus dormant (i.e., performing a physical activity versus not performing any activity); and a novel decision selection algorithm based on random forests and continuity indices for fine grained activity classification. With data acquired from 11 subjects performing a series of activities (both self-harming and otherwise), Watch-Dog achieves a classification accuracy of , , and for same-user 10-fold cross-validation, cross-user 10-fold cross-validation, and cross-user leave-one-out evaluation, respectively. We believe that the problem addressed in this paper is practical, important, and timely. We also believe that our proposed system is practically deployable, and related discussions are provided in this paper.

  4. Comparison of Activity Type Classification Accuracy from Accelerometers Worn on the Hip, Wrists, and Thigh in Young, Apparently Healthy Adults

    ERIC Educational Resources Information Center

    Montoye, Alexander H. K.; Pivarnik, James M.; Mudd, Lanay M.; Biswas, Subir; Pfeiffer, Karin A.

    2016-01-01

    The purpose of this article is to compare accuracy of activity type prediction models for accelerometers worn on the hip, wrists, and thigh. Forty-four adults performed sedentary, ambulatory, lifestyle, and exercise activities (14 total, 10 categories) for 3-10 minutes each in a 90-minute semi-structured laboratory protocol. Artificial neural…

  5. Wearable Accelerometers in High Performance Jet Aircraft.

    PubMed

    Rice, G Merrill; VanBrunt, Thomas B; Snider, Dallas H; Hoyt, Robert E

    2016-02-01

    Wearable accelerometers have become ubiquitous in the fields of exercise physiology and ambulatory hospital settings. However, these devices have yet to be validated in extreme operational environments. The objective of this study was to correlate the gravitational forces (G forces) detected by wearable accelerometers with the G forces detected by high performance aircraft. We compared the in-flight G forces detected by the two commercially available portable accelerometers to the F/A-18 Carrier Aircraft Inertial Navigation System (CAINS-2) during 20 flights performed by the Navy's Flight Demonstration Squadron (Blue Angels). Postflight questionnaires were also used to assess the perception of distractibility during flight. Of the 20 flights analyzed, 10 complete in-flight comparisons were made, accounting for 25,700 s of correlation between the CAINS-2 and the two tested accelerometers. Both accelerometers had strong correlations with that of the F/A-18 Gz axis, averaging r = 0.92 and r = 0.93, respectively, over 10 flights. Comparison of both portable accelerometer's average vector magnitude to each other yielded an average correlation of r = 0.93. Both accelerometers were found to be minimally distracting. These results suggest the use of wearable accelerometers is a valid means of detecting G forces during high performance aircraft flight. Future studies using this surrogate method of detecting accelerative forces combined with physiological information may yield valuable in-flight normative data that heretofore has been technically difficult to obtain and hence holds the promise of opening the door for a new golden age of aeromedical research.

  6. Sex differences in relationships between habitual physical activity and health in the elderly: practical implications for epidemiologists based on pedometer/accelerometer data from the Nakanojo Study.

    PubMed

    Aoyagi, Yukitoshi; Shephard, Roy J

    2013-01-01

    We review sex differences in the relationship between habitual physical activity and health in the elderly, with particular reference to pedometer/accelerometer data from the Nakanojo Study. Maximal aerobic power, walking speed and habitual physical activity are 10-30% greater in men than in women. This reflects not only biological but also socio-cultural and environmental factors, with the latter becoming dominant as age advances. It implies a need for sex-specific thresholds of moderate activity. Overall health is associated with both the year-averaged daily step count (the best indicator in women) and the year-averaged daily duration of physical activity >3 metabolic equivalents (METs) (the best indicator in men). In both sexes, the threshold ranges of step count and/or duration of activity >3 METs associated with a reduced prevalence of health problems are: 4000-5000 steps/day and/or 5-7.5 min/day for impaired mental and psychosocial health, such as a depressed mood state and a poor health-related quality of life; 7000-8000 steps/day and/or 15-20 min/day for markers of aortic arteriosclerosis, osteoporosis, sarcopenia and poor physical fitness; and 8000-10,000 steps/day and/or 20-30 min/day for components of the metabolic syndrome, especially hypertension and hyperglycemia. Irrespective of sex, both the intensity and the total volume of physical activity are influenced by stressful life events, such as a partner's death, and immediate meteorological factors, particularly precipitation and mean ambient temperature, underlining the need for long-term measurement of activity patterns. These findings have practical implications for those who engage in epidemiological studies and/or design health promotional programs for the elderly. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Physical Activity Level and Sedentary Behaviors among Public School Children in Dakar (Senegal) Measured by PAQ-C and Accelerometer: Preliminary Results

    PubMed Central

    Diouf, Adama; Thiam, Mbeugué; Idohou-Dossou, Nicole; Diongue, Ousmane; Mégné, Ndé; Diallo, Khady; Sembène, Pape Malick; Wade, Salimata

    2016-01-01

    Background: Physical inactivity and sedentary lifestyles are major risk factors of childhood obesity. This study aimed to measure physical activity (PA) levels by accelerometer and Physical Activity Questionnaire for Older Children (PAQ-C) among Senegalese school children and the relation with Body Mass Index (BMI) and body composition. Methodology: 156 pupils 8–11 years old were randomly selected in four elementary public schools of Dakar. BMI z-score was used to categorize children according to their weight status. PA was measured by PAQ-C in the 156 pupils and by accelerometer (Actigraph GT3X+, Pensacola, FL, USA) in a subsample of 42 children. Body composition was determined by deuterium dilution method. Results: PAQ-C results were comparable in the 156 and 42 pupils. The 42 pupils presented a light activity measured by accelerometer, while PAQ-C classified the majority of them (57%; n = 24) in the moderate PA level. Children spent most of their time (min/day) in sedentary activities and light activities than in moderate and intense activity levels. Accumulation of 60 min/day Moderate-to-Vigorous Physical Activity (MVPA) was achieved by 54.8% (n = 23) of the pupils. MVPA decreased in girls in relation to their body fatness. There was a significant difference in MVPA between boys and girls. Similarly, overweight/obese (45 ± 16 min/day) children had lower MVPA than their normal and underweight peers (88 ± 34 and 74 ± 36 min/day, respectively; p = 0.004). Conclusions: The two methods are inconsistent for measuring light and moderate PA levels. Although PAQ-C is an uncomplicated routine method, various activities were not adapted for genuine activities in Senegalese children and therefore needs to be validated in African children. PMID:27735876

  8. Physical Activity Level and Sedentary Behaviors among Public School Children in Dakar (Senegal) Measured by PAQ-C and Accelerometer: Preliminary Results.

    PubMed

    Diouf, Adama; Thiam, Mbeugué; Idohou-Dossou, Nicole; Diongue, Ousmane; Mégné, Ndé; Diallo, Khady; Sembène, Pape Malick; Wade, Salimata

    2016-10-10

    Background : Physical inactivity and sedentary lifestyles are major risk factors of childhood obesity. This study aimed to measure physical activity (PA) levels by accelerometer and Physical Activity Questionnaire for Older Children (PAQ-C) among Senegalese school children and the relation with Body Mass Index (BMI) and body composition. Methodology : 156 pupils 8-11 years old were randomly selected in four elementary public schools of Dakar. BMI z -score was used to categorize children according to their weight status. PA was measured by PAQ-C in the 156 pupils and by accelerometer (Actigraph GT3X+, Pensacola, FL, USA) in a subsample of 42 children. Body composition was determined by deuterium dilution method. Results : PAQ-C results were comparable in the 156 and 42 pupils. The 42 pupils presented a light activity measured by accelerometer, while PAQ-C classified the majority of them (57%; n = 24) in the moderate PA level. Children spent most of their time (min/day) in sedentary activities and light activities than in moderate and intense activity levels. Accumulation of 60 min/day Moderate-to-Vigorous Physical Activity (MVPA) was achieved by 54.8% ( n = 23) of the pupils. MVPA decreased in girls in relation to their body fatness. There was a significant difference in MVPA between boys and girls. Similarly, overweight/obese (45 ± 16 min/day) children had lower MVPA than their normal and underweight peers (88 ± 34 and 74 ± 36 min/day, respectively; p = 0.004). Conclusions : The two methods are inconsistent for measuring light and moderate PA levels. Although PAQ-C is an uncomplicated routine method, various activities were not adapted for genuine activities in Senegalese children and therefore needs to be validated in African children.

  9. You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H; Pulvermüller, Friedemann

    2012-02-15

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. New Matching Method for Accelerometers in Gravity Gradiometer

    PubMed Central

    Wei, Hongwei; Wu, Meiping; Cao, Juliang

    2017-01-01

    The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584

  11. A National Survey of Physical Activity and Sedentary Behavior of Chinese City Children and Youth Using Accelerometers

    ERIC Educational Resources Information Center

    Wang, Chao; Chen, Peijie; Zhuang, Jie

    2013-01-01

    Purpose: The purpose of this study was to objectively assess levels of physical activity (PA) and sedentary behavior (SB) of Chinese city children and youth aged 9 to 17 years old using accelerometers and to examine their differences by gender, age, grade, and weight status. Method: The PA and SB of 2,163 students in 4th grade through 11th grade…

  12. Effects of message framing on self-report and accelerometer-assessed physical activity across age and gender groups.

    PubMed

    Li, Kin-Kit; Cheng, Sheung-Tak; Fung, Helene H

    2014-02-01

    This study compared message-framing effects on physical activity (PA) across age and gender groups. Participants included 111 younger and 100 older adults (68% were women), randomly assigned to read gain-framed or loss-framed PA messages in promotion pamphlets, and who wore accelerometers for the following 14 days. Using regression analyses controlling for demographic and health factors, we found significant age-by-gender-by-framing interactions predicting self-report (B = -4.39, p = .01) and accelerometer-assessed PA (B = -2.44, p = .02) during the follow-up period. Gain-framed messages were more effective than loss-framed messages in promoting PA behaviors only among older men. We speculated that the age-related positivity effect, as well as the age and gender differences in issue involvement, explained the group differences in framing. In addition, more time availability and higher self-efficacy among older men might have contributed to the results.

  13. Seasonal Variation in Objectively Assessed Physical Activity among Young Norwegian Talented Soccer Players: A Description of Daily Physical Activity Level

    PubMed Central

    Sæther, Stig A.; Aspvik, Nils P.

    2014-01-01

    ‘Practise makes perfect’ is a well-known expression in most sports, including top-level soccer. However, a high training and match load increases the risk for injury, overtraining and burnout. With the use of accelerometers and a self-report questionnaire, the aim of this study was to describe talented players’ physical activity (PA) level. Data were collected three times during the 2011 Norwegian Football season (March, June and October). The accelerometer output, counts·min–1 (counts per unit time registered), reports the daily PA-level for young talented soccer players. Results showed a stable PA-level across the season (March: 901.2 counts·min–1, June: 854.9 counts·min–1, October: 861.5 counts·min–1). Furthermore, comparison of five different training sessions across the season showed that the PA-level ranged from 2435.8 to 3745.4 counts·min–1. A one-way ANOVA showed no significant differences between the three measured weeks during the soccer season (p≤0.814). However, the training sessions in January had a significantly higher PA-level than those in June and October (p≤0.001). Based on these results, we discuss how potential implications of PA-level affect factors such as risk of injury, overtraining and burnout. We argue that player development must be seen as part of an overall picture in which club training and match load should be regarded as one of many variables influencing players’ PA-level. Key points It is well established that to achieve a high performance level in sport, one must implement a high training and match load in childhood and youth. With the use of accelerometers and a self-reported questionnaire, the aim of this study was to describe talented players’ total physical activity (PA) load. These results indicate that young talented soccer players must overcome large doses of PA on a weekly basis, exposing them to a high risk of injury, overtraining and burnout. PMID:25435792

  14. Seasonal Variation in Objectively Assessed Physical Activity among Young Norwegian Talented Soccer Players: A Description of Daily Physical Activity Level.

    PubMed

    Sæther, Stig A; Aspvik, Nils P

    2014-12-01

    'Practise makes perfect' is a well-known expression in most sports, including top-level soccer. However, a high training and match load increases the risk for injury, overtraining and burnout. With the use of accelerometers and a self-report questionnaire, the aim of this study was to describe talented players' physical activity (PA) level. Data were collected three times during the 2011 Norwegian Football season (March, June and October). The accelerometer output, counts·min(-1) (counts per unit time registered), reports the daily PA-level for young talented soccer players. Results showed a stable PA-level across the season (March: 901.2 counts·min(-1), June: 854.9 counts·min(-1), October: 861.5 counts·min(-1)). Furthermore, comparison of five different training sessions across the season showed that the PA-level ranged from 2435.8 to 3745.4 counts·min(-1). A one-way ANOVA showed no significant differences between the three measured weeks during the soccer season (p≤0.814). However, the training sessions in January had a significantly higher PA-level than those in June and October (p≤0.001). Based on these results, we discuss how potential implications of PA-level affect factors such as risk of injury, overtraining and burnout. We argue that player development must be seen as part of an overall picture in which club training and match load should be regarded as one of many variables influencing players' PA-level. Key pointsIt is well established that to achieve a high performance level in sport, one must implement a high training and match load in childhood and youth.With the use of accelerometers and a self-reported questionnaire, the aim of this study was to describe talented players' total physical activity (PA) load.These results indicate that young talented soccer players must overcome large doses of PA on a weekly basis, exposing them to a high risk of injury, overtraining and burnout.

  15. A review of micromachined thermal accelerometers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar

    2017-12-01

    A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.

  16. Fiber Optic Laser Accelerometer

    DTIC Science & Technology

    2007-11-06

    embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by

  17. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  18. Effect of 12-month intervention with lipid-based nutrient supplements on physical activity of 18-month-old Malawian children: a randomised, controlled trial.

    PubMed

    Pulakka, A; Ashorn, U; Cheung, Y B; Dewey, K G; Maleta, K; Vosti, S A; Ashorn, P

    2015-02-01

    This study measured the effects of dietary supplementation with lipid-based nutrient supplements (LNSs) on 18-month-old children's physical activity. In a randomised, controlled, outcome-assessor blinded trial 1932 six-month-old children from Malawi received one of five interventions daily from 6-18 months of age: 10-g milk-LNS, 20-g milk-LNS, 20-g non-milk-LNS, 40-g milk-LNS or 40-g non-milk-LNS, or received no intervention in the same period (control). The control group received delayed intervention with corn-soy blend from 18-30 months. Physical activity was measured over 1 week by ActiGraph GT3X+ accelerometer at 18 months. Main outcome was mean vector magnitude accelerometer counts/15 s. Analyses were restricted to children with valid accelerometer data on at least 4 days with minimum 6 h of wearing time per day. Of the 1435 children recruited to this substudy, 1053 provided sufficient data for analysis. The mean (s.d.) vector magnitude accelerometer counts in the total sample were 307 (64). The difference (95% CI) in mean accelerometer counts, compared with the control group, was 8 (-6 to 21, P=0.258) in 10-g milk-LNS, 3 (-11 to 17, P=0.715) in 20-g milk-LNS, 5 (-8 to 19, P=0.445) in 20-g non-milk-LNS, 10 (-3 to 23, P=0.148) in 40-g milk-LNS and 2 (-12 to 16, P=0.760) in 40-g non-milk-LNS groups. Provision of 10-40 g doses of LNS daily for 12 months did not increase physical activity of Malawian toddlers.

  19. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    PubMed Central

    Huang, Tao; Gejl, Anne Kær; Froberg, Karsten

    2016-01-01

    Objectives To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. Methods The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12–14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Results Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Conclusions Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the

  20. A Comparison of Self-Report Scales and Accelerometer-Determined Moderate to Vigorous Physical Activity Scores of Finnish School Students

    ERIC Educational Resources Information Center

    Gråstén, Arto; Watt, Anthony

    2016-01-01

    The current article provides an important insight into measurement differences between two commonly used self-reports and accelerometer-determined moderate to vigorous physical activity (MVPA) scores within matched samples across 1 school year. Participants were 998 fifth- through eighth-grade students who completed self-reports and 76 fifth- and…

  1. New Insights into Activity Patterns in Children, Found Using Functional Data Analyses.

    PubMed

    Goldsmith, Jeff; Liu, Xinyue; Jacobson, Judith S; Rundle, Andrew

    2016-09-01

    Continuous monitoring of activity using accelerometers and other wearable devices provides objective, unbiased measurement of physical activity in minute-by-minute or finer resolutions. Accelerometers have already been widely deployed in studies of healthy aging, recovery of function after heart surgery, and other outcomes. Although common analyses of accelerometer data focus on single summary variables, such as the total or average activity count, there is growing interest in the determinants of diurnal profiles of activity. We use tools from functional data analysis (FDA), an area with an established statistical literature, to treat complete 24-h diurnal profiles as outcomes in a regression model. We illustrate the use of such models by analyzing data collected in New York City from 420 children participating in a Head Start program. Covariates of interest include season, sex, body mass index z-score, presence of an asthma diagnosis, and mother's birthplace. The FDA model finds several meaningful associations between several covariates and diurnal profiles of activity. In some cases, including shifted activity patterns for children of foreign-born mothers and time-specific effects of asthma on activity, these associations exist for covariates that are not associated with average activity count. FDA provides a useful statistical framework for settings in which the effect of covariates on the timing of activity is of interest. The use of similar models in other applications should be considered, and we make code public to facilitate this process.

  2. Parenting styles, parenting practices, and physical activity in 10- to 11-year olds

    PubMed Central

    Jago, Russell; Davison, Kirsten K.; Brockman, Rowan; Page, Angie S.; Thompson, Janice L.; Fox, Kenneth R.

    2011-01-01

    Objective The objective of this study was to determine whether parenting styles and practices are associated with children's physical activity. Methods Cross-sectional survey of seven hundred ninety-two 10- to 11-year-old UK children in Bristol (UK) in 2008–2009 was conducted. Accelerometer-assessed physical activity and mean minutes of moderate-to-vigorous physical activity (mean MVPA) and mean counts per minute (mean CPM) were obtained. Maternal parenting style and physical activity parenting practices were self-reported. Results In regression analyses, permissive parenting was associated with higher mean MVPA among girls (+ 6.0 min/day, p < 0.001) and greater mean CPM (+ 98.9 accelerometer counts/min, p = 0.014) among boys when compared to children with authoritative parents. Maternal logistic support was associated with mean CPM for girls (+ 36.2 counts/min, p = 0.001), while paternal logistic support was associated with boys' mean MVPA (+ 4.0 min/day, p = 0.049) and mean CPM (+ 55.7 counts/min, p = 0.014). Conclusions Maternal permissive parenting was associated with higher levels of physical activity than authoritative parenting, but associations differed by child gender and type of physical activity. Maternal logistic support was associated with girls' physical activity, while paternal logistic support was associated with boys' physical activity. Health professionals could encourage parents to increase logistic support for their children's physical activity. PMID:21070805

  3. Perceived office environments and occupational physical activity in office-based workers.

    PubMed

    Sawyer, A; Smith, L; Ucci, M; Jones, R; Marmot, A; Fisher, A

    2017-06-01

    Individuals in office-based occupations have low levels of physical activity but there is little research into the socio-ecological correlates of workplace activity. To identify factors contributing to office-based workers' perceptions of the office environment and explore cross-sectional relationships between these factors and occupational physical activity. Participants in the Active Buildings study reported perceptions of their office environment using the Movement at Work Survey. A principal component analysis (PCA) was conducted on survey items. A sub-sample wore the ActivPAL3TM accelerometer for ≥3 workdays to measure occupational step count, standing, sitting and sit-to-stand transitions. Linear regression analyses assessed relationships between environmental perceptions and activity. There were 433 participants, with accelerometer data available for 115 participants across 11 organ izations. The PCA revealed four factors: (i) perceived distance to office destinations, (ii) perceived office aesthetics and comfort, (iii) perceived office social environment and (iv) perceived management discouragement of unscheduled breaks. Younger participants perceived office destinations as being closer to their desk. Younger and female participants perceived more positive office social environments; there were no other socio-demographic differences. Within the sub-sample with accelerometer data, perceived discouragement of breaks by management was related to occupational step count/hour (B = -64.5; 95% CI -109.7 to -19.2). No other environmental perceptions were related to activity or sitting. Perceived managerial discouragement of breaks could be related to meaningful decreases in occupational step count. Future research should aim to elucidate the role of the workplace socio-cultural environment in occupational walking, with a focus on the role of management. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All

  4. Rectilinear accelerometer possesses self- calibration feature

    NASA Technical Reports Server (NTRS)

    Henderson, R. B.

    1966-01-01

    Rectilinear accelerometer operates from an ac source with a phase-sensitive ac voltage output proportional to the applied accelerations. The unit includes an independent circuit for self-test which provides a sensor output simulating an acceleration applied to the sensitive axis of the accelerometer.

  5. Accelerometer-measured daily physical activity related to aerobic fitness in children and adolescents.

    PubMed

    Dencker, Magnus; Andersen, Lars B

    2011-06-01

    Maximum oxygen uptake (VO(2PEAK)) is generally considered to be the best single marker for aerobic fitness. While a positive relationship between daily physical activity and aerobic fitness has been established in adults, the relationship appears less clear in children and adolescents. The purpose of this paper is to summarise recently published data on the relationship between daily physical activity, as measured by accelerometers, and VO(2PEAK) in children and adolescents. A PubMed search was performed on 29 October 2010 to identify relevant articles. Studies were considered relevant if they included measurement of daily physical activity by accelerometry and related to a VO(2PEAK) either measured directly at a maximal exercise test or estimated from maximal power output. A total of nine studies were identified, with a total number of 6116 children and adolescents investigated. Most studies reported a low-to-moderate relationship (r = 0.10-0.45) between objectively measured daily physical activity and VO(2PEAK). No conclusive evidence exists that physical activity of higher intensities are more closely related to VO(2PEAK), than lower intensities.

  6. Pinochle Poker: An Activity for Counting and Probability

    ERIC Educational Resources Information Center

    Wroughton, Jacqueline; Nolan, Joseph

    2012-01-01

    Understanding counting rules is challenging for students; in particular, they struggle with determining when and how to implement combinations, permutations, and the multiplication rule as tools for counting large sets and computing probability. We present an activity--using ideas from the games of poker and pinochle--designed to help students…

  7. Quasi-Static Calibration Method of a High-g Accelerometer

    PubMed Central

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-01-01

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743

  8. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  9. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  10. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  11. Design and implementation of a micromechanical silicon resonant accelerometer.

    PubMed

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-11-19

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  12. Factors related to accelerometer-derived physical activity in Pacific children aged 6 years.

    PubMed

    Oliver, Melody; Schluter, Philip J; Schofield, Grant M; Paterson, Janis

    2011-01-01

    The objective of this study was to investigate potential factors related to Pacific children's moderate-to-vigorous physical activity (MVPA). A total of 393 Pacific children aged 6 years and their mothers were invited to participate. Participants wore accelerometers over 8 days; height, weight, and waist circumference were measured, and mothers reported on individual, social, and perceived environmental factors. Generalized estimation equation models were used to identify associates of children's daily MVPA. In all, 135 children and 91 mothers were included in analyses. Children spent 24% of time in MVPA; 99% of days had ≥60 minutes of MVPA. Higher maternal MVPA, male sex, longer sunlight hours, and rain-free days were associated with children's MVPA. Approaches for improving activity in Pacific children may be most efficacious if strategies for inclement weather and the encouragement of activity in mothers and, in particular, their daughters are included. Also, 60 minutes of daily MVPA may be insufficient to protect Pacific children from increased body size.

  13. Walking as a Contributor to Physical Activity in Healthy Older Adults: 2 Week Longitudinal Study Using Accelerometry and the Doubly Labeled Water Method

    PubMed Central

    Bonomi, Alberto G; Westerterp, Klaas R

    2016-01-01

    Background Physical activity is recommended to promote healthy aging. Defining the importance of activities such as walking in achieving higher levels of physical activity might provide indications for interventions. Objective To describe the importance of walking in achieving higher levels of physical activity in older adults. Methods The study included 42 healthy subjects aged between 51 and 84 years (mean body mass index 25.6 kg/m2 [SD 2.6]). Physical activity, walking, and nonwalking activity were monitored with an accelerometer for 2 weeks. Physical activity was quantified by accelerometer-derived activity counts. An algorithm based on template matching and signal power was developed to classify activity counts into nonwalking counts, short walk counts, and long walk counts. Additionally, in a subgroup of 31 subjects energy expenditure was measured using doubly labeled water to derive physical activity level (PAL). Results Subjects had a mean PAL of 1.84 (SD 0.19, range 1.43-2.36). About 20% of the activity time (21% [SD 8]) was spent walking, which accounted for about 40% of the total counts (43% [SD 11]). Short bouts composed 83% (SD 9) of walking time, providing 81% (SD 11) of walking counts. A stepwise regression model to predict PAL included nonwalking counts and short walk counts, explaining 58% of the variance of PAL (standard error of the estimate=0.12). Walking activities produced more counts per minute than nonwalking activities (P<.001). Long walks produced more counts per minute than short walks (P=.001). Nonwalking counts were independent of walking counts (r=−.05, P=.38). Conclusions Walking activities are a major contributor to physical activity in older adults. Walking activities occur at higher intensities than nonwalking activities, which might prevent individuals from engaging in more walking activity. Finally, subjects who engage in more walking activities do not tend to compensate by limiting nonwalking activities. Trial Registration

  14. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  15. A Simple Accelerometer Calibrator

    NASA Astrophysics Data System (ADS)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  16. Total pollen counts do not influence active surface measurements

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Schinko, Herwig; Neuberger, Manfred

    We investigated the temporal association of various aerosol parameters with pollen counts in the pollen season (April 2001) in Linz, Austria. We were especially interested in the relationship between active surface (or Fuchs' surface) because we had shown previously (Atmos. Environ. 37 (2003) 1737-1744) that this parameter during the same observation period was a better predictor for acute respiratory symptoms in school children (like wheezing, shortness of breath, and cough) and reduced lung function on the same day than particle mass (PM 10). While active surface is most sensitive for fine particles with a diameter of less than 100 nm it has no strict upper cut-off regarding particle size and so could eventually be influenced also by larger particles if their numbers were high. All particle mass parameters tested (TSP, PM 10, PM 1) were weakly ( r approximately 0.2) though significantly correlated with pollen counts but neither was active surface nor total particle counts (CPC). The weak association of particle mass and pollen counts was due mainly to similar diurnal variations and a linear trend over time. Only the mass of the coarse fraction (TSP minus PM 10) remained associated with pollen counts significantly after controlling for these general temporal patterns.

  17. Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, S.L.; Harben, P.E.

    1997-01-07

    The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers withmore » temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.« less

  18. Reliability and validity of two multidimensional self-reported physical activity questionnaires in people with chronic low back pain.

    PubMed

    Carvalho, Flávia A; Morelhão, Priscila K; Franco, Marcia R; Maher, Chris G; Smeets, Rob J E M; Oliveira, Crystian B; Freitas Júnior, Ismael F; Pinto, Rafael Z

    2017-02-01

    Although there is some evidence for reliability and validity of self-report physical activity (PA) questionnaires in the general adult population, it is unclear whether we can assume similar measurement properties in people with chronic low back pain (LBP). To determine the test-retest reliability of the International Physical Activity Questionnaire (IPAQ) long-version and the Baecke Physical Activity Questionnaire (BPAQ) and their criterion-related validity against data derived from accelerometers in patients with chronic LBP. Cross-sectional study. Patients with non-specific chronic LBP were recruited. Each participant attended the clinic twice (one week interval) and completed self-report PA. Accelerometer measures >7 days included time spent in moderate-and-vigorous physical activity, steps/day, counts/minute, and vector magnitude counts/minute. Intraclass Correlation Coefficients (ICC) and Bland and Altman method were used to determine reliability and spearman rho correlation were used for criterion-related validity. A total of 73 patients were included in our analyses. The reliability analyses revealed that the BPAQ and its subscales have moderate to excellent reliability (ICC 2,1 : 0.61 to 0.81), whereas IPAQ and most IPAQ domains (except walking) showed poor reliability (ICC 2,1 : 0.20 to 0.40). The Bland and Altman method revealed larger discrepancies for the IPAQ. For the validity analysis, questionnaire and accelerometer measures showed at best fair correlation (rho < 0.37). Although the BPAQ showed better reliability than the IPAQ long-version, both questionnaires did not demonstrate acceptable validity against accelerometer data. These findings suggest that questionnaire and accelerometer PA measures should not be used interchangeably in this population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.

    PubMed

    Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.

  20. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults

    PubMed Central

    Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839

  1. Tool enables proper mating of accelerometer and cable connector

    NASA Technical Reports Server (NTRS)

    Steed, C. N.

    1966-01-01

    Tool supports accelerometer in axial alignment with an accelerometer cable connector and permits tightening of the accelerometer to the cable connector with a torque wrench. This is done without damaging the components or permitting them to work loose under sustained, high-level vibrations.

  2. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  3. Development of an accelerometer-based multivariate model to predict free-living energy expenditure in a large military cohort.

    PubMed

    Horner, Fleur; Bilzon, James L; Rayson, Mark; Blacker, Sam; Richmond, Victoria; Carter, James; Wright, Anthony; Nevill, Alan

    2013-01-01

    This study developed a multivariate model to predict free-living energy expenditure (EE) in independent military cohorts. Two hundred and eighty-eight individuals (20.6 ± 3.9 years, 67.9 ± 12.0 kg, 1.71 ± 0.10 m) from 10 cohorts wore accelerometers during observation periods of 7 or 10 days. Accelerometer counts (PAC) were recorded at 1-minute epochs. Total energy expenditure (TEE) and physical activity energy expenditure (PAEE) were derived using the doubly labelled water technique. Data were reduced to n = 155 based on wear-time. Associations between PAC and EE were assessed using allometric modelling. Models were derived using multiple log-linear regression analysis and gender differences assessed using analysis of covariance. In all models PAC, height and body mass were related to TEE (P < 0.01). For models predicting TEE (r (2) = 0.65, SE = 462 kcal · d(-1) (13.0%)), PAC explained 4% of the variance. For models predicting PAEE (r (2) = 0.41, SE = 490 kcal · d(-1) (32.0%)), PAC accounted for 6% of the variance. Accelerometry increases the accuracy of EE estimation in military populations. However, the unique nature of military life means accurate prediction of individual free-living EE is highly dependent on anthropometric measurements.

  4. Significant changes in physical activity among pregnant women in the UK as assessed by accelerometry and self-reported activity.

    PubMed

    Rousham, E K; Clarke, P E; Gross, H

    2006-03-01

    Research on the impact of maternal physical activity on pregnancy outcomes has often employed subjective measures of physical activity obtained by diary or questionnaire. This study investigates the feasibility of using accelerometry as an objective measure of physical activity of pregnant women compared with subjective data obtained via activity recall among pregnant women. Activity data were collected prospectively on 57 women at 12, 16, 25, 34 and 38 weeks of gestation. Total daily physical activity was assessed by ambulatory accelerometer and activity interview (self-report). Maternal personality variables (health value, extroversion) were assessed by established scales. Leicestershire, UK. Pregnant women were recruited by voluntary participation via antenatal booking clinics. In all, 64 pregnant women with low-risk pregnancy were enrolled onto the study, of whom 57 completed the study. Mean 24 h physical activity levels (PAL) decreased significantly from second to third trimester as assessed by self-report interview (1.51-1.29 Metabolic Equivalent TEE-h/day, P<0.01) and accelerometry (200.05-147.42 counts/min, P<0.01). The correlation between the two measures declined as pregnancy progressed (r value ranging from 0.55 to 0.08). Compliance with the accelerometers declined from 90% at 12 weeks to 47% at 34 weeks (P<0.01). Compliance with the self-report interviews was 100%. Those who fully complied with the accelerometry demonstrated a significantly higher health value (P<0.05) and a significantly greater level of extroversion (P<0.05) than those who did not. Accelerometers and self-reported activity interviews both indicated a significant decline in PAL during pregnancy. Although subjects showed a willingness to use both methods, accelerometers resulted in variable compliance with 72 h monitoring. Both techniques may be limited by the need to measure low levels of physical activity during the third trimester. Cambridge Neurotechnology Ltd, UK, assisted with the

  5. Rates of attrition, non-compliance and missingness in randomized controlled trials of child physical activity interventions using accelerometers: A brief methodological review.

    PubMed

    Howie, Erin K; Straker, Leon M

    2016-10-01

    The purpose of this brief review was to describe the missingness, from both attrition and non-compliance, during physical activity randomized controlled trials among children which have used accelerometers to measure physical activity. Systematic review. Using a previously published search strategy, an updated search of the literature was performed in the MEDLINE database for articles published from 1996 to February 2015 identifying physical activity RCTs in children (ages 2-18) measuring physical activity using accelerometers. Rates of attrition and non-compliance were extracted from identified articles. Twenty-three independent studies provided complete attrition and non-compliance data and were included. The mean attrition rate was 11.5% (SD 10.1%, range 0-30.9%). The mean accelerometer non-compliance rate at baseline was 22.7% (SD 16.4%, range 1.7-67.8%) and 29.6% (SD 19.4%, range 3.3-70.1%) at follow-up. The mean total study missingness was 37.4% (SD 20.2%, range 3.3-75.4%) and ranged from 3.3% to 75.4%. There was large variation in how missingness was accounted for between studies. There were no statistically significant differences in missingness between study characteristics including sample size, participant age, intervention setting, duration of follow-up, whether physical activity was the primary outcome, and weartime compliance criteria. Missingness is common among randomized controlled trials using accelerometry in children and is currently handled inconsistently. Researchers must plan for high levels of missingness in study design and account for missingness in reporting and analyses of trial outcomes. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. A biomimetic accelerometer inspired by the cricket's clavate hair

    PubMed Central

    Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  7. Hybridizing matter-wave and classical accelerometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lautier, J.; Volodimer, L.; Hardin, T.

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomicmore » accelerometers, namely, the dead times between consecutive measurements.« less

  8. Factors associated with change in objectively measured physical activity in older people - data from the physical activity cohort Scotland study.

    PubMed

    Clarke, Clare L; Sniehotta, Falko F; Vadiveloo, Thenmalar; Argo, Ishbel S; Donnan, Peter T; McMurdo, Marion E T; Witham, Miles D

    2017-08-14

    Cross-sectional relationships between physical activity and health have been explored extensively, but less is known about how physical activity changes with time in older people. The aim of this study was to assess baseline predictors of how objectively measured physical activity changes with time in older people. Longitudinal cohort study using data from the Physical Activity Cohort Scotland. A sample of community-dwelling older people aged 65 and over were recruited in 2009-2011, then followed up 2-3 years later. Physical activity was measured using Stayhealthy RT3 accelerometers over 7 days. Other data collected included baseline comorbidity, health-related quality of life (SF-36), extended Theory of Planned Behaviour Questionnaire and Social Capital Module of the General Household Survey. Associations between follow-up accelerometer counts and baseline predictors were analysed using a series of linear regression models, adjusting for baseline activity levels and follow-up time. Follow up data were available for 339 of the original 584 participants. The mean age was 77 years, 185 (55%) were female and mean follow up time was 26 months. Mean activity counts fell by between 2% per year (age < =80, deprivation decile 5-10) and 12% per year (age > 80, deprivation decile 5-10) from baseline values. In univariate analysis age, sex, deprivation decile, most SF-36 domains, most measures of social connectedness, most measures from the extended Theory of Planned Behaviour, hypertension, diabetes mellitus, chronic pain and depression score were significantly associated with adjusted activity counts at follow-up. In multivariate regression age, satisfactory friend network, SF-36 physical function score, and the presence of diabetes mellitus were independent predictors of activity counts at follow up after adjustment for baseline count and duration of follow up. Health status and social connectedness, but not extended Theory of Planned Behaviour measures

  9. No Evidence of Reciprocal Associations between Daily Sleep and Physical Activity.

    PubMed

    Mitchell, Jonathan A; Godbole, Suneeta; Moran, Kevin; Murray, Kate; James, Peter; Laden, Francine; Hipp, J Aaron; Kerr, Jacqueline; Glanz, Karen

    2016-10-01

    This study aimed to determine whether physical activity patterns are associated with sleep later at night and if nighttime sleep is associated with physical activity patterns the next day among adult women. Women (N = 353) living throughout the United States wore a wrist and a hip accelerometer for 7 d. Total sleep time (TST, hours per night) and sleep efficiency (SE, %) were estimated from the wrist accelerometer, and moderate to vigorous physical activity (MVPA, >1040 counts per minute, h·d) and sedentary behavior (SB, <100 counts per minute, h·d) were estimated from the hip accelerometer. Mixed-effects models adjusted for age, race, body mass index, education, employment, marital status, health status, and hip accelerometer wear time were used to analyze the data. Follow-up analyses using quantile regression were used to investigate associations among women with below average TST and MVPA and above average SB. The average age of our sample was 55.5 yr (SD = 10.2 yr). The majority of participants were White (79%) and married (72%), and half were employed full time (49%). The participants spent on average 8.9 and 1.1 h·d in SB and MVPA, respectively, and 6.8 h per night asleep. No associations were observed between MVPA and SB with nighttime TST or SE. There were no associations between nighttime TST and SE with MVPA or SB the next day. The findings were the same in the quantile regression analyses. In free-living adult women, accelerometry-estimated nighttime sleep and physical activity patterns were not associated with one another. On the basis of our observational study involving a sample of adult women, higher physical activity will not necessarily improve sleep at night on a day-to-day basis (and vice versa).

  10. Classification of occupational activity categories using accelerometry: NHANES 2003-2004.

    PubMed

    Steeves, Jeremy A; Tudor-Locke, Catrine; Murphy, Rachel A; King, George A; Fitzhugh, Eugene C; Harris, Tamara B

    2015-06-30

    An individual's occupational activity (OA) may contribute significantly to daily physical activity (PA) and sedentary behavior (SB). However, there is little consensus about which occupational categories involve high OA or low OA, and the majority of categories are unclassifiable with current methods. The purpose of this study was to present population estimates of accelerometer-derived PA and SB variables for adults (n = 1112, 20-60 years) working the 40 occupational categories collected during the 2003-2004 National Health and Nutrition Examination Survey (NHANES). ActiGraph accelerometer-derived total activity counts/day (TAC), activity counts/minute, and proportion of wear time spent in moderate-to-vigorous PA [MVPA], lifestyle, and light PA organized by occupational category were ranked in ascending order and SB was ranked in descending order. Summing the ranks of the six accelerometer-derived variables generated a summary score for each occupational category, which was re-ranked in ascending order. Higher rankings indicated higher levels of OA, lower rankings indicated lower levels of OA. Tertiles of the summary score were used to establish three mutually exclusive accelerometer-determined OA groupings: high OA, intermediate OA, and low OA. According to their summary score, 'farm and nursery workers' were classified as high OA and 'secretaries, stenographers, and typists' were classified as low OA. Consistent with previous research, some low OA occupational categories (e.g., 'engineers, architects, and scientists', 'technicians and related support occupations', 'management related occupations', 'executives, administrators, and managers', 'protective services', and 'writers, artists, entertainers, and athletes') associated with higher education and income had relatively greater amounts of MVPA compared to other low OA occupational categories, likely due to the greater percentage of men in those occupations and/or the influence of higher levels of leisure

  11. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  12. Electret accelerometers: physics and dynamic characterization.

    PubMed

    Hillenbrand, J; Haberzettl, S; Motz, T; Sessler, G M

    2011-06-01

    Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built. © 2011 Acoustical Society of America

  13. Lightweight fiber optic microphones and accelerometers

    NASA Astrophysics Data System (ADS)

    Bucaro, J. A.; Lagakos, N.

    2001-06-01

    We have designed, fabricated, and tested two lightweight fiber optic sensors for the dynamic measurement of acoustic pressure and acceleration. These sensors, one a microphone and the other an accelerometer, are required for active blanket sound control technology under development in our laboratory. The sensors were designed to perform to certain specifications dictated by our active sound control application and to do so without exhibiting sensitivity to the high electrical voltages expected to be present. Furthermore, the devices had to be small (volumes less than 1.5 cm3) and light (less than 2 g). To achieve these design criteria, we modified and extended fiber optic reflection microphone and fiber microbend displacement device designs reported in the literature. After fabrication, the performances of each sensor type were determined from measurements made in a dynamic pressure calibrator and on a shaker table. The fiber optic microbend accelerometer, which weighs less than 1.8 g, was found to meet all performance goals including 1% linearity, 90 dB dynamic range, and a minimum detectable acceleration of 0.2 mg/√Hz . The fiber optic microphone, which weighs less than 1.3 g, also met all goals including 1% linearity, 85 dB dynamic range, and a minimum detectable acoustic pressure level of 0.016 Pa/√Hz . In addition to our specific use in active sound control, these sensors appear to have application in a variety of other areas.

  14. Activity recognition of assembly tasks using body-worn microphones and accelerometers.

    PubMed

    Ward, Jamie A; Lukowicz, Paul; Tröster, Gerhard; Starner, Thad E

    2006-10-01

    In order to provide relevant information to mobile users, such as workers engaging in the manual tasks of maintenance and assembly, a wearable computer requires information about the user's specific activities. This work focuses on the recognition of activities that are characterized by a hand motion and an accompanying sound. Suitable activities can be found in assembly and maintenance work. Here, we provide an initial exploration into the problem domain of continuous activity recognition using on-body sensing. We use a mock "wood workshop" assembly task to ground our investigation. We describe a method for the continuous recognition of activities (sawing, hammering, filing, drilling, grinding, sanding, opening a drawer, tightening a vise, and turning a screwdriver) using microphones and three-axis accelerometers mounted at two positions on the user's arms. Potentially "interesting" activities are segmented from continuous streams of data using an analysis of the sound intensity detected at the two different locations. Activity classification is then performed on these detected segments using linear discriminant analysis (LDA) on the sound channel and hidden Markov models (HMMs) on the acceleration data. Four different methods at classifier fusion are compared for improving these classifications. Using user-dependent training, we obtain continuous average recall and precision rates (for positive activities) of 78 percent and 74 percent, respectively. Using user-independent training (leave-one-out across five users), we obtain recall rates of 66 percent and precision rates of 63 percent. In isolation, these activities were recognized with accuracies of 98 percent, 87 percent, and 95 percent for the user-dependent, user-independent, and user-adapted cases, respectively.

  15. CNN based approach for activity recognition using a wrist-worn accelerometer.

    PubMed

    Panwar, Madhuri; Dyuthi, S Ram; Chandra Prakash, K; Biswas, Dwaipayan; Acharyya, Amit; Maharatna, Koushik; Gautam, Arvind; Naik, Ganesh R

    2017-07-01

    In recent years, significant advancements have taken place in human activity recognition using various machine learning approaches. However, feature engineering have dominated conventional methods involving the difficult process of optimal feature selection. This problem has been mitigated by using a novel methodology based on deep learning framework which automatically extracts the useful features and reduces the computational cost. As a proof of concept, we have attempted to design a generalized model for recognition of three fundamental movements of the human forearm performed in daily life where data is collected from four different subjects using a single wrist worn accelerometer sensor. The validation of the proposed model is done with different pre-processing and noisy data condition which is evaluated using three possible methods. The results show that our proposed methodology achieves an average recognition rate of 99.8% as opposed to conventional methods based on K-means clustering, linear discriminant analysis and support vector machine.

  16. Reliability and Validity of Objective Measures of Physical Activity in Youth With Cerebral Palsy Who Are Ambulatory.

    PubMed

    O'Neil, Margaret E; Fragala-Pinkham, Maria; Lennon, Nancy; George, Ameeka; Forman, Jeffrey; Trost, Stewart G

    2016-01-01

    Physical therapy for youth with cerebral palsy (CP) who are ambulatory includes interventions to increase functional mobility and participation in physical activity (PA). Thus, reliable and valid measures are needed to document PA in youth with CP. The purpose of this study was to evaluate the inter-instrument reliability and concurrent validity of 3 accelerometer-based motion sensors with indirect calorimetry as the criterion for measuring PA intensity in youth with CP. Fifty-seven youth with CP (mean age=12.5 years, SD=3.3; 51% female; 49.1% with spastic hemiplegia) participated. Inclusion criteria were: aged 6 to 20 years, ambulatory, Gross Motor Function Classification System (GMFCS) levels I through III, able to follow directions, and able to complete the full PA protocol. Protocol activities included standardized activity trials with increasing PA intensity (resting, writing, household chores, active video games, and walking at 3 self-selected speeds), as measured by weight-relative oxygen uptake (in mL/kg/min). During each trial, participants wore bilateral accelerometers on the upper arms, waist/hip, and ankle and a portable indirect calorimeter. Intraclass coefficient correlations (ICCs) were calculated to evaluate inter-instrument reliability (left-to-right accelerometer placement). Spearman correlations were used to examine concurrent validity between accelerometer output (activity and step counts) and indirect calorimetry. Friedman analyses of variance with post hoc pair-wise analyses were conducted to examine the validity of accelerometers to discriminate PA intensity across activity trials. All accelerometers exhibited excellent inter-instrument reliability (ICC=.94-.99) and good concurrent validity (rho=.70-.85). All accelerometers discriminated PA intensity across most activity trials. This PA protocol consisted of controlled activity trials. Accelerometers provide valid and reliable measures of PA intensity among youth with CP. © 2016 American

  17. Locations of Joint Physical Activity in Parent-Child Pairs Based on Accelerometer and GPS Monitoring

    PubMed Central

    Dunton, Genevieve Fridlund; Liao, Yue; Almanza, Estela; Jerrett, Micheal; Spruijt-Metz, Donna; Pentz, Mary Ann

    2012-01-01

    Background Parental factors may play an important role in influencing children’s physical activity levels. Purpose This cross-sectional study sought to describe the locations of joint physical activity among parents and children. Methods Parent-child pairs (N = 291) wore an Actigraph GT2M accelerometer and GlobalSat BT-335 Global Positioning Systems (GPS) device over the same 7-day period. Children were ages 8–14 years. Joint behavior was defined by a linear separation distance of less than 50m between parent and child. Land use classifications were assigned to GPS data points. Results Joint physical activity was spread across residential locations (35%), and commercial venues (24%), and open spaces/parks (20%). Obese children and parents performed less joint physical activity in open spaces/parks than under/normal weight children and parents (p’s < .01). Conclusions Understanding where joint parent-child physical activity naturally occurs may inform location-based interventions to promote these behaviors. PMID:23011914

  18. Pulse shaping circuit for active counting of superheated emulsion

    NASA Astrophysics Data System (ADS)

    Murai, Ikuo; Sawamura, Teruko

    2005-08-01

    A pulse shaping circuit for active counting of superheated emulsions is described. A piezoelectric transducer is used for sensing bubble formation acoustically and the acoustic signal is transformed to a shaping pulse for counting. The circuit has a short signal processing time in the order of 10 ms.

  19. Accelerometer-based wireless body area network to estimate intensity of therapy in post-acute rehabilitation

    PubMed Central

    Choquette, Stéphane; Hamel, Mathieu; Boissy, Patrick

    2008-01-01

    Background It has been suggested that there is a dose-response relationship between the amount of therapy and functional recovery in post-acute rehabilitation care. To this day, only the total time of therapy has been investigated as a potential determinant of this dose-response relationship because of methodological and measurement challenges. The primary objective of this study was to compare time and motion measures during real life physical therapy with estimates of active time (i.e. the time during which a patient is active physically) obtained with a wireless body area network (WBAN) of 3D accelerometer modules positioned at the hip, wrist and ankle. The secondary objective was to assess the differences in estimates of active time when using a single accelerometer module positioned at the hip. Methods Five patients (77.4 ± 5.2 y) with 4 different admission diagnoses (stroke, lower limb fracture, amputation and immobilization syndrome) were recruited in a post-acute rehabilitation center and observed during their physical therapy sessions throughout their stay. Active time was recorded by a trained observer using a continuous time and motion analysis program running on a Tablet-PC. Two WBAN configurations were used: 1) three accelerometer modules located at the hip, wrist and ankle (M3) and 2) one accelerometer located at the hip (M1). Acceleration signals from the WBANs were synchronized with the observations. Estimates of active time were computed based on the temporal density of the acceleration signals. Results A total of 62 physical therapy sessions were observed. Strong associations were found between WBANs estimates of active time and time and motion measures of active time. For the combined sessions, the intraclass correlation coefficient (ICC) was 0.93 (P ≤ 0.001) for M3 and 0.79 (P ≤ 0.001) for M1. The mean percentage of differences between observation measures and estimates from the WBAN of active time was -8.7% ± 2.0% using data from M3 and

  20. The association between objectively measured physical activity and life-space mobility among older people.

    PubMed

    Tsai, L-T; Portegijs, E; Rantakokko, M; Viljanen, A; Saajanaho, M; Eronen, J; Rantanen, T

    2015-08-01

    The purpose of this cross-sectional study was to investigate the association between objectively measured physical activity and life-space mobility in community-dwelling older people. Life-space refers to the spatial area a person purposefully moves through in daily life (bedroom, home, yard, neighborhood, town, and beyond) and life-space mobility to the frequency of travel and the help needed when moving through different life-space areas. The study population comprised community-living 75- to 90-year-old people {n = 174; median age 79.7 [interquartile range (IQR) 7.1]}, participating in the accelerometer substudy of Life-Space Mobility in Old Age (LISPE) project. Step counts and activity time were measured by an accelerometer (Hookie "AM20 Activity Meter") for 7 days. Life-space mobility was assessed with Life-Space Assessment (LSA) questionnaire. Altogether, 16% had a life-space area restricted to the neighborhood when moving independently. Participants with a restricted life space were less physically active and about 70% of them had exceptionally low values in daily step counts (≤ 615 steps) and moderate activity time (≤ 6.8 min). Higher step counts and activity time correlated positively with life-space mobility. Prospective studies are needed to clarify the temporal order of low physical activity level and restriction in life-space mobility. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    PubMed Central

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  2. Associations of Accelerometer-Measured and Self-Reported Sedentary Time With Leukocyte Telomere Length in Older Women

    PubMed Central

    Shadyab, Aladdin H.; Macera, Caroline A.; Shaffer, Richard A.; Jain, Sonia; Gallo, Linda C.; LaMonte, Michael J.; Reiner, Alexander P.; Kooperberg, Charles; Carty, Cara L.; Di, Chongzhi; Manini, Todd M.; Hou, Lifang; LaCroix, Andrea Z.

    2017-01-01

    Abstract Few studies have assessed the association of sedentary time with leukocyte telomere length (LTL). In a cross-sectional study conducted in 2012–2013, we examined associations of accelerometer-measured and self-reported sedentary time with LTL in a sample of 1,481 older white and African-American women from the Women's Health Initiative and determined whether associations varied by level of moderate- to vigorous-intensity physical activity (MVPA). The association between sedentary time and LTL was evaluated using multiple linear regression models. Women were aged 79.2 (standard deviation, 6.7) years, on average. Self-reported sedentary time was not associated with LTL. In a model adjusting for demographic characteristics, lifestyle behaviors, and health-related factors, among women at or below the median level of accelerometer-measured MVPA, those in the highest quartile of accelerometer-measured sedentary time had significantly shorter LTL than those in the lowest quartile, with an average difference of 170 base pairs (95% confidence interval: 4, 340). Accelerometer-measured sedentary time was not associated with LTL in women above the median level of MVPA. Findings suggest that, on the basis of accelerometer measurements, higher sedentary time may be associated with shorter LTL among less physically active women. PMID:28100466

  3. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    NASA Technical Reports Server (NTRS)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    a few centimeters with respect to high-quality JPL reference orbits. This shows a slightly better consistency compared to the case when using force models. A purely dynamic orbit, without estimating empirical accelerations thus only adjusting six state parameters and the bias and scale factors, gives an orbit fit for the GRACE B test case below the decimeter level. The in orbit calibrated accelerometer observations can be used to validate the modelled accelerations and estimated empirical accelerations computed with the GHOST tools. In along track direction they show the best resemblance, with a mean correlation coefficient of 93% for the same period. In radial and normal direction the correlation is smaller. During days of high solar activity the benefit of using accelerometer observations is clearly visible. The observations during these days show fluctuations which the modelled and empirical accelerations can not follow.

  4. Optimal accelerometer placement on a robot arm for pose estimation

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.

    2017-05-01

    The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.

  5. Accelerometer-Derived Pattern of Sedentary and Physical Activity Time in Persons with Mobility Disability: National Health and Nutrition Examination Survey 2003 to 2006.

    PubMed

    Manns, Patricia; Ezeugwu, Victor; Armijo-Olivo, Susan; Vallance, Jeff; Healy, Genevieve N

    2015-07-01

    To describe objectively determined sedentary and activity outcomes (volume and pattern) and their associations with cardiometabolic risk biomarkers in individuals with and without mobility disability. Cross-sectional. Population based. Community-dwelling older adults (≥60) living in the United States who were participants in the 2003 to 2004 or 2005 to 2006 National Health and Nutrition Examination Survey. Participants were classified as with or without mobility disability according to responses to self-reported questions about ability to walk, climb stairs, and/or use of ambulatory aids. Accelerometer-derived sedentary and activity variables for volume (time in sedentary (<100 counts per minute (cpm)), very light- (100-759 cpm), light- (760-1,951 cpm), and moderate- to vigorous- (≥1,952 cpm) intensity activity and pattern (number of breaks from sedentary time, duration of sedentary bouts, duration of activity bouts). Survey-weighted regression models, adjusted for age, sex, ethnicity, education, and smoking, were used to examine the associations between pattern of activity and cardiometabolic health risk factors (blood pressure, waist circumference, high-density lipoprotein cholesterol). Of the 2,017 participants, 547 were classified as having a mobility disability. Participants with mobility disability had more sedentary time and less active time than those without. Sedentary bouts were longer and active bouts shorter in those with disability. The total number of sedentary breaks (transitions from sedentary to nonsedentary) differed between groups after adjustment for total sedentary time. Fewer breaks, longer sedentary bouts, and shorter activity bouts were associated with higher average waist circumference regardless of disability status. This study provides rationale for the development and testing of interventions to change the pattern of activity (e.g., include more breaks and longer activity bout durations) in older adults with mobility disability.

  6. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  7. Different grades MEMS accelerometers error characteristics

    NASA Astrophysics Data System (ADS)

    Pachwicewicz, M.; Weremczuk, J.

    2017-08-01

    The paper presents calibration effects of two different MEMS accelerometers of different price and quality grades and discusses different accelerometers errors types. The calibration for error determining is provided by reference centrifugal measurements. The design and measurement errors of the centrifuge are discussed as well. It is shown that error characteristics of the sensors are very different and it is not possible to use simple calibration methods presented in the literature in both cases.

  8. Repeat physical activity measurement by accelerometry among colorectal cancer patients--feasibility and minimal number of days of monitoring.

    PubMed

    Skender, Stephanie; Schrotz-King, Petra; Böhm, Jürgen; Abbenhardt, Clare; Gigic, Biljana; Chang-Claude, Jenny; Siegel, Erin M; Steindorf, Karen; Ulrich, Cornelia M

    2015-06-06

    Physical activity plays an important role in colorectal cancer and accelerometry is more frequently used to measure physical activity. The aim of this study was to evaluate feasibility of physical activity measurement by accelerometry in colorectal cancer patients under free-living conditions at 6, 12 and 24 months after surgery, to evaluate the appropriate wear time and to compare results to pedometry. Colorectal cancer patients (stage 0/I-IV) from the ColoCare study were asked to optionally wear an accelerometer and a pedometer for ten consecutive days 6, 12 and 24 months post-surgery. Participants completed a feedback questionnaire about the accelerometer measurement. The course of moderate-to-vigorous physical activity over the 10 days was investigated. Additionally, daily step counts from accelerometers and pedometers were compared. In total, there were 317 individual time points, at which 198 participants were asked to wear an accelerometer. Fifty-nine% initially agreed to participate and of these, 83% (n = 156) completed the assessment with at least 4 days of data. Twenty-one% more consents were obtained when participants were asked on a face-to-face basis compared to recruitment by telephone (P = 0.0002). There were no significant differences in time spent in moderate-to-vigorous physical activity between different wear-time lengths of accelerometry. Both Spearman and intraclass correlation coefficients showed strong correlations (0.92-0.99 and 0.84-0.99, respectively) of moderate-to-vigorous physical activity across 3, 4, 7 and 10 days measurement. Step counts measured by accelerometry and pedometry were strongly correlated (ρ = 0.91, P < 0.0001). This study suggest that accelerometry is a feasible method to assess physical activity in free-living colorectal cancer patients and that three valid days of physical activity measurement are sufficient for an accurate assessment.

  9. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    PubMed

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.

  10. Validation of Accelerometer Cut-Points in Children With Cerebral Palsy Aged 4 to 5 Years.

    PubMed

    Keawutan, Piyapa; Bell, Kristie L; Oftedal, Stina; Davies, Peter S W; Boyd, Roslyn N

    2016-01-01

    To derive and validate triaxial accelerometer cut-points in children with cerebral palsy (CP) and compare these with previously established cut-points in children with typical development. Eighty-four children with CP aged 4 to 5 years wore the ActiGraph during a play-based gross motor function measure assessment that was video-taped for direct observation. Receiver operating characteristic and Bland-Altman plots were used for analyses. The ActiGraph had good classification accuracy in Gross Motor Function Classification System (GMFCS) levels III and V and fair classification accuracy in GMFCS levels I, II, and IV. These results support the use of the previously established cut-points for sedentary time of 820 counts per minute in children with CP aged 4 to 5 years across all functional abilities. The cut-point provides an objective measure of sedentary and active time in children with CP. The cut-point is applicable to group data but not for individual children.

  11. Uniaxial angular accelerometers

    NASA Astrophysics Data System (ADS)

    Seleznev, A. V.; Shvab, I. A.

    1985-05-01

    The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.

  12. Screening Physical Activity in Family Practice: Validity of the Spanish Version of a Brief Physical Activity Questionnaire.

    PubMed

    Puig-Ribera, Anna; Martín-Cantera, Carlos; Puigdomenech, Elisa; Real, Jordi; Romaguera, Montserrat; Magdalena-Belio, José Félix; Recio-Rodríguez, Jose Ignacio; Rodriguez-Martin, Beatriz; Arietaleanizbeaskoa, Maria Soledad; Repiso-Gento, Irene; Garcia-Ortiz, Luis

    2015-01-01

    The use of brief screening tools to identify inactive patients is essential to improve the efficiency of primary care-based physical activity (PA) programs. However, the current employment of short PA questionnaires within the Spanish primary care pathway is unclear. This study evaluated the validity of the Spanish version of a Brief Physical Activity Assessment Tool (SBPAAT). A validation study was carried out within the EVIDENT project. A convenience sample of patients (n = 1,184; age 58.9±13.7 years; 60.5% female) completed the SBPAAT and the 7-day Physical Activity Recall (7DPAR) and, in addition, wore an accelerometer (ActiGraph GT3X) for seven consecutive days. Validity was evaluated by measuring agreement, Kappa correlation coefficients, sensitivity and specificity in achieving current PA recommendations with the 7DPAR. Pearson correlation coefficients with the number of daily minutes engaged in moderate and vigorous intensity PA according to the accelerometer were also assessed. Comparison with accelerometer counts, daily minutes engaged in sedentary, light, moderate, and vigorous intensity PA, total daily kilocalories, and total PA and leisure time expenditure (METs-hour-week) between the sufficiently and insufficiently active groups identified by SBPAAT were reported. The SBPAAT identified 41.3% sufficiently active (n = 489) and 58.7% insufficiently active (n = 695) patients; it showed moderate validity (k = 0.454, 95% CI: 0.402-0.505) and a specificity and sensitivity of 74.3% and 74.6%, respectively. Validity was fair for identifying daily minutes engaged in moderate (r = 0.215, 95% CI:0.156 to 0.272) and vigorous PA (r = 0.282, 95% CI:0.165 to 0.391). Insufficiently active patients according to the SBPAAT significantly reported fewer counts/minute (-22%), fewer minutes/day of moderate (-11.38) and vigorous PA (-2.69), spent fewer total kilocalories/day (-753), and reported a lower energy cost (METs-hour-week) of physical activities globally (-26

  13. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data.

    PubMed

    Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N

    2016-01-01

    To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by epoch length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all epoch lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). The common practice of converting WT algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.

  14. Validation of Questionnaire-Assessed Physical Activity in Comparison With Objective Measures Using Accelerometers and Physical Performance Measures Among Community-Dwelling Adults Aged ≥85 Years in Tokyo, Japan.

    PubMed

    Oguma, Yuko; Osawa, Yusuke; Takayama, Michiyo; Abe, Yukiko; Tanaka, Shigeho; Lee, I-Min; Arai, Yasumichi

    2017-04-01

    To date, there is no physical activity (PA) questionnaire with convergent and construct validity for the oldest-old. The aim of the current study was to investigate the validity of questionnaire-assessed PA in comparison with objective measures determined by uniaxial and triaxial accelerometers and physical performance measures in the oldest-old. Participants were 155 elderly (mean age 90 years) who were examined at the university and agreed to wear an accelerometer for 7 days in the 3-year-follow-up survey of the Tokyo Oldest-Old Survey of Total Health. Fifty-nine participants wore a uniaxial and triaxial accelerometer simultaneously. Self-rated walking, exercise, and household PA were measured using a modified Zutphen PA Questionnaire (PAQ). Several physical performance tests were done, and the associations among PAQ, accelerometer-assessed PA, and physical performances were compared by Spearman's correlation coefficients. Significant, low to moderate correlations between PA measures were seen on questionnaire and accelerometer assessments (ρ = 0.19 to 0.34). Questionnaireassessed PA measure were correlated with a range of lower extremity performance (ρ = 0.21 to 0.29). This PAQ demonstrated convergent and construct validity. Our findings suggest that the PAQ can reasonably be used in this oldest-old population to rank their PA level.

  15. High performance, accelerometer-based control of the Mini-MAST structure

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1992-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  16. Detection of falls using accelerometers and mobile phone technology.

    PubMed

    Lee, Raymond Y W; Carlisle, Alison J

    2011-11-01

    to study the sensitivity and specificity of fall detection using mobile phone technology. an experimental investigation using motion signals detected by the mobile phone. the research was conducted in a laboratory setting, and 18 healthy adults (12 males and 6 females; age = 29 ± 8.7 years) were recruited. each participant was requested to perform three trials of four different types of simulated falls (forwards, backwards, lateral left and lateral right) and eight other everyday activities (sit-to-stand, stand-to-sit, level walking, walking up- and downstairs, answering the phone, picking up an object and getting up from supine). Acceleration was measured using two devices, a mobile phone and an independent accelerometer attached to the waist of the participants. Bland-Altman analysis shows a higher degree of agreement between the data recorded by the two devices. Using individual upper and lower detection thresholds, the specificity and sensitivity for mobile phone were 0.81 and 0.77, respectively, and for external accelerometer they were 0.82 and 0.96, respectively. fall detection using a mobile phone is a feasible and highly attractive technology for older adults, especially those living alone. It may be best achieved with an accelerometer attached to the waist, which transmits signals wirelessly to a phone.

  17. Validity of the global physical activity questionnaire (GPAQ) in Bangladesh.

    PubMed

    Mumu, Shirin Jahan; Ali, Liaquat; Barnett, Anthony; Merom, Dafna

    2017-08-10

    Feasible and cost-effective as well as population specific instruments for monitoring physical activity (PA) levels are needed for the management and prevention of non-communicable diseases. The WHO-endorsed Global Physical Activity Questionnaire (GPAQ) has been widely used in developing countries, but the evidence base for its validity, particularly for rural populations, is still limited. The aim of the study was to validate GPAQ among rural and urban residents in Bangladesh. A total of 162 healthy participants of both genders aged 18-60 years were recruited from Satia village (n = 97) and Dhaka City (n = 65). Participants were invited to take part in the study and were asked to wear an accelerometer (GT3X) for 7 days, after which they were invited to answer the GPAQ in a face to face interview. Valid accelerometer data (i.e., ≥10 h of wear times over ≥3 days) were received from 155 participants (rural = 94, urban = 61). The mean age was 35 (SD = ±9) years, 55% were females and 19% of the participants had no schooling, which was higher in the rural area (21% vs 17%). The mean ± SD steps/day was 9998 ± 3936 (8658 ± 2788 and 12,063 ± 4534 for rural and urban respectively, p = 0.0001) and the mean ± SD daily moderate-to-vigorous physical activity (MVPA) was 58 ± 30 min (51 ± 26 for rural and 69 ± 34 for the urban, p = 0.001) for accelerometer. In case of GPAQ, rural residents reported significantly higher moderate work related PA (MET-minutes/week: 600 vs. 360 p = 0.02). Spearman correlation coefficients between GPAQ total MVPA MET-min/day and accelerometer MVPA min/day, counts per minute (CPM) or steps counts/day were acceptable for urban residents (rho: 0.46, 0.55 and 0.63, respectively; p < 0.01) but poor for rural residents. The overall correlation between the GPAQ and accelerometer for sitting was low (rho: 0.23; p < 0.001). GPAQ-Accelerometer correlation for MVPA was higher for females (rho: 0.42), ≤35

  18. Use of Accelerometer Activity Monitors to Detect Changes in Pruritic Behaviors: Interim Clinical Data on 6 Dogs

    PubMed Central

    Thompson, Robin J.; Mickelsen, Scott L.; Smith, Spencer C.; Alvarenga, Isabella C.; Gross, Kathy L.

    2018-01-01

    Veterinarians and pet owners have limited ability to assess pruritic behaviors in dogs. This pilot study assessed the capacity of the Vetrax® triaxial accelerometer to measure these behaviors in six dogs with pruritus likely due to environmental allergens. Dogs wore the activity monitor for two weeks while consuming their usual pet food (baseline), then for eight weeks while consuming a veterinary-exclusive pet food for dogs with suspected non-food-related skin conditions (Hill’s Prescription Diet® Derm DefenseTM Canine dry food). Veterinarians and owners completed questionnaires during baseline, phase 1 (days 1–28) and phase 2 (days 29–56) without knowledge of the activity data. Continuous 3-axis accelerometer data was processed using proprietary behavior recognition algorithms and analyzed using general linear mixed models with false discovery rate-adjusted p values. Veterinarian-assessed overall clinical signs of pruritus were significantly predicted by scratching (β 0.176, p = 0.008), head shaking (β 0.197, p < 0.001) and sleep quality (β −0.154, p < 0.001), while owner-assessed quality of life was significantly predicted by scratching (β −0.103, p = 0.013) and head shaking (β −0.146, p < 0.001). Among dogs exhibiting pruritus signs eating the veterinary-exclusive food, the Vetrax® sensor provided an objective assessment of clinically relevant pruritic behaviors that agreed with owner and veterinarian reports. PMID:29337903

  19. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  20. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.

    PubMed

    Scott, Joseph J; Rowlands, Alex V; Cliff, Dylan P; Morgan, Philip J; Plotnikoff, Ronald C; Lubans, David R

    2017-12-01

    To determine the comparability and feasibility of wrist- and hip-worn accelerometers among free-living adolescents. 89 adolescents (age=13-14years old) from eight secondary schools in New South Wales (NSW), Australia wore wrist-worn GENEActiv and hip-worn ActiGraph (GT3X+) accelerometers simultaneously for seven days and completed an accelerometry behavior questionnaire. Bivariate correlations between the wrist- and hip-worn out-put were used to determine concurrent validity. Paired samples t-test were used to compare minutes per day in moderate-to-vigorous physical activity (MVPA). Group means and paired sample t-tests were used to analyze participants' perceptions of the wrist- and hip-worn monitoring protocols to assist with determining the feasibility. Wrist-worn accelerometry compared favorably with the hip-worn in average activity (r=0.88, p<0.001) and MVPA (r=0.84 p<0.001, mean difference=3.54min/day, SD=12.37). The wrist-worn accelerometer had 50% fewer non-valid days (75 days, 12%) than the hip-worn accelerometer (n=152, 24.4%). Participants reported they liked to wear the device on the wrist (p<0.01), and that it was less uncomfortable (p=0.02) and less embarrassing to wear on the wrist (p<0.01). Furthermore, that they would be more willing to wear the device again on the wrist over the hip (p<0.01). Our findings reveal there is a strong linear relationship between wrist- and hip-worn accelerometer out-put among adolescents in free-living conditions. Adolescent compliance was significantly higher with wrist placement, with participants reporting that it was more comfortable and less embarrassing to wear on the wrist. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Validity of Different Activity Monitors to Count Steps in an Inpatient Rehabilitation Setting.

    PubMed

    Treacy, Daniel; Hassett, Leanne; Schurr, Karl; Chagpar, Sakina; Paul, Serene S; Sherrington, Catherine

    2017-05-01

    Commonly used activity monitors have been shown to be accurate in counting steps in active people; however, further validation is needed in slower walking populations. To determine the validity of activity monitors for measuring step counts in rehabilitation inpatients compared with visually observed step counts. To explore the influence of gait parameters, activity monitor position, and use of walkers on activity monitor accuracy. One hundred and sixty-six inpatients admitted to a rehabilitation unit with an average walking speed of 0.4 m/s (SD 0.2) wore 16 activity monitors (7 different devices in different positions) simultaneously during 6-minute and 6-m walks. The number of steps taken during the tests was also counted by a physical therapist. Gait parameters were assessed using the GAITRite system. To analyze the influence of different gait parameters, the percentage accuracy for each monitor was graphed against various gait parameters for each activity monitor. The StepWatch, Fitbit One worn on the ankle and the ActivPAL showed excellent agreement with observed step count (ICC 2,1 0.98; 0.92; 0.78 respectively). Other devices (Fitbit Charge, Fitbit One worn on hip, G-Sensor, Garmin Vivofit, Actigraph) showed poor agreement with the observed step count (ICC 2,1 0.12-0.40). Percentage agreement with observed step count was highest for the StepWatch (mean 98%). The StepWatch and the Fitbit One worn on the ankle maintained accuracy in individuals who walked more slowly and with shorter strides but other devices were less accurate in these individuals. There were small numbers of participants for some gait parameters. The StepWatch showed the highest accuracy and closest agreement with observed step count. This device can be confidently used by researchers for accurate measurement of step counts in inpatient rehabilitation in individuals who walk slowly. If immediate feedback is desired, the Fitbit One when worn on the ankle would be the best choice for this

  2. Evaluation of Low-Cost, Objective Instruments for Assessing Physical Activity in 10-11-Year-Old Children

    ERIC Educational Resources Information Center

    Hart, Teresa L.; Brusseau, Timothy; Kulinna, Pamela Hodges; McClain, James J.; Tudor-Locke, Catrine

    2011-01-01

    This study compared step counts detected by four, low-cost, objective, physical-activity-assessment instruments and evaluated their ability to detect moderate-to-vigorous physical activity (MVPA) compared to the ActiGraph accelerometer (AG). Thirty-six 10-11-year-old children wore the NL-1000, Yamax Digiwalker SW 200, Omron HJ-151, and Walk4Life…

  3. Accelerometer-measured versus self-reported physical activity in college students: implications for research and practice.

    PubMed

    Downs, Andrew; Van Hoomissen, Jacqueline; Lafrenz, Andrew; Julka, Deana L

    2014-01-01

    To determine the level of moderate-vigorous-intensity physical activity (MVPA) assessed via self-report and accelerometer in the college population, and to examine intrapersonal and contextual variables associated with physical activity (PA). Participants were 77 college students at a university in the northwest sampled between January 2011 and December 2011. Participants completed a validated self-report measure of PA and measures of athletic identity and benefits and barriers to exercise. Participants' PA levels were assessed for 2 weeks via accelerometry. Participants' estimations of their time spent engaged in MVPA were significantly higher when measured via self-report versus accelerometry. Stronger athletic identity, perceived social benefits and barriers, and time-effort barriers were related to PA levels. Estimation of college students' level of PA may require interpretation of data from different measurement methods, as self-report and accelerometry generate different estimations of PA in college students who may be even less active than previously believed.

  4. Low G accelerometer testing

    NASA Technical Reports Server (NTRS)

    Vaughan, M. S.

    1972-01-01

    Eight different types of low-g accelerometer tests are covered on the Bell miniature electrostatically suspended accelerometer (MESA) which is known to be sensitive to less than 10 to the minus 7th power earth's gravity. These tests include a mass attracting scheme, Leitz dividing head, Wild theodolite, precision gage blocks, precision tiltmeters, Hilger Watts autocollimator, Razdow Mark 2 autocollimator, and laser interferometer measuring system. Each test is described and a comparison of the results is presented. The output of the MESA was as linear and consistent as any of the available devices were capable of measuring. Although the extent of agreement varied with the test equipment used, it can only be concluded that the indicated errors were attributable to the test equipment coupled with the environmental conditions.

  5. Relationship between objectively measured physical activity and vascular structure and function in adults.

    PubMed

    Gomez-Marcos, Manuel A; Recio-Rodríguez, José I; Patino-Alonso, Maria C; Agudo-Conde, Cristina; Lasaosa-Medina, Lourdes; Rodriguez-Sanchez, Emiliano; Maderuelo-Fernandez, José A; García-Ortiz, Luis

    2014-06-01

    To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR) with vascular structure and function based on carotid intima-media thickness, pulse wave velocity, central and peripheral augmentation index and the ambulatory arterial stiffness index in adults. This study analyzed 263 subjects who were included in the EVIDENT study (mean age 55.85 ± 12.21 years; 59.30% female). Physical activity was assessed during 7 days using the Actigraph GT3X accelerometer (counts/minute) and 7-day PAR (metabolic equivalents (METs)/hour/week). Carotid ultrasound was used to measure carotid intima media thickness (IMT). The SphygmoCor System was used to measure pulse wave velocity (PWV), and central and peripheral augmentation index (CAIx and PAIx). The B-pro device was used to measure ambulatory arterial stiffness index (AASI). Median counts/minute was 244.37 and mean METs/hour/week was 11.49. Physical activity showed an inverse correlation with PAIx (r = -0.179; p < 0.01) and vigorous activity day time with IMT (r = -0.174), CAIx (r = -0.217) and PAIx (r = -0.324) (p < 0.01, all). Sedentary activity day time was correlated positively with CAIx (r = 0.103; p < 0.05). In multiple regression analysis, after adjusting for confounding factors, the inverse association of CAIx with counts/minute and the time spent in moderate and vigorous activity were maintained as well as the positive association with sedentary activity day time (p < 0.05). Physical activity, assessed by counts/minute, and the amount of time spent in moderate, vigorous/very vigorous physical activity, showed an inverse association with CAIx. Likewise, the time spent in sedentary activity was positively associated with the CAIx. Clinical Trials.gov Identifier: NCT01083082. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Evaluation of low-cost, objective instruments for assessing physical activity in 10-11-year-old children.

    PubMed

    Hart, Teresa L; Brusseau, Timothy; Kulinna, Pamela Hodges; McClain, James J; Tudor-Locke, Catrine

    2011-12-01

    This study compared step counts detected by four, low-cost, objective, physical-activity-assessment instruments and evaluated their ability to detect moderate-to-vigorous physical activity (MVPA) compared to the ActiGraph accelerometer (AG). Thirty-six 10-11-year-old children wore the NL-1000, Yamax Digiwalker SW 200, Omron HJ-151, and Walk4Life MVP concurrently with the AG during school hours on a single day. AG MVPA was derived from activity count data using previously validated cut points. Two of the evaluated instruments provided similar group mean MVPA and step counts compared to AG (dependent on cut point). Low-cost instruments may be useful for measurement of both MVPA and steps in children's physical activity interventions and program evaluation.

  7. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  8. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.

    PubMed

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng

    2017-11-18

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.

  9. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction

  10. Accelerometer-based physical activity in a large observational cohort--study protocol and design of the activity and function of the elderly in Ulm (ActiFE Ulm) study.

    PubMed

    Denkinger, Michael D; Franke, Sebastian; Rapp, Kilian; Weinmayr, Gudrun; Duran-Tauleria, Enric; Nikolaus, Thorsten; Peter, Richard

    2010-07-27

    A large number of studies have demonstrated a positive effect of increased physical activity (PA) on various health outcomes. In all large geriatric studies, however, PA has only been assessed by interview-based instruments which are all subject to substantial bias. This may represent one reason why associations of PA with geriatric syndromes such as falls show controversial results. The general aim of the Active-Ulm study was to determine the association of accelerometer-based physical activity with different health-related parameters, and to study the influence of this standardized objective measure of physical activity on health- and disability-related parameters in a longitudinal setting. We have set up an observational cohort study in 1500 community dwelling older persons (65 to 90 years) stratified by age and sex. Addresses have been obtained from the local residents registration offices. The study is carried out jointly with the IMCA--Respiratory Health Survey in the Elderly implemented in the context of the European project IMCA II. The study has a cross-sectional part (1) which focuses on PA and disability and two longitudinal parts (2) and (3). The primary information for part (2) is a prospective 1 year falls calendar including assessment of medication change. Part (3) will be performed about 36 months following baseline. Primary variables of interest include disability, PA, falls and cognitive function. Baseline recruitment has started in March 2009 and will be finished in April 2010.All participants are visited three times within one week, either at home or in the study center. Assessments included interviews on quality of life, diagnosed diseases, common risk factors as well as novel cognitive tests and established tests of physical functioning. PA is measured using an accelerometer-based sensor device, carried continuously over a one week period and accompanied by a prospective activity diary. The assessment of PA using a high standard accelerometer

  11. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    NASA Astrophysics Data System (ADS)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  12. Comparison of pedometer and accelerometer accuracy under controlled conditions.

    PubMed

    Le Masurier, Guy C; Tudor-Locke, Catrine

    2003-05-01

    The purpose of this investigation was to compare the concurrent accuracy of the CSA accelerometer and the Yamax pedometer under two conditions: 1) on a treadmill at five different speeds and 2) riding in a motorized vehicle on paved roads. In study 1, motion sensor performance was evaluated against actual steps taken during 5-min bouts at five different treadmill walking speeds (54, 67, 80, 94, and 107 m.min-1). In study 2, performance was evaluated during a roundtrip (drive 1 and drive 2) motor vehicle travel on paved roads (total distance traveled was 32.6 km or 20.4 miles). Any steps detected during motor vehicle travel were considered error. In study 1, the Yamax pedometer detected significantly (P < 0.05) fewer steps than actually taken at the slowest treadmill speed (54 m.min-1). Further, the pedometer detected fewer steps than the accelerometer at this speed (75.4% vs 98.9%, P < 0.05). There were no differences between instruments compared with actual steps taken at all other walking speeds. In study 2, the CSA detected approximately 17-fold more erroneous steps than the pedometer (approximately 250 vs 15 steps for the total distance traveled, P < 0.05). The magnitude of the error (for either instrument) is not likely an important threat to the assessment of free-living ambulatory populations but may be a problem for pedometers when monitoring frail older adults with slow gaits. On the other hand, CSA accelerometers erroneously detect more nonsteps than the Yamax pedometer under typical motor vehicle traveling conditions. This threat to validity is likely only problematic when using the accelerometer to assess physical activity in sedentary individuals who travel extensively by motor vehicle.

  13. The influence of a consumer-wearable activity tracker on sedentary time and prolonged sedentary bouts: secondary analysis of a randomized controlled trial.

    PubMed

    Sloan, Robert A; Kim, Youngdeok; Sahasranaman, Aarti; Müller-Riemenschneider, Falk; Biddle, Stuart J H; Finkelstein, Eric A

    2018-03-22

    A recent meta-analysis surmised pedometers were a useful panacea to independently reduce sedentary time (ST). To further test and expand on this deduction, we analyzed the ability of a consumer-wearable activity tracker to reduce ST and prolonged sedentary bouts (PSB). We originally conducted a 12-month randomized control trial where 800 employees from 13 organizations were assigned to control, activity tracker, or one of two activity tracker plus incentive groups designed to increase step count. The primary outcome was accelerometer measured moderate-to-vigorous physical activity. We conducted a secondary analysis on accelerometer measured daily ST and PSB bouts. A general linear mixed model was used to examine changes in ST and prolonged sedentary bouts, followed by between-group pairwise comparisons. Regression analyses were conducted to examine the association of changes in step counts with ST and PSB. The changes in ST and PSB were not statistically significant and not different between the groups (P < 0.05). Increases in step counts were concomitantly associated with decreases in ST and PSB, regardless of intervention (P < 0.05). Caution should be taken when considering consumer-wearable activity trackers as a means to reduce sedentary behavior. Trial registration NCT01855776 Registered: August 8, 2012.

  14. Estimating Energy Expenditure with the RT3 Triaxial Accelerometer

    ERIC Educational Resources Information Center

    Maddison, Ralph; Jiang, Yannan; Vander Hoorn, Stephen; Mhurchu, Cliona Ni; Lawes, Carlene M. M.; Rodgers, Anthony; Rush, Elaine

    2009-01-01

    The RT3 is a relatively new triaxial accelerometer that has replaced the TriTrac. The aim of this study was to validate the RT3 against doubly labeled water (DLW) in a free-living, mixed weight sample of adults. Total energy expenditure (TEE) was measured over a 15-day period using DLW. Activity-related energy expenditure (AEE) was estimated by…

  15. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    1996-01-01

    The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.

  16. Sedentary Behavior in Preschoolers: How Many Days of Accelerometer Monitoring Is Needed?

    PubMed Central

    Byun, Wonwoo; Beets, Michael W.; Pate, Russell R.

    2015-01-01

    The reliability of accelerometry for measuring sedentary behavior in preschoolers has not been determined, thus we determined how many days of accelerometry monitoring are necessary to reliably estimate daily time spent in sedentary behavior in preschoolers. In total, 191 and 150 preschoolers (three to five years) wore ActiGraph accelerometers (15-s epoch) during the in-school (≥4 days) and the total-day (≥6 days) period respectively. Accelerometry data were summarized as time spent in sedentary behavior (min/h) using three different cutpoints developed for preschool-age children (<37.5, <200, and <373 counts/15 s). The intraclass correlations (ICCs) and Spearman-Brown prophecy formula were used to estimate the reliability of accelerometer for measuring sedentary behavior. Across different cutpoints, the ICCs ranged from 0.81 to 0.92 for in-school sedentary behavior, and from 0.75 to 0.81 for total-day sedentary behavior, respectively. To achieve an ICC of ≥0.8, two to four days or six to nine days of monitoring were needed for in-school sedentary behavior and total-day sedentary behavior, respectively. These findings provide important guidance for future research on sedentary behavior in preschool children using accelerometry. Understanding the reliability of accelerometry will facilitate the conduct of research designed to inform policies and practices aimed at reducing sedentary behavior in preschool children. PMID:26492261

  17. Reverse Message-Framing Effects on Accelerometer-Assessed Physical Activity Among Older Outpatients With Type 2 Diabetes.

    PubMed

    Li, Kin-Kit; Ng, Lorna; Cheng, Sheung-Tak; Fung, Helene H

    2017-06-01

    It has been suggested that gain-framed messages are more effective than loss-framed messages in promoting low-risk health behaviors such as physical activity. Because of a heightened health concern and possible medical complications, older adults with type 2 diabetes (T2D) may consider physical activity to be risky. This study examined whether a reverse message-framing effect would be found among older adults with T2D. The participants included 211 sedentary and older adults with T2D recruited from an outpatient clinic. The participants were randomly assigned to receive either gain-framed or loss-framed messages and wore an accelerometer to monitor their physical activity for 2 weeks. The participants who received loss-framed messages were more physically active than those who received gain-framed messages (β = 0.13, p = .033). This loss-frame advantage might be attributable to the heightened perceived risks among older outpatients with T2D and the temporarily activated prevention-focused orientation in a clinical setting.

  18. The impact of playworks on boys' and girls' physical activity during recess.

    PubMed

    Bleeker, Martha; Beyler, Nicholas; James-Burdumy, Susanne; Fortson, Jane

    2015-03-01

    School-based programs, such as Playworks, that guide students in organized activities during recess and make improvements to the recess play yard may lead to significant increases in physical activity-especially for girls. This study builds on past research by investigating the impact of Playworks separately for girls and boys. Twenty-nine schools were randomly assigned to receive Playworks for 1 school year or serve as a control group. Postintervention physical activity data were collected via accelerometers and recess observations. Impacts were estimated separately for girls and boys using regression models. Girls in Playworks schools had significantly higher accelerometer intensity counts and spent more time in vigorous physical activity than girls in control schools. No significant differences based on accelerometer data were found for boys. A significant impact was also found on the types of activities in which girls engaged during recess; girls in the treatment group were less likely than those in the control group to be sedentary and more likely to engage in jumping, tag, and playground games. The current findings suggest that Playworks had a significant impact on some measures of girls' physical activity, but no significant impact on measures of boys' physical activity. © 2015, American School Health Association.

  19. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments

    PubMed Central

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang

    2017-01-01

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587

  20. Evaluation of the Environmental Bias on Accelerometer-Measured Total Daily Activity Counts and Owner Survey Responses in Dogs with Osteoarthritis.

    PubMed

    Katz, Erin M; Scott, Ruth M; Thomson, Christopher B; Mesa, Eileen; Evans, Richard; Conzemius, Michael G

    2017-11-01

    Objective  To determine if environmental variables affect the average daily activity counts (AC) of dogs with osteoarthritis (OA) and/or owners' perception of their dog's clinical signs or quality of life. Methods  The AC and Canine Brief Pain Inventory (CBPI) owner questionnaires of 62 dogs with OA were compared with daily environmental variables including the following: average temperature (°C), high temperature (°C), low temperature (°C), relative humidity (%), total precipitation (mm), average barometric pressure (hPa) and total daylight hours. Results  Daily AC significantly correlated with average temperature and total daylight hours, but average temperature and total daylight hours accounted for less than 1% of variation in AC. No other significant relationships were found between daily AC and daily high temperature, low temperature, relative humidity, total precipitation or average barometric pressure. No statistical relationship was found between daily AC and the CBPI, nor between environmental variables and the CBPI. Canine Brief Pain Inventory scores for pain severity and pain interference decreased significantly over the test period. Clinical Significance  The relationship between daily AC and average temperature and total daylight hours was significant, but unlikely to be clinically significant. Thus, environmental variables do not appear to have a clinically relevant bias on AC or owner CBPI questionnaires. The decrease over time in CBPI pain severity and pain interference values suggests owners completing the CBPI in this study were influenced by a caregiver placebo effect. Schattauer GmbH Stuttgart.

  1. Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES).

    PubMed

    Füzéki, Eszter; Engeroff, Tobias; Banzer, Winfried

    2017-09-01

    The health effects of light-intensity physical activity (PA) are not well known today. We conducted a systematic review to assess the association of accelerometer-measured light-intensity PA with modifiable health outcomes in adults and older adults. A systematic literature search up to March 2016 was performed in the PubMed, EMBASE, Web of Science and Google Scholar electronic databases, without language limitations, for studies of modifiable health outcomes in adults and older adults in the National Health and Nutrition Examination Survey accelerometer dataset. Overall, 37 cross-sectional studies and three longitudinal studies were included in the analysis, with considerable variation observed between the studies with regard to their operationalization of light-intensity PA. Light-intensity PA was found to be beneficially associated with obesity, markers of lipid and glucose metabolism, and mortality. Few data were available on musculoskeletal outcomes and results were mixed. Observational evidence that light-intensity PA can confer health benefits is accumulating. Currently inactive or insufficiently active people should be encouraged to engage in PA of any intensity. If longitudinal and intervention studies corroborate our findings, the revision of PA recommendations to include light-intensity activities, at least for currently inactive populations, might be warranted.

  2. Objective reports versus subjective perceptions of crime and their relationships to accelerometer-measured physical activity in Hispanic caretaker-child dyads

    PubMed Central

    van Bakergem, Margaret; Sommer, Evan C.; Heerman, William J.; Hipp, James Aaron; Barkin, Shari L.

    2016-01-01

    Crime and safety are commonly cited barriers to physical activity (PA). We had three objectives, 1) describe the association between objective crime measures and perceptions of crime, 2) analyze the relationships between each type of crime and accelerometer-measured physical activity in caretakers and young children (ages 3–5 years), and 3) explore for early gender differences in the relationship between crime and physical activity in young children. Data are from the cross-sectional baseline data of an ongoing randomized controlled trial in Nashville, Tennessee spanning September 2012 through May 2014. Data was analyzed from 480 Hispanic dyads (adult caretaker and 3–5 year old child). Objective crime rate was assessed in ArcGIS and perception of crime was measured by caretaker agreement with the statement “The crime rate in my neighborhood makes it unsafe to go on walks.” The primary outcome was accelerometer-measured physical activity over seven consecutive days. Objective and perceived crime were significantly positively correlated. Caretaker vigorous PA was significantly related to perceptions of crime; however, its relationship to objective crime was not significant. Child PA was not significantly related to caretaker perceptions of crime. However, interactions suggested that the relationship between crime rate and PA was significantly more negative for girls than for boys. Objective and subjective measures of crime rate are expected to be important correlates of PA, but they appear to have complex relationships that are different for adults than they are for young children, as well as for young girls compared to boys, and research has produced conflicting findings. PMID:27939263

  3. Associations of subjective social status with accelerometer-based physical activity and sedentary time among adolescents.

    PubMed

    Rajala, Katja; Kankaanpää, Anna; Laine, Kaarlo; Itkonen, Hannu; Goodman, Elizabeth; Tammelin, Tuija

    2018-06-11

    This study examined the associations of subjective social status (SSS) with physical activity (PA) and sedentary time (ST) among adolescents. The study population consisted of 420 Finnish adolescents aged 13 to 14 years. The adolescents reported their own SSS within their school (school SSS) and their family's social position within society (society SSS) based on the youth version of the Subjective Social Status Scale. Adolescents' moderate- to vigorous-intensity physical activity (MVPA) and ST were measured objectively by accelerometers and analyzed separately for the whole day and the school day. The associations between SSS and MVPA and ST outcomes were analyzed using multilevel modeling. School SSS was positively associated with whole-day MVPA and negatively associated with school-time ST. Society SSS was not significantly associated with objectively measured MVPA or ST. Both MVPA and ST are important behavioral determinants of health. As an important correlate of MVPA and ST, school SSS should be addressed by providers when discussing obesity risk and healthy behaviors with adolescents.

  4. Declared and real physical activity in patients with type 2 diabetes mellitus as assessed by the International Physical Activity Questionnaire and Caltrac accelerometer monitor: a potential tool for physical activity assessment in patients with type 2 diabetes mellitus.

    PubMed

    Mynarski, W; Psurek, A; Borek, Z; Rozpara, M; Grabara, M; Strojek, K

    2012-10-01

    The aims of this study were to assess and compare declared and real volume of physical activity (PA), and to evaluate correlations of these measurements with glycemic control (HbA1c) and body mass index (BMI), in patients with type 2 diabetes mellitus (T2DM). A group of 31 (16 women and 15 men) type 2 diabetic patients treated with insulin monotherapy, from (mean age=54 ± 3.6 years, BMI=29.7 ± 4.8 kg/m(2), T2DM treatment=9 ± 8 years, HbA1c 7 ± 1%) and not professionally active (unemployed or retired) was recruited. An assessment of energy cost (EC) of their weekly PA using International Physical Activity Questionnaire (IPAQ), and an accelerometer assessment was performed. Total energy expenditure of the declared weekly PA, calculated from the IPAQ (DPA) was 2513 ± 1349 METmin/week, and 2428 ± 1348, for male and female participants, respectively (p > 0.05). EC of the real PA (RPA), registered with the accelerometer was 4552 ± 2028 kcal/week, and 4032 ± 2288 kcal/week, for males, and females, respectively. Patients who demonstrated a high DPA, based on their IPAQ score, showed a significantly higher RPA, as registered by the accelerometer (p < 0.05). HbA1c and BMI did not correlate with their PA measurements. Our findings indicate that the IPAQ may serve as a potential tool for physical activity assessment with no further requirement for more sophisticated methods. Our results suggest that habitual physical activity has no impact on glycemic control and BMI in type 2 diabetic patients. However, further studies on a larger population are needed to explore these issues. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. levels and sociodemographic correlates of accelerometer-based physical activity in Irish children: a cross-sectional study.

    PubMed

    Li, Xia; Kearney, Patricia M; Keane, Eimear; Harrington, Janas M; Fitzgerald, Anthony P

    2017-06-01

    The aim of this study was to explore levels and sociodemographic correlates of physical activity (PA) over 1 week using accelerometer data. Accelerometer data was collected over 1 week from 1075 8-11-year-old children in the cross-sectional Cork Children's Lifestyle Study. Threshold values were used to categorise activity intensity as sedentary, light, moderate or vigorous. Questionnaires collected data on demographic factors. Smoothed curves were used to display minute by minute variations. Binomial regression was used to identify factors correlated with the probability of meeting WHO 60 min moderate to vigorous PA guidelines. Overall, 830 children (mean (SD) age: 9.9(0.7) years, 56.3% boys) were included. From the binomial multiple regression analysis, boys were found more likely to meet guidelines (probability ratio 1.17, 95% CI 1.06 to 1.28) than girls. Older children were less likely to meet guidelines than younger children (probability ratio 0.91, CI 0.87 to 0.95). Normal weight children were more likely than overweight and obese children to meet guidelines (probability ratio 1.25, CI 1.16 to 1.34). Children in urban areas were more likely to meet guidelines than those in rural areas (probability ratio 1.19, CI 1.07 to 1.33). Longer daylight length days were associated with greater probability of meeting guidelines compared to shorter daylight length days. PA levels differed by individual factors including age, gender and weight status as well as by environmental factors including residence and daylight length. Less than one-quarter of children (26.8% boys, 16.2% girls) meet guidelines. Effective intervention policies are urgently needed to increase PA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    NASA Astrophysics Data System (ADS)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  7. The Effect of Increasing Autonomy Through Choice on Young Children's Physical Activity Behavior.

    PubMed

    Sanders, Gabriel J; Juvancic-Heltzel, Judith; Williamson, Megan L; Roemmich, James N; Feda, Denise M; Barkley, Jacob E

    2016-04-01

    Increasing autonomy by manipulating the choice of available physical activity options in a laboratory setting can increase physical activity in older children and adults. However, the effect of manipulating the number of physically active choices has yet to be examined in young children in a gymnasium environment. Twenty children (n = 10 girls, 6.1 ± 1.4 years old) individually participated in 2 [low choice (LC), high choice (HC)] free-choice activity conditions for 30 minutes in a 4360 square foot gymnasium. Children had access to 2 or 8 physical activity options in the LC and HC conditions, respectively. Physical activity behavior was measured via accelerometry. Children's 30-minute accelerometer counts increased (P < .03) from the LC (2675 ± 294 counts·min-1) to the HC (3224 ± 280 counts·min-1) condition. Providing greater autonomy through choice of a greater number of physically active options increased young children's physical activity participation by 20.5%.

  8. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  9. Screening Physical Activity in Family Practice: Validity of the Spanish Version of a Brief Physical Activity Questionnaire

    PubMed Central

    Puig-Ribera, Anna; Martín-Cantera, Carlos; Puigdomenech, Elisa; Real, Jordi; Romaguera, Montserrat; Magdalena-Belio, José Félix; Recio-Rodríguez, Jose Ignacio; Rodriguez-Martin, Beatriz; Arietaleanizbeaskoa, Maria Soledad; Repiso–Gento, Irene; Garcia-Ortiz, Luis

    2015-01-01

    Objectives The use of brief screening tools to identify inactive patients is essential to improve the efficiency of primary care-based physical activity (PA) programs. However, the current employment of short PA questionnaires within the Spanish primary care pathway is unclear. This study evaluated the validity of the Spanish version of a Brief Physical Activity Assessment Tool (SBPAAT). Methods A validation study was carried out within the EVIDENT project. A convenience sample of patients (n = 1,184; age 58.9±13.7 years; 60.5% female) completed the SBPAAT and the 7-day Physical Activity Recall (7DPAR) and, in addition, wore an accelerometer (ActiGraph GT3X) for seven consecutive days. Validity was evaluated by measuring agreement, Kappa correlation coefficients, sensitivity and specificity in achieving current PA recommendations with the 7DPAR. Pearson correlation coefficients with the number of daily minutes engaged in moderate and vigorous intensity PA according to the accelerometer were also assessed. Comparison with accelerometer counts, daily minutes engaged in sedentary, light, moderate, and vigorous intensity PA, total daily kilocalories, and total PA and leisure time expenditure (METs-hour-week) between the sufficiently and insufficiently active groups identified by SBPAAT were reported. Results The SBPAAT identified 41.3% sufficiently active (n = 489) and 58.7% insufficiently active (n = 695) patients; it showed moderate validity (k = 0.454, 95% CI: 0.402–0.505) and a specificity and sensitivity of 74.3% and 74.6%, respectively. Validity was fair for identifying daily minutes engaged in moderate (r = 0.215, 95% CI:0.156 to 0.272) and vigorous PA (r = 0.282, 95% CI:0.165 to 0.391). Insufficiently active patients according to the SBPAAT significantly reported fewer counts/minute (-22%), fewer minutes/day of moderate (-11.38) and vigorous PA (-2.69), spent fewer total kilocalories/day (-753), and reported a lower energy cost (METs-hour-week) of physical

  10. Cardiovascular health metrics and accelerometer-measured physical activity levels: National Health and Nutrition Examination Survey, 2003-2006.

    PubMed

    Barreira, Tiago V; Harrington, Deirdre M; Katzmarzyk, Peter T

    2014-01-01

    To determine whether relationships exist between accelerometer-measured moderate-to-vigorous physical activity (MVPA) and other cardiovascular (CV) health metrics in a large sample. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) collected from January 1, 2003, through December 31, 2006, were used. Overall, 3454 nonpregnant adults 20 years or older who fasted for 6 hours or longer, with valid accelerometer data and with CV health metrics, were included in the study. Blood pressure (BP), body mass index (BMI), smoking status, diet, fasting plasma glucose level, and total cholesterol level were defined as ideal, intermediate, and poor on the basis of American Heart Association criteria. Results were weighted to account for sampling design, oversampling, and nonresponse. Significant increasing linear trends in mean daily MVPA were observed across CV health levels for BMI, BP, and fasting plasma glucose (P<.001). Those with a poor BMI and BP had significantly lower mean daily MVPA than those with intermediate and ideal BMIs and BPs (all P<.001). In addition, individuals with an intermediate fasting plasma glucose level had significantly lower mean daily MVPA than individuals at the ideal levels (P<.001). No significant linear trends were observed for cholesterol, smoking, and diet. A significant linear trend was observed for mean daily MVPA and the overall number of other CV health metrics (P<.001). Objectively measured MVPA was related to other CV health metrics in this large sample. These results support the inclusion of physical activity in the overall definition of ideal CV health. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. The location of the tibial accelerometer does influence impact acceleration parameters during running.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro

    2017-09-01

    Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.

  12. A combined sEMG and accelerometer system for monitoring functional activity in stroke.

    PubMed

    Roy, Serge H; Cheng, M Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S Hamid; De Luca, Carlo J

    2009-12-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of < 10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  13. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke.

    PubMed

    Roy, S; Cheng, M; Chang, S; Moore, J; De Luca, G; Nawab, S; De Luca, C

    2014-04-23

    Remote monitoring of physical activity using bodyworn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data were recorded from 10 hemi paretic patients while they carried out a sequence of 11 activities of daily living (Identification tasks), and 10 activities used to evaluate misclassification errors (non-Identification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the non-Identification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of 4 ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0 %, and a mean specificity of 99.7 % for the identification tasks, and a mean misclassification error of < 10% for the non-Identification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  14. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  15. The improved physical activity index for measuring physical activity in EPIC Germany.

    PubMed

    Wientzek, Angelika; Vigl, Matthäus; Steindorf, Karen; Brühmann, Boris; Bergmann, Manuela M; Harttig, Ulrich; Katzke, Verena; Kaaks, Rudolf; Boeing, Heiner

    2014-01-01

    In the European Investigation into Cancer and Nutrition study (EPIC), physical activity (PA) has been indexed as a cross-tabulation between PA at work and recreational activity. As the proportion of non-working participants increases, other categorization strategies are needed. Therefore, our aim was to develop a valid PA index for this population, which will also be able to express PA continuously. In the German EPIC centers Potsdam and Heidelberg, a clustered sample of 3,766 participants was re-invited to the study center. 1,615 participants agreed to participate and 1,344 participants were finally included in this study. PA was measured by questionnaires on defined activities and a 7-day combined heart rate and acceleration sensor. In a training sample of 433 participants, the Improved Physical Activity Index (IPAI) was developed. Its performance was evaluated in a validation sample of 911 participants and compared with the Cambridge Index and the Total PA Index. The IPAI consists of items covering five areas including PA at work, sport, cycling, television viewing, and computer use. The correlations of the IPAI with accelerometer counts in the training and validation sample ranged r = 0.40-0.43 and with physical activity energy expenditure (PAEE) r = 0.33-0.40 and were higher than for the Cambridge Index and the Total PA Index previously applied in EPIC. In non-working participants the IPAI showed higher correlations than the Cambridge Index and the Total PA Index, with r = 0.34 for accelerometer counts and r = 0.29 for PAEE. In conclusion, we developed a valid physical activity index which is able to express PA continuously as well as to categorize participants according to their PA level. In populations with increasing rates of non-working people the performance of the IPAI is better than the established indices used in EPIC.

  16. National youth sedentary behavior and physical activity daily patterns using latent class analysis applied to accelerometry.

    PubMed

    Evenson, Kelly R; Wen, Fang; Hales, Derek; Herring, Amy H

    2016-05-03

    Applying latent class analysis (LCA) to accelerometry can help elucidated underlying patterns. This study described the patterns of accelerometer-determined sedentary behavior and physical activity among youth by applying LCA to a nationally representative United States (US) sample. Using 2003-2006 National Health and Nutrition Examination Survey data, 3998 youths 6-17 years wore an ActiGraph 7164 accelerometer for one week, providing > =3 days of wear for > =8 h/day from 6:00 am-midnight. Cutpoints defined sedentary behavior (<100 counts/minute), light activity (100-2295 counts/minute), moderate to vigorous physical activity (MVPA; > = 2296 counts/minute), and vigorous activity (> = 4012 counts/minute). To account for wear time differences, outcomes were expressed as percent of day in a given intensity. LCA was used to classify daily (Monday through Sunday) patterns of average counts/minute, sedentary behavior, light activity, MVPA, and vigorous activity separately. The latent classes were explored overall and by age (6-11, 12-14, 15-17 years), gender, and whether or not youth attended school during measurement. Estimates were weighted to account for the sampling frame. For average counts/minute/day, four classes emerged from least to most active: 40.9% of population (mean 323.5 counts/minute/day), 40.3% (559.6 counts/minute/day), 16.5% (810.0 counts/minute/day), and 2.3% (1132.9 counts/minute/day). For percent of sedentary behavior, four classes emerged: 13.5% of population (mean 544.6 min/day), 30.1% (455.1 min/day), 38.5% (357.7 min/day), and 18.0% (259.2 min/day). For percent of light activity, four classes emerged: 12.3% of population (mean 222.6 min/day), 29.3% (301.7 min/day), 41.8% (384.0 min/day), and 16.6% (455.5 min/day). For percent of MVPA, four classes emerged: 59.9% of population (mean 25.0 min/day), 33.3% (60.9 min/day), 3.1% (89.0 min/day), and 3.6% (109.3 min/day). For percent of vigorous activity, three classes emerged: 76.8% of

  17. Using the GOCE star trackers for validating the calibration of its accelerometers

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.

    2017-12-01

    A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.

  18. The contribution of walking to work to adult physical activity levels: a cross sectional study.

    PubMed

    Audrey, Suzanne; Procter, Sunita; Cooper, Ashley R

    2014-03-11

    To objectively examine the contribution to adult physical activity levels of walking to work. Employees (n = 103; 36.3 ± 11.7 years) at 17 workplaces in south-west England, who lived within 2 miles (3.2 km) of their workplace, wore Actigraph accelerometers for seven days during waking hours and carried GPS receivers during the commute to and from work. Physical activity volume (accelerometer counts per minute (cpm)) and intensity (minutes of moderate to vigorous physical activity (MVPA)) were computed overall and during the walk to work. Total weekday physical activity was 45% higher in participants who walked to work compared to those travelling by car (524.6. ± 170.4 vs 364.6 ± 138.4 cpm) and MVPA almost 60% higher (78.1 ± 24.9 vs 49.8 ± 25.2 minutes per day). No differences were seen in weekend physical activity, and sedentary time did not differ between the groups. Combined accelerometer and GPS data showed that walking to work contributed 47.3% of total weekday MVPA. Walking to work was associated with overall higher levels of physical activity in young and middle-aged adults. These data provide preliminary evidence to underpin the need for interventions to increase active commuting, specifically walking, in adults.

  19. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need

  20. Objective reports versus subjective perceptions of crime and their relationships to accelerometer-measured physical activity in Hispanic caretaker-child dyads.

    PubMed

    van Bakergem, Margaret; Sommer, Evan C; Heerman, William J; Hipp, James Aaron; Barkin, Shari L

    2017-02-01

    Crime and safety are commonly cited barriers to physical activity (PA). We had three objectives, 1) describe the association between objective crime measures and perceptions of crime, 2) analyze the relationships between each type of crime and accelerometer-measured physical activity in caretakers and young children (ages 3-5years), and 3) explore for early gender differences in the relationship between crime and physical activity in young children. Data are from the cross-sectional baseline data of an ongoing randomized controlled trial in Nashville, Tennessee spanning September 2012 through May 2014. Data was analyzed from 480 Hispanic dyads (adult caretaker and 3-5year old child). Objective crime rate was assessed in ArcGIS and perception of crime was measured by caretaker agreement with the statement "The crime rate in my neighborhood makes it unsafe to go on walks." The primary outcome was accelerometer-measured physical activity over seven consecutive days. Objective and perceived crime were significantly positively correlated. Caretaker vigorous PA was significantly related to perceptions of crime; however, its relationship to objective crime was not significant. Child PA was not significantly related to caretaker perceptions of crime. However, interactions suggested that the relationship between crime rate and PA was significantly more negative for girls than for boys. Objective and subjective measures of crime rate are expected to be important correlates of PA, but they appear to have complex relationships that are different for adults than they are for young children, as well as for young girls compared to boys, and research has produced conflicting findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

    PubMed Central

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill

    2018-01-01

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102

  2. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.

    PubMed

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill

    2018-01-17

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.

  3. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  4. Prospective associations between physical activity and obesity among adolescent girls: racial differences and implications for prevention.

    PubMed

    White, James; Jago, Russell

    2012-06-01

    To test for differences in prospective associations between physical activity and obesity among black and white adolescent girls. Prospective cohort study using data from the National Heart, Lung, and Blood Institute Growth and Health Study. SETTING Multicenter study at the University of California (Berkeley), Children's Medical Center at the University of Cincinnati (Cincinnati, Ohio), and Westat, Inc, and Group Health Association (Rockville, Maryland). A total of 1148 adolescent girls (538 black and 610 white) who provided valid data on levels of physical activity and obesity at ages 12 and 14 years. Physical activity, assessed as accelerometer counts per day. Three measurements of obesity were obtained using the Centers for Disease Control and Prevention definition of obesity (at or above the age-specific 95th percentile of body mass index), the International Obesity Task Force reference body mass index cut points for obesity in children, and the sums of skinfold thickness (with the cohort ≥90th percentile as indicative of obesity). We found a strong negative dose-response association between quartiles of accelerometer counts per day at age 12 years and obesity at age 14 years (using all 3 measurements of obesity) in white but not black girls (P < .001 for body mass index interaction and P = .06 for sums of skinfold thickness interaction). The odds ratios for obesity (using the cohort ≥90th percentile for sums of skinfold thickness) in adjusted models between the top and the bottom quartiles of accelerometer counts per day were 0.15 (95% CI, 0.04-0.63; P = .03 for trend) in white girls and 0.85 (95% CI, 0.32-2.26; P = .93 for trend) in black girls. Higher levels of physical activity are prospectively associated with lower levels of obesity in white adolescent girls but not in black adolescent girls. Obesity prevention interventions may need to be adapted to account for the finding that black girls are less sensitive to the effects of physical activity.

  5. Micromachined force-balance feedback accelerometer with optical displacement detection

    DOEpatents

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  6. Habitual Physical Activity in Children With Cerebral Palsy Aged 4 to 5 Years Across All Functional Abilities.

    PubMed

    Keawutan, Piyapa; Bell, Kristie L; Oftedal, Stina; Davies, Peter S W; Ware, Robert S; Boyd, Roslyn N

    2017-01-01

    To compare ambulatory status in children with cerebral palsy aged 4 to 5 years with their habitual physical activity and time spent sedentary, and to compare their activity with physical activity guidelines. Sixty-seven participants-independently ambulant, marginally ambulant, and nonambulant-wore accelerometers for 3 days. Time spent sedentary as a percentage of wear time and activity counts were compared between groups. There were significant differences in time spent sedentary and activity counts between groups. Children who were independently ambulant were more likely to meet physical activity guidelines. Children with cerebral palsy spent more than half of their waking hours in sedentary time. Interventions to reduce sedentary behavior and increase habitual physical activity are needed in children with cerebral palsy at age 4 to 5 years.

  7. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  8. Daily step count predicts acute exacerbations in a US cohort with COPD.

    PubMed

    Moy, Marilyn L; Teylan, Merilee; Weston, Nicole A; Gagnon, David R; Garshick, Eric

    2013-01-01

    COPD is characterized by variability in exercise capacity and physical activity (PA), and acute exacerbations (AEs). Little is known about the relationship between daily step count, a direct measure of PA, and the risk of AEs, including hospitalizations. In an observational cohort study of 169 persons with COPD, we directly assessed PA with the StepWatch Activity Monitor, an ankle-worn accelerometer that measures daily step count. We also assessed exercise capacity with the 6-minute walk test (6MWT) and patient-reported PA with the St. George's Respiratory Questionnaire Activity Score (SGRQ-AS). AEs and COPD-related hospitalizations were assessed and validated prospectively over a median of 16 months. Mean daily step count was 5804±3141 steps. Over 209 person-years of observation, there were 263 AEs (incidence rate 1.3±1.6 per person-year) and 116 COPD-related hospitalizations (incidence rate 0.56±1.09 per person-year). Adjusting for FEV1 % predicted and prednisone use for AE in previous year, for each 1000 fewer steps per day walked at baseline, there was an increased rate of AEs (rate ratio 1.07; 95%CI = 1.003-1.15) and COPD-related hospitalizations (rate ratio 1.24; 95%CI = 1.08-1.42). There was a significant linear trend of decreasing daily step count by quartiles and increasing rate ratios for AEs (P = 0.008) and COPD-related hospitalizations (P = 0.003). Each 30-meter decrease in 6MWT distance was associated with an increased rate ratio of 1.07 (95%CI = 1.01-1.14) for AEs and 1.18 (95%CI = 1.07-1.30) for COPD-related hospitalizations. Worsening of SGRQ-AS by 4 points was associated with an increased rate ratio of 1.05 (95%CI = 1.01-1.09) for AEs and 1.10 (95%CI = 1.02-1.17) for COPD-related hospitalizations. Lower daily step count, lower 6MWT distance, and worse SGRQ-AS predict future AEs and COPD-related hospitalizations, independent of pulmonary function and previous AE history. These results support the importance of

  9. Automatic counting of microglial cell activation and its applications

    PubMed Central

    Gallego, Beatriz I.; de Gracia, Pablo

    2016-01-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability. PMID:27651757

  10. Description of the three axis low-g accelerometer package

    NASA Technical Reports Server (NTRS)

    Amalavage, A. J.; Fikes, E. H.; Berry, E. H.

    1978-01-01

    The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.

  11. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    NASA Astrophysics Data System (ADS)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  12. Occupant Motion Sensors : Development and Testing of Piezoresistive Mouthpiece Rotational Accelerometer

    DOT National Transportation Integrated Search

    1973-07-01

    A miniature piezoresistive mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during a simulated vehicle crash. Corrections have been electronically applied to the rotational accelerometer to reduce i...

  13. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers.

    PubMed

    Celis-Morales, Carlos A; Perez-Bravo, Francisco; Ibañez, Luis; Salas, Carlos; Bailey, Mark E S; Gill, Jason M R

    2012-01-01

    Imprecise measurement of physical activity variables might attenuate estimates of the beneficial effects of activity on health-related outcomes. We aimed to compare the cardiometabolic risk factor dose-response relationships for physical activity and sedentary behaviour between accelerometer- and questionnaire-based activity measures. Physical activity and sedentary behaviour were assessed in 317 adults by 7-day accelerometry and International Physical Activity Questionnaire (IPAQ). Fasting blood was taken to determine insulin, glucose, triglyceride and total, LDL and HDL cholesterol concentrations and homeostasis model-estimated insulin resistance (HOMA(IR)). Waist circumference, BMI, body fat percentage and blood pressure were also measured. For both accelerometer-derived sedentary time (<100 counts.min(-1)) and IPAQ-reported sitting time significant positive (negative for HDL cholesterol) relationships were observed with all measured risk factors--i.e. increased sedentary behaviour was associated with increased risk (all p ≤ 0.01). However, for HOMA(IR) and insulin the regression coefficients were >50% lower for the IPAQ-reported compared to the accelerometer-derived measure (p<0.0001 for both interactions). The relationships for moderate-to-vigorous physical activity (MVPA) and risk factors were less strong than those observed for sedentary behaviours, but significant negative relationships were observed for both accelerometer and IPAQ MVPA measures with glucose, and insulin and HOMA(IR) values (all p<0.05). For accelerometer-derived MVPA only, additional negative relationships were seen with triglyceride, total cholesterol and LDL cholesterol concentrations, BMI, waist circumference and percentage body fat, and a positive relationship was evident with HDL cholesterol (p = 0.0002). Regression coefficients for HOMA(IR), insulin and triglyceride were 43-50% lower for the IPAQ-reported compared to the accelerometer-derived MVPA measure (all p≤0.01). Using the

  14. Accelerometer Measurements in the Amusement Park.

    ERIC Educational Resources Information Center

    Reno, Charles; Speers, Robert R.

    1995-01-01

    Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)

  15. Assessing the validity of a physical activity questionnaire developed for parents of preschool children in Mexico.

    PubMed

    Bacardi-Gascón, Montserrat; Reveles-Rojas, Claudia; Woodward-Lopez, Gail; Crawford, Patricia; Jiménez-Cruz, Arturo

    2012-12-01

    To assess the validity of a questionnaire developed for parents of preschool children to know their physical activity (PA) status, we compared the questionnaire results with the measures of accelerometer for children's activities. Thirty-five preschoolers who wore the accelerometer for at least 10 hours daily on 3 weekdays and one weekend day were included in the analyses. Time spent in activities of varied intensity was calculated by applying 15-second ActiGraph count cutoffs (ACC). Parents' perceptions of their children's PA were associated with the percentage of vigorous and moderate physical activity recorded with ACC at r = 0.62 (p = 0.0001). An association was shown between the percentage of a child's time spent in vigorous physical activity, as reported by parents, with that measured by ACC at r = 0.53 (p = 0.001). Results of this study suggest that the designed questionnaire might be a useful tool for assessing children's activity while, additionally, it warrants further investigation on larger samples of children.

  16. Assessing the Validity of a Physical Activity Questionnaire Developed for Parents of Preschool Children in Mexico

    PubMed Central

    Bacardi-Gascón, Montserrat; Reveles-Rojas, Claudia; Woodward-Lopez, Gail; Crawford, Patricia

    2012-01-01

    To assess the validity of a questionnaire developed for parents of preschool children to know their physical activity (PA) status, we compared the questionnaire results with the measures of accelerometer for children's activities. Thirty-five preschoolers who wore the accelerometer for at least 10 hours daily on 3 weekdays and one weekend day were included in the analyses. Time spent in activities of varied intensity was calculated by applying 15-second ActiGraph count cutoffs (ACC). Parents’ perceptions of their children's PA were associated with the percentage of vigorous and moderate physical activity recorded with ACC at r=0.62 (p=0.0001). An association was shown between the percentage of a child's time spent in vigorous physical activity, as reported by parents, with that measured by ACC at r=0.53 (p=0.001). Results of this study suggest that the designed questionnaire might be a useful tool for assessing children's activity while, additionally, it warrants further investigation on larger samples of children. PMID:23304910

  17. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    PubMed

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  18. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    PubMed Central

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  19. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    PubMed

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  20. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    PubMed

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  1. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    PubMed Central

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  2. Analyzing Body Movements within the Laban Effort Framework Using a Single Accelerometer

    PubMed Central

    Kikhia, Basel; Gomez, Miguel; Jiménez, Lara Lorna; Hallberg, Josef; Karvonen, Niklas; Synnes, Kåre

    2014-01-01

    This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong—Light, Free—Bound and Sudden—Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh) simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting Strong—Light body movements using the Random Forest classifier. The wrist placement was also the best location for classifying Bound—Free body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting Sudden—Sustained body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement. PMID:24662408

  3. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring

    PubMed Central

    Gaglani, Shiv; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-01-01

    Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested. PMID:26719825

  4. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring.

    PubMed

    Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-11-17

    This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.

  5. Detecting Gunshots Using Wearable Accelerometers

    PubMed Central

    Loeffler, Charles E.

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges. PMID:25184416

  6. Detecting gunshots using wearable accelerometers.

    PubMed

    Loeffler, Charles E

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  7. Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population.

    PubMed

    Chu, A H Y; van Dam, R M; Biddle, S J H; Tan, C S; Koh, D; Müller-Riemenschneider, F

    2018-04-05

    The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population. From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics. The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated

  8. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu

    2017-03-01

    Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.

  9. Penguin head movement detected using small accelerometers: a proxy of prey encounter rate.

    PubMed

    Kokubun, Nobuo; Kim, Jeong-Hoon; Shin, Hyoung-Chul; Naito, Yasuhiko; Takahashi, Akinori

    2011-11-15

    Determining temporal and spatial variation in feeding rates is essential for understanding the relationship between habitat features and the foraging behavior of top predators. In this study we examined the utility of head movement as a proxy of prey encounter rates in medium-sized Antarctic penguins, under the presumption that the birds should move their heads actively when they encounter and peck prey. A field study of free-ranging chinstrap and gentoo penguins was conducted at King George Island, Antarctica. Head movement was recorded using small accelerometers attached to the head, with simultaneous monitoring for prey encounter or body angle. The main prey was Antarctic krill (>99% in wet mass) for both species. Penguin head movement coincided with a slow change in body angle during dives. Active head movements were extracted using a high-pass filter (5 Hz acceleration signals) and the remaining acceleration peaks (higher than a threshold acceleration of 1.0 g) were counted. The timing of head movements coincided well with images of prey taken from the back-mounted cameras: head movement was recorded within ±2.5 s of a prey image on 89.1±16.1% (N=7 trips) of images. The number of head movements varied largely among dive bouts, suggesting large temporal variations in prey encounter rates. Our results show that head movement is an effective proxy of prey encounter, and we suggest that the method will be widely applicable for a variety of predators.

  10. Laparoscopic surgery skills evaluation: analysis based on accelerometers.

    PubMed

    Sánchez, Alexis; Rodríguez, Omaira; Sánchez, Renata; Benítez, Gustavo; Pena, Romina; Salamo, Oriana; Baez, Valentina

    2014-01-01

    Technical skills assessment is considered an important part of surgical training. Subjective assessment is not appropriate for training feedback, and there is now increased demand for objective assessment of surgical performance. Economy of movement has been proposed as an excellent alternative for this purpose. The investigators describe a readily available method to evaluate surgical skills through motion analysis using accelerometers in Apple's iPod Touch device. Two groups of individuals with different minimally invasive surgery skill levels (experts and novices) were evaluated. Each group was asked to perform a given task with an iPod Touch placed on the dominant-hand wrist. The Accelerometer Data Pro application makes it possible to obtain movement-related data detected by the accelerometers. Average acceleration and maximum acceleration for each axis (x, y, and z) were determined and compared. The analysis of average acceleration and maximum acceleration showed statistically significant differences between groups on both the y (P = .04, P = .03) and z (P = .04, P = .04) axes. This demonstrates the ability to distinguish between experts and novices. The analysis of the x axis showed no significant differences between groups, which could be explained by the fact that the task involves few movements on this axis. Accelerometer-based motion analysis is a useful tool to evaluate laparoscopic skill development of surgeons and should be used in training programs. Validation of this device in an in vivo setting is a research goal of the investigators' team.

  11. Comparison of GT3X accelerometer and YAMAX pedometer steps/day in a free-living sample of overweight and obese adults.

    PubMed

    Barriera, Tiago V; Tudor-Locke, Catrine; Champagne, Catherine M; Broyles, Stephanie T; Johnson, William D; Katzmarzyk, Peter T

    2013-02-01

    The purpose of this study was to compare steps/day detected by the YAMAX SW-200 pedometer versus the Actigraph GT3X accelerometer in free-living adults. Daily YAMAX and GT3X steps were collected from a sample of 23 overweight and obese participants (78% female; age = 52.6 ± 8.4 yr.; BMI = 31.0 ± 3.7 m·kg-2). Because a pedometer is more likely to be used in a community-based intervention program, it was used as the standard for comparison. Percent difference (PD) and absolute percent difference (APD) were calculated to examine between-instrument agreement. In addition, days were categorized based on PD: a) under-counting (> -10 PD), b) acceptable counting (-10 to 10 PD), and c) over-counting (> 10 PD). The YAMAX and GT3X detected 8,025 ± 3,967 and 7131 ± 3066 steps/day, respectively, and the outputs were highly correlated (r = .87). Average PD was -3.1% ± 30.7% and average APD was 23.9% ± 19.4%. Relative to the YAMAX, 53% of the days detected by the GT3X were classified as under-counting, 25% acceptable counting, and 23% over-counting. Although the output of these 2 instruments is highly correlated, caution is advised when directly comparing or using their output interchangeably.

  12. GRACE Accelerometer data transplant

    NASA Astrophysics Data System (ADS)

    Bandikova, T.; McCullough, C. M.; Kruizinga, G. L. H.

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) has recently celebrated its 15th anniversary. The aging of the satellites brings along new challenges for both mission operation and science data delivery. Since September 2016, the accelerometer (ACC) onboard GRACE-B has been permanently turned off in order to reduce the battery load. The absence of the information about the non-gravitational forces acting on the spacecraft dramatically decreases the accuracy of the monthly gravity field solutions. The missing GRACE-B accelerometer data, however, can be recovered from the GRACE-A accelerometer measurement with satisfactory accuracy. In the current GRACE data processing, simple ACC data transplant is used which includes only attitude and time correction. The full ACC data transplant, however, requires not only the attitude and time correction, but also modeling of the residual accelerations due to thruster firings, which is the most challenging part. The residual linear accelerations ("thruster spikes") are caused by thruster imperfections such as misalignment of thruster pair, force imbalance or differences in reaction time. The thruster spikes are one of the most dominant high-frequency signals in the ACC measurement. The shape and amplitude of the thruster spikes are unique for each thruster pair, for each firing duration (30 ms - 1000 ms), for each x,y,z component of the ACC linear acceleration, and for each spacecraft. In our approach, the thruster spike model is an analytical function obtained by inverse Laplace transform of the ACC transfer function. The model shape parameters (amplitude, width and time delay) are estimated using Least squares method. The ACC data transplant is validated for days when ACC data from both satellites were available. The fully transplanted data fits the original GRACE-B measurement very well. The full ACC data transplant results in significantly reduced high frequency noise compared to the simple ACC transplant (i.e. without

  13. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    August, R. R.

    1981-01-01

    Low-cost, rugged lightweight accelerometer has been developed that converts mechanical motion into digitized optical outputs and is immune to electromagnetic and electrostatic interferences. Instrument can be placed in hostile environment, such as engine under test, and output led out through miscellany of electrical fields, high temperatures, etc., by optic fiber cables to benign environment of test panel. There, digitized optical signals can be converted to electrical signals for use in standard electrical equipment or used directly in optical devices, such as optical digital computer.

  14. Validation of the ADAMO Care Watch for step counting in older adults.

    PubMed

    Magistro, Daniele; Brustio, Paolo Riccardo; Ivaldi, Marco; Esliger, Dale Winfield; Zecca, Massimiliano; Rainoldi, Alberto; Boccia, Gennaro

    2018-01-01

    Accurate measurement devices are required to objectively quantify physical activity. Wearable activity monitors, such as pedometers, may serve as affordable and feasible instruments for measuring physical activity levels in older adults during their normal activities of daily living. Currently few available accelerometer-based steps counting devices have been shown to be accurate at slow walking speeds, therefore there is still lacking appropriate devices tailored for slow speed ambulation, typical of older adults. This study aimed to assess the validity of step counting using the pedometer function of the ADAMO Care Watch, containing an embedded algorithm for measuring physical activity in older adults. Twenty older adults aged ≥ 65 years (mean ± SD, 75±7 years; range, 68-91) and 20 young adults (25±5 years, range 20-40), wore a care watch on each wrist and performed a number of randomly ordered tasks: walking at slow, normal and fast self-paced speeds; a Timed Up and Go test (TUG); a step test and ascending/descending stairs. The criterion measure was the actual number of steps observed, counted with a manual tally counter. Absolute percentage error scores, Intraclass Correlation Coefficients (ICC), and Bland-Altman plots were used to assess validity. ADAMO Care Watch demonstrated high validity during slow and normal speeds (range 0.5-1.5 m/s) showing an absolute error from 1.3% to 1.9% in the older adult group and from 0.7% to 2.7% in the young adult group. The percentage error for the 30-metre walking tasks increased with faster pace in both young adult (17%) and older adult groups (6%). In the TUG test, there was less error in the steps recorded for older adults (1.3% to 2.2%) than the young adults (6.6% to 7.2%). For the total sample, the ICCs for the ADAMO Care Watch for the 30-metre walking tasks at each speed and for the TUG test were ranged between 0.931 to 0.985. These findings provide evidence that the ADAMO Care Watch demonstrated highly accurate

  15. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.

    PubMed

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-08-23

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.

  16. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.

    PubMed

    Ferguson, Ty; Rowlands, Alex V; Olds, Tim; Maher, Carol

    2015-03-27

    Technological advances have seen a burgeoning industry for accelerometer-based wearable activity monitors targeted at the consumer market. The purpose of this study was to determine the convergent validity of a selection of consumer-level accelerometer-based activity monitors. 21 healthy adults wore seven consumer-level activity monitors (Fitbit One, Fitbit Zip, Jawbone UP, Misfit Shine, Nike Fuelband, Striiv Smart Pedometer and Withings Pulse) and two research-grade accelerometers/multi-sensor devices (BodyMedia SenseWear, and ActiGraph GT3X+) for 48-hours. Participants went about their daily life in free-living conditions during data collection. The validity of the consumer-level activity monitors relative to the research devices for step count, moderate to vigorous physical activity (MVPA), sleep and total daily energy expenditure (TDEE) was quantified using Bland-Altman analysis, median absolute difference and Pearson's correlation. All consumer-level activity monitors correlated strongly (r > 0.8) with research-grade devices for step count and sleep time, but only moderately-to-strongly for TDEE (r = 0.74-0.81) and MVPA (r = 0.52-0.91). Median absolute differences were generally modest for sleep and steps (<10% of research device mean values for the majority of devices) moderate for TDEE (<30% of research device mean values), and large for MVPA (26-298%). Across the constructs examined, the Fitbit One, Fitbit Zip and Withings Pulse performed most strongly. In free-living conditions, the consumer-level activity monitors showed strong validity for the measurement of steps and sleep duration, and moderate valid for measurement of TDEE and MVPA. Validity for each construct ranged widely between devices, with the Fitbit One, Fitbit Zip and Withings Pulse being the strongest performers.

  17. Accelerometer-controlled automatic braking system

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  18. Assessment of Objectively Measured Physical Activity Levels in Individuals with Intellectual Disabilities with and without Down's Syndrome

    PubMed Central

    Phillips, Alexander C.; Holland, Anthony J.

    2011-01-01

    Objective To investigate, using accelerometers, the levels of physical activity being undertaken by individuals with intellectual disabilities with and without Down's syndrome. Methods One hundred and fifty two individuals with intellectual disabilities aged 12–70 years from East and South-East England. Physical activity levels in counts per minute (counts/min), steps per day (steps/day), and minutes of sedentary, light, moderate, vigorous, and moderate to vigorous physical activity (MVPA) measured with a uni-axial accelerometer (Actigraph GT1M) for seven days. Results No individuals with intellectual disabilities met current physical activity recommendations. Males were more active than females. There was a trend for physical activity to decline and sedentary behaviour to increase with age, and for those with more severe levels of intellectual disability to be more sedentary and less physically active, however any relationship was not significant when adjusted for confounding variables. Participants with Down's syndrome engaged in significantly less physical activity than those with intellectual disabilities without Down's syndrome and levels of activity declined significantly with age. Conclusions Individuals with intellectual disabilities, especially those with Down's syndrome may be at risk of developing diseases associated with physical inactivity. There is a need for well-designed, accessible, preventive health promotion strategies and interventions designed to raise the levels of physical activity for individuals with intellectual disabilities. We propose that there are physiological reasons why individuals with Down's syndrome have particularly low levels of physical activity that also decline markedly with age. PMID:22205957

  19. Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.

    PubMed

    Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua

    2015-04-13

    Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.

  20. Active living neighborhoods: is neighborhood walkability a key element for Belgian adolescents?

    PubMed

    De Meester, Femke; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Sallis, James F; Cardon, Greet

    2012-01-04

    In adult research, neighborhood walkability has been acknowledged as an important construct among the built environmental correlates of physical activity. Research into this association has only recently been extended to adolescents and the current empirical evidence is not consistent. This study investigated whether neighborhood walkability and neighborhood socioeconomic status (SES) are associated with physical activity among Belgian adolescents and whether the association between neighborhood walkability and physical activity is moderated by neighborhood SES and gender. In Ghent (Belgium), 32 neighborhoods were selected based on GIS-based walkability and SES derived from census data. In total, 637 adolescents (aged 13-15 year, 49.6% male) participated in the study. Physical activity was assessed using accelerometers and the Flemish Physical Activity Questionnaire. To analyze the associations between neighborhood walkability, neighborhood SES and individual physical activity, multivariate multi-level regression analyses were conducted. Only in low-SES neighborhoods, neighborhood walkability was positively associated with accelerometer-based moderate to vigorous physical activity and the average activity level expressed in counts/minute. For active transport to and from school, cycling for transport during leisure time and sport during leisure time no association with neighborhood walkability nor, with neighborhood SES was found. For walking for transport during leisure time a negative association with neighborhood SES was found. Gender did not moderate the associations of neighborhood walkability and SES with adolescent physical activity. Neighborhood walkability was related to accelerometer-based physical activity only among adolescent boys and girls living in low-SES neighborhoods. The relation of built environment to adolescent physical activity may depend on the context.

  1. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  2. The perfectly ideal accelerometer

    NASA Technical Reports Server (NTRS)

    Stuhlinger, Ernst

    1990-01-01

    Given here is a condensed version of the results and conclusions that developed during the Workshop. Upper limits of residual accelerations that can be tolerated during materials processes, presented as acceptable and as desirable limits, are shown. Designs and capabilities of various accelerometers, and their inherent problems, are compared. Results of acceleration measurements on Spacelab flights are summarized, and expected acceleration levels on the Space Station under various conditions are estimated.

  3. Active Well Counting Using New PSD Plastic Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to themore » existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am

  4. High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1991-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  5. Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer.

    PubMed

    Fida, Benish; Bernabucci, Ivan; Bibbo, Daniele; Conforto, Silvia; Schmid, Maurizio

    2015-07-01

    Accuracy of systems able to recognize in real time daily living activities heavily depends on the processing step for signal segmentation. So far, windowing approaches are used to segment data and the window size is usually chosen based on previous studies. However, literature is vague on the investigation of its effect on the obtained activity recognition accuracy, if both short and long duration activities are considered. In this work, we present the impact of window size on the recognition of daily living activities, where transitions between different activities are also taken into account. The study was conducted on nine participants who wore a tri-axial accelerometer on their waist and performed some short (sitting, standing, and transitions between activities) and long (walking, stair descending and stair ascending) duration activities. Five different classifiers were tested, and among the different window sizes, it was found that 1.5 s window size represents the best trade-off in recognition among activities, with an obtained accuracy well above 90%. Differences in recognition accuracy for each activity highlight the utility of developing adaptive segmentation criteria, based on the duration of the activities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    PubMed

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  7. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    PubMed Central

    Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-01-01

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434

  8. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST

    PubMed Central

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-01-01

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538

  9. Objectively measured physical activity and sedentary time of breast cancer survivors, and associations with adiposity: findings from NHANES (2003-2006).

    PubMed

    Lynch, Brigid M; Dunstan, David W; Healy, Genevieve N; Winkler, Elisabeth; Eakin, Elizabeth; Owen, Neville

    2010-02-01

    Obesity and physical inactivity are poor prognostic indicators for breast cancer. Studies to date have relied on self-report measures of physical activity, which tend mainly to assess moderate-to-vigorous intensity leisure-time physical activity. We report the cross-sectional associations of objectively assessed physical activity and sedentary time with adiposity in a sample of breast cancer survivors from the United States. One hundred and eleven women from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and 2005-2006 reported a history of breast cancer. Participants wore an accelerometer for 7 days, and activity levels were summarized as moderate-to-vigorous intensity (accelerometer counts/min > or =1,952), light intensity (counts/min 100-1,951), and sedentary time (counts/min <100). Anthropometric measures were taken by study staff at examination centers. Participants spent the majority of their day in sedentary time (66%) or in light intensity activities (33%). Log moderate-to-vigorous intensity physical activity was negatively associated with adiposity (waist circumference beta = -9.805 [95% CI: -15.836, -3.775]; BMI beta = -3.576 [95% CI: -6.687, -0.464]). Light intensity physical activity was negatively associated with adiposity; however, the fully adjusted models did not retain statistical significance. Similarly, sedentary time was positively associated with adiposity, but the fully adjusted models were not statistically significant. This is the first study to describe the objectively assessed physical activity and sedentary time of breast cancer survivors. Increasing moderate-to-vigorous and light intensity physical activity, and decreasing sedentary time, may assist with weight management and improve other metabolic health outcomes for breast cancer survivors.

  10. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  11. Validation study of Polar V800 accelerometer.

    PubMed

    Hernández-Vicente, Adrián; Santos-Lozano, Alejandro; De Cocker, Katrien; Garatachea, Nuria

    2016-08-01

    The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Eighteen Caucasian active people (50% women) aged between 19-23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson's correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. The devices significantly differed from each other on all outcomes (P<0.05), except for Polar V800's alerts vs. ActiTrainer's 1 hour sedentary bouts (P=0.595) and Polar V800's walking time vs. ActiTrainer's lifestyle time (P=0.484). Heteroscedasticity analyses were significant for all outcomes, except for Kcal and sitting time. The ROC-AUC value was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding "1 hour sedentary bouts" and "V800's walking time vs. ActiTrainer's lifestyle time" in young adults.

  12. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  13. Occupant Motion Sensors : Rotational Accelerometer Development

    DOT National Transportation Integrated Search

    1972-04-01

    A miniature mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during vehicle crash or impact conditions. The device has been tested in the laboratory using a shake table and in the field using dummie...

  14. Equating accelerometer estimates among youth: the Rosetta Stone 2

    PubMed Central

    Brazendale, Keith; Beets, Michael W.; Bornstein, Daniel B.; Moore, Justin B.; Pate, Russell R.; Weaver, Robert G.; Falck, Ryan S.; Chandler, Jessica L.; Andersen, Lars B.; Anderssen, Sigmund A.; Cardon, Greet; Cooper, Ashley; Davey, Rachel; Froberg, Karsten; Hallal, Pedro C.; Janz, Kathleen F.; Kordas, Katarzyna; Kriemler, Susi; Puder, Jardena J.; Reilly, John J.; Salmon, Jo; Sardinha, Luis B.; Timperio, Anna; van Sluijs, Esther MF

    2017-01-01

    Objectives Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints. Design Secondary data analysis Methods Data from the International Children’s Accelerometer Database (ICAD; Spring 2014) consisting of 43,112 Actigraph accelerometer data files from 21 worldwide studies (children 3-18 years, 61.5% female) were used to develop prediction equations for six sets of published cutpoints. Linear and non-linear modeling, using a leave one out cross-validation technique, was employed to develop equations to convert MVPA from one set of cutpoints into another. Bland Altman plots illustrate the agreement between actual MVPA and predicted MVPA values. Results Across the total sample, mean MVPA ranged from 29.7 MVPA min.d-1 (Puyau) to 126.1 MVPA min.d-1 (Freedson 3 METs). Across conversion equations, median absolute percent error was 12.6% (range: 1.3 to 30.1) and the proportion of variance explained ranged from 66.7% to 99.8%. Mean difference for the best performing prediction equation (VC from EV) was -0.110 min.d-1 (limits of agreement (LOA), -2.623 to 2.402). The mean difference for the worst performing prediction equation (FR3 from PY) was 34.76 min.d-1 (LOA, -60.392 to 129.910). Conclusions For six different sets of published cutpoints, the use of this equating system can assist individuals attempting to synthesize the growing body of literature on Actigraph, accelerometry-derived MVPA. PMID:25747468

  15. Validation of Accelerometer-Based Energy Expenditure Prediction Models in Structured and Simulated Free-Living Settings

    ERIC Educational Resources Information Center

    Montoye, Alexander H. K.; Conger, Scott A.; Connolly, Christopher P.; Imboden, Mary T.; Nelson, M. Benjamin; Bock, Josh M.; Kaminsky, Leonard A.

    2017-01-01

    This study compared accuracy of energy expenditure (EE) prediction models from accelerometer data collected in structured and simulated free-living settings. Twenty-four adults (mean age 45.8 years, 50% female) performed two sessions of 11 to 21 activities, wearing four ActiGraph GT9X Link activity monitors (right hip, ankle, both wrists) and a…

  16. Uncertainties in internal gas counting

    NASA Astrophysics Data System (ADS)

    Unterweger, M.; Johansson, L.; Karam, L.; Rodrigues, M.; Yunoki, A.

    2015-06-01

    The uncertainties in internal gas counting will be broken down into counting uncertainties and gas handling uncertainties. Counting statistics, spectrum analysis, and electronic uncertainties will be discussed with respect to the actual counting of the activity. The effects of the gas handling and quantities of counting and sample gases on the uncertainty in the determination of the activity will be included when describing the uncertainties arising in the sample preparation.

  17. Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction

    NASA Astrophysics Data System (ADS)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav

    2018-07-01

    Swarm, a mission of the European Space Agency, consists of three satellites orbiting the Earth since November 2013. In addition to the instrumentation aimed at fulfilling the mission's main goal, which is the observation of Earth's magnetic field, each satellite carries a geodetic quality GPS receiver and an accelerometer. Initially put in a 500-km altitude, all Swarm spacecraft slowly decay due to the action of atmospheric drag. Atmospheric particles and radiation forces impinge on the satellite's surface and thus create the main part of the nongravitational force, which together with satellite-induced thrusts can be measured by space accelerometers. Unfortunately, the Swarm accelerometer data are heavily disturbed by the varying onboard temperature. We calibrate the accelerometer data against a calibration standard derived from observed GPS positions, while making use of the models to represent the forces of gravity origin. We show that this procedure can be extended to incorporate the temperature signal. The obtained calibrated accelerations are validated in several different ways; namely by (i) physically modelled nongravitational forces, by (ii) intercomparison of calibrated accelerometer data from two Swarm satellites flying side-by-side, and by (iii) good agreement of our calibrated signals with those released by ESA, obtained via a different approach for reducing temperature effects. Finally, the presented method is applied to the Swarm C accelerometer data set covering almost two years (July 2014-April 2016), which ESA recently released to scientific users.

  18. Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys.

    PubMed

    Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M; Sebastião, Luís

    2017-06-08

    This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper.

  19. The Improved Physical Activity Index for Measuring Physical Activity in EPIC Germany

    PubMed Central

    Wientzek, Angelika; Vigl, Matthäus; Steindorf, Karen; Brühmann, Boris; Bergmann, Manuela M.; Harttig, Ulrich; Katzke, Verena; Kaaks, Rudolf; Boeing, Heiner

    2014-01-01

    In the European Investigation into Cancer and Nutrition study (EPIC), physical activity (PA) has been indexed as a cross-tabulation between PA at work and recreational activity. As the proportion of non-working participants increases, other categorization strategies are needed. Therefore, our aim was to develop a valid PA index for this population, which will also be able to express PA continuously. In the German EPIC centers Potsdam and Heidelberg, a clustered sample of 3,766 participants was re-invited to the study center. 1,615 participants agreed to participate and 1,344 participants were finally included in this study. PA was measured by questionnaires on defined activities and a 7-day combined heart rate and acceleration sensor. In a training sample of 433 participants, the Improved Physical Activity Index (IPAI) was developed. Its performance was evaluated in a validation sample of 911 participants and compared with the Cambridge Index and the Total PA Index. The IPAI consists of items covering five areas including PA at work, sport, cycling, television viewing, and computer use. The correlations of the IPAI with accelerometer counts in the training and validation sample ranged r = 0.40–0.43 and with physical activity energy expenditure (PAEE) r = 0.33–0.40 and were higher than for the Cambridge Index and the Total PA Index previously applied in EPIC. In non-working participants the IPAI showed higher correlations than the Cambridge Index and the Total PA Index, with r = 0.34 for accelerometer counts and r = 0.29 for PAEE. In conclusion, we developed a valid physical activity index which is able to express PA continuously as well as to categorize participants according to their PA level. In populations with increasing rates of non-working people the performance of the IPAI is better than the established indices used in EPIC. PMID:24642812

  20. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  1. Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.

    PubMed

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-08-16

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  2. Accelerometer having integral fault null

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1995-08-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  3. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  4. Micro-Accelerometers Monitor Equipment Health

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  5. Temperature corrected-calibration of GRACE's accelerometer

    NASA Astrophysics Data System (ADS)

    Encarnacao, J.; Save, H.; Siemes, C.; Doornbos, E.; Tapley, B. D.

    2017-12-01

    Since April 2011, the thermal control of the accelerometers on board the GRACE satellites has been turned off. The time series of along-track bias clearly show a drastic change in the behaviour of this parameter, while the calibration model has remained unchanged throughout the entire mission lifetime. In an effort to improve the quality of the gravity field models produced at CSR in future mission-long re-processing of GRACE data, we quantify the added value of different calibration strategies. In one approach, the temperature effects that distort the raw accelerometer measurements collected without thermal control are corrected considering the housekeeping temperature readings. In this way, one single calibration strategy can be consistently applied during the whole mission lifetime, since it is valid to thermal the conditions before and after April 2011. Finally, we illustrate that the resulting calibrated accelerations are suitable for neutral thermospheric density studies.

  6. Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter

    NASA Technical Reports Server (NTRS)

    Jakab, I.; Bordas, A.

    1974-01-01

    After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.

  7. Accelerometry-based monitoring of daily physical activity in children with juvenile idiopathic arthritis.

    PubMed

    Nørgaard, M; Twilt, M; Andersen, L B; Herlin, T

    2016-01-01

    Juvenile idiopathic arthritis (JIA) may cause functional impairment, reduced participation in physical activity (PA) and, over time, physical deconditioning. The aim of this study was to objectively monitor daily free-living PA in 10-16-year-old children with JIA using accelerometry with regard to disease activity and physical variables and to compare the data with those from healthy age- and gender-matched controls. Patients underwent an evaluation of disease activity, functional ability, physical capacity, and pain. Accelerometer monitoring was assessed using the GT1M ActiGraph. Normative data from two major studies on PA in Danish schoolchildren were used for comparison. Data of accelerometry were available for 61 JIA patients and 2055 healthy controls. Of the JIA patients, 57% showed below-average values of maximal physical capacity (fitness level). JIA patients showed low disease activity and pain and were physically well functioning. Accelerometer counts were lower in JIA patients than in controls. Accelerometer measurements were negatively correlated with disease activity, erythrocyte sedimentation rate (ESR), and number of joints with swelling and/or limited range of motion (ROM). No correlation was found between PA and pain scores, functional ability, and hypermobility. Patients with involvement of ankles or hips demonstrated significantly lower levels of PA. Children with JIA are less physically active and have lower physical capacity and fitness than their age- and gender-matched healthy peers despite good disease control. The involvement of hips or ankles is associated with lower PA.

  8. Criterion and Concurrent Validity of the activPAL™ Professional Physical Activity Monitor in Adolescent Females

    PubMed Central

    Dowd, Kieran P.; Harrington, Deirdre M.; Donnelly, Alan E.

    2012-01-01

    Background The activPAL has been identified as an accurate and reliable measure of sedentary behaviour. However, only limited information is available on the accuracy of the activPAL activity count function as a measure of physical activity, while no unit calibration of the activPAL has been completed to date. This study aimed to investigate the criterion validity of the activPAL, examine the concurrent validity of the activPAL, and perform and validate a value calibration of the activPAL in an adolescent female population. The performance of the activPAL in estimating posture was also compared with sedentary thresholds used with the ActiGraph accelerometer. Methodologies Thirty adolescent females (15 developmental; 15 cross-validation) aged 15–18 years performed 5 activities while wearing the activPAL, ActiGraph GT3X, and the Cosmed K4B2. A random coefficient statistics model examined the relationship between metabolic equivalent (MET) values and activPAL counts. Receiver operating characteristic analysis was used to determine activity thresholds and for cross-validation. The random coefficient statistics model showed a concordance correlation coefficient of 0.93 (standard error of the estimate = 1.13). An optimal moderate threshold of 2997 was determined using mixed regression, while an optimal vigorous threshold of 8229 was determined using receiver operating statistics. The activPAL count function demonstrated very high concurrent validity (r = 0.96, p<0.01) with the ActiGraph count function. Levels of agreement for sitting, standing, and stepping between direct observation and the activPAL and ActiGraph were 100%, 98.1%, 99.2% and 100%, 0%, 100%, respectively. Conclusions These findings suggest that the activPAL is a valid, objective measurement tool that can be used for both the measurement of physical activity and sedentary behaviours in an adolescent female population. PMID:23094069

  9. Are parents’ motivations to exercise and intention to engage in regular family-based activity associated with both adult and child physical activity?

    PubMed Central

    Solomon-Moore, Emma; Sebire, Simon J; Thompson, Janice L; Zahra, Jesmond; Lawlor, Debbie A; Jago, Russ

    2016-01-01

    Background/aim To examine the associations between parents’ motivation to exercise and intention to engage in family-based activity with their own and their child’s physical activity. Methods Cross-sectional data from 1067 parent–child pairs (76.1% mother–child); children were aged 5–6 years. Parents reported their exercise motivation (ie, intrinsic motivation, identified regulation, introjected regulation, external regulation and amotivation) as described in self-determination theory and their intention to engage in family-based activity. Parents’ and children’s mean minutes of moderate-to-vigorous-intensity physical activity (MVPA) and mean counts per minute were derived from ActiGraph accelerometers worn for 3 to 5 days (including a mixture of weekdays and weekend days). Multivariable linear regression models, adjusted for parent sex, number of children, indices of multiple deprivation and clustering of children in schools were used to examine associations (total of 24 associations tested). Results In fully adjusted models, each unit increase in identified regulation was associated with a 6.08 (95% CI 3.27 to 8.89, p<0.001) min-per-day increase in parents’ MVPA. Parents’ external regulation was associated with children performing 2.93 (95% CI −5.83 to −0.03, p=0.05) fewer minutes of MVPA per day and a 29.3 (95% CI −53.8 to −4.7, p=0.02) accelerometer count-per-minute reduction. There was no evidence of association for the other 21 associations tested. Conclusions Future family-based physical activity interventions may benefit from helping parents identify personal value in exercise while avoiding the use of external control or coercion to motivate behaviour. PMID:28879025

  10. Flow cytometric assessment of activation of peripheral blood platelets in dogs with normal platelet count and asymptomatic thrombocytopenia.

    PubMed

    Żmigrodzka, M; Guzera, M; Winnicka, A

    2016-01-01

    Platelets play a crucial role in hemostasis. Their activation has not yet been evaluated in healthy dogs with a normal and low platelet count. The aim of this study was to determine the influence of activators on platelet activation in dogs with a normal platelet count and asymptomatic thrombocytopenia. 72 clinically healthy dogs were enrolled. Patients were allocated into three groups. Group 1 consisted of 30 dogs with a normal platelet count, group 2 included 22 dogs with a platelet count between 100 and 200×109/l and group 3 consisted of 20 dogs with a platelet count lower than 100×109/l. Platelet rich-plasma (PRP) was obtained from peripheral blood samples using tripotassium ethylenediaminetetraacetic acid (K3-EDTA) as anticoagulant. Next, platelets were stimulated using phorbol-12-myristate-13-acetate or thrombin, stabilized using procaine or left unstimulated. The expression of CD51 and CD41/CD61 was evaluated. Co-expression of CD41/CD61 and Annexin V served as a marker of platelet activation. The expression of CD41/CD61 and CD51 did not differ between the 3 groups. Thrombin-stimulated platelets had a significantly higher activity in dogs with a normal platelet count than in dogs with asymptomatic thrombocytopenia. Procaine inhibited platelet activity in all groups. In conclusion, activation of platelets of healthy dogs in vitro varied depending on the platelet count and platelet activator.

  11. Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.

    2001-01-01

    A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.

  12. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    PubMed Central

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-01-01

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243

  13. Physical activity, white blood cell count, and lung cancer risk in a prospective cohort study

    PubMed Central

    Sprague, Brian L.; Trentham-Dietz, Amy; Klein, Barbara E.K.; Klein, Ronald; Cruickshanks, Karen J.; Lee, Kristine E.; Hampton, John M.

    2009-01-01

    Previous studies have suggested that physical activity may lower lung cancer risk. The association of physical activity with reduced chronic inflammation provides a potential mechanism, yet few studies have directly related inflammatory markers to cancer incidence. The relation between physical activity, inflammation, and lung cancer risk was evaluated in a prospective cohort of 4,831 subjects, 43–86 years of age, in Beaver Dam, Wisconsin. A total physical activity index was created by summing kilocalories per week from sweat-inducing physical activities, city blocks walked, and flights of stairs climbed. Two inflammatory markers, white blood cell count and serum albumin, were measured at the baseline examination. During an average of 12.8 years of follow-up, 134 incident cases of lung cancer were diagnosed. After multivariable adjustment, participants in the highest tertile of total physical activity index had a 45% reduction in lung cancer risk compared to those in the lowest tertile (OR=0.55; 95% CI: 0.35–0.86). Participants with white blood cell counts in the upper tertile (≥8×103/μL) were 2.81 (95% CI: 1.58–5.01) times as likely to develop lung cancer as those with counts in the lowest tertile (<6.4×103/μL). Serum albumin was not related to lung cancer risk. There was no evidence that inflammation mediated the association between physical activity and lung cancer risk, as the physical activity risk estimates were essentially unchanged after adjustment for white blood cell count. While the potential for residual confounding by smoking could not be eliminated, these data suggest that physical activity and white blood cell count are independent risk factors for lung cancer. PMID:18843014

  14. Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors

    NASA Astrophysics Data System (ADS)

    Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar

    2017-04-01

    This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.

  15. Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.

    2015-12-01

    The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.

  16. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    NASA Astrophysics Data System (ADS)

    Bertolini, Alessandro; DeSalvo, Riccardo; Fidecaro, Francesco; Francesconi, Mario; Marka, Szabolcs; Sannibale, Virginio; Simonetti, Duccio; Takamori, Akiteru; Tariq, Hareem

    2006-01-01

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150 Hz. The very high mechanical quality factor, Q≃3000 at a resonant frequency of 0.5 Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1 nm, integrated over the frequency band from 0.01 to 150 Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10-3 has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  17. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  18. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  19. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-04-13

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  20. Mobility disability and the pattern of accelerometer-derived sedentary and physical activity behaviors in people with multiple sclerosis.

    PubMed

    Ezeugwu, Victor; Klaren, Rachel E; A Hubbard, Elizabeth; Manns, Patricia Trish; Motl, Robert W

    2015-01-01

    Low physical activity and high sedentary behavior levels are major concerns in persons with multiple sclerosis (MS) and these differ depending on the level of mobility disability. However, the manner in which daily activity is accumulated is currently unknown in this population. A secondary analysis was performed on a combined data set of persons with MS from two previous investigations of physical activity and symptomatic or quality of life outcomes in the United States over a two year period (2007-2009). Mobility disability status was determined using the Patient Determined Disease Steps (PDDS) while activity behavior was objectively monitored using an ActiGraph accelerometer for 7 days. Persons with MS who have mobility disability were involved in sedentary behavior, light and moderate intensity activity for 65%, 34% and 1% of the day, respectively compared to 60%, 37%, and 3%, respectively in those without mobility disability (p < 0.05). Breaks in sedentary time did not differ by mobility disability status. Compared to those without mobility disability, the average number of sedentary bouts longer than 30 min was greater in those with mobility disability (p = 0.016). Persons with MS with mobility disability are less active, engage in more sedentary behavior and accumulate prolonged sedentary bouts.

  1. Walk this way: validity evidence of iphone health application step count in laboratory and free-living conditions.

    PubMed

    Duncan, Markus J; Wunderlich, Kelly; Zhao, Yingying; Faulkner, Guy

    2018-08-01

    Several attempts have been made to demonstrate the accuracy of the iPhone pedometer function in laboratory test conditions. However, no studies have attempted to evaluate evidence of convergent validity of the iPhone step counts as a surveillance tool in the field. This study takes a pragmatic approach to evaluating Health application derived iPhone step counts by measuring accuracy of a standardized criterion iPhone SE and a heterogeneous sample of participant owned iPhones (6 or newer) in a laboratory condition, as well as comparing personal iPhones to accelerometer derived steps in a free-living test. During lab tests, criterion and personal iPhones differed from manually counted steps by a mean bias of less than ±5% when walking at 5km/h, 7.5km/h and 10km/h on a treadmill, which is generally considered acceptable for pedometers. In the free-living condition steps differed by a mean bias of 21.5% or 1340 steps/day when averaged across observation days. Researchers should be cautioned in considering the use of iPhone models as a research grade pedometer for physical activity surveillance or evaluation, likely due to the iPhone not being continually carried by participants; if compliance can be maximized then the iPhone might be suitable.

  2. Active living neighborhoods: is neighborhood walkability a key element for Belgian adolescents?

    PubMed Central

    2012-01-01

    Background In adult research, neighborhood walkability has been acknowledged as an important construct among the built environmental correlates of physical activity. Research into this association has only recently been extended to adolescents and the current empirical evidence is not consistent. This study investigated whether neighborhood walkability and neighborhood socioeconomic status (SES) are associated with physical activity among Belgian adolescents and whether the association between neighborhood walkability and physical activity is moderated by neighborhood SES and gender. Methods In Ghent (Belgium), 32 neighborhoods were selected based on GIS-based walkability and SES derived from census data. In total, 637 adolescents (aged 13-15 year, 49.6% male) participated in the study. Physical activity was assessed using accelerometers and the Flemish Physical Activity Questionnaire. To analyze the associations between neighborhood walkability, neighborhood SES and individual physical activity, multivariate multi-level regression analyses were conducted. Results Only in low-SES neighborhoods, neighborhood walkability was positively associated with accelerometer-based moderate to vigorous physical activity and the average activity level expressed in counts/minute. For active transport to and from school, cycling for transport during leisure time and sport during leisure time no association with neighborhood walkability nor, with neighborhood SES was found. For walking for transport during leisure time a negative association with neighborhood SES was found. Gender did not moderate the associations of neighborhood walkability and SES with adolescent physical activity. Conclusions Neighborhood walkability was related to accelerometer-based physical activity only among adolescent boys and girls living in low-SES neighborhoods. The relation of built environment to adolescent physical activity may depend on the context. PMID:22216923

  3. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial.

    PubMed

    Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E

    2015-10-01

    Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.

  4. Accelerometer-derived physical activity and sedentary time by cancer type in the United States.

    PubMed

    Thraen-Borowski, Keith M; Gennuso, Keith P; Cadmus-Bertram, Lisa

    2017-01-01

    The 2003-2004 and 2005-2006 cycles of the National Health and Nutrition Examination Survey (NHANES) were among the first population-level studies to incorporate objectively measured physical activity and sedentary behavior, allowing for greater understanding of these behaviors. However, there has yet to be a comprehensive examination of these data in cancer survivors, including short- and long-term survivors of all cancer types. Therefore, the purpose of this analysis was to use these data to describe activity behaviors in short- and long-term cancer survivors of various types. A secondary aim was to compare activity patterns of cancer survivors to that of the general population. Cancer survivors (n = 508) and age-matched individuals not diagnosed with cancer (n = 1,016) were identified from a subsample of adults with activity measured by accelerometer. Physical activity and sedentary behavior were summarized across cancer type and demographics; multivariate regression was used to evaluate differences between survivors and those not diagnosed with cancer. On average, cancer survivors were 61.4 (95% CI: 59.6, 63.2) years of age; 57% were female. Physical activity and sedentary behavior patterns varied by cancer diagnosis, demographic variables, and time since diagnosis. Survivors performed 307 min/day of light-intensity physical activity (95% CI: 295, 319), 16 min/day of moderate-vigorous intensity activity (95% CI: 14, 17); only 8% met physical activity recommendations. These individuals also reported 519 (CI: 506, 532) minutes of sedentary time, with 86 (CI: 84, 88) breaks in sedentary behavior per day. Compared to non-cancer survivors, after adjustment for potential confounders, survivors performed less light-intensity activity (P = 0.01), were more sedentary (P = 0.01), and took fewer breaks in sedentary time (P = 0.04), though there were no differences in any other activity variables. These results suggest that cancer survivors are insufficiently active

  5. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts

    USGS Publications Warehouse

    Muller, Benjamin J.; Cade, Brian S.; Schwarzkoph, Lin

    2018-01-01

    Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity.

  6. Self Diagnostic Accelerometer for Mission Critical Health Monitoring of Aircraft and Spacecraft Engines

    NASA Technical Reports Server (NTRS)

    Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew

    2009-01-01

    A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.

  7. Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys †

    PubMed Central

    Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M.; Sebastião, Luís

    2017-01-01

    This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper. PMID:28594342

  8. Preliminary efficacy of prize-based contingency management to increase activity levels in healthy adults.

    PubMed

    Washington, Wendy Donlin; Banna, Kelly M; Gibson, Amanda L

    2014-01-01

    An estimated 30% of Americans meet the criteria for obesity. Effective, low-cost interventions to increase physical activity are needed to prevent and treat obesity. In this study, 11 healthy adults wore Fitbit accelerometers for 3 weeks. During the initial baseline, subjects earned prize draws for wearing the Fitbit. During intervention, percentile schedules were used to calculate individual prize-draw criteria. The final week was a return to baseline. Four subjects increased step counts as a result of the intervention. A bout analysis of interresponse times revealed that subjects increased overall step counts by increasing daily minutes active and within-bout response rates and decreasing pauses between bouts of activity. Strategies to improve effectiveness are suggested, such as modification of reinforcement probability and amount and identification of the function of periods of inactivity. © Society for the Experimental Analysis of Behavior.

  9. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  10. Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2002-01-01

    High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.

  11. Age- and Sex-Specific Criterion Validity of the Health Survey for England Physical Activity and Sedentary Behavior Assessment Questionnaire as Compared With Accelerometry

    PubMed Central

    Scholes, Shaun; Coombs, Ngaire; Pedisic, Zeljko; Mindell, Jennifer S.; Bauman, Adrian; Rowlands, Alex V.; Stamatakis, Emmanuel

    2014-01-01

    The criterion validity of the 2008 Physical Activity and Sedentary Behavior Assessment Questionnaire (PASBAQ) was examined in a nationally representative sample of 2,175 persons aged ≥16 years in England using accelerometry. Using accelerometer minutes/day greater than or equal to 200 counts as a criterion, Spearman's correlation coefficient (ρ) for PASBAQ-assessed total activity was 0.30 (95% confidence interval (CI): 0.25, 0.35) in women and 0.20 (95% CI: 0.15, 0.26) in men. Correlations between accelerometer counts/minute of wear time and questionnaire-assessed relative energy expenditure (metabolic equivalent-minutes/day) were higher in women (ρ = 0.41, 95% CI: 0.36, 0.46) than in men (ρ = 0.32, 95% CI: 0.26, 0.38). Similar correlations were observed for minutes/day spent in vigorous activity (women: ρ = 0.39, 95% CI: 0.33, 0.46; men: ρ = 0.31, 95% CI: 0.26, 0.36) and moderate-to-vigorous activity (women: ρ = 0.42, 95% CI: 0.36, 0.48; men: ρ = 0.38, 95% CI: 0.32, 0.45). Correlations for time spent being sedentary (<100 counts/minute) were 0.30 (95% CI: 0.24, 0.35) and 0.25 (95% CI: 0.19, 0.30) in women and men, respectively. Sedentary behavior correlations showed no sex difference. The validity of sedentary behavior and total physical activity was higher in older age groups, but validity was higher in younger persons for vigorous-intensity activity. The PASBAQ is a useful and valid instrument for ranking individuals according to levels of physical activity and sedentary behavior. PMID:24863551

  12. MEMS capacitive accelerometer-based middle ear microphone.

    PubMed

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  13. Assessment of physical activity in chronic kidney disease.

    PubMed

    Robinson-Cohen, Cassianne; Littman, Alyson J; Duncan, Glen E; Roshanravan, Baback; Ikizler, T Alp; Himmelfarb, Jonathan; Kestenbaum, Bryan R

    2013-03-01

    Physical inactivity plays an important role in the development of kidney disease and its complications; however, the validity of standard tools for measuring physical activity (PA) is not well understood. We investigated the performance of several readily available and widely used PA and physical function questionnaires, individually and in combination, against accelerometry among a cohort of chronic kidney disease (CKD) participants. Forty-six participants from the Seattle Kidney Study, an observational cohort study of persons with CKD, completed the Physical Activity Scale for the Elderly, Human Activity Profile (HAP), Medical Outcomes Study SF-36 questionnaire, and the Four-week Physical Activity History questionnaires. We simultaneously measured PA using an Actigraph GT3X accelerometer during a 14-day period. We estimated the validity of each instrument by testing its associations with log-transformed accelerometry counts. We used the Akaike information criterion to investigate the performance of combinations of questionnaires. All questionnaire scores were significantly associated with log-transformed accelerometry counts. The HAP correlated best with accelerometry counts (r(2) = 0.32) followed by SF-36 (r(2) = 0.23). Forty-three percent of the variability in accelerometry counts data was explained by a model that combined the HAP, SF-36, and Four-week Physical Activity History questionnaires. A combination of measurement tools can account for a modest component of PA in patients with CKD; however, a substantial proportion of PA is not captured by standard assessments. Copyright © 2013 National Kidney Foundation, Inc. All rights reserved.

  14. Characterizing coarse bedload transport during floods with RFID and accelerometer tracers, in-stream RFID antennas and HEC-RAS modeling

    NASA Astrophysics Data System (ADS)

    Olinde, L.; Johnson, J. P.

    2013-12-01

    By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the

  15. Monitoring walking and cycling of middle-aged to older community dwellers using wireless wearable accelerometers.

    PubMed

    Zhang, Yuting; Beenakker, Karel G M; Butala, Pankil M; Lin, Cheng-Chieh; Little, Thomas D C; Maier, Andrea B; Stijntjes, Marjon; Vartanian, Richard; Wagenaar, Robert C

    2012-01-01

    Changes in gait parameters have been shown to be an important indicator of several age-related cognitive and physical declines of older adults. In this paper we propose a method to monitor and analyze walking and cycling activities based on a triaxial accelerometer worn on one ankle. We use an algorithm that can (1) distinguish between static and dynamic functional activities, (2) detect walking and cycling events, (3) identify gait parameters, including step frequency, number of steps, number of walking periods, and total walking duration per day, and (4) evaluate cycling parameters, including cycling frequency, number of cycling periods, and total cycling duration. Our algorithm is evaluated against the triaxial accelerometer data obtained from a group of 297 middle-aged to older adults wearing an activity monitor on the right ankle for approximately one week while performing unconstrained daily activities in the home and community setting. The correlation coefficients between each of detected gait and cycling parameters on two weekdays are all statistically significant, ranging from 0.668 to 0.873. These results demonstrate good test-retest reliability of our method in monitoring walking and cycling activities and analyzing gait and cycling parameters. This algorithm is efficient and causal in time and thus implementable for real-time monitoring and feedback.

  16. Prediction of Energy Expenditure from Wrist Accelerometry in People with and without Down Syndrome

    ERIC Educational Resources Information Center

    Agiovlasitis, Stamatis; Motl, Robert W.; Foley, John T.; Fernhall, Bo

    2012-01-01

    This study examined the relationship between energy expenditure and wrist accelerometer output during walking in persons with and without Down syndrome (DS). Energy expenditure in metabolic equivalent units (METs) and activity-count rate were respectively measured with portable spirometry and a uniaxial wrist accelerometer in 17 persons with DS…

  17. Physical inactivity, neurological disability, and cardiorespiratory fitness in multiple sclerosis.

    PubMed

    Motl, R W; Goldman, M

    2011-02-01

    We examined the associations among physical activity, neurological disability, and cardiorespiratory fitness in two studies of individuals with multiple sclerosis (MS). Study 1 included 25 women with relapsing-remitting MS (RRMS) who undertook an incremental exercise test for measuring peak oxygen (VO₂(peak) ) consumption, wore an accelerometer during a 7-day period, and completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ). Study 2 was a follow-up of Study 1 and included 24 women with RRMS who completed the self-reported Expanded Disability Status Scale (EDSS), undertook an incremental exercise test, wore an accelerometer during a 7-day period, and completed the GLTEQ. Study 1 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.69) and GLTEQ scores (pr = 0.63) even after controlling for age and MS duration. Study 2 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.50), GLTEQ scores (pr = 0.59), and EDSS scores (pr = -0.43) even after controlling for age and MS duration; there was a moderate partial correlation between accelerometer counts and EDSS scores (pr = -0.43). Multiple linear regression analysis indicated that both accelerometer counts (β = 0.32) and EDSS scores (β = -0.40) had statistically significant associations with VO₂(peak). The findings indicate that physical inactivity and neurological disability might represent independent risk factors for reduced levels of cardiorespiratory fitness in this population. © 2010 John Wiley & Sons A/S.

  18. Office workers' objectively measured sedentary behavior and physical activity during and outside working hours.

    PubMed

    Clemes, Stacy A; O'Connell, Sophie E; Edwardson, Charlotte L

    2014-03-01

    To examine objectively determined sedentary behavior and physical activity (PA) during and outside working hours in full-time office workers. A total of 170 participants wore an ActiGraph GT1M accelerometer for 7 days. Time spent sedentary (<100 counts/min), in light-intensity PA (100 to 1951 counts/min), and moderate-to-vigorous PA (≥1952 counts/min) was calculated for workdays (including working hours and nonworking hours) and nonworkdays. Participants accumulated significantly higher levels of sedentary behavior (68% vs 60%) and lower levels of light-intensity activity (28% vs 36%) on workdays in comparison with nonworkdays. Up to 71% of working hours were spent sedentary. Individuals who were most sedentary at work were also more sedentary outside work. Those who are most sedentary at work do not compensate by increasing their PA or reducing their sedentary time outside work. Occupational interventions should address workplace and leisure-time sedentary behavior.

  19. In-Flight Estimation of Center of Gravity Position Using All-Accelerometers

    PubMed Central

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-01-01

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle. PMID:25244585

  20. In-flight estimation of center of gravity position using all-accelerometers.

    PubMed

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-09-19

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle.

  1. Compton suppression gamma-counting: The effect of count rate

    USGS Publications Warehouse

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  2. Factors Associated With Ambulatory Activity in De Novo Parkinson Disease.

    PubMed

    Christiansen, Cory; Moore, Charity; Schenkman, Margaret; Kluger, Benzi; Kohrt, Wendy; Delitto, Anthony; Berman, Brian; Hall, Deborah; Josbeno, Deborah; Poon, Cynthia; Robichaud, Julie; Wellington, Toby; Jain, Samay; Comella, Cynthia; Corcos, Daniel; Melanson, Ed

    2017-04-01

    Objective ambulatory activity during daily living has not been characterized for people with Parkinson disease prior to initiation of dopaminergic medication. Our goal was to characterize ambulatory activity based on average daily step count and examine determinants of step count in nonexercising people with de novo Parkinson disease. We analyzed baseline data from a randomized controlled trial, which excluded people performing regular endurance exercise. Of 128 eligible participants (mean ± SD = 64.3 ± 8.6 years), 113 had complete accelerometer data, which were used to determine daily step count. Multiple linear regression was used to identify factors associated with average daily step count over 10 days. Candidate explanatory variable categories were (1) demographics/anthropometrics, (2) Parkinson disease characteristics, (3) motor symptom severity, (4) nonmotor and behavioral characteristics, (5) comorbidities, and (6) cardiorespiratory fitness. Average daily step count was 5362 ± 2890 steps per day. Five factors explained 24% of daily step count variability, with higher step count associated with higher cardiorespiratory fitness (10%), no fear/worry of falling (5%), lower motor severity examination score (4%), more recent time since Parkinson disease diagnosis (3%), and the presence of a cardiovascular condition (2%). Daily step count in nonexercising people recruited for this intervention trial with de novo Parkinson disease approached sedentary lifestyle levels. Further study is warranted for elucidating factors explaining ambulatory activity, particularly cardiorespiratory fitness, and fear/worry of falling. Clinicians should consider the costs and benefits of exercise and activity behavior interventions immediately after diagnosis of Parkinson disease to attenuate the health consequences of low daily step count.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A170).

  3. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at

  4. Changes in physical activity during the transition from primary to secondary school in Belgian children: what is the role of the school environment?

    PubMed

    De Meester, Femke; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Cardon, Greet

    2014-03-19

    Key life periods have been associated with changes in physical activity (PA). This study investigated (1) how PA changes when primary school children transfer to secondary school, (2) if school environmental characteristics differ between primary and secondary schools and (3) if changes in school environmental characteristics can predict changes in PA in Belgian schoolchildren. Moderating effects of gender and the baseline level of PA were investigated for the first and third research question. In total, 736 children (10-13 years) of the last year of primary school participated in the first phase of this longitudinal study. Two years later, 502 of these children (68.2%) agreed to participate in the second phase. Accelerometers, pedometers and the Flemish Physical Activity Questionnaire were used to measure PA. School environmental characteristics were reported by the school principals. Cross-classified regression models were conducted to analyze the data. Self-reported active transport to school and accelerometer weekday moderate to vigorous PA (MVPA) increased after the transition to secondary school while self-reported extracurricular PA and total PA decreased. Pedometer weekday step counts decreased, but this decrease was only apparent among those who achieved the PA guidelines in primary school.Secondary schools scored higher on the school environmental characteristics: provision of sports and PA during lunch break, active schoolyards and playgrounds and health education policy but lower on sports and PA after-school than primary schools. Changes in the school environmental characteristics: active commuting to school, active schoolyards and playgrounds and health education policy resulted in changes in self-reported extracurricular PA, total PA , pedometer/accelerometer determined step counts and accelerometer determined MVPA. Moderating effects were found for baseline PA and gender. PA changed after the transition to secondary school. In general, secondary

  5. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.

    PubMed

    Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas

    2013-08-22

    Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.

  6. The analysis of temperature effect and temperature compensation of MOEMS accelerometer based on a grating interferometric cavity

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang

    2016-08-01

    There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.

  7. Study protocol of physical activity and sedentary behaviour measurement among schoolchildren by accelerometry--cross-sectional survey as part of the ENERGY-project.

    PubMed

    Yıldırım, Mine; Verloigne, Maïté; de Bourdeaudhuij, Ilse; Androutsos, Odysseas; Manios, Yannis; Felso, Regina; Kovács, Éva; Doessegger, Alain; Bringolf-Isler, Bettina; te Velde, Saskia J; Brug, Johannes; Chinapaw, Mai J M

    2011-03-25

    Physical activity and sedentary behaviour among children should be measured accurately in order to investigate their relationship with health. Accelerometry provides objective and accurate measurement of body movement, which can be converted to meaningful behavioural outcomes. The aim of this study was to evaluate the best evidence for the decisions on data collection and data processing with accelerometers among children resulting in a standardized protocol for use in the participating countries. This cross-sectional accelerometer study was conducted as part of the European ENERGY-project that aimed to produce an obesity prevention intervention among schoolchildren. Five countries, namely Belgium, Greece, Hungary, Switzerland and the Netherlands participated in the accelerometer study. We used three different Actigraph models--Actitrainers (triaxial), GT3Xs and GT1Ms. Children wore the device for six consecutive days including two weekend days. We selected an epoch length of 15 seconds. Accelerometers were placed at children's waist at the right side of the body in an elastic belt. In total, 1082 children participated in the study (mean age = 11.7 ± 0.75 y, 51% girls). Non-wearing time was calculated as periods of more than 20 minutes of consecutive zero counts. The minimum daily wearing time was set to 10 hours for weekdays and 8 hours for weekend days. The inclusion criterion for further analysis was having at least three valid weekdays and one valid weekend day. We selected a cut-point (count per minute (cpm)) of <100 cpm for sedentary behaviour, <3000 cpm for light, <5200 cpm for moderate, and >5200 cpm for vigorous physical activity. We also created time filters for school-time during data cleaning in order to explore school-time physical activity and sedentary behaviour patterns in particular. This paper describes the decisions for data collection and processing. Use of standardized protocols would ease future use of accelerometry and the comparability of

  8. Open-loop feedback to increase physical activity in obese children.

    PubMed

    Goldfield, G S; Kalakanis, L E; Ernst, M M; Epstein, L H

    2000-07-01

    The present study investigated whether making access to sedentary activities contingent on physical activity would increase physical activity. Experimental. Thirty-four obese children aged 8-12 y were randomized to one of three groups in which children had to accumulate 750 or 1500 pedometer counts to earn 10 min of access to video games or movies, or to a control group in which access to sedentary behaviors was provided noncontingently. Physical activity in the 20 min experimental session was measured by electronic pedometer and triaxial accelerometer (ie TriTrac(R)). Activity liking was measured by visual analog scales. Anthropometric and demographic characteristics were also assessed. Children in the 750 and 1500 count contingency groups engaged in significantly more physical activity and spent more time in moderate intensity activity or higher compared with controls. Children in the Contingent 1500 group engaged in more activity and spent more time in moderate or greater intensity activity compared to children in the Contingent 750 group. Findings suggest that contingent access to sedentary activities can reinforce physical activity in obese children, and changes in physical activity level depend in part on the targeted physical activity goal.

  9. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  10. Mobility disability and the pattern of accelerometer-derived sedentary and physical activity behaviors in people with multiple sclerosis

    PubMed Central

    Ezeugwu, Victor; Klaren, Rachel E.; A. Hubbard, Elizabeth; Manns, Patricia (Trish); Motl, Robert W.

    2015-01-01

    Objective Low physical activity and high sedentary behavior levels are major concerns in persons with multiple sclerosis (MS) and these differ depending on the level of mobility disability. However, the manner in which daily activity is accumulated is currently unknown in this population. Methods A secondary analysis was performed on a combined data set of persons with MS from two previous investigations of physical activity and symptomatic or quality of life outcomes in the United States over a two year period (2007–2009). Mobility disability status was determined using the Patient Determined Disease Steps (PDDS) while activity behavior was objectively monitored using an ActiGraph accelerometer for 7 days. Results Persons with MS who have mobility disability were involved in sedentary behavior, light and moderate intensity activity for 65%, 34% and 1% of the day, respectively compared to 60%, 37%, and 3%, respectively in those without mobility disability (p < 0.05). Breaks in sedentary time did not differ by mobility disability status. Compared to those without mobility disability, the average number of sedentary bouts longer than 30 min was greater in those with mobility disability (p = 0.016). Conclusion Persons with MS with mobility disability are less active, engage in more sedentary behavior and accumulate prolonged sedentary bouts. PMID:26844077

  11. Miniature piezoelectric triaxial accelerometer measures cranial accelerations

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Rogallo, V. L.

    1966-01-01

    Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.

  12. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    PubMed Central

    Sabato, Alessandro; Feng, Maria Q.

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003

  13. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    PubMed

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  14. Quantitative Accelerated Life Testing of MEMS Accelerometers

    PubMed Central

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-01-01

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1. PMID:28903265

  15. Determination of thermally induced effects and design guidelines of optomechanical accelerometers

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Jiao, Xufen; Han, Dandan; Chen, Peiwen; Liu, Dong; Yang, Yongying; Yang, Guoguang

    2017-11-01

    Thermal effects, including thermally induced deformation and warm up time, are ubiquitous problems for sensors, especially for inertial measurement units such as accelerometers. Optomechanical accelerometers, which contain light sources that can be regarded as heat sources, involve a different thermal phenomenon in terms of their specific optical readout, and the phenomenon has not been investigated systematically. This paper proposes a model to evaluate the temperature difference, rise time and thermally induced deformation of optomechanical accelerometers, and then constructs design guidelines which can diminish these thermal effects without compromising other mechanical performances, based on the analysis of the interplay of thermal and mechanical performances. In the model, the irradiation of the micromachined structure of a laser source is considered a dominant factor. The experimental data obtained using a prototype of an optomechanical accelerometer approximately confirm the validity of the model for the rise time and response tendency. Moreover, design guidelines that adopt suspensions with a flat cross-section and a short length are demonstrated with reference to the analysis. The guidelines can reduce the thermally induced deformation and rise time or achieve higher mechanical performances with similar thermal effects, which paves the way for the design of temperature-tolerant and robust, high-performance devices.

  16. Accelerometer-determined physical activity and the cardiovascular response to mental stress in children.

    PubMed

    Spartano, Nicole L; Heffernan, Kevin S; Dumas, Amy K; Gump, Brooks B

    2017-01-01

    Cardiovascular reactivity has been associated with future hypertension and cardiovascular mortality. Higher physical activity (PA) has been associated with lower cardiovascular reactivity in adults, but little data is available in children. The purpose of this study was to examine the relationship between PA and cardiovascular reactivity to mental stress in children. Cross-sectional study. This study sample included children from the Oswego Lead Study (n=79, 46% female, 9-11 years old). Impedance cardiography was performed while children participated in a stress response protocol. Children were also asked to wear Actigraph accelerometers on their wrists for 3 days to measure intensity and duration of PA and sedentary time. In multivariable models, moderate to vigorous (MV) PA was associated with lower body mass index (BMI) percentile and lower total peripheral resistance (TPR) response to stress (beta=-0.025, p=0.02; beta=-0.009, p=0.05). After additional adjustment for BMI, MVPA was also associated with lower diastolic blood pressure response to stress (beta=-0.01, p=0.03). Total PA and sedentary time were not associated with BMI or cardiovascular responses to stress. A modest, inverse relation of PA to vascular reactivity to mental stress was observed in children. These data provide confirmatory evidence that the promotion of PA recommendations for children are important for cardiovascular health. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Physical activity monitoring in stroke: SenseWear Pro2 activity accelerometer versus Yamax Digi-Walker SW-200 pedometer.

    PubMed

    Vanroy, Christel; Vissers, Dirk; Cras, Patrick; Beyne, Saskia; Feys, Hilde; Vanlandewijck, Yves; Truijen, Steven

    2014-01-01

    Determine validity and reliability of SenseWear Pro2 Armband (SWP2A) and Yamax Digi-Walker SW-200 Pedometer (YDWP) in stroke and healthy adults. Fifteen stroke patients and 15 healthy participants wore SWP2A on upper arm and YDWP at hip/knee. Different activities were performed: treadmill walking, walking up/down a step, cycling and walking on an even surface. Steps and Energy Expenditure (EE) were measured and compared to steps counted manually and indirect calorimetry. Repeated measurements were compared to determine reliability of both devices. Spearman correlation coefficients between knee-worn YDWP and counted steps while walking on an even surface was ≥0.89 in healthy and ≥0.95 in stroke. Treadmill walking revealed high Spearman correlation coefficients in healthy individuals (rs ≥ 0.90) and at 1.5 km/h in stroke (rs = 0.69). During other activities YDWP often underestimated steps. SWP2A data revealed inconsistent results in EE and steps. Reliability tested by repeated measurements varied between 0.66 and 0.98 for YDWP and 0.61 and 0.97 for SWP2A. YDWP and SWP2A are both reliable. Only knee-worn YDWP is a valid device to measure steps except high intensity walking in stroke. YDWP systematically undercounts steps during other activities of short duration. This study could not demonstrate valid measurement of steps/EE in stroke using SWP2A. Implications for Rehabilitation Stroke is a disabling disease with residual neurologic deficits, which impairs mobility and predisposes them to sedentary behavior. A Yamax Digi-Walker SW-200 knee-worn pedometer showed to be a valid and reliable technique to measure ambulatory activity in stroke. A valid instrument to measure energy expenditure in stroke needs to be explored.

  18. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical

  19. Accelerometer method and apparatus for integral display and control functions

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1992-06-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  20. Accelerometer method and apparatus for integral display and control functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  1. Temperature insensitive all-fiber accelerometer using a photonic crystal fiber long-period grating interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.

  2. The Effect of Parental Involvement on Children's Physical Activity.

    PubMed

    Rebold, Michael J; Lepp, Andrew; Kobak, Mallory S; McDaniel, John; Barkley, Jacob E

    2016-03-01

    To assess the amount, intensity, enjoyment, and preference of children's physical activity in a controlled gymnasium setting under 3 experimental, social conditions: alone, with a parent watching, and with a parent participating. Children (n = 10 girls, 10 boys), 3-6 years old, along with 1 parent (n = 17 mothers, 3 fathers) per child participated in each social condition on separate days for 30 minutes in which they could choose from a variety of physical and/or sedentary activities. A greater number of accelerometer counts (P ≤ .02) were accumulated during the parent participating (109,523 ± 32,155 counts) condition than the alone (67,938 ± 37,857 counts) and parent watching (85,624 ± 44,985 counts) conditions. Counts during parent watching were also greater (P = .01) than alone. More time (P ≤ .008) was allocated to sedentary activities during the alone (16.2 ± 9.6 minutes) condition than parent watching (9.6 ± 9.3 minutes) and parent participating (3.8 ± 5.1 minutes). Children liked (P ≤ .02) the parent participating (9.9 ± 0.45 cm) condition more than alone (8.0 ± 2.72 cm) and parent watching (8.7 ± 1.52 cm). A greater (P < .001) proportion of children identified the parent participating (80%) as their preferred condition over either the parent watching (10%) or alone (10%) conditions. Parental participation during physical activity (or at minimum direct supervision) may be an important component in the development of physical activity environments intended to maximize physical activity behavior in children. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Wear-Time Compliance with a Dual-Accelerometer System for Capturing 24-h Behavioural Profiles in Children and Adults.

    PubMed

    Duncan, Scott; Stewart, Tom; Mackay, Lisa; Neville, Jono; Narayanan, Anantha; Walker, Caroline; Berry, Sarah; Morton, Susan

    2018-06-21

    To advance the field of time-use epidemiology, a tool capable of monitoring 24 h movement behaviours including sleep, physical activity, and sedentary behaviour is needed. This study explores compliance with a novel dual-accelerometer system for capturing 24 h movement patterns in two free-living samples of children and adults. A total of 103 children aged 8 years and 83 adults aged 20-60 years were recruited. Using a combination of medical dressing and purpose-built foam pouches, participants were fitted with two Axivity AX3 accelerometers—one to the thigh and the other to the lower back—for seven 24 h periods. AX3 accelerometers contain an inbuilt skin temperature sensor that facilitates wear time estimation. The median (IQR) wear time in children was 160 (67) h and 165 (79) h (out of a maximum of 168 h) for back and thigh placement, respectively. Wear time was significantly higher and less variable in adults, with a median (IQR) for back and thigh placement of 168 (1) and 168 (0) h. A greater proportion of adults (71.6%) achieved the maximum number of complete days when compared to children (41.7%). We conclude that a dual-accelerometer protocol using skin attachment methods holds considerable promise for monitoring 24-h movement behaviours in both children and adults.

  4. Examining differences in physical activity levels by employment status and/or job activity level: Gender-specific comparisons between the United States and Sweden.

    PubMed

    Kwak, Lydia; Berrigan, David; Van Domelen, Dane; Sjöström, Michael; Hagströmer, Maria

    2016-06-01

    The aim of the study was to examine the relationship between employment status and job activity level with physical activity (PA) and sedentary time, stratified by gender and country. Cross-sectional study design. Data from working age adults (18-65 years) from two cross-sectional studies, the Swedish 2001-2002 and 2007-2008 Attitude Behavior and Change Study (ABC; n=1165) and the 2003-2006 US National Health and Nutrition Examination Survey (NHANES; n=4201), were stratified by employment status (employed and not employed) and job activity level (active, sedentary and mixed). PA in counts×min(-1) and time spent in sedentary, low and moderate or higher intensity were measured with accelerometers. Analyses were conducted in 2012-2013. In NHANES, the employed had significantly higher counts×min(-1) and spent more time in moderate or higher intensity PA than those not employed. In ABC, no significant differences were observed between employed and unemployed. Adults with active versus sedentary occupations had higher counts×min(-1) and less sedentary time in both the USA and Sweden and in both men and women. For example, counts×min(-1) were 20-40% greater in active versus sedentary jobs. Employment status is related to PA and sedentary time among men and women in the USA but not in Sweden. Among the employed, occupational PA is associated with total PA and sedentary time for both genders and in both countries. Comparisons of PA levels based on objective measurements can refine understanding of country differences in activity. Copyright © 2015 Sports Medicine Australia. All rights reserved.

  5. Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013)

    DTIC Science & Technology

    2014-06-01

    Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a

  6. The modulation and demodulation module of a high resolution MOEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  7. Design and Evaluation of a Computer-Based 24-Hour Physical Activity Recall (cpar24) Instrument.

    PubMed

    Kohler, Simone; Behrens, Gundula; Olden, Matthias; Baumeister, Sebastian E; Horsch, Alexander; Fischer, Beate; Leitzmann, Michael F

    2017-05-30

    Widespread access to the Internet and an increasing number of Internet users offers the opportunity of using Web-based recalls to collect detailed physical activity data in epidemiologic studies. The aim of this investigation was to evaluate the validity and reliability of a computer-based 24-hour physical activity recall (cpar24) instrument with respect to the recalled 24-h period. A random sample of 67 German residents aged 22 to 70 years was instructed to wear an ActiGraph GT3X+ accelerometer for 3 days. Accelerometer counts per min were used to classify activities as sedentary (<100 counts per min), light (100-1951 counts per min), and moderate to vigorous (≥1952 counts per min). On day 3, participants were also requested to specify the type, intensity, timing, and context of all activities performed during day 2 using the cpar24. Using metabolic equivalent of task (MET), the cpar24 activities were classified as sedentary (<1.5 MET), light (1.5-2.9 MET), and moderate to vigorous (≥3.0 MET). The cpar24 was administered twice at a 3-h interval. The Spearman correlation coefficient (r) was used as primary measure of concurrent validity and test-retest reliability. As compared with accelerometry, the cpar24 underestimated light activity by -123 min (median difference, P difference <.001) and overestimated moderate to vigorous activity by 89 min (P difference <.001). By comparison, time spent sedentary assessed by the 2 methods was similar (median difference=+7 min, P difference=.39). There was modest agreement between the cpar24 and accelerometry regarding sedentary (r=.54), light (r=.46), and moderate to vigorous (r=.50) activities. Reliability analyses revealed modest to high intraclass correlation coefficients for sedentary (r=.75), light (r=.65), and moderate to vigorous (r=.92) activities and no statistically significant differences between replicate cpar24 measurements (median difference for sedentary activities=+10 min, for light activities=-5 min, for

  8. Inertial navigation without accelerometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  9. Age- and sex-specific criterion validity of the health survey for England Physical Activity and Sedentary Behavior Assessment Questionnaire as compared with accelerometry.

    PubMed

    Scholes, Shaun; Coombs, Ngaire; Pedisic, Zeljko; Mindell, Jennifer S; Bauman, Adrian; Rowlands, Alex V; Stamatakis, Emmanuel

    2014-06-15

    The criterion validity of the 2008 Physical Activity and Sedentary Behavior Assessment Questionnaire (PASBAQ) was examined in a nationally representative sample of 2,175 persons aged ≥16 years in England using accelerometry. Using accelerometer minutes/day greater than or equal to 200 counts as a criterion, Spearman's correlation coefficient (ρ) for PASBAQ-assessed total activity was 0.30 (95% confidence interval (CI): 0.25, 0.35) in women and 0.20 (95% CI: 0.15, 0.26) in men. Correlations between accelerometer counts/minute of wear time and questionnaire-assessed relative energy expenditure (metabolic equivalent-minutes/day) were higher in women (ρ = 0.41, 95% CI: 0.36, 0.46) than in men (ρ = 0.32, 95% CI: 0.26, 0.38). Similar correlations were observed for minutes/day spent in vigorous activity (women: ρ = 0.39, 95% CI: 0.33, 0.46; men: ρ = 0.31, 95% CI: 0.26, 0.36) and moderate-to-vigorous activity (women: ρ = 0.42, 95% CI: 0.36, 0.48; men: ρ = 0.38, 95% CI: 0.32, 0.45). Correlations for time spent being sedentary (<100 counts/minute) were 0.30 (95% CI: 0.24, 0.35) and 0.25 (95% CI: 0.19, 0.30) in women and men, respectively. Sedentary behavior correlations showed no sex difference. The validity of sedentary behavior and total physical activity was higher in older age groups, but validity was higher in younger persons for vigorous-intensity activity. The PASBAQ is a useful and valid instrument for ranking individuals according to levels of physical activity and sedentary behavior. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  10. Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke.

    PubMed

    Dobkin, Bruce H; Xu, Xiaoyu; Batalin, Maxim; Thomas, Seth; Kaiser, William

    2011-08-01

    Outcome measures of mobility for large stroke trials are limited to timed walks for short distances in a laboratory, step counters and ordinal scales of disability and quality of life. Continuous monitoring and outcome measurements of the type and quantity of activity in the community would provide direct data about daily performance, including compliance with exercise and skills practice during routine care and clinical trials. Twelve adults with impaired ambulation from hemiparetic stroke and 6 healthy controls wore triaxial accelerometers on their ankles. Walking speed for repeated outdoor walks was determined by machine-learning algorithms and compared to a stopwatch calculation of speed for distances not known to the algorithm. The reliability of recognizing walking, exercise, and cycling by the algorithms was compared to activity logs. A high correlation was found between stopwatch-measured outdoor walking speed and algorithm-calculated speed (Pearson coefficient, 0.98; P=0.001) and for repeated measures of algorithm-derived walking speed (P=0.01). Bouts of walking >5 steps, variations in walking speed, cycling, stair climbing, and leg exercises were correctly identified during a day in the community. Compared to healthy subjects, those with stroke were, as expected, more sedentary and slower, and their gait revealed high paretic-to-unaffected leg swing ratios. Test-retest reliability and concurrent and construct validity are high for activity pattern-recognition Bayesian algorithms developed from inertial sensors. This ratio scale data can provide real-world monitoring and outcome measurements of lower extremity activities and walking speed for stroke and rehabilitation studies.

  11. Comparing accelerometer, pedometer and a questionnaire for measuring physical activity in bronchiectasis: a validity and feasibility study?

    PubMed

    O'Neill, B; McDonough, S M; Wilson, J J; Bradbury, I; Hayes, K; Kirk, A; Kent, L; Cosgrove, D; Bradley, J M; Tully, M A

    2017-01-14

    There are challenges for researchers and clinicians to select the most appropriate physical activity tool, and a balance between precision and feasibility is needed. Currently it is unclear which physical activity tool should be used to assess physical activity in Bronchiectasis. The aim of this research is to compare assessment methods (pedometer and IPAQ) to our criterion method (ActiGraph) for the measurement of physical activity dimensions in Bronchiectasis (BE), and to assess their feasibility and acceptability. Patients in this analysis were enrolled in a cross-sectional study. The ActiGraph and pedometer were worn for seven consecutive days and the IPAQ was completed for the same period. Statistical analyses were performed using SPSS 20 (IBM). Descriptive statistics were used; the percentage agreement between ActiGraph and the other measures were calculated using limits of agreement. Feedback about the feasibility of the activity monitors and the IPAQ was obtained. There were 55 (22 male) data sets available. For step count there was no significant difference between the ActiGraph and Pedometer, however, total physical activity time (mins) as recorded by the ActiGraph was significantly higher than the pedometer (mean ± SD, 232 (75) vs. 63 (32)). Levels of agreement between the two devices was very good for step count (97% agreement); and variation in the levels of agreement were within accepted limits of ±2 standard deviations from the mean value. IPAQ reported more bouted- moderate - vigorous physical activity (MVPA) [mean, SD; 167(170) vs 6(9) mins/day], and significantly less sedentary time than ActiGraph [mean, SD; 362(115) vs 634(76) vmins/day]. There were low levels of agreement between the two tools (57% sedentary behaviour; 0% MVPA 10+ ), with IPAQ under-reporting sedentary behaviour and over-reporting MVPA 10+ compared to ActiGraph. The monitors were found to be feasible and acceptable by participants and researchers; while the IPAQ was

  12. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  13. Home-based system for physical activity monitoring in patients with multiple sclerosis (Pilot study).

    PubMed

    Shammas, Layal; Zentek, Tom; von Haaren, Birte; Schlesinger, Stefan; Hey, Stefan; Rashid, Asarnusch

    2014-02-06

    Limitations in physical activity are considered as a key problem in patients with multiple sclerosis (PwMS). Contemporary methods to assess the level of physical activity in PwMS are regular clinical observation. However, these methods either rely on high recall and accurate reporting from the patients (e.g. self-report questionnaires), or they are conducted during a particular clinical assessment with predefined activities. Therefore, the main aim of this pilot study was to develop an objective method to gather information about the real type and intensity of daily activities performed by PwMS in every-day living situations using an accelerometer. Furthermore, the accelerometer-derived measures are investigated regarding their potential for discriminating between different MS groups. Eleven PwMS that were able to walk independently (EDSS ≤ 5) were divided into two groups: mild disability (EDSS 1-2.5; n = 6) and moderate disability (EDSS 3 -5; n = 5). Participants made use of an activity monitor device attached to their waist during their normal daily activities over 4 measurements. Activity parameters were assessed and compared for the time of each participant's first measurement and follow-up measurement. Furthermore, differences between both subgroups, and the correlation of activity parameters with the clinical neurological variable (EDSS) were investigated. Participants showed significant decline in step count (p = 0.008), maximum walking speed (p = 0.02) and physical activity intensity (p = 0.03) throughout the study period. Compared to the mild subgroup, moderate affected participant accumulated less number of steps (G1: 9214.33 ± 2439.11, G2: 5018.13 ± 2416.96; p < 0.005) and were slower (G1: 1.48 ± 0.19, G2: 1.12 ± 0.44; p = 0.03). Additionally, the EDSS correlated negatively with mean walking speed (r = - 0.71, p = 0.01) and steps count (r = - 0.54, p = 0.08). In this study, we used a

  14. Structural design of high-performance capacitive accelerometers using parametric optimization with uncertainties

    NASA Astrophysics Data System (ADS)

    Teves, André da Costa; Lima, Cícero Ribeiro de; Passaro, Angelo; Silva, Emílio Carlos Nelli

    2017-03-01

    Electrostatic or capacitive accelerometers are among the highest volume microelectromechanical systems (MEMS) products nowadays. The design of such devices is a complex task, since they depend on many performance requirements, which are often conflicting. Therefore, optimization techniques are often used in the design stage of these MEMS devices. Because of problems with reliability, the technology of MEMS is not yet well established. Thus, in this work, size optimization is combined with the reliability-based design optimization (RBDO) method to improve the performance of accelerometers. To account for uncertainties in the dimensions and material properties of these devices, the first order reliability method is applied to calculate the probabilities involved in the RBDO formulation. Practical examples of bulk-type capacitive accelerometer designs are presented and discussed to evaluate the potential of the implemented RBDO solver.

  15. Energy expended playing video console games: an opportunity to increase children's physical activity?

    PubMed

    Maddison, Ralph; Mhurchu, Cliona Ni; Jull, Andrew; Jiang, Yannan; Prapavessis, Harry; Rodgers, Anthony

    2007-08-01

    This study sought to quantify the energy expenditure and physical activity associated with playing the "new generation" active and nonactive console-based video games in 21 children ages 10-14 years. Energy expenditure (kcal) derived from oxygen consumption (VO2) was continuously assessed while children played nonactive and active console video games. Physical activity was assessed continuously using the Actigraph accelerometer. Significant (p < .001) increases from baseline were found for energy expenditure (129-400%), heart rate (43-84%), and activity counts (122-1288 versus 0-23) when playing the active console video games. Playing active console video games over short periods of time is similar in intensity to light to moderate traditional physical activities such as walking, skipping, and jogging.

  16. Traveling Atmospheric Disturbances (TADs) in the thermosphere inferred from accelerometer data at three altitudes

    NASA Astrophysics Data System (ADS)

    Bruinsma, Sean; Forbes, Jeffrey

    2010-05-01

    Densities derived from accelerometer measurements on the GRACE, CHAMP and Air Force/SETA satellites near 490, 390, and 220 km, respectively, are used to elucidate global-scale characteristics of traveling atmospheric disturbances. The accelerometers on the CHAMP and GRACE satellites have made it possible to accumulate near-continuous records of thermosphere density between about 320 and 490 km since May 2001, and July 2002, respectively. They have recorded the response to virtually every significant geomagnetic storm during this period. CHAMP and GRACE are in (near) polar and quasi-circular orbits, sampling 24 hr local time approximately every 4 and 5 months, respectively. These capabilities offer unique opportunities to study the temporal and latitudinal responses of the thermosphere to geomagnetic disturbances. The Air Force/SETA accelerometer data have also been processed, but the analysis is more complicated due to data gaps. Significant and unambiguous TAD activity in the observed response of the thermosphere was detected for about 25 events with CHAMP and GRACE, and less than 10 with SETA. The atmospheric variability is evaluated by de-trending the data, allowing the extraction of specific ranges in horizontal scale, and analyzing density "residuals". The scale of the perturbation is decisive for its lifetime and relative amplitude. Sometimes the disturbances represent wave-like structures propagating far from the source, and these so-called ‘TADs' were detected and described for the May 2003 storm for the first time. Some TADs traveled over the pole into the opposite hemisphere; this was found in both CHAMP and GRACE data. Most TADs propagate equatorward, but poleward propagating TADs have on occasion been detected too. The estimated speeds and amplitudes of the observed TADs, and their dependence on altitude and solar and geomagnetic activity in particular, will be presented in this poster.

  17. Shuttle high resolution accelerometer package experiment results - Atmospheric density measurements between 60-160 km

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.

    1988-01-01

    Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.

  18. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer.

    PubMed

    van Hees, Vincent T; Renström, Frida; Wright, Antony; Gradmark, Anna; Catt, Michael; Chen, Kong Y; Löf, Marie; Bluck, Les; Pomeroy, Jeremy; Wareham, Nicholas J; Ekelund, Ulf; Brage, Søren; Franks, Paul W

    2011-01-01

    Few studies have compared the validity of objective measures of physical activity energy expenditure (PAEE) in pregnant and non-pregnant women. PAEE is commonly estimated with accelerometers attached to the hip or waist, but little is known about the validity and participant acceptability of wrist attachment. The objectives of the current study were to assess the validity of a simple summary measure derived from a wrist-worn accelerometer (GENEA, Unilever Discover, UK) to estimate PAEE in pregnant and non-pregnant women, and to evaluate participant acceptability. Non-pregnant (N = 73) and pregnant (N = 35) Swedish women (aged 20-35 yrs) wore the accelerometer on their wrist for 10 days during which total energy expenditure (TEE) was assessed using doubly-labelled water. PAEE was calculated as 0.9×TEE-REE. British participants (N = 99; aged 22-65 yrs) wore accelerometers on their non-dominant wrist and hip for seven days and were asked to score the acceptability of monitor placement (scored 1 [least] through 10 [most] acceptable). There was no significant correlation between body weight and PAEE. In non-pregnant women, acceleration explained 24% of the variation in PAEE, which decreased to 19% in leave-one-out cross-validation. In pregnant women, acceleration explained 11% of the variation in PAEE, which was not significant in leave-one-out cross-validation. Median (IQR) acceptability of wrist and hip placement was 9(8-10) and 9(7-10), respectively; there was a within-individual difference of 0.47 (p<.001). A simple summary measure derived from a wrist-worn tri-axial accelerometer adds significantly to the prediction of energy expenditure in non-pregnant women and is scored acceptable by participants.

  19. Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.

    PubMed

    DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K

    2015-01-01

    Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals.

  20. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    PubMed

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  1. Assessment of Physical Activity in Chronic Kidney Disease

    PubMed Central

    Robinson-Cohen, Cassianne; Littman, Alyson J; Duncan, Glen E; Roshanravan, Baback; Ikizler, T. Alp; Himmelfarb, Jonathan; Kestenbaum, Bryan R

    2012-01-01

    Background Physical activity (PA) plays important roles in the development of kidney disease and its complications; however, the validity of standard tools for measuring PA is not well understood. Study Design We investigated the performance of several readily-available and widely-used PA and physical function questionnaires, individually and in combination, against accelerometry among a cohort of CKD participants. Setting and Participants Forty-six participants from the Seattle Kidney Study, an observational cohort study of persons with CKD, completed the PA Scale for the Elderly, Human Activity Profile (HAP), Medical Outcomes Study SF-36 questionnaire, and the Four Week PA History Questionnaire (FWH). We simultaneously measured PA using an Actigraph GT3X accelerometer over a 14-day period. We estimated the validity of each instrument by testing its associations with log-transformed accelerometry counts. We used the Akaike information criterion to investigate the performance of combinations of questionnaires. Results All questionnaire scores were significantly associated with log-transformed accelerometry counts. The HAP correlated best with accelerometry counts (r2=0.32) followed by the SF-36 (r2=0.23). Forty-three percent of the variability in accelerometry counts data was explained by a model that combined the HAP, SF-36 and FWH. Conclusion A combination of measurement tools can account for a modest component of PA in patients with CKD; however, a substantial proportion of physical activity is not captured by standard assessments. PMID:22739659

  2. Differences in daily in-hospital physical activity and geriatric nutritional risk index in older cardiac inpatients: preliminary results.

    PubMed

    Izawa, Kazuhiro P; Watanabe, Satoshi; Oka, Koichiro; Osada, Naohiko; Omiya, Kazuto; Brubaker, Peter H; Shimizu, Hiroyuki

    2014-12-01

    Little is known about the differences in the geriatric nutritional risk index (GNRI) status in older patients and their relationship to accelerometer-derived measures of physical activity (PA) levels. We determined both differences in daily measured PA based on the GNRI and related cut-off values for PA in elderly cardiac inpatients. We divided 235 consecutive elderly cardiac inpatients (mean age 73.6 years, men 70.6%) into four groups by age and GNRI: older-high group, 65-74 years with high GNRI (≥92 points) (n = 111); older-low group, low GNRI (<92 points) (n = 30); very old-high group, ≥75 years with high GNRI (n = 55); and very old-low group with low GNRI (n = 39). Average step count and physical activity energy expenditure (PAEE in kcal) per day for 2 days of these inpatients were assessed by accelerometer and compared between the four groups to determine cut-off values of PA. Step counts and PAEE were significantly lower in the low-GNRI versus high-GNRI groups in the older (2,742.1 vs. 4,198.1 steps, 55.4 vs. 101.3 kcal, P < 0.001), and very old (2,469.6 vs. 3,423.7 steps, 54.5 vs. 79.1 kcal, P < 0.001) cardiac inpatients. Respective cut-off values for step counts and PAEE were 3,017.6 steps/day and 69.4 kcal (P < 0.01) in the older and 2,579.4 steps/day and 58.8 kcal in the very old cardiac inpatients (P < 0.01). Poor nutritional status, as indicated by a low GNRI, may be a useful predictor of step counts and PAEE. The cut-off values determined in this study might be target values to be attained by older cardiac inpatients.

  3. Promoting Physical Activity With the Out of School Nutrition and Physical Activity (OSNAP) Initiative: A Cluster-Randomized Controlled Trial.

    PubMed

    Cradock, Angie L; Barrett, Jessica L; Giles, Catherine M; Lee, Rebekka M; Kenney, Erica L; deBlois, Madeleine E; Thayer, Julie C; Gortmaker, Steven L

    2016-02-01

    Millions of children attend after-school programs in the United States. Increasing physical activity levels of program participants could have a broad effect on children's health. To test the effectiveness of the Out of School Nutrition and Physical Activity (OSNAP) Initiative in increasing children's physical activity levels in existing after-school programs. Cluster-randomized controlled trial with matched program pairs. Baseline data were collected September 27 through November 12, 2010, with follow-up data collected April 25 through May 27, 2011. The dates of our analysis were March 11, 2014, through August 18, 2015. The setting was 20 after-school programs in Boston, Massachusetts. All children 5 to 12 years old in participating programs were eligible for study inclusion. Ten programs participated in a series of three 3-hour learning collaborative workshops, with additional optional opportunities for training and technical assistance. Change in number of minutes and bouts of moderate to vigorous physical activity, vigorous physical activity, and sedentary activity and change in total accelerometer counts between baseline and follow-up. Participants with complete data were 402 racially/ethnically diverse children, with a mean age of 7.7 years. Change in the duration of physical activity opportunities offered to children during program time did not differ between conditions (-1.2 minutes; 95% CI, -14.2 to 12.4 minutes; P = .87). Change in moderate to vigorous physical activity minutes accumulated by children during program time did not differ significantly by intervention status (-1.0; 95% CI, -3.3 to 1.3; P = .40). Total minutes per day of vigorous physical activity (3.2; 95% CI, 1.8-4.7; P < .001), vigorous physical activity minutes in bouts (4.1; 95% CI, 2.7-5.6; P < .001), and total accelerometer counts per day (16,894; 95% CI, 5101-28,686; P = .01) increased significantly during program time among intervention participants compared with control

  4. Real-time passenger counting by active linear cameras

    NASA Astrophysics Data System (ADS)

    Khoudour, Louahdi; Duvieubourg, Luc; Deparis, Jean-Pierre

    1996-03-01

    The companies operating subways are very much concerned with counting the passengers traveling through their transport systems. One of the most widely used systems for counting passengers consists of a mechanical gate equipped with a counter. However, such simple systems are not able to count passengers jumping above the gates. Moreover, passengers carrying large luggage or bags may meet some difficulties when going through such gates. The ideal solution is a contact-free counting system that would bring more comfort of use for the passengers. For these reasons, we propose to use a video processing system instead of these mechanical gates. The optical sensors discussed in this paper offer several advantages including well defined detection areas, fast response time and reliable counting capability. A new technology has been developed and tested, based on linear cameras. Preliminary results show that this system is very efficient when the passengers crossing the optical gate are well separated. In other cases, such as in compact crowd conditions, reasonable accuracy has been demonstrated. These results are illustrated by means of a number of sequences shot in field conditions. It is our belief that more precise measurements could be achieved, in the case of compact crowd, by other algorithms and acquisition techniques of the line images that we are presently developing.

  5. Swarm- Validation of Star Tracker and Accelerometer Data

    NASA Astrophysics Data System (ADS)

    Schack, Peter; Schlicht, Anja; Pail, Roland; Gruber, Thomas

    2016-08-01

    The ESA Swarm mission is designed to advance studies in the field of magnetosphere, thermosphere and gravity field. To be fortunate on this task precise knowledge of the orientation of the Swarm satellites is required together with knowledge about external forces acting on the satellites. The key sensors providing this information are the star trackers and the accelerometers. Based on star tracker studies conducted by the Denmark Technical University (DTU), we found interesting patterns in the interboresight angles on all three satellites, which are partly induced by temperature alterations. Additionally, structures of horizontal stripes seem to be caused by the unique distribution of observed stars on the charge-coupled device of the star trackers. Our accelerometer analyses focus on spikes and pulses in the observations. Those short term events on Swarm might originate from electrical processes introduced by sunlight illuminating the nadir foil. Comparisons to GOCE and GRACE are included.

  6. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    PubMed

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  7. Preschool physical activity and functional constipation: the Generation R study.

    PubMed

    Driessen, Lisa M; Kiefte-de Jong, Jessica C; Wijtzes, Anne; de Vries, Sanne I; Jaddoe, Vincent W V; Hofman, Albert; Raat, Hein; Moll, Henriette A

    2013-12-01

    Decreased physical activity levels in children may partly explain the rising prevalence of functional constipation in childhood. The aim of the present study, therefore, was to examine the association between physical activity and functional constipation during the preschool period. This study was embedded in the Generation R study, a large prospective birth-cohort study in Rotterdam, The Netherlands. Physical activity was measured by an Actigraph accelerometer in 347 children (182 boys, 165 girls; mean age 25.1 months) and data were expressed as counts per minute. Data were categorized into light activity (302-614 counts/15 seconds), moderate activity (615-1230 counts/15 seconds), and vigorous activity (≥1231 counts/15 seconds). Functional constipation in the third and fourth year of life was defined according to the Rome II criteria. Children spending time in the highest tertile of light (adjusted odds ratio [OR] 0.34; 95% confidence interval [CI] 0.13-0.87), moderate (adjusted OR 0.37; 95% CI 0.14-0.97), and total activity (adjusted OR 0.37; 95% CI 0.15-0.92) at the age of 2 years had significantly less functional constipation in the fourth year of life. For functional constipation in the third year of life, the results were in similar direction but not statistically significant. Additionally, children with physical activity of more than the WHO recommendation of 60 min/day had significantly less functional constipation in the fourth year of life (adjusted OR 0.48; 95% CI 0.24-0.97). Physical activity is associated with a decreased risk of functional constipation in the preschool period, but this may be time dependent.

  8. Comparison of Different Physical Activity Measurement Methods in Adults Aged 45 to 64 Years Under Free-Living Conditions.

    PubMed

    Lipert, Anna; Jegier, Anna

    2017-07-01

    To compare physical activity (PA) measured by 4 methods in adults under free-living conditions in relation to selected demographic and anthropometric variables. Cohort study. Department of Sports Medicine. Clinically healthy men (81) and women (69) aged 45 to 64 years. Physical activity monitoring for 7 consecutive days under free-living conditions by pedometer (P) and accelerometer (A) simultaneously and PA questionnaires: International Physical Activity Questionnaire (IPAQ) and Seven-Day Physical Activity Questionnaire Recall (SDPAR) completed after the 7-day PA. Comparison of PA measured by pedometer, IPAQ, and SDPAR with accelerometer with regard to age, body mass, gender, and obesity type. Total energy expenditure (EE) by IPAQ was higher than A (P < 0.001) in both groups regardless of age, body mass, or obesity type. Mean EE value by P was greater than A (P < 0.001) in central-obesity males and lower than A (P < 0.001) in central-obesity females. There were differences in step counts in women, unnoticed in men. SDPAR overestimated total EE in gynoid-obesity males and in central-obesity females compared with A. Ninety-five percent CI was the largest around IPAQ compared with P and SDPAR, with SDPAR showing the best agreement with A. Body mass and obesity type influenced PA measurements. To monitor PA, it is recommended to use pedometer in normal bodyweight and overweight groups while accelerometer is advisable in obese subjects. A combined approach of objective and subjective PA monitoring tools is preferable.

  9. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  10. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    PubMed

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  11. Validation of cardiac accelerometer sensor measurements.

    PubMed

    Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik

    2009-12-01

    In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.

  12. An Accelerometer as an Alternative to a Force Plate for the Step-Up-and-Over Test.

    PubMed

    Bailey, Christopher A; Costigan, Patrick A

    2015-12-01

    The step-up-and-over test has been used successfully to examine knee function after knee injury. Knee function is quantified using the following variables extracted from force plate data: the maximal force exerted during the lift, the maximal impact force at landing, and the total time to complete the step. For various reasons, including space and cost, it is unlikely that all clinicians will have access to a force plate. The purpose of the study was to determine if the step-up-and-over test could be simplified by using an accelerometer. The step-up-and-over test was performed by 17 healthy young adults while being measured with both a force plate and a 3-axis accelerometer mounted at the low back. Results showed that the accelerometer and force plate measures were strongly correlated for all 3 variables (r = .90-.98, Ps < .001) and that the accelerometer values for the lift and impact indices were 6-7% higher (Ps < .01) and occurred 0.07-0.1 s later than the force plate (Ps < .05). The accelerometer returned values highly correlated to those from a force plate. Compared with a force plate, a wireless, 3-axis accelerometer is a less expensive and more portable system with which to measure the step-up-and-over test.

  13. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    PubMed Central

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  14. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    PubMed

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  15. Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics.

    PubMed

    Lemoyne, Robert; Mastroianni, Timothy; Cozza, Michael; Coroian, Cristian; Grundfest, Warren

    2010-01-01

    The capacity to quantify and evaluate gait beyond the general confines of a clinical environment under effectively autonomous conditions may alleviate rampant strain on limited and highly specialized medical resources. An iPhone consists of a three dimensional accelerometer subsystem with highly robust and scalable software applications. With the synthesis of the integral iPhone features, an iPhone application, which constitutes a wireless accelerometer system for gait quantification and analysis, has been tested and evaluated in an autonomous environment. The acquired gait cycle data was transmitted wireless and through email for subsequent post-processing in a location remote to the location where the experiment was conducted. The iPhone application functioning as a wireless accelerometer for the acquisition of gait characteristics has demonstrated sufficient accuracy and consistency.

  16. Automatic identification of physical activity types and sedentary behaviors from triaxial accelerometer: laboratory-based calibrations are not enough.

    PubMed

    Bastian, Thomas; Maire, Aurélia; Dugas, Julien; Ataya, Abbas; Villars, Clément; Gris, Florence; Perrin, Emilie; Caritu, Yanis; Doron, Maeva; Blanc, Stéphane; Jallon, Pierre; Simon, Chantal

    2015-03-15

    "Objective" methods to monitor physical activity and sedentary patterns in free-living conditions are necessary to further our understanding of their impacts on health. In recent years, many software solutions capable of automatically identifying activity types from portable accelerometry data have been developed, with promising results in controlled conditions, but virtually no reports on field tests. An automatic classification algorithm initially developed using laboratory-acquired data (59 subjects engaging in a set of 24 standardized activities) to discriminate between 8 activity classes (lying, slouching, sitting, standing, walking, running, and cycling) was applied to data collected in the field. Twenty volunteers equipped with a hip-worn triaxial accelerometer performed at their own pace an activity set that included, among others, activities such as walking the streets, running, cycling, and taking the bus. Performances of the laboratory-calibrated classification algorithm were compared with those of an alternative version of the same model including field-collected data in the learning set. Despite good results in laboratory conditions, the performances of the laboratory-calibrated algorithm (assessed by confusion matrices) decreased for several activities when applied to free-living data. Recalibrating the algorithm with data closer to real-life conditions and from an independent group of subjects proved useful, especially for the detection of sedentary behaviors while in transports, thereby improving the detection of overall sitting (sensitivity: laboratory model = 24.9%; recalibrated model = 95.7%). Automatic identification methods should be developed using data acquired in free-living conditions rather than data from standardized laboratory activity sets only, and their limits carefully tested before they are used in field studies. Copyright © 2015 the American Physiological Society.

  17. Single-Axis Accelerometer

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  18. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates.

    PubMed

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-22

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7-20 Hz range.

  19. Physical activity classification with dynamic discriminative methods.

    PubMed

    Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John

    2018-06-19

    A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.

  20. An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.

    PubMed

    Hu, Yating; Xu, Yong

    2012-01-01

    This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. The prototype with a resonant frequency of 1100Hz and a total weight of 5 gram is designed, constructed and characterized. The size of the prototype sensor is 35mm×18mm×7.8mm (l×w×t). A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.

  1. Applying Natural Language Processing to Understand Motivational Profiles for Maintaining Physical Activity After a Mobile App and Accelerometer-Based Intervention: The mPED Randomized Controlled Trial.

    PubMed

    Fukuoka, Yoshimi; Lindgren, Teri G; Mintz, Yonatan Dov; Hooper, Julie; Aswani, Anil

    2018-06-20

    Regular physical activity is associated with reduced risk of chronic illnesses. Despite various types of successful physical activity interventions, maintenance of activity over the long term is extremely challenging. The aims of this original paper are to 1) describe physical activity engagement post intervention, 2) identify motivational profiles using natural language processing (NLP) and clustering techniques in a sample of women who completed the physical activity intervention, and 3) compare sociodemographic and clinical data among these identified cluster groups. In this cross-sectional analysis of 203 women completing a 12-month study exit (telephone) interview in the mobile phone-based physical activity education study were examined. The mobile phone-based physical activity education study was a randomized, controlled trial to test the efficacy of the app and accelerometer intervention and its sustainability over a 9-month period. All subjects returned the accelerometer and stopped accessing the app at the last 9-month research office visit. Physical engagement and motivational profiles were assessed by both closed and open-ended questions, such as "Since your 9-month study visit, has your physical activity been more, less, or about the same (compared to the first 9 months of the study)?" and, "What motivates you the most to be physically active?" NLP and cluster analysis were used to classify motivational profiles. Descriptive statistics were used to compare participants' baseline characteristics among identified groups. Approximately half of the 2 intervention groups (Regular and Plus) reported that they were still wearing an accelerometer and engaging in brisk walking as they were directed during the intervention phases. These numbers in the 2 intervention groups were much higher than the control group (overall P=.01 and P=.003, respectively). Three clusters were identified through NLP and named as the Weight Loss group (n=19), the Illness Prevention

  2. Calibration of raw accelerometer data to measure physical activity: A systematic review.

    PubMed

    de Almeida Mendes, Márcio; da Silva, Inácio C M; Ramires, Virgílio V; Reichert, Felipe F; Martins, Rafaela C; Tomasi, Elaine

    2018-03-01

    Most of calibration studies based on accelerometry were developed using count-based analyses. In contrast, calibration studies based on raw acceleration signals are relatively recent and their evidences are incipient. The aim of the current study was to systematically review the literature in order to summarize methodological characteristics and results from raw data calibration studies. The review was conducted up to May 2017 using four databases: PubMed, Scopus, SPORTDiscus and Web of Science. Methodological quality of the included studies was evaluated using the Landis and Koch's guidelines. Initially, 1669 titles were identified and, after assessing titles, abstracts and full-articles, 20 studies were included. All studies were conducted in high-income countries, most of them with relatively small samples and specific population groups. Physical activity protocols were different among studies and the indirect calorimetry was the criterion measure mostly used. High mean values of sensitivity, specificity and accuracy from the intensity thresholds of cut-point-based studies were observed (93.7%, 91.9% and 95.8%, respectively). The most frequent statistical approach applied was machine learning-based modelling, in which the mean coefficient of determination was 0.70 to predict physical activity energy expenditure. Regarding the recognition of physical activity types, the mean values of accuracy for sedentary, household and locomotive activities were 82.9%, 55.4% and 89.7%, respectively. In conclusion, considering the construct of physical activity that each approach assesses, linear regression, machine-learning and cut-point-based approaches presented promising validity parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry.

    PubMed

    Garnotel, M; Bastian, T; Romero-Ugalde, H M; Maire, A; Dugas, J; Zahariev, A; Doron, M; Jallon, P; Charpentier, G; Franc, S; Blanc, S; Bonnet, S; Simon, C

    2018-03-01

    Accelerometry is increasingly used to quantify physical activity (PA) and related energy expenditure (EE). Linear regression models designed to derive PAEE from accelerometry-counts have shown their limits, mostly due to the lack of consideration of the nature of activities performed. Here we tested whether a model coupling an automatic activity/posture recognition (AAR) algorithm with an activity-specific count-based model, developed in 61 subjects in laboratory conditions, improved PAEE and total EE (TEE) predictions from a hip-worn triaxial-accelerometer (ActigraphGT3X+) in free-living conditions. Data from two independent subject groups of varying body mass index and age were considered: 20 subjects engaged in a 3-h urban-circuit, with activity-by-activity reference PAEE from combined heart-rate and accelerometry monitoring (Actiheart); and 56 subjects involved in a 14-day trial, with PAEE and TEE measured using the doubly-labeled water method. PAEE was estimated from accelerometry using the activity-specific model coupled to the AAR algorithm (AAR model), a simple linear model (SLM), and equations provided by the companion-software of used activity-devices (Freedson and Actiheart models). AAR-model predictions were in closer agreement with selected references than those from other count-based models, both for PAEE during the urban-circuit (RMSE = 6.19 vs 7.90 for SLM and 9.62 kJ/min for Freedson) and for EE over the 14-day trial, reaching Actiheart performances in the latter (PAEE: RMSE = 0.93 vs. 1.53 for SLM, 1.43 for Freedson, 0.91 MJ/day for Actiheart; TEE: RMSE = 1.05 vs. 1.57 for SLM, 1.70 for Freedson, 0.95 MJ/day for Actiheart). Overall, the AAR model resulted in a 43% increase of daily PAEE variance explained by accelerometry predictions. NEW & NOTEWORTHY Although triaxial accelerometry is widely used in free-living conditions to assess the impact of physical activity energy expenditure (PAEE) on health, its precision and accuracy are often debated

  4. Validity of the International Physical Activity Questionnaire and the Singapore Prospective Study Program physical activity questionnaire in a multiethnic urban Asian population.

    PubMed

    Nang, Ei Ei Khaing; Gitau Ngunjiri, Susan Ayuko; Wu, Yi; Salim, Agus; Tai, E Shyong; Lee, Jeannette; Van Dam, Rob M

    2011-10-13

    Physical activity patterns of a population remain mostly assessed by the questionnaires. However, few physical activity questionnaires have been validated in Asian populations. We previously utilized a combination of different questionnaires to assess leisure time, transportation, occupational and household physical activity in the Singapore Prospective Study Program (SP2). The International Physical Activity Questionnaire (IPAQ) has been developed for a similar purpose. In this study, we compared estimates from these two questionnaires with an objective measure of physical activity in a multi-ethnic Asian population. Physical activity was measured in 152 Chinese, Malay and Asian Indian adults using an accelerometer over five consecutive days, including a weekend. Participants completed both the physical activity questionnaire in SP2 (SP2PAQ) and IPAQ long form. 43 subjects underwent a second set of measurements on average 6 months later to assess reproducibility of the questionnaires and the accelerometer measurements. Spearman correlations were used to evaluate validity and reproducibility and correlations for validity were corrected for within-person variation of accelerometer measurements. Agreement between the questionnaires and the accelerometer measurements was also evaluated using Bland Altman plots. The corrected correlation with accelerometer estimates of energy expenditure from physical activity was better for the SP2PAQ (vigorous activity: r = 0.73; moderate activity: r = 0.27) than for the IPAQ (vigorous activity: r = 0.31; moderate activity: r = 0.15). For moderate activity, the corrected correlation between SP2PAQ and the accelerometer was higher for Chinese (r = 0.38) and Malays (r = 0.57) than for Indians (r = -0.09). Both questionnaires overestimated energy expenditure from physical activity to a greater extent at higher levels of physical activity than at lower levels of physical activity. The reproducibility for moderate activity (accelerometer

  5. SenseWearMini and Actigraph GT3X Accelerometer Classification of Observed Sedentary and Light-Intensity Physical Activities in a Laboratory Setting.

    PubMed

    Feehan, Lynne M; Goldsmith, Charles H; Leung, April Y F; Li, Linda C

    Purpose: To compare the ability of SenseWear Mini (SWm) and Actigraph GT3X (AG 3 ) accelerometers to differentiate between healthy adults' observed sedentary and light activities in a laboratory setting. Methods: The 22 participants (15 women, 7 men), ages 19 to 72 years, wore SWm and AG 3 monitors and performed five sedentary and four light activities for 5 minutes each while observed in a laboratory setting. Performance was examined through comparisons of accuracy, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Correct identification of both types of activities was examined using area under the receiver operating characteristic curve (AUC). Results: Both monitors demonstrated excellent ability to identify sedentary activities (sensitivity>0.89). The SWm monitor was better at identifying light activities (specificity 0.61-0.71) than the AG 3 monitor (specificity 0.27-0.47) and thus also showed a greater ability to correctly identify both sedentary and light activities (SWm AUC 0.84; AG 3 AUC 0.62-0.73). Conclusions: SWm may be a more suitable monitor for detecting time spent in sedentary and light-intensity activities. This finding has clinical and research relevance for evaluation of time spent in lower intensity physical activities by sedentary adults.

  6. Examining the Error of Mis-Specifying Nonlinear Confounding Effect With Application on Accelerometer-Measured Physical Activity.

    PubMed

    Lee, Paul H

    2017-06-01

    Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the estimation of a causal relationship between the exposure and outcome in 3 ways: using a linear term, binning into 5 equal-size categories, or using a restricted cubic spline of the confounder. Continuous, binary, and survival outcomes were simulated. We examined the confounder across varying measurement error. In addition, we performed a real data analysis examining the 3 strategies to handle the nonlinear effects of accelerometer-measured physical activity in the National Health and Nutrition Examination Survey 2003-2006 data. The mis-specification of a nonlinear confounder had little impact on causal effect estimation for continuous outcomes. For binary and survival outcomes, this mis-specification introduced bias, which could be eliminated using spline adjustment only when there is small measurement error of the confounder. Real data analysis showed that the associations between high blood pressure, high cholesterol, and diabetes and mortality adjusted for physical activity with restricted cubic spline were about 3% to 11% larger than their counterparts adjusted with a linear term. For continuous outcomes, confounders with nonlinear effects can be adjusting with a linear term. Spline adjustment should be used for binary and survival outcomes on confounders with small measurement error.

  7. Medium-high frequency FBG accelerometer with integrative matrix structure.

    PubMed

    Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna

    2015-04-10

    To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200  pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.

  8. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    NASA Astrophysics Data System (ADS)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  9. Introducing a modular activity monitoring system.

    PubMed

    Reiss, Attila; Stricker, Didier

    2011-01-01

    In this paper, the idea of a modular activity monitoring system is introduced. By using different combinations of the system's three modules, different functionality becomes available: 1) a coarse intensity estimation of physical activities 2) different features based on HR-data and 3) the recognition of basic activities and postures. 3D-accelerometers--placed on lower arm, chest and foot--and a heart rate monitor were used as sensors. A dataset with 8 subjects and 14 different activities was recorded to evaluate the performance of the system. The overall performance on the intensity estimation task, relying on the chest-worn accelerometer and the HR-monitor, was 94.37%. The overall performance on the activity recognition task, using all three accelerometer placements and the HR-monitor, was 90.65%. This paper also gives an analysis of the importance of different accelerometer placements and the importance of a HR-monitor for both tasks.

  10. Physical Limitations, Walkability, Perceived Environmental Facilitators and Physical Activity of Older Adults in Finland

    PubMed Central

    Portegijs, Erja; Keskinen, Kirsi E.; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja

    2017-01-01

    The aim was to study objectively assessed walkability of the environment and participant perceived environmental facilitators for outdoor mobility as predictors of physical activity in older adults with and without physical limitations. 75–90-year-old adults living independently in Central Finland were interviewed (n = 839) and reassessed for self-reported physical activity one or two years later (n = 787). Lower-extremity physical limitations were defined as Short Physical Performance Battery score ≤9. Number of perceived environmental facilitators was calculated from a 16-item checklist. Walkability index (land use mix, street connectivity, population density) of the home environment was calculated from geographic information and categorized into tertiles. Accelerometer-based step counts were registered for one week (n = 174). Better walkability was associated with higher numbers of perceived environmental facilitators (p < 0.001) and higher physical activity (self-reported p = 0.021, step count p = 0.010). Especially among those with physical limitations, reporting more environmental facilitators was associated with higher odds for reporting at least moderate physical activity (p < 0.001), but not step counts. Perceived environmental facilitators only predicted self-reported physical activity at follow-up. To conclude, high walkability of the living environment provides opportunities for physical activity in old age, but among those with physical limitations especially, awareness of environmental facilitators may be needed to promote physical activity. PMID:28327543

  11. Physical Limitations, Walkability, Perceived Environmental Facilitators and Physical Activity of Older Adults in Finland.

    PubMed

    Portegijs, Erja; Keskinen, Kirsi E; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja

    2017-03-22

    The aim was to study objectively assessed walkability of the environment and participant perceived environmental facilitators for outdoor mobility as predictors of physical activity in older adults with and without physical limitations. 75-90-year-old adults living independently in Central Finland were interviewed ( n = 839) and reassessed for self-reported physical activity one or two years later ( n = 787). Lower-extremity physical limitations were defined as Short Physical Performance Battery score ≤9. Number of perceived environmental facilitators was calculated from a 16-item checklist. Walkability index (land use mix, street connectivity, population density) of the home environment was calculated from geographic information and categorized into tertiles. Accelerometer-based step counts were registered for one week ( n = 174). Better walkability was associated with higher numbers of perceived environmental facilitators ( p < 0.001) and higher physical activity (self-reported p = 0.021, step count p = 0.010). Especially among those with physical limitations, reporting more environmental facilitators was associated with higher odds for reporting at least moderate physical activity ( p < 0.001), but not step counts. Perceived environmental facilitators only predicted self-reported physical activity at follow-up. To conclude, high walkability of the living environment provides opportunities for physical activity in old age, but among those with physical limitations especially, awareness of environmental facilitators may be needed to promote physical activity.

  12. Making Online Instruction Count: Statistical Reporting of Web-Based Library Instruction Activities

    ERIC Educational Resources Information Center

    Bottorff, Tim; Todd, Andrew

    2012-01-01

    Statistical reporting of library instruction (LI) activities has historically focused on measures relevant to face-to-face (F2F) settings. However, newer forms of LI conducted in the online realm may be difficult to count in traditional ways, leading to inaccurate reporting to both internal and external stakeholders. A thorough literature review…

  13. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  14. Accelerometer-based physical activity levels among Mexican adults and their relation with sociodemographic characteristics and BMI: a cross-sectional study.

    PubMed

    Salvo, Deborah; Torres, Catalina; Villa, Umberto; Rivera, Juan A; Sarmiento, Olga L; Reis, Rodrigo S; Pratt, Michael

    2015-06-20

    The objectives of this study were to describe the accelerometer based total and bout-specific PA levels for a representative sample of adults from Cuernavaca, Mexico, and to examine the relationships with sociodemographic characteristics and BMI status. Cross sectional study of adults from Cuernavaca, Mexico (2011, n = 677). Participants wore Actigraph GT3X accelerometers for seven days and sociodemographic data was collected through a survey. Weight and height were objectively measured. Total minutes/week of moderate-to-vigorous PA (MVPA) and of MVPA occurring within bouts of at least ten minutes were obtained. Intensity-specific (moderate and vigorous) total PA and bouted-PA was also obtained. The relation of each PA variable with sex, age, socioeconomic status, education, marital status and BMI status was assessed using unadjusted and adjusted linear models. The mean total MVPA among adults from Cuernavaca was 221.3 ± 10.0 (median = 178.3 min/week). Average MVPA within bouts was 65.8 ± 4.7 min/week (median = 30.0 min/week). 9.7 % of total MVPA occurred within bouts. Significant associations were found for total and bout-specific MVPA with being male (positive) and owning a motor vehicle (negative). Additional associations were found for intensity-specific PA outcomes. Mexican adults were more active during weekdays than weekends, suggesting that PA may be more strongly driven by necessity (transport) than by choice (leisure). This is the first study to objectively measure PA for a representative sample of Mexican adults in an urban setting. The sociodemographic correlates vary from those known from high income countries, stressing the need for more correlate studies from lower-to-middle income countries.

  15. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men.

    PubMed

    Amagasa, Shiho; Fukushima, Noritoshi; Kikuchi, Hiroyuki; Takamiya, Tomoko; Oka, Koichiro; Inoue, Shigeru

    2017-05-02

    Men are generally believed to be more physically active than women when evaluated using current physical activity (PA) guidelines, which count only moderate-to-vigorous physical activity (MVPA) in bouts lasting at least 10 min. However, it remains unclear men are truly more physically active provided that all-intensity PA are evaluated. This population based cross-sectional study aimed to examine gender differences in patterns of objectively-assessed PA in older adults. One thousand two hundred ten community-dwelling Japanese older adults who were originally randomly selected from residential registry of three municipalities were asked to respond a questionnaire and wear an accelerometer (HJA-350IT, Omron Healthcare). The prevalence of achieving current PA guidelines, ≥150 min/week MVPA in bouts lasting at least 10 min, was calculated. Gender differences in volume of each-intensity activity (METs-hour) were assessed by analysis of covariance after adjustment for age and wear time. Data from 450 (255 men, mean 74 years) participants who had valid accelerometer data were analyzed. Women were less likely to meet the guidelines (men: 31.0, women: 21.5%; p < 0.05). However, women accumulated more light-intensity PA (LPA) and short-bout (1-9 min) MVPA, and thus established higher total volume of PA (men: 22.0 METs-hour/day, women: 23.9 METs-hour/day) (p < 0.05). Older women were less active when evaluated against current PA guidelines, but more active by total PA. Considering accumulated evidence on health benefits of LPA and short-bout MVPA, our findings highlight the potential for the limitation of assessing PA using current PA guidelines.

  16. Effect of the improved accelerometer calibration method on AIUB's GRACE monthly gravity field solution

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Arnold, Daniel; Bentel, Katrin; Jäggi, Adrian

    2017-04-01

    The monthly global gravity field solutions derived using the measurements from the GRACE (Gravity Recovery and Climate Experiment) satellites have been continuously improved by the processing centers. One of the improvements in the processing method is a more detailed calibration of the on-board accelerometers in the GRACE satellites. The accelerometer data calibration is usually restricted to the scale factors and biases. It has been assumed that the three different axes are perfectly orthogonal in the GRACE science reference frame. Recently, it was shown by Klinger and Mayer-Gürr (2016) that a fully-populated scale matrix considering the non-orthogonality of the axes and the misalignment of the GRACE science reference frame and the GRACE accelerometer frame improves the quality of the C20 coefficient in the GRACE monthly gravity field solutions. We investigate the effect of the more detailed calibration of the GRACE accelerometer data on the C20 coefficient in the case of the AIUB (Astronomical Institute of the University of Bern) processing method using the Celestial Mechanics Approach. We also investigate the effect of the new calibration parameters on the stochastic parameters in the Celestial Mechanics Approach.

  17. Operational Data Reduction Procedure for Determining Density and Vertical Structure of the Martian Upper Atmosphere from Mars Global Surveyor Accelerometer Measurements

    NASA Technical Reports Server (NTRS)

    Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.

    1998-01-01

    The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.

  18. Correlates of accelerometer-assessed physical activity and sedentary time among adults with type 2 diabetes.

    PubMed

    Mathe, Nonsikelelo; Boyle, Terry; Al Sayah, Fatima; Mundt, Clark; Vallance, Jeff K; Johnson, Jeffrey A; Johnson, Steven T

    2017-11-09

    The aims of this study were to describe the volume and patterns of objectively assessed sedentary behaviour, light intensity physical activity (LPA) and moderate-vigorous physical activity (MVPA), and to examine socio-demographic correlates, among adults living with type 2 diabetes. Participants (n = 166) wore an accelerometer (Actigraph® GT3X+) for seven consecutive days during waking hours and completed a questionnaire. Physical activity (PA) and sedentary time were described, and multivariable linear regression was used to estimate associations between socio-demographic characteristics and sedentary time and PA. Participants, 46% of whom were female, had a mean age of 65.4 years (standard deviation (SD) = 9.5), body mass index (BMI) of 31.5 (6.6) kg/m2 and had been living with diabetes for an average of 13.1 (7.6) years. Participants were sedentary for 543.6 minutes/day, spent 273.4 minutes/day and 22.4 minutes/day in LPA and MVPA respectively. BMI was associated with increased sedentary time and reduced LPA (-2.5 minutes/day, 95% CI: -4.33 to -0.70) and MVPA (-0.62 minutes/day, 95% CI: -1.05 to -0.18) time. Compared with males, females had more LPA (34.4 minutes/day, 95% CI: 10.21-58.49) and less MVPA (-6.2 minutes/day, 95% CI: -12.04 to -0.41) time. Unemployed participants had 30.05 minutes more MVPA (95% CI: 3.35-56.75) than those who were employed or homemakers, and those not reporting income had 13 minutes/day more MVPA time than participants in the lowest income category (95% CI: 3.46-22.40). Adults living with type 2 diabetes were not sufficiently active and were highly sedentary. Our results emphasize the need for more research exploring the diabetes-related health outcomes of sedentary behaviour and physical inactivity among people living with type 2 diabetes.

  19. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent

    2014-05-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with

  20. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements.

    PubMed

    Wang, Yiwei; Nickel, Barry; Rutishauser, Matthew; Bryce, Caleb M; Williams, Terrie M; Elkaim, Gabriel; Wilmers, Christopher C

    2015-01-01

    Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) collars to monitor behaviors of free-ranging pumas (Puma concolor), which are difficult or impossible to observe in the wild. We attached collars to twelve pumas in the Santa Cruz Mountains, CA from 2010-2012. By implementing Random Forest models, we classified behaviors in wild pumas based on training data from observations and measurements of captive puma behavior. We applied these models to accelerometer data collected from wild pumas and identified mobile and non-mobile behaviors in captive animals with an accuracy rate greater than 96%. Accuracy remained above 95% even after downsampling our accelerometer data to 16 Hz. We were further able to predict low-acceleration movement behavior (e.g. walking) and high-acceleration movement behavior (e.g. running) with 93.8% and 92% accuracy, respectively. We had difficulty predicting non-movement behaviors such as feeding and grooming due to the small size of our training dataset. Lastly, we used model-predicted and field-verified predation events to quantify acceleration characteristics of puma attacks on large prey. These results demonstrate that accelerometers are useful tools for classifying the behaviors of cryptic medium and large-sized terrestrial mammals in their natural habitats and can help scientists gain deeper insight into their fine-scale behavioral patterns. We also show how accelerometer measurements can provide novel insights on the energetics and predation behavior of wild animals. Lastly we discuss the conservation implications of identifying these behavioral patterns in free-ranging species as natural and anthropogenic landscape features influence animal energy allocation and habitat use.

  1. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    NASA Astrophysics Data System (ADS)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  2. Theoretical analysis and concept demonstration of a novel MOEMS accelerometer based on Raman—Nath diffraction

    NASA Astrophysics Data System (ADS)

    Zuwei, Zhang; Zhiyu, Wen; Jing, Hu

    2012-04-01

    The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman—Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fundamental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.

  3. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-29

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  4. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  5. Employment and physical activity in the U.S.

    PubMed

    Van Domelen, Dane R; Koster, Annemarie; Caserotti, Paolo; Brychta, Robert J; Chen, Kong Y; McClain, James J; Troiano, Richard P; Berrigan, David; Harris, Tamara B

    2011-08-01

    Physical inactivity is a risk factor for obesity, cardiovascular disease, hypertension, and other chronic diseases that are increasingly prevalent in the U.S. and worldwide. Time at work represents a major portion of the day for employed people. To determine how employment status (full-time, part-time, or not employed) and job type (active or sedentary) are related to daily physical activity levels in American adults. Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) were collected in 2003-2004 and analyzed in 2010. Physical activity was measured using Actigraph uniaxial accelerometers, and participants aged 20-60 years with ≥4 days of monitoring were included (N=1826). Accelerometer variables included mean counts/minute during wear time and proportion of wear time spent in various intensity levels. In men, full-time workers were more active than healthy nonworkers (p=0.004), and in weekday-only analyses, even workers with sedentary jobs were more active (p=0.03) and spent less time sedentary (p<0.001) than nonworkers. In contrast with men, women with full-time sedentary jobs spent more time sedentary (p=0.008) and had less light and lifestyle intensity activity than healthy nonworkers on weekdays. Within full-time workers, those with active jobs had greater weekday activity than those with sedentary jobs (22% greater in men, 30% greater in women). In men, full-time employment, even in sedentary occupations, is positively associated with physical activity compared to not working, and in both genders job type has a major bearing on daily activity levels. Copyright © 2011. Published by Elsevier Inc.

  6. Predicting Chinese Children and Youth's Energy Expenditure Using ActiGraph Accelerometers: A Calibration and Cross-Validation Study

    ERIC Educational Resources Information Center

    Zhu, Zheng; Chen, Peijie; Zhuang, Jie

    2013-01-01

    Purpose: The purpose of this study was to develop and cross-validate an equation based on ActiGraph accelerometer GT3X output to predict children and youth's energy expenditure (EE) of physical activity (PA). Method: Participants were 367 Chinese children and youth (179 boys and 188 girls, aged 9 to 17 years old) who wore 1 ActiGraph GT3X…

  7. Associations of Low- and High-Intensity Light Activity with Cardiometabolic Biomarkers.

    PubMed

    Howard, Bethany; Winkler, Elisabeth A H; Sethi, Parneet; Carson, Valerie; Ridgers, Nicola D; Salmon, J O; Healy, Genevieve N; Owen, Neville; Dunstan, David W

    2015-10-01

    Light-intensity physical activity (LIPA) accounts for much of adults' waking hours (≈40%) and substantially contributes to overall daily energy expenditure. Encompassing activity behaviors of low intensity (standing with little movement) to those of higher intensity (slow walking), LIPA is ubiquitous, yet little is known about how associations with health may vary depending on its intensity. We examined the associations of objectively assessed LIPA (categorized as either low LIPA [LLPA] or high LIPA [HLPA]) and moderate- to vigorous-intensity activity with cardiometabolic risk biomarkers. Cardiometabolic biomarkers were measured in 4614 US adults (47 ± 17 yr) who participated in the 2003-2004 and 2005-2006 National Health and Nutrition Examination Survey cycles. Multiple linear regression analyses examined the associations of three accelerometer-derived physical activity (SD increment per day) intensity categories (LLPA, 100-761 counts per minute; HLPA, 762-1951 counts per minute; moderate-intensity physical activity [MPA], 1952-5724 counts per minute; vigorous-intensity physical activity [VPA], ≥5725 counts per minute) with cardiometabolic biomarkers, adjusting for potential sociodemographic, behavioral, and medical confounders. All intensities of physical activity were beneficially associated with waist circumference, C-reactive protein, triglycerides, fasting insulin, β-cell function, and insulin sensitivity (P < 0.05); only some activity intensities showed significant associations with systolic blood pressure (LLPA), body mass index, HDL cholesterol, fasting glucose, and 2-h plasma glucose (HLPA, MPA, and VPA). Generally, effect size increased with intensity of physical activity. Overall, further adjustment for waist circumference attenuated associations with MPA and VPA to a greater extent than associations with LLPA and HLPA. The cross-sectional findings provide novel evidence for the potential benefits of increasing both LLPA and HLPA. They further

  8. The effect of simulated ostracism on physical activity behavior in children.

    PubMed

    Barkley, Jacob E; Salvy, Sarah-Jeanne; Roemmich, James N

    2012-03-01

    To assess the effects of simulated ostracism on children's physical activity behavior, time allocated to sedentary behavior, and liking of physical activity. Nineteen children (11 boys, 8 girls; age 11.7 ± 1.3 years) completed 2 experimental sessions. During each session, children played a virtual ball-toss computer game (Cyberball). In one session, children played Cyberball and experienced ostracism; in the other session, they were exposed to the inclusion/control condition. The order of conditions was randomized. After playing Cyberball, children were taken to a gymnasium where they had free-choice access to physical and sedentary activities for 30 minutes. Children could participate in the activities, in any pattern they chose, for the entire period. Physical activity during the free-choice period was assessed via accelerometery and sedentary time via observation. Finally, children reported their liking for the activity session via a visual analog scale. Children accumulated 22% fewer (P < .01) accelerometer counts and 41% more (P < .04) minutes of sedentary activity in the ostracized condition (8.9(e+4) ± 4.5(e+4) counts, 11.1 ± 9.3 minutes) relative to the included condition (10.8(e+4) ± 4.7(e+4) counts, 7.9 ± 7.9 minutes). Liking (8.8 ± 1.5 cm included, 8.1 ± 1.9 cm ostracized) of the activity sessions was not significantly different (P > .10) between conditions. Simulated ostracism elicits decreased subsequent physical activity participation in children. Ostracism may contribute to children's lack of physical activity.

  9. Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers

    PubMed Central

    Luu, Loc; Dinh, Anh

    2018-01-01

    The aim of this study is on the investigation of motion noise removal techniques using two-accelerometer sensor system and various placements of the sensors on gentle movement and walking of the patients. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design filters in the motion noise removal techniques and peak signal detection. There are two main techniques of combining signals from the two sensors to mitigate the motion artifact: analog processing and digital processing. The analog processing comprises analog circuits performing adding or subtracting functions and bandpass filter to remove artifact noises before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The two techniques are tested on three placements of accelerometer sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are the best techniques to deal with gentle motion on all sensor placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to traditional methods using only one accelerometer. With walking motion, ADDER and z-axis acceleration are the best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer method. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. PMID:29614821

  10. Artificial neural networks to predict activity type and energy expenditure in youth.

    PubMed

    Trost, Stewart G; Wong, Weng-Keen; Pfeiffer, Karen A; Zheng, Yonglei

    2012-09-01

    Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous-intensity games or sports. During each trial, participants wore an ActiGraph GT1M on the right hip, and VO2 was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square error (RMSE). As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.

  11. Daytime Physical Activity and Sleep in Hospitalized Older Adults: Association with Demographic Characteristics and Disease Severity.

    PubMed

    Beveridge, Claire; Knutson, Kristen; Spampinato, Lisa; Flores, Andrea; Meltzer, David O; Van Cauter, Eve; Arora, Vineet M

    2015-07-01

    To assess objectively measured daytime physical activity and sleep duration and efficiency in hospitalized older adults and explore associations with demographic characteristics and disease severity. Prospective cohort study. University of Chicago Medical Center general medicine wards. Community-dwelling inpatients aged 50 and older (N = 120) MEASUREMENTS: Physical activity and sleep were measured using wrist accelerometers. Information on Charlson Comorbidity Index and length of stay was collected from charts. Random-effects linear regression analysis was used to examine the association between in-hospital sleep and physical activity. From March 2010 to May 2013, 120 participants wore wrist actigraphy monitors for at least 2 nights and 1 intervening day. Median activity level over the waking period was 77 counts/min (interquartile range 51-121 counts/min), an activity level that approximately corresponds to sitting while watching television (65 counts/min). Mean sleep duration the night before the activity interval was 289 ± 157 minutes, and mean sleep efficiency the night before the activity interval was 65.2 ± 26.9%. Mean activity counts/min were lowest for the oldest participants (oldest quartile 62, 95% confidence interval (CI) = 50-75; youngest quartile 121, 95% CI = 98-145, trend test P < .001) and those with highest Charlson Comorbidity Index (highest tertile 71, 95% CI = 60-83; lowest tertile 125, 95% CI = 104-147, trend test P = .01). Controlling for severity of illness and demographic characteristics, activity declined by 3 counts/min (95% CI = -5.65 to -0.43, P = .02) for each additional hour of inpatient sleep. Older, sicker adults are less physically active during hospitalization. In contrast to studies in the community, inpatients who slept more were not more active. This may highlight that need for sleep is greater in the hospital than in the community. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  12. Physical activity patterns of people affected by depressive and anxiety disorders as measured by accelerometers: a cross-sectional study.

    PubMed

    Helgadóttir, Björg; Forsell, Yvonne; Ekblom, Örjan

    2015-01-01

    Exercise can relieve both depressive and anxiety disorders and it is therefore of importance to establish movement patterns of mildly to moderately affected sufferers to estimate the treatment potential. The aim is to describe the physical activity patterns of people affected by mild to moderate depressive and/or anxiety symptoms using objective measures of physical activity. The design of the study was cross-sectional using data from 165 people aged 18-65 years, with mild to moderate depressive and/or anxiety disorder symptoms (scoring ≥ 10 on the PHQ-9). Diagnoses were made using Mini International Neuropsychiatric Interview (MINI) and symptom severity was measured with the Montgomery-Åsberg Depression Rating Scale (MADRS). The participants wore accelerometers for a week to evaluate physical activity patterns. No statistically significant differences were detected between different diagnoses, though depressed participants tended to be less active and more sedentary. Only one-fifth of the sample followed public health guidelines regarding physical activity. Each one point increase in MADRS was associated with a 2.4 minute reduction in light physical activity, independent of moderate-to-vigorous physical activity and sedentary time. MADRS was positively associated with number of sedentary bouts. The physical activity pattern of people with depressive and/or anxiety disorders was characterized by large amounts of sedentary time and low fulfillment of physical activity guidelines. There is therefore a large treatment potential for this group by increasing exercise. The results suggest that instead of focusing exclusively on high intensity exercise for treating depressive and anxiety disorders, health care providers might encourage patients to reduce sedentary time by increasing light physical activity and decreasing the number of sedentary bouts, though further studies are needed that can determine directionality.

  13. Signals and Noises Acting On The Accelerometer Mounted In The Mpo (mercury Planetary Orbiter).

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lucchesi, D.; Milyukov, V.; Nozzoli, S.

    The RadioScience experiments proposed for the BepiClombo ESA CORNERSTONE are aiming at performing planetary measurements such as: the rotation state of Mer- cury, the global structure of its gravity field and the local gravitational anomalies, but also to test some aspects of the General Relativity, to an unprecedented level of accu- racy. A high sensitivity accelerometer will measure the inertial acceleration acting on the MPO; these data, together with tracking data are used to evaluate the purely gravi- tational trajectory of the MPO, by transforming it to a virtual drag-free satellite system. At the Istituto di Fisica dello Spazio Interplanetario (IFSI) a high sensitive accelerom- eter named ISA (Italian Spring Accelerometer)* and considered for this mission has been studied. The main problems concerning the use of the accelerometer are related to the high dynamics necessary to follow the variation of the acceleration signals, with accuracy equal to 10^-9 g/sqr(Hz), and very high at the MPO orbital period and due to thermal noise introduced at the sidereal period of Mercury. The description of the accelerometer will be presented, with particular attention to the thermal problems and to the analysis regarding the choice of the mounting position on the MPO. *Project funded by the Italian Space Agency (ASI).

  14. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators.

    PubMed

    Niskanen, Arto; Tuononen, Ari J

    2015-08-05

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced.

  15. Obesity History and Daily Patterns of Physical Activity at Age 60-64 Years: Findings From the MRC National Survey of Health and Development.

    PubMed

    Cooper, Rachel; Huang, Lei; Hardy, Rebecca; Crainiceanu, Adina; Harris, Tamara; Schrack, Jennifer A; Crainiceanu, Ciprian; Kuh, Diana

    2017-10-01

    The aim of this study was to investigate associations of current body mass index (BMI) and obesity history with daily patterns of physical activity. At age 60-64, participants from a British birth cohort study wore accelerometers for 5 days. Accelerometry counts were log-transformed and mean log-counts were used to derive a summary variable indicating total daily log-activity counts. Among those with complete data (n = 1,388) the associations of current BMI and age of first obesity were examined with: (a) total daily log-activity counts and (b) total log-activity counts in four segments of the day. Higher current BMI and younger age at obesity were strongly associated with lower levels of total daily activity at age 60-64 even after adjustment for sex, socioeconomic factors, and health status. The fully-adjusted mean difference in total daily log-activity counts was -581.7 (95% confidence interval: -757.2, -406.3) when comparing BMI ≥35 kg/m2 with <25 kg/m2, representing an 18.4% difference. Participants who had been obese since early adulthood had the lowest levels of activity (mean difference in total daily log-activity counts was -413.1 (-638.1, -188.2) when comparing those who were obese by age 26 or 36 with those who were never obese, representing a 13.1% difference). Obese older adults may require targeted interventions and additional support to improve their daily activity levels. As younger generations with greater lifetime exposure to obesity reach old age the proportion of adults achieving sufficient levels of activity to realize its associated health benefits is likely to decline. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America.

  16. Developing Fine-Grained Actigraphies for Rheumatoid Arthritis Patients from a Single Accelerometer Using Machine Learning

    PubMed Central

    Garcia-Gancedo, Luis; Van der Drift, Anniek; Powell, Adam; Hamy, Valentin; Keller, Thomas; Yang, Guang-Zhong

    2017-01-01

    In addition to routine clinical examination, unobtrusive and physical monitoring of Rheumatoid Arthritis (RA) patients provides an important source of information to enable understanding the impact of the disease on quality of life. Besides an increase in sedentary behaviour, pain in RA can negatively impact simple physical activities such as getting out of bed and standing up from a chair. The objective of this work is to develop a method that can generate fine-grained actigraphies to capture the impact of the disease on the daily activities of patients. A processing methodology is presented to automatically tag activity accelerometer data from a cohort of moderate-to-severe RA patients. A study of procesing methods based on machine learning and deep learning is provided. Thirty subjects, 10 RA patients and 20 healthy control subjects, were recruited in the study. A single tri-axial accelerometer was attached to the position of the fifth lumbar vertebra (L5) of each subject with a tag prediction granularity of 3 s. The proposed method is capable of handling unbalanced datasets from tagged data while accounting for long-duration activities such as sitting and lying, as well as short transitions such as sit-to-stand or lying-to-sit. The methodology also includes a novel mechanism for automatically applying a threshold to predictions by their confidence levels, in addition to a logical filter to correct for infeasible sequences of activities. Performance tests showed that the method was able to achieve around 95% accuracy and 81% F-score. The produced actigraphies can be helpful to generate objective RA disease-specific markers of patient mobility in-between clinical site visits. PMID:28906437

  17. Developing Fine-Grained Actigraphies for Rheumatoid Arthritis Patients from a Single Accelerometer Using Machine Learning.

    PubMed

    Andreu-Perez, Javier; Garcia-Gancedo, Luis; McKinnell, Jonathan; Van der Drift, Anniek; Powell, Adam; Hamy, Valentin; Keller, Thomas; Yang, Guang-Zhong

    2017-09-14

    In addition to routine clinical examination, unobtrusive and physical monitoring of Rheumatoid Arthritis (RA) patients provides an important source of information to enable understanding the impact of the disease on quality of life. Besides an increase in sedentary behaviour, pain in RA can negatively impact simple physical activities such as getting out of bed and standing up from a chair. The objective of this work is to develop a method that can generate fine-grained actigraphies to capture the impact of the disease on the daily activities of patients. A processing methodology is presented to automatically tag activity accelerometer data from a cohort of moderate-to-severe RA patients. A study of procesing methods based on machine learning and deep learning is provided. Thirty subjects, 10 RA patients and 20 healthy control subjects, were recruited in the study. A single tri-axial accelerometer was attached to the position of the fifth lumbar vertebra (L5) of each subject with a tag prediction granularity of 3 s. The proposed method is capable of handling unbalanced datasets from tagged data while accounting for long-duration activities such as sitting and lying, as well as short transitions such as sit-to-stand or lying-to-sit. The methodology also includes a novel mechanism for automatically applying a threshold to predictions by their confidence levels, in addition to a logical filter to correct for infeasible sequences of activities. Performance tests showed that the method was able to achieve around 95% accuracy and 81% F-score. The produced actigraphies can be helpful to generate objective RA disease-specific markers of patient mobility in-between clinical site visits.

  18. How Accurate Is Your Activity Tracker? A Comparative Study of Step Counts in Low-Intensity Physical Activities

    PubMed Central

    2017-01-01

    Background As commercially available activity trackers are being utilized in clinical trials, the research community remains uncertain about reliability of the trackers, particularly in studies that involve walking aids and low-intensity activities. While these trackers have been tested for reliability during walking and running activities, there has been limited research on validating them during low-intensity activities and walking with assistive tools. Objective The aim of this study was to (1) determine the accuracy of 3 Fitbit devices (ie, Zip, One, and Flex) at different wearing positions (ie, pants pocket, chest, and wrist) during walking at 3 different speeds, 2.5, 5, and 8 km/h, performed by healthy adults on a treadmill; (2) determine the accuracy of the mentioned trackers worn at different sites during activities of daily living; and (3) examine whether intensity of physical activity (PA) impacts the choice of optimal wearing site of the tracker. Methods We recruited 15 healthy young adults to perform 6 PAs while wearing 3 Fitbit devices (ie, Zip, One, and Flex) on their chest, pants pocket, and wrist. The activities include walking at 2.5, 5, and 8 km/h, pushing a shopping cart, walking with aid of a walker, and eating while sitting. We compared the number of steps counted by each tracker with gold standard numbers. We performed multiple statistical analyses to compute descriptive statistics (ie, ANOVA test), intraclass correlation coefficient (ICC), mean absolute error rate, and correlation by comparing the tracker-recorded data with that of the gold standard. Results All the 3 trackers demonstrated good-to-excellent (ICC>0.75) correlation with the gold standard step counts during treadmill experiments. The correlation was poor (ICC<0.60), and the error rate was significantly higher in walker experiment compared to other activities. There was no significant difference between the trackers and the gold standard in the shopping cart experiment. The wrist

  19. Part-Time Work and Physical Activity in American High School Students.

    PubMed

    Van Domelen, Dane R

    2015-08-01

    To compare physical activity (PA) in American high school students who work part-time with those who do not work. Data were obtained from the National Health and Nutrition Examination Survey 2003 to 2006 (n = 791). Work status was self-reported and PA was measured using accelerometers. In males, adjusted for age, race, and poverty-income ratio, workers averaged greater counts per minute, less sedentary time, and greater moderate-to-vigorous PA compared with nonworkers. In females, workers and nonworkers had similar counts per minute, whereas nonworkers had somewhat greater moderate-to-vigorous PA. There was a work-by-school status interaction on sedentary time (P = 0.021), whereby work was associated with less sedentary time among students not on break from school. In American high school students, work is associated with greater PA in males and a different composition of PA in females.

  20. Calibrating Accelerometers Using an Electromagnetic Launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erik Timpson

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering amore » desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.« less