Sample records for accelerometer cut points

  1. Calibration and comparison of accelerometer cut points in preschool children.

    PubMed

    van Cauwenberghe, Eveline; Labarque, Valery; Trost, Stewart G; de Bourdeaudhuij, Ilse; Cardon, Greet

    2011-06-01

    The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. To calibrate the accelerometer, 18 preschoolers (5.8 ± 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 ± 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.

  2. A calibration protocol for population-specific accelerometer cut-points in children.

    PubMed

    Mackintosh, Kelly A; Fairclough, Stuart J; Stratton, Gareth; Ridgers, Nicola D

    2012-01-01

    To test a field-based protocol using intermittent activities representative of children's physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity. Twenty-eight children (46% boys) aged 10-11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children's play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC) curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities. Cut-points of ≤ 372, >2160 and >4806 counts • min(-1) representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of the activity). Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62), and a high classification agreement (98.6%; 89.0%; 87.2%), respectively. Specificity values of 96-97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89-99%) indicated that minutes of activity were seldom incorrectly classified as inactivity. The development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.

  3. Calibration of GENEActiv accelerometer wrist cut-points for the assessment of physical activity intensity of preschool aged children.

    PubMed

    Roscoe, Clare M P; James, Rob S; Duncan, Michael J

    2017-08-01

    This study sought to validate cut-points for use of wrist-worn GENEActiv accelerometer data, to analyse preschool children's (4 to 5 year olds) physical activity (PA) levels via calibration with oxygen consumption values (VO 2 ). This was a laboratory-based calibration study. Twenty-one preschool children, aged 4.7 ± 0.5 years old, completed six activities (ranging from lying supine to running) whilst wearing the GENEActiv accelerometers at two locations (left and right wrist), these being the participants' non-dominant and dominant wrist, and a Cortex face mask for gas analysis. VO 2 data was used for the assessment of criterion validity. Location specific activity intensity cut-points were established via receiver operator characteristic curve (ROC) analysis. The GENEActiv accelerometers, irrespective of their location, accurately discriminated between all PA intensities (sedentary, light, and moderate and above), with the dominant wrist monitor providing a slightly more precise discrimination at light PA and the non-dominant at the sedentary behaviour and moderate and above intensity levels (area under the curve (AUC) for non-dominant = 0.749-0.993, compared to AUC dominant = 0.760-0.988). This study establishes wrist-worn physical activity cut-points for the GENEActiv accelerometer in preschoolers. What is Known: • GENEActiv accelerometers have been validated as a PA measurement tool in adolescents and adults. • No study to date has validated the GENEActiv accelerometers in preschoolers. What is New: • Cut-points were determined for the wrist-worn GENEActiv accelerometer in preschoolers. • These cut-points can be used in future research to help classify and increase preschoolers' compliance rates with PA.

  4. Validation of accelerometer cut points in toddlers with and without cerebral palsy.

    PubMed

    Oftedal, Stina; Bell, Kristie L; Davies, Peter S W; Ware, Robert S; Boyd, Roslyn N

    2014-09-01

    The purpose of this study was to validate uni- and triaxial ActiGraph cut points for sedentary time in toddlers with cerebral palsy (CP) and typically developing children (TDC). Children (n = 103, 61 boys, mean age = 2 yr, SD = 6 months, range = 1 yr 6 months-3 yr) were divided into calibration (n = 65) and validation (n = 38) samples with separate analyses for TDC (n = 28) and ambulant (Gross Motor Function Classification System I-III, n = 51) and nonambulant (Gross Motor Function Classification System IV-V, n = 25) children with CP. An ActiGraph was worn during a videotaped assessment. Behavior was coded as sedentary or nonsedentary. Receiver operating characteristic-area under the curve analysis determined the classification accuracy of accelerometer data. Predictive validity was determined using the Bland-Altman analysis. Classification accuracy for uniaxial data was fair for the ambulatory CP and TDC group but poor for the nonambulatory CP group. Triaxial data showed good classification accuracy for all groups. The uniaxial ambulatory CP and TDC cut points significantly overestimated sedentary time (bias = -10.5%, 95% limits of agreement [LoA] = -30.2% to 9.1%; bias = -17.3%, 95% LoA = -44.3% to 8.3%). The triaxial ambulatory and nonambulatory CP and TDC cut points provided accurate group-level measures of sedentary time (bias = -1.5%, 95% LoA = -20% to 16.8%; bias = 2.1%, 95% LoA = -17.3% to 21.5%; bias = -5.1%, 95% LoA = -27.5% to 16.1%). Triaxial accelerometers provide useful group-level measures of sedentary time in children with CP across the spectrum of functional abilities and TDC. Uniaxial cut points are not recommended.

  5. Comparison of accelerometer cut points for predicting activity intensity in youth.

    PubMed

    Trost, Stewart G; Loprinzi, Paul D; Moore, Rebecca; Pfeiffer, Karin A

    2011-07-01

    The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents. This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard. A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and V˙O2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC). Across all four intensity levels, the EV (κ=0.68) and FT (κ=0.66) cut points exhibited significantly better agreement than TR (κ=0.62), MT (κ=0.54), and PU (κ=0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate- to vigorous-intensity physical activity (ROC-AUC=0.90) than TR, PU, or MT cut points (ROC-AUC=0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC=0.90). On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in

  6. Validation of Accelerometer Cut-Points in Children With Cerebral Palsy Aged 4 to 5 Years.

    PubMed

    Keawutan, Piyapa; Bell, Kristie L; Oftedal, Stina; Davies, Peter S W; Boyd, Roslyn N

    2016-01-01

    To derive and validate triaxial accelerometer cut-points in children with cerebral palsy (CP) and compare these with previously established cut-points in children with typical development. Eighty-four children with CP aged 4 to 5 years wore the ActiGraph during a play-based gross motor function measure assessment that was video-taped for direct observation. Receiver operating characteristic and Bland-Altman plots were used for analyses. The ActiGraph had good classification accuracy in Gross Motor Function Classification System (GMFCS) levels III and V and fair classification accuracy in GMFCS levels I, II, and IV. These results support the use of the previously established cut-points for sedentary time of 820 counts per minute in children with CP aged 4 to 5 years across all functional abilities. The cut-point provides an objective measure of sedentary and active time in children with CP. The cut-point is applicable to group data but not for individual children.

  7. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data.

    PubMed

    Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N

    2016-01-01

    To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by epoch length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all epoch lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). The common practice of converting WT algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.

  8. Classification of Physical Activity Cut-Points and the Estimation of Energy Expenditure during Walking Using the GT3X+ Accelerometer in Overweight and Obese Adults

    ERIC Educational Resources Information Center

    Howe, Christopher C. F.; Moir, Hannah J.; Easton, Chris

    2017-01-01

    This study establishes tri-axial activity count (AC) cut-points for the GT3X+ accelerometer to classify physical activity intensity in overweight and obese adults. Further, we examined the accuracy of established and novel energy expenditure (EE) prediction equations based on AC and other metrics. "Part 1": Twenty overweight or obese…

  9. Establishing school day pedometer step count cut-points using ROC curves in low-income children.

    PubMed

    Burns, Ryan D; Brusseau, Timothy A; Fu, You; Hannon, James C

    2016-05-01

    Previous research has not established pedometer step count cut-points that discriminate children that meet school day physical activity recommendations using a tri-axial ActiGraph accelerometer criterion. The purpose of this study was to determine step count cut-points that associate with 30min of school day moderate-to-vigorous physical activity (MVPA) in school-aged children. Participants included 1053 school-aged children (mean age=8.4±1.8years) recruited from three low-income schools from the state of Utah in the U.S. Physical activity was assessed using Yamax DigiWalker CW600 pedometers and ActiGraph wGT3X-BT triaxial accelerometers that were concurrently worn during school hours. Data were collected at each school during the 2014-2015 school year. Receiver operating characteristic (ROC) curves were used to determine pedometer step count cut-points that associated with at least 30min of MVPA during school hours. Cut-points were determined using the maximum Youden's J statistic (J max). For the total sample, the area-under-the-curve (AUC) was 0.77 (p<0.001) with a pedometer cut-point of 5505 steps (J max=0.46, Sensitivity=63%, Specificity=84%; Accuracy=76%). Step counts showed greater diagnostic ability in girls (AUC=0.81, p<0.001; Cut-point=5306 steps; Accuracy=78.8%) compared to boys (AUC=0.72, p<0.01; Cut-point=5786 steps; Accuracy=71.4%). Pedometer step counts showed good diagnostic ability in girls and fair diagnostic ability in boys for discriminating children that met at least 30min of MVPA during school hours. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.

    PubMed

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert

    2016-05-01

    Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.

  11. Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer.

    PubMed

    Barnett, Anthony; van den Hoek, Daniel; Barnett, David; Cerin, Ester

    2016-12-08

    Accelerometry is the method of choice for objectively assessing physical activity in older adults. Many studies have used an accelerometer count cut point corresponding to 3 metabolic equivalents (METs) derived in young adults during treadmill walking and running with a resting metabolic rate (RMR) assumed at 3.5 mL · kg -1  · min -1 (corresponding to 1 MET). RMR is lower in older adults; therefore, their 3 MET level occurs at a lower absolute energy expenditure making the cut point derived from young adults inappropriate for this population. The few studies determining older adult specific moderate-to-vigorous intensity physical activity (MVPA) cut points had methodological limitations, such as not measuring RMR and using treadmill walking. This study determined a MVPA hip-worn accelerometer cut point for older adults using measured RMR and overground walking. Following determination of RMR, 45 older adults (mean age 70.2 ± 7 years, range 60-87.6 years) undertook an outdoor, overground walking protocol with accelerometer count and energy expenditure determined at five walking speeds. Mean RMR was 2.8 ± 0.6 mL · kg -1  · min -1 . The MVPA cut points (95% CI) determined using linear mixed models were: vertical axis 1013 (734, 1292) counts · min -1 ; vector magnitude 1924 (1657, 2192) counts · min -1 ; and walking speed 2.5 (2.2, 2.8) km · hr -1 . High levels of inter-individual variability in cut points were found. These MVPA accelerometer and speed cut points for walking, the most popular physical activity in older adults, were lower than those for younger adults. Using cut points determined in younger adults for older adult population studies is likely to underestimate time spent engaged in MVPA. In addition, prescription of walking speed based on the adult cut point is likely to result in older adults working at a higher intensity than intended.

  12. Combinations of Epoch Durations and Cut-Points to Estimate Sedentary Time and Physical Activity among Adolescents

    ERIC Educational Resources Information Center

    Fröberg, Andreas; Berg, Christina; Larsson, Christel; Boldemann, Cecilia; Raustorp, Anders

    2017-01-01

    The purpose of the current study was to investigate how combinations of different epoch durations and cut-points affect the estimations of sedentary time and physical activity in adolescents. Accelerometer data from 101 adolescents were derived and 30 combinations were used to estimate sedentary time, light, moderate, vigorous, and combined…

  13. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD).

    PubMed

    Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Mänttäri, Ari; Vuorimaa, Timo; Suni, Jaana; Sievänen, Harri

    2015-01-01

    Our recent study of three accelerometer brands in various ambulatory activities showed that the mean amplitude deviation (MAD) of the resultant acceleration signal performed best in separating different intensity levels and provided excellent agreement between the three devices. The objective of this study was to derive a regression model that estimates oxygen consumption (VO2) from MAD values and validate the MAD-based cut-points for light, moderate and vigorous locomotion against VO2 within a wide range of speeds. 29 participants performed a pace-conducted non-stop test on a 200 m long indoor track. The initial speed was 0.6 m/s and it was increased by 0.4 m/s every 2.5 minutes until volitional exhaustion. The participants could freely decide whether they preferred to walk or run. During the test they carried a hip-mounted tri-axial accelerometer and mobile metabolic analyzer. The MAD was calculated from the raw acceleration data and compared to directly measured incident VO2. Cut-point between light and moderate activity was set to 3.0 metabolic equivalent (MET, 1 MET = 3.5 ml · kg-1 · min-1) and between moderate and vigorous activity to 6.0 MET as per standard use. The MAD and VO2 showed a very strong association. Within individuals, the range of r values was from 0.927 to 0.991 providing the mean r = 0.969. The optimal MAD cut-point for 3.0 MET was 91 mg (milligravity) and 414 mg for 6.0 MET. The present study showed that the MAD is a valid method in terms of the VO2 within a wide range of ambulatory activities from slow walking to fast running. Being a device-independent trait, the MAD facilitates directly comparable, accurate results on the intensity of physical activity with all accelerometers providing tri-axial raw data.

  14. Validation of three short physical activity questionnaires with accelerometers among university students in Spain.

    PubMed

    Rodríguez-Muñoz, Sheila; Corella, Cristina; Abarca-Sos, Alberto; Zaragoza, Javier

    2017-12-01

    Physical activity (PA) in university students has not been analyzed with specific questionnaires tailored to this population. Therefore, the purpose of this study was to analyze the validity of three PA questionnaires developed on other populations comparing with accelerometer values: counts and moderate to vigorous PA (MVPA) calculated with uniaxial and triaxial cut points. One hundred and forty-five university students (of whom, 92 women) from Spain wore an accelerometer GT3X or GTX+ to collect PA data of 7 full days. Three questionnaires, Physical Activity Questionnaire for Adults (PAQ-AD), Assessment of Physical Activity Questionnaire (APALQ), and the International Physical Activity Questionnaire Short Form (IPAQ-SF) were administrated jointly with the collection of accelerometer values. Finally, after the application of inclusion criteria, data from 95 participants (62 women) with a mean age of 21.96±2.33 years were analyzed to compare the instruments measures. The correlational analysis showed that PAQ-AD (0.44-0.56) and IPAQ-SF (0.26-0.69) questionnaires were significantly related to accelerometers scores: counts, uniaxial MVPA and triaxial MVPA. Conversely, APALQ displayed no significant relations for males with accelerometers scores for MVPA created with both cut points. PAQ-AD and IPAQ-SF questionnaires have shown adequate validity to use with Spanish university students. The use of counts to validate self-report data in order to reduce the variability display by MVPA created with different cut points is discussed. Finally, validated instruments to measure PA in university students will allow implementation of strategies for PA promotion based on reliable data.

  15. Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.

    PubMed

    Kerr, Jacqueline; Carlson, Jordan; Godbole, Suneeta; Cadmus-Bertram, Lisa; Bellettiere, John; Hartman, Sheri

    2018-02-13

    To improve estimates of sitting time from hip worn accelerometers used in large cohort studies by employing machine learning methods developed on free living activPAL data. Thirty breast cancer survivors concurrently wore a hip worn accelerometer and a thigh worn activPAL for 7 days. A random forest classifier, trained on the activPAL data, was employed to detect sitting, standing and sit-stand transitions in 5 second windows in the hip worn accelerometer. The classifier estimates were compared to the standard accelerometer cut point and significant differences across different bout lengths were investigated using mixed effect models. Overall, the algorithm predicted the postures with moderate accuracy (stepping 77%, standing 63%, sitting 67%, sit to stand 52% and stand to sit 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of 2 minutes or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts and underestimating long bouts. This is among the first algorithms for sitting and standing for hip worn accelerometer data to be trained from entirely free living activPAL data. The new algorithm detected prolonged sitting which has been shown to be most detrimental to health. Further validation and training in larger cohorts is warranted.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  16. Validation of Accelerometer Prediction Equations in Children with Chronic Disease.

    PubMed

    Stephens, Samantha; Takken, Tim; Esliger, Dale W; Pullenayegum, Eleanor; Beyene, Joseph; Tremblay, Mark; Schneiderman, Jane; Biggar, Doug; Longmuir, Pat; McCrindle, Brian; Abad, Audrey; Ignas, Dan; Van Der Net, Janjaap; Feldman, Brian

    2016-02-01

    The purpose of this study was to assess the criterion validity of existing accelerometer-based energy expenditure (EE) prediction equations among children with chronic conditions, and to develop new prediction equations. Children with congenital heart disease (CHD), cystic fibrosis (CF), dermatomyositis (JDM), juvenile arthritis (JA), inherited muscle disease (IMD), and hemophilia (HE) completed 7 tasks while EE was measured using indirect calorimetry with counts determined by accelerometer. Agreement between predicted EE and measured EE was assessed. Disease-specific equations and cut points were developed and cross-validated. In total, 196 subjects participated. One participant dropped out before testing due to time constraints, while 15 CHD, 32 CF, 31 JDM, 31 JA, 30 IMD, 28 HE, and 29 healthy controls completed the study. Agreement between predicted and measured EE varied across disease group and ranged from (ICC) .13-.46. Disease-specific prediction equations exhibited a range of results (ICC .62-.88) (SE 0.45-0.78). In conclusion, poor agreement was demonstrated using current prediction equations in children with chronic conditions. Disease-specific equations and cut points were developed.

  17. Accelerometer-based measures in physical activity surveillance: current practices and issues.

    PubMed

    Pedišić, Željko; Bauman, Adrian

    2015-02-01

    Self-reports of physical activity (PA) have been the mainstay of measurement in most non-communicable disease (NCD) surveillance systems. To these, other measures are added to summate to a comprehensive PA surveillance system. Recently, some national NCD surveillance systems have started using accelerometers as a measure of PA. The purpose of this paper was specifically to appraise the suitability and role of accelerometers for population-level PA surveillance. A thorough literature search was conducted to examine aspects of the generalisability, reliability, validity, comprehensiveness and between-study comparability of accelerometer estimates, and to gauge the simplicity, cost-effectiveness, adaptability and sustainability of their use in NCD surveillance. Accelerometer data collected in PA surveillance systems may not provide estimates that are generalisable to the target population. Accelerometer-based estimates have adequate reliability for PA surveillance, but there are still several issues associated with their validity. Accelerometer-based prevalence estimates are largely dependent on the investigators' choice of intensity cut-off points. Maintaining standardised accelerometer data collections in long-term PA surveillance systems is difficult, which may cause discontinuity in time-trend data. The use of accelerometers does not necessarily produce useful between-study and international comparisons due to lack of standardisation of data collection and processing methods. To conclude, it appears that accelerometers still have limitations regarding generalisability, validity, comprehensiveness, simplicity, affordability, adaptability, between-study comparability and sustainability. Therefore, given the current evidence, it seems that the widespread adoption of accelerometers specifically for large-scale PA surveillance systems may be premature. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  18. The Relationship of Actigraph Accelerometer Cut-Points for Estimating Physical Activity with Selected Health Outcomes: Results from NHANES 2003-06

    ERIC Educational Resources Information Center

    Loprinzi, Paul D.; Lee, Hyo; Cardinal, Bradley J.; Crespo, Carlos J.; Andersen, Ross E.; Smit, Ellen

    2012-01-01

    The purpose of this study was to examine the influence of child and adult cut-points on physical activity (PA) intensity, the prevalence of meeting PA guidelines, and association with selected health outcomes. Participants (6,578 adults greater than or equal to 18 years, and 3,174 children and adolescents less than or equal to 17 years) from the…

  19. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.

    PubMed

    Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.

  20. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults

    PubMed Central

    Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839

  1. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003-2006.

    PubMed

    Tudor-Locke, Catrine; Camhi, Sarah M; Troiano, Richard P

    2012-01-01

    The National Health and Nutrition Examination Survey (NHANES) included accelerometry in the 2003-2006 data collection cycles. Researchers have used these data since their release in 2007, but the data have not been consistently treated, examined, or reported. The objective of this study was to aggregate data from studies using NHANES accelerometry data and to catalogue study decision rules, derived variables, and cut point definitions to facilitate a more uniform approach to these data. We conducted a PubMed search of English-language articles published (or indicated as forthcoming) from January 2007 through December 2011. Our initial search yielded 74 articles, plus 1 article that was not indexed in PubMed. After excluding 21 articles, we extracted and tabulated details on 54 studies to permit comparison among studies. The 54 articles represented various descriptive, methodological, and inferential analyses. Although some decision rules for treating data (eg, criteria for minimal wear-time) were consistently applied, cut point definitions used for accelerometer-derived variables (eg, time spent in various intensities of physical activity) were especially diverse. Unique research questions may require equally unique analytical approaches; some inconsistency in approaches must be tolerated if scientific discovery is to be encouraged. This catalog provides a starting point for researchers to consider relevant and/or comparable accelerometer decision rules, derived variables, and cut point definitions for their own research questions.

  2. Sedentary Behaviour Profiling of Office Workers: A Sensitivity Analysis of Sedentary Cut-Points

    PubMed Central

    Boerema, Simone T.; Essink, Gerard B.; Tönis, Thijs M.; van Velsen, Lex; Hermens, Hermie J.

    2015-01-01

    Measuring sedentary behaviour and physical activity with wearable sensors provides detailed information on activity patterns and can serve health interventions. At the basis of activity analysis stands the ability to distinguish sedentary from active time. As there is no consensus regarding the optimal cut-point for classifying sedentary behaviour, we studied the consequences of using different cut-points for this type of analysis. We conducted a battery of sitting and walking activities with 14 office workers, wearing the Promove 3D activity sensor to determine the optimal cut-point (in counts per minute (m·s−2)) for classifying sedentary behaviour. Then, 27 office workers wore the sensor for five days. We evaluated the sensitivity of five sedentary pattern measures for various sedentary cut-points and found an optimal cut-point for sedentary behaviour of 1660 × 10−3 m·s−2. Total sedentary time was not sensitive to cut-point changes within ±10% of this optimal cut-point; other sedentary pattern measures were not sensitive to changes within the ±20% interval. The results from studies analyzing sedentary patterns, using different cut-points, can be compared within these boundaries. Furthermore, commercial, hip-worn activity trackers can implement feedback and interventions on sedentary behaviour patterns, using these cut-points. PMID:26712758

  3. Dew point measurement technique utilizing fiber cut reflection

    NASA Astrophysics Data System (ADS)

    Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.

    2009-05-01

    The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.

  4. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.

    PubMed

    Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Suni, Jaana; Sievänen, Harri

    2015-01-01

    Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  5. Min-Cut Based Segmentation of Airborne LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Ural, S.; Shan, J.

    2012-07-01

    Introducing an organization to the unstructured point cloud before extracting information from airborne lidar data is common in many applications. Aggregating the points with similar features into segments in 3-D which comply with the nature of actual objects is affected by the neighborhood, scale, features and noise among other aspects. In this study, we present a min-cut based method for segmenting the point cloud. We first assess the neighborhood of each point in 3-D by investigating the local geometric and statistical properties of the candidates. Neighborhood selection is essential since point features are calculated within their local neighborhood. Following neighborhood determination, we calculate point features and determine the clusters in the feature space. We adapt a graph representation from image processing which is especially used in pixel labeling problems and establish it for the unstructured 3-D point clouds. The edges of the graph that are connecting the points with each other and nodes representing feature clusters hold the smoothness costs in the spatial domain and data costs in the feature domain. Smoothness costs ensure spatial coherence, while data costs control the consistency with the representative feature clusters. This graph representation formalizes the segmentation task as an energy minimization problem. It allows the implementation of an approximate solution by min-cuts for a global minimum of this NP hard minimization problem in low order polynomial time. We test our method with airborne lidar point cloud acquired with maximum planned post spacing of 1.4 m and a vertical accuracy 10.5 cm as RMSE. We present the effects of neighborhood and feature determination in the segmentation results and assess the accuracy and efficiency of the implemented min-cut algorithm as well as its sensitivity to the parameters of the smoothness and data cost functions. We find that smoothness cost that only considers simple distance parameter does not

  6. Body mass index cut-points to identify cardiometabolic risk in black South Africans.

    PubMed

    Kruger, H Salome; Schutte, Aletta E; Walsh, Corinna M; Kruger, Annamarie; Rennie, Kirsten L

    2017-02-01

    To determine optimal body mass index (BMI) cut-points for the identification of cardiometabolic risk in black South African adults. We performed a cross-sectional study of a weighted sample of healthy black South Africans aged 25-65 years (721 men, 1386 women) from the North West and Free State Provinces. Demographic, lifestyle and anthropometric measures were taken, and blood pressure, fasting serum triglycerides, high-density lipoprotein (HDL) cholesterol and blood glucose were measured. We defined elevated cardiometabolic risk as having three or more risk factors according to international metabolic syndrome criteria. Receiver operating characteristic curves were applied to identify an optimal BMI cut-point for men and women. BMI had good diagnostic performance to identify clustering of three or more risk factors, as well as individual risk factors: low HDL-cholesterol, elevated fasting glucose and triglycerides, with areas under the curve >.6, but not for high blood pressure. Optimal BMI cut-points averaged 22 kg/m 2 for men and 28 kg/m 2 for women, respectively, with better sensitivity in men (44.0-71.9 %), and in women (60.6-69.8 %), compared to a BMI of 30 kg/m 2 (17-19.1, 53-61.4 %, respectively). Men and women with a BMI >22 and >28 kg/m 2 , respectively, had significantly increased probability of elevated cardiometabolic risk after adjustment for age, alcohol use and smoking. In black South African men, a BMI cut-point of 22 kg/m 2 identifies those at cardiometabolic risk, whereas a BMI of 30 kg/m 2 underestimates risk. In women, a cut-point of 28 kg/m 2 , approaching the WHO obesity cut-point, identifies those at risk.

  7. Investigating Clinically and Scientifically Useful Cut Points on the Compulsive Sexual Behavior Inventory.

    PubMed

    Miner, Michael H; Raymond, Nancy; Coleman, Eli; Swinburne Romine, Rebecca

    2017-05-01

    One of the major obstacles to conducting epidemiologic research and determining the incidence and prevalence of compulsive sexual behavior (CSB) has been the lack of relevant empirically derived cut points on the various instruments that have been used to measure the concept. To further develop the Compulsive Sexual Behavior Inventory (CSBI) through exploring predictive validity and developing an empirically determined and clinically useful cut point for defining CSB. A sample of 242 men who have sex with men was recruited from various sites in a moderate-size Midwestern city. Participants were assigned to a CSB group or a control group using an interview for the diagnosis that was patterned after the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition. The 22-item CSBI was administered as part of a larger battery of self-report inventories. Receiver operating characteristic analyses were used to compute area-under-the-curve measurements to ascertain the predictive validity of the total scale, the control subscale, and the violence subscale. Cut points were determined through consensus of experts balancing sensitivity and specificity as determined by receiver operating characteristic curves. Analyses indicated that the 22-item CSBI was a good predictor of group membership, as was the 13-item control subscale. The violence subscale added little to the predictive accuracy of the instrument; thus, it likely measures something other than CSB. Two relevant cut points were found, one that minimized false negatives and another, more conservative cut point that minimized false positives. The CSBI as currently configured measures two different constructions and only the control subscale is helpful in diagnosing CSB. Therefore, we decided to eliminate the violence subscale and move forward with a 13-item scale that we have named the CSBI-13. Two cut points were developed from this revised scale, one that is useful as a

  8. Statistical approaches for the determination of cut points in anti-drug antibody bioassays.

    PubMed

    Schaarschmidt, Frank; Hofmann, Matthias; Jaki, Thomas; Grün, Bettina; Hothorn, Ludwig A

    2015-03-01

    Cut points in immunogenicity assays are used to classify future specimens into anti-drug antibody (ADA) positive or negative. To determine a cut point during pre-study validation, drug-naive specimens are often analyzed on multiple microtiter plates taking sources of future variability into account, such as runs, days, analysts, gender, drug-spiked and the biological variability of un-spiked specimens themselves. Five phenomena may complicate the statistical cut point estimation: i) drug-naive specimens may contain already ADA-positives or lead to signals that erroneously appear to be ADA-positive, ii) mean differences between plates may remain after normalization of observations by negative control means, iii) experimental designs may contain several factors in a crossed or hierarchical structure, iv) low sample sizes in such complex designs lead to low power for pre-tests on distribution, outliers and variance structure, and v) the choice between normal and log-normal distribution has a serious impact on the cut point. We discuss statistical approaches to account for these complex data: i) mixture models, which can be used to analyze sets of specimens containing an unknown, possibly larger proportion of ADA-positive specimens, ii) random effects models, followed by the estimation of prediction intervals, which provide cut points while accounting for several factors, and iii) diagnostic plots, which allow the post hoc assessment of model assumptions. All methods discussed are available in the corresponding R add-on package mixADA. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Using appropriate body mass index cut points for overweight and obesity among Asian Americans

    PubMed Central

    Jih, Jane; Mukherjea, Arnab; Vittinghoff, Eric; Nguyen, Tung T.; Tsoh, Janice Y.; Fukuoka, Yoshimi; Bender, Melinda S.; Tseng, Winston; Kanaya, Alka M.

    2014-01-01

    Objective Asian Americans have low prevalence of overweight/obesity based on standard BMI cut points yet have higher rates of diabetes. We examined the prevalence of overweight/obesity, using lower BMI cut points recommended by the World Health Organization (WHO) for Asians, and diabetes in Asian American subgroups in California. Method Secondary analysis of the 2009 adult California Health Interview Survey (n = 45,946) of non-Hispanic Whites (NHW), African Americans, Hispanics and Asians (Vietnamese, Chinese, Korean, Filipino, South Asian and Japanese). WHO Asian BMI cut points (overweight = 23–27.5 kg/m2; obese ≥ 27.5 kg/m2) were used for Asian subgroups. Standard BMI cut points (overweight = 25–29.9 kg/m2; obese ≥ 30 kg/m2) were applied for other groups. Results Among Asian subgroups, overweight/obesity was highest among Filipinos (78.6%), which was higher than NHWs (p < 0.001) but similar to African Americans and Hispanics. Compared to NHW, diabetes prevalence was higher for Vietnamese, Koreans, Filipinos and South Asians with BMI = 23–24.9 kg/m2 and Koreans, Filipinos and Japanese with BMI = 27.5–29.9 kg/m2, the ranges WHO recommends as overweight or obese for Asians but not for other groups. Conclusions Filipinos should be a priority population for overweight/obesity screening. Filipinos, Vietnamese, Korean, South Asians and Japanese have higher diabetes prevalence at lower BMI cut points. WHO Asian BMI cut points may have clinical utility to identify at-risk Asian Americans. PMID:24736092

  10. Using appropriate body mass index cut points for overweight and obesity among Asian Americans.

    PubMed

    Jih, Jane; Mukherjea, Arnab; Vittinghoff, Eric; Nguyen, Tung T; Tsoh, Janice Y; Fukuoka, Yoshimi; Bender, Melinda S; Tseng, Winston; Kanaya, Alka M

    2014-08-01

    Asian Americans have low prevalence of overweight/obesity based on standard BMI cut points yet have higher rates of diabetes. We examined the prevalence of overweight/obesity, using lower BMI cut points recommended by the World Health Organization (WHO) for Asians, and diabetes in Asian American subgroups in California. Secondary analysis of the 2009 adult California Health Interview Survey (n=45,946) of non-Hispanic Whites (NHW), African Americans, Hispanics and Asians (Vietnamese, Chinese, Korean, Filipino, South Asian and Japanese). WHO Asian BMI cut points (overweight=23-27.5kg/m(2); obese≥27.5kg/m(2)) were used for Asian subgroups. Standard BMI cut points (overweight=25-29.9kg/m(2); obese≥30kg/m(2)) were applied for other groups. Among Asian subgroups, overweight/obesity was highest among Filipinos (78.6%), which was higher than NHWs (p<0.001) but similar to African Americans and Hispanics. Compared to NHW, diabetes prevalence was higher for Vietnamese, Koreans, Filipinos and South Asians with BMI=23-24.9kg/m(2) and Koreans, Filipinos and Japanese with BMI=27.5-29.9kg/m(2), the ranges WHO recommends as overweight or obese for Asians but not for other groups. Filipinos should be a priority population for overweight/obesity screening. Filipinos, Vietnamese, Korean, South Asians and Japanese have higher diabetes prevalence at lower BMI cut points. WHO Asian BMI cut points may have clinical utility to identify at-risk Asian Americans. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. [Optimal cut-point of salivary cotinine concentration to discriminate smoking status in the adult population in Barcelona].

    PubMed

    Martínez-Sánchez, Jose M; Fu, Marcela; Ariza, Carles; López, María J; Saltó, Esteve; Pascual, José A; Schiaffino, Anna; Borràs, Josep M; Peris, Mercè; Agudo, Antonio; Nebot, Manel; Fernández, Esteve

    2009-01-01

    To assess the optimal cut-point for salivary cotinine concentration to identify smoking status in the adult population of Barcelona. We performed a cross-sectional study of a representative sample (n=1,117) of the adult population (>16 years) in Barcelona (2004-2005). This study gathered information on active and passive smoking by means of a questionnaire and a saliva sample for cotinine determination. We analyzed sensitivity and specificity according to sex, age, smoking status (daily and occasional), and exposure to second-hand smoke at home. ROC curves and the area under the curve were calculated. The prevalence of smokers (daily and occasional) was 27.8% (95% CI: 25.2-30.4%). The optimal cut-point to discriminate smoking status was 9.2 ng/ml (sensitivity=88.7% and specificity=89.0%). The area under the ROC curve was 0.952. The optimal cut-point was 12.2 ng/ml in men and 7.6 ng/ml in women. The optimal cut-point was higher at ages with a greater prevalence of smoking. Daily smokers had a higher cut-point than occasional smokers. The optimal cut-point to discriminate smoking status in the adult population is 9.2 ng/ml, with sensitivities and specificities around 90%. The cut-point was higher in men and in younger people. The cut-point increases with higher prevalence of daily smokers.

  12. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    PubMed

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.

  13. Investigating Clinically and Scientifically Useful Cut Points on the Compulsive Sexual Behavior Inventory

    PubMed Central

    Miner, Michael H.; Raymond, Nancy; Coleman, Eli; Romine, Rebecca Swinburne

    2017-01-01

    Introduction One of the major obstacles to conducting epidemiological research and determining the incidence and prevalence of compulsive sexual behavior has been the lack of relevant, empirically derived cut points on the various instruments that have been used to measure the concept. Aim To further develop the Compulsive Sexual Behavior Inventory (CSBI) through exploring predictive validity and developing an empirically determined and clinically useful cut point for defining CSB. Methods A sample of 242 men who have sex with men was recruited from various sites in a moderate-size Midwestern city. Participants were assigned to a CSB group or a control group using an interview for the diagnosis that was patterned after the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition. The 22-item CSBI was administered as part of a larger battery of self-report inventories. Main Outcome Measures ROC analyses were used to compute AUC measures to ascertain predictive validity of the total scale, the control subscale and the violence subscale. Cut-points were determined through consensus of experts balancing sensitivity and specificity as determined by ROC curves. Results Analyses indicated that the 22-item CSBI was a good predictor of group membership, as was the 13-item control subscale. The Violence subscale added little to the predictive accuracy of the instrument and thus, it likely measures something other than CSB. Two relevant cut points were found, one that minimized false negatives and another, more conservative cut-point that minimized false positives. Conclusion The CSBI as currently configured measures two different constructions and only the Control subscale is helpful in diagnosing CSB. We have, therefore, decided to eliminate the Violence subscale and move forward with a 13-item scale that we have named the CSBI-13. Two cut points were developed from this revised scale, one which is useful as a clinical

  14. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  15. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  16. Determining BMI cut points based on excess percent body fat in US children and adolescents

    USDA-ARS?s Scientific Manuscript database

    Current cut points for overweight were derived statistically from BMI distribution. The study aimed at determining age-, gender-, and ethnic-specific BMI cut points based on excess body fat in US children and adolescents aged 8-17 years, who participated in the National Health and Nutrition Examinat...

  17. Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment.

    PubMed

    Schnurr, Theresia M; Bech, Bianca; Nielsen, Tenna R H; Andersen, Ida G; Hjorth, Mads F; Aadahl, Mette; Fonvig, Cilius E; Hansen, Torben; Holm, Jens-Christian

    2017-08-01

    We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objectively measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th percentile for sex and age, aged 5-17 years had valid GT3X + accelerometer-assessed PA and interview-assessed self-reported information on PA engagement at the time of enrollment in a multidisciplinary outpatient tertiary treatment for childhood obesity. Accelerometer-derived mean overall PA and time spent in moderate to vigorous physical intensity were generated, applying cut-offs based on Vector Magnitude settings as defined by Romanzini et al. (2014), and a physical activity score (PAS) based on self-reported data. Overall, a higher self-reported PAS was correlated with higher accelerometer-assessed daily total PA levels ( r = 0.34, p < .01) and children who reported a high PAS were more physically active compared with children who reported a low PAS. There was a fair level of agreement between self-reported PAS and accelerometer-assessed PA (Kappa agreement = 0.23; 95% CI = [0.03, 0.43]; p = .01). PAS, derived from self-report, may be a useful instrument for evaluating PA at a group level among children and adolescents enrolled in multidisciplinary obesity treatment.

  18. Identifying cut points for biomarker defined subset effects in clinical trials with survival endpoints.

    PubMed

    He, Pei

    2014-07-01

    The advancements in biotechnology and genetics lead to an increasing research interest in personalized medicine, where a patient's genetic profile or biological traits contribute to choosing the most effective treatment for the patient. The process starts with finding a specific biomarker among all possible candidates that can best predict the treatment effect. After a biomarker is chosen, identifying a cut point of the biomarker value that splits the patients into treatment effective and non-effective subgroups becomes an important scientific problem. Numerous methods have been proposed to validate the predictive marker and select the appropriate cut points either prospectively or retrospectively using clinical trial data. In trials with survival outcomes, the current practice applies an interaction testing procedure and chooses the cut point that minimizes the p-values for the tests. Such method assumes independence between the baseline hazard and biomarker value. In reality, however, this assumption is often violated, as the chosen biomarker might also be prognostic in addition to its predictive nature for treatment effect. In this paper we propose a block-wise estimation and a sequential testing approach to identify the cut point in biomarkers that can group the patients into subsets based on their distinct treatment outcomes without assuming independence between the biomarker and baseline hazard. Numerical results based on simulated survival data show that the proposed method could pinpoint accurately the cut points in biomarker values that separate the patient subpopulations into subgroups with distinctive treatment outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Multivariate meta-analysis of prognostic factor studies with multiple cut-points and/or methods of measurement.

    PubMed

    Riley, Richard D; Elia, Eleni G; Malin, Gemma; Hemming, Karla; Price, Malcolm P

    2015-07-30

    A prognostic factor is any measure that is associated with the risk of future health outcomes in those with existing disease. Often, the prognostic ability of a factor is evaluated in multiple studies. However, meta-analysis is difficult because primary studies often use different methods of measurement and/or different cut-points to dichotomise continuous factors into 'high' and 'low' groups; selective reporting is also common. We illustrate how multivariate random effects meta-analysis models can accommodate multiple prognostic effect estimates from the same study, relating to multiple cut-points and/or methods of measurement. The models account for within-study and between-study correlations, which utilises more information and reduces the impact of unreported cut-points and/or measurement methods in some studies. The applicability of the approach is improved with individual participant data and by assuming a functional relationship between prognostic effect and cut-point to reduce the number of unknown parameters. The models provide important inferential results for each cut-point and method of measurement, including the summary prognostic effect, the between-study variance and a 95% prediction interval for the prognostic effect in new populations. Two applications are presented. The first reveals that, in a multivariate meta-analysis using published results, the Apgar score is prognostic of neonatal mortality but effect sizes are smaller at most cut-points than previously thought. In the second, a multivariate meta-analysis of two methods of measurement provides weak evidence that microvessel density is prognostic of mortality in lung cancer, even when individual participant data are available so that a continuous prognostic trend is examined (rather than cut-points). © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  20. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  1. Cut points on 0-10 numeric rating scales for symptoms included in the Edmonton Symptom Assessment Scale in cancer patients: a systematic review.

    PubMed

    Oldenmenger, Wendy H; de Raaf, Pleun J; de Klerk, Cora; van der Rijt, Carin C D

    2013-06-01

    To improve the management of cancer-related symptoms, systematic screening is necessary, often performed by using 0-10 numeric rating scales. Cut points are used to determine if scores represent clinically relevant burden. The aim of this systematic review was to explore the evidence on cut points for the symptoms of the Edmonton Symptom Assessment Scale. Relevant literature was searched in PubMed, CINAHL®, Embase, and PsycINFO®. We defined a cut point as the lower bound of the scores representing moderate or severe burden. Eighteen articles were eligible for this review. Cut points were determined using the interference with daily life, another symptom-related method, or a verbal scale. For pain, cut point 5 and, to a lesser extent, cut point 7 were found as the optimal cut points for moderate pain and severe pain, respectively. For moderate tiredness, the best cut point seemed to be cut point 4. For severe tiredness, both cut points 7 and 8 were suggested frequently. A lack of evidence exists for nausea, depression, anxiety, drowsiness, appetite, well-being, and shortness of breath. Few studies suggested a cut point below 4. For many symptoms, there is no clear evidence as to what the optimal cut points are. In daily clinical practice, a symptom score ≥4 is recommended as a trigger for a more comprehensive symptom assessment. Until there is more evidence on the optimal cut points, we should hold back using a certain cut point in quality indicators and be cautious about strongly recommending a certain cut point in guidelines. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  2. Cross-validation of pedometer-determined cut-points for healthy weight in British children from White and South Asian backgrounds.

    PubMed

    Duncan, Michael J; Eyre, Emma L J; Bryant, Elizabeth; Birch, Samantha L

    2014-01-01

    Evidence-based pedometer cut-points for health have not been sufficiently examined in the context of ethnicity. To (1) evaluate previously described steps/day cut-points in a sample of White and South Asian British primary school children and (2) use ROC analysis to generate alternative, ethnic specific, steps/day cut-offs for children. Height, body mass and pedometer determined physical activity were assessed in 763 British children (357 boys and 406 girls) from White (n = 593) and South Asian (n = 170) ethnic groups, aged 8-11 years. The Vincent and Pangrazi cut-points significantly predicted BMI in white (p = 0.006, Adjusted R(2 )= 0.08) and South Asian children (p = 0.039, Adjusted R(2 )= 0.078). The Tudor-Locke et al. cut-points significantly predicted BMI in White children (p = 0.0001, Adjusted R(2 )= 0.079) but not South Asian children (p < 0.05). ROC analysis indicated significant alternative cut-points in White and South Asian boys and girls (all p = 0.04 or better, Adjusted R(2 )= 0.091 for White and 0.09 for South Asian children). Subsequent cut-points associated with healthy weight, when translated to steps/day were 13,625 for White boys, 13,135 for White girls, 10,897 for South Asian boys and 10,161 for South Asian girls. Previously published steps/day cut-points for healthy weight may not account for known ethnic variation in physical activity between White and South Asian children in the UK. Alternative, ethnic-specific, cut-points may be better placed to distinguish British children based on pedometer-determined physical activity.

  3. Clinically Relevant Cut-off Points for the Diagnosis of Sarcopenia in Older Korean People.

    PubMed

    Choe, Yu-Ri; Joh, Ju-Youn; Kim, Yeon-Pyo

    2017-11-09

    The optimal criteria applied to older Korean people have not been defined. We aimed to define clinically relevant cut-off points for older Korean people and to compare the predictive validity with other definitions of sarcopenia. Nine hundred and sixteen older Koreans (≥65 years) were included in this cross-sectional observational study. We used conditional inference tree analysis to determine cut-off points for height-adjusted grip strength (GS) and appendicular skeletal muscle mass (ASM), for use in the diagnosis of sarcopenia. We then compared the Korean sarcopenia criteria with the Foundation for the National Institutes of Health and Asian Working Group for Sarcopenia criteria, using frailty, assessed with the Korean Frailty Index, as an outcome variable. For men, a residual GS (GSre) of ≤ 0.25 was defined as weak, and a residual ASM (ASMre) of ≤ 1.29 was defined as low. Corresponding cut-off points for women were a GSre of ≤ 0.17 and an ASMre of ≤ 0.69. GSre and ASMre values were adjusted for height. In logistic regression analysis with new cut-off points, the adjusted odds ratios for pre-frail or frail status in the sarcopenia group were 3.23 (95% confidence interval [CI] 1.33-7.83) for the men and 1.74 (95% CI 0.91-3.35) for the women. In receiver operating characteristic curve analysis, the unadjusted area under the curve for Korean sarcopenia criteria in men and women were 0.653 and 0.608, respectively (p < .001). Our proposed cut-off points for low GS and low ASM should be useful in the diagnosis of sarcopenia in older Korean people. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Prevalence of energy intake misreporting in Malay children varies based on application of different cut points.

    PubMed

    Yang, Wai Yew; Burrows, Tracy; Collins, Clare E; MacDonald-Wicks, Lesley; Williams, Lauren T; Chee, Winnie Siew Swee

    2014-12-01

    This study aimed to identify the prevalence of energy misreporting amongst a sample of Malay children aged 9-11 years (n = 14) using a range of commonly used cut points. Participants were interviewed using repeated 24 h dietary recalls over three occasions. The Goldberg equations (1991 and 2000), Torun cut points and the Black and Cole method were applied to the data. Up to 11 of 14 children were classified as misreporters, with more under-reporters (between seven and eight children) than over-reporters (four or less children). There were significant differences in the proportion of children classified as energy misreporters when applying basal metabolic rate calculated using FAO/UNU/WHO (1985) and Malaysian-specific equations (p < 0.05). The results show that energy misreporting is common amongst Malay children, varying according to cut point chosen. Objective evaluation of total energy expenditure would help identify which cut point is appropriate for use in Malay paediatric populations. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Are the QRS duration and ST depression cut-points from the Seattle criteria too conservative?

    PubMed

    Dunn, Tim; Abdelfattah, Ramy; Aggarwal, Sonya; Pickham, David; Hadley, David; Froelicher, Victor

    2015-01-01

    Screening athletes with ECGs is aimed at identifying "at-risk" individuals who may have a cardiac condition predisposing them to sudden cardiac death. The Seattle criteria highlight QRS duration greater than 140 ms and ST segment depression in two or more leads greater than 50 μV as two abnormal ECG patterns associated with sudden cardiac death. High school, college, and professional athletes underwent 12 lead ECGs as part of routine pre-participation physicals. Prevalence of prolonged QRS duration was measured using cut-points of 120, 125, 130, and 140 ms. ST segment depression was measured in all leads except leads III, aVR, and V1 with cut-points of 25 μV and 50 μV. Between June 2010 and November 2013, 1595 participants including 297 (167 male, mean age 16.2) high school athletes, 1016 (541 male, mean age 18.8) college athletes, and 282 (mean age 26.6) male professional athletes underwent screening with an ECG. Only 3 athletes (0.2%) had a QRS duration greater than 125 ms. ST segment depression in two or more leads greater than 50 μV was uncommon (0.8%), while the prevalence of ST segment depression in two or more leads increased to 4.5% with a cut-point of 25 μV. Changing the QRS duration cut-point to 125 ms would increase the sensitivity of the screening ECG, without a significant increase in false-positives. However, changing the ST segment depression cut-point to 25 μV would lead to a significant increase in false-positives and would therefore not be justified. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The Glittre-ADL Test Cut-Off Point to Discriminate Abnormal Functional Capacity in Patients with COPD.

    PubMed

    Gulart, Aline Almeida; Munari, Anelise Bauer; Klein, Suelen Roberta; Santos da Silveira, Lucas; Mayer, Anamaria Fleig

    2018-02-01

    The study objective was to determine a cut-off point for the Glittre activities of daily living (ADL)test (TGlittre) to discriminate patients with normal and abnormal functional capacity. Fifty-nine patients with moderate to very severe COPD (45 males; 65 ± 8.84 years; BMI: 26 ± 4.78 kg/m 2 ; FEV 1 : 35.3 ± 13.4% pred) were evaluated for spirometry, TGlittre, 6-minute walk test (6 MWT), physical ADL, modified Medical Research Council scale (mMRC), BODE index, Saint George's Respiratory Questionnaire (SGRQ), and COPD Assessment Test (CAT). The receiver operating characteristic (ROC) curve was used to determine the cut-off point for TGlittre in order to discriminate patients with 6 MWT < 82% pred. The ROC curve indicated a cut-off point of 3.5 minutes for the TGlittre (sensitivity = 92%, specificity = 83%, and area under the ROC curve = 0.95 [95% CI: 0.89-0.99]). Patients with abnormal functional capacity had higher mMRC (median difference 1 point), CAT (mean difference: 4.5 points), SGRQ (mean difference: 12.1 points), and BODE (1.37 points) scores, longer time of physical activity <1.5 metabolic equivalent of task (mean difference: 47.9 minutes) and in sitting position (mean difference: 59.4 minutes) and smaller number of steps (mean difference: 1,549 minutes); p < 0.05 for all. In conclusion, the cut-off point of 3.5 minutes in the TGlittre is sensitive and specific to distinguish COPD patients with abnormal and normal functional capacity.

  7. Is the present cut-point to define type 2 diabetes appropriate in Latin-Americans?

    PubMed Central

    López-Jaramillo, Patricio; Velandia-Carrillo, Carlos; Gómez-Arbeláez, Diego; Aldana-Campos, Martin

    2014-01-01

    The diagnosis of diabetes mellitus type 2 (DM2) is based either on increased plasma glucose or Glycated hemoglobin levels. Since these measures are the only means for diagnosis of DM2, they must be well adapted to each population according to their metabolic characteristics, given that these may vary in each population. The World Health Organization (WHO) determined the cut-points of plasma glucose levels for the diagnosis of DM2 by associating hyperglycemia with the risk of a specific microvascular complication-retinopathy. Cardiovascular diseases are however the principal causes of mortality in patients with DM2 and we reported that in the Colombo-Ecuadorian population impaired fasting glucose and impaired glucose tolerance are both risk markers for myocardial infarction. We propose that the current cut-points accepted by the WHO need to be revaluated in populations such as Latin America and that there should be lower cut points for glycaemia in this population, to reduce the prevalence of cardiovascular complications associated with DM2. PMID:25512777

  8. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  9. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  10. Cut-off Points for Muscle Mass - Not Grip Strength or Gait Speed - Determine Variations in Sarcopenia Prevalence.

    PubMed

    Masanés, F; Rojano I Luque, X; Salvà, A; Serra-Rexach, J A; Artaza, I; Formiga, F; Cuesta, F; López Soto, A; Ruiz, D; Cruz-Jentoft, A J

    2017-01-01

    The European Working Group on Sarcopenia in Older People (EWGSOP) has proposed different methods and cut-off points for the three parameters that define sarcopenia: muscle mass, muscle strength and physical performance. Although this facilitates clinical practice, it limits comparability between studies and leads to wide differences in published prevalence rates. The aim of this study was to assess how changes in cut-off points for muscle mass, gait speed and grip strength affected sarcopenia prevalence according to EWGSOP criteria. Cross-sectional analysis of elderly individuals recruited from outpatient clinics (n=298) and nursing homes (n=276). We measured muscle mass, grip strength and gait speed and assessed how changes in cut-off points changed sarcopenia prevalence in both populations. An increase from 5.45 kg/m2 to 6.68 kg/m2 in the muscle mass index for female outpatients and nursing-home residents increased sarcopenia prevalence from 4% to 23% and from 9% to 47%, respectively; for men, for an increase from 7.25 kg/m2 to 8.87 kg/m2, the corresponding increases were from 1% to 22% and from 6% to 41%, respectively. Changes in gait speed and grip strength had a limited impact on sarcopenia prevalence. The cut-off points used for muscle mass affect the reported prevalence rates for sarcopenia and, in turn, affect comparability between studies. The main factors influencing the magnitude of the change are muscle mass index distribution in the population and the absolute value of the cut-off points: the same difference between two references (e.g., 7.5 kg/m2 to 7.75 kg/m2 or 7.75 kg/m2 to 8 kg/m2) may produce different changes in prevalence. Changes in cut-off points for gait speed and grip strength had a limited impact on sarcopenia prevalence and on study comparability.

  11. ACCELEROMETER

    DOEpatents

    Pope, K.E.

    1958-11-25

    A device, commonly known as an accelerometer, is described which may be utllized for measuring acceleratlon with high sensitivity and accuracy tbroughout a relatively wlde range of values. In general, the accelerometer consists of an assembly, including an electric motor stator and a mass element located away from the axis of rotation of the stator, rotatably mounted on a support, and an electric motor rotor positioned within the stator and rotatable thereln. An electrlcal switching circuit controlled by the movement of the stator lntermittently energizes the rotor winding and retards move ment of the stator, and a centrifugal switch is rotatable with the rotor to operate upon attainment of a predetermined rotor rotational velocity.

  12. [Validation of cut points of skeletal muscle mass index for identifying sarcopenia in Chilean older people].

    PubMed

    Lera, Lydia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea; Albala, Cecilia

    2014-09-28

    To estimate and validate cut-off points of skeletal muscle mass index (SMI) in Chilean population, for using in an algorithm for a diagnosis of sarcopenia developed by European Working Group on Sarcopenia in Older People (EWGSOP). Secondary analysis of Cross-sectional data in 440 Chilean older subjects to estimate cut-off points of SMI determined by DEXA and predicted by an anthropometric equation. Afterward a cross-sectional validation in a sample of 164 older people was performed. Anthropometric measures, self-reported health status, physical performance tests and DEXA were carried out. Decreased muscle strength was defined as handgrip strength <15 kg in women and <27 kg in male. Cut-off points of SMI were defined as values under 20th percentile for DEXA measures and estimated through ROC curves for the anthropometric model. Biological validity of the algorithm was tested by contrasting the diagnosis with physical performance tests and functionality. Cut-off points of SMI obtained by DEXA were 7.19 kg/m² in men and 5.77 kg/m² in women and 7.45 kg/ m² and 5.88 kg/m², respectively for the predicted by the model. Sensibility and specificity of estimations vs DEXA measures were 80% and 92% in men and 77% and 89% in women. We obtained cut-off points of SMI for DEXA and for a prediction equation for older adults Chilean, with good sensibility and specificity for the measurement by DEXA. It will allow to apply the EWGSOP algorithm to the early diagnosis of sarcopenia and to develop programs for prevention, delay or reversion this syndrome. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Waist circumference cut-off points for identification of abdominal obesity among the tunisian adult population.

    PubMed

    Bouguerra, R; Alberti, H; Smida, H; Salem, L B; Rayana, C B; El Atti, J; Achour, A; Gaigi, S; Slama, C B; Zouari, B; Alberti, K G M M

    2007-11-01

    Waist circumference (WC) is a convenient measure of abdominal adipose tissue. It itself is a cardiovascular disease (CVD) and diabetes-risk factor and is strongly linked to other CVD risk factors. There are, however, ethnic differences in the relationship of WC to the other risk factors. The aim of this study was to determine the optimal cut-off points of WC and body mass index (BMI) at which cardiovascular risk factors can be identified with maximum sensitivity and specificity in a representative sample of the Tunisian adult population and to investigate any correlation between WC and BMI. We used a sample of the Tunisian National Nutrition Survey, a cross-sectional population-based survey, conducted in 1996 on a large nationally representative sample, which included 3435 adults (1244 men and 2191 women) of 20 years or older. WC, BMI, blood pressure and fasting blood measurements (plasma glucose, total cholesterol, triglycerides) were recorded. Receiver operating characteristic (ROC) curve analysis was used to identify optimal cut-off values of WC and BMI to identify with maximum sensitivity and specificity the detection of high blood pressure, hyperglycaemia, high blood cholesterol and hypertriglyceridaemia. ROC curve analysis suggested WC cut-off points of 85 cm in men and 85 cm in women for the optimum detection of high blood pressure, diabetes and dyslipidaemia. The optimum BMI cut-off points for predicting cardiovascular risk factors were 24 kg/m(2) in men and 27 kg/m(2) in women. The cut-off points recommended for the Caucasian population differ from those appropriate for the Tunisian population. The data show a continuous increase in odds ratios of each cardiovascular risk factor, with increasing level of WC and BMI. WC exceeding 85 cm in men and 79 cm in women correctly identified subjects with a BMI of >/=25 kg/m(2), sensitivity of >90% and specificity of >83%. Based on the ROC analysis, we suggest a WC of 85 cm for both men and women as appropriate cut

  14. Comparison of cutting and pencil-point spinal needle in spinal anesthesia regarding postdural puncture headache

    PubMed Central

    Xu, Hong; Liu, Yang; Song, WenYe; Kan, ShunLi; Liu, FeiFei; Zhang, Di; Ning, GuangZhi; Feng, ShiQing

    2017-01-01

    Abstract Background: Postdural puncture headache (PDPH), mainly resulting from the loss of cerebral spinal fluid (CSF), is a well-known iatrogenic complication of spinal anesthesia and diagnostic lumbar puncture. Spinal needles have been modified to minimize complications. Modifiable risk factors of PDPH mainly included needle size and needle shape. However, whether the incidence of PDPH is significantly different between cutting-point and pencil-point needles was controversial. Then we did a meta-analysis to assess the incidence of PDPH of cutting spinal needle and pencil-point spinal needle. Methods: We included all randomly designed trials, assessing the clinical outcomes in patients given elective spinal anesthesia or diagnostic lumbar puncture with either cutting or pencil-point spinal needle as eligible studies. All selected studies and the risk of bias of them were assessed by 2 investigators. Clinical outcomes including success rates, frequency of PDPH, reported severe PDPH, and the use of epidural blood patch (EBP) were recorded as primary results. Results were evaluated using risk ratio (RR) with 95% confidence interval (CI) for dichotomous variables. Rev Man software (version 5.3) was used to analyze all appropriate data. Results: Twenty-five randomized controlled trials (RCTs) were included in our study. The analysis result revealed that pencil-point spinal needle would result in lower rate of PDPH (RR 2.50; 95% CI [1.96, 3.19]; P < 0.00001) and severe PDPH (RR 3.27; 95% CI [2.15, 4.96]; P < 0.00001). Furthermore, EBP was less used in pencil-point spine needle group (RR 3.69; 95% CI [1.96, 6.95]; P < 0.0001). Conclusions: Current evidences suggest that pencil-point spinal needle was significantly superior compared with cutting spinal needle regarding the frequency of PDPH, PDPH severity, and the use of EBP. In view of this, we recommend the use of pencil-point spinal needle in spinal anesthesia and lumbar puncture. PMID:28383416

  15. Accelerometer telemetry system

    NASA Technical Reports Server (NTRS)

    Konigsberg, E. (Inventor)

    1976-01-01

    An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.

  16. Inertial navigation without accelerometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  17. Body mass index, waist circumference and waist-to-hip ratio cut-off points for categorisation of obesity among Omani Arabs.

    PubMed

    Al-Lawati, Jawad A; Jousilahti, Pekka

    2008-01-01

    There are no data on optimal cut-off points to classify obesity among Omani Arabs. The existing cut-off points were obtained from studies of European populations. To determine gender-specific optimal cut-off points for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) associated with elevated prevalent cardiovascular disease (CVD) risk among Omani Arabs. A community-based cross-sectional study. The survey was conducted in the city of Nizwa in Oman in 2001. The study contained a probabilistic random sample of 1421 adults aged > or =20 years. Prevalent CVD risk was defined as the presence of at least two of the following three risk factors: hyperglycaemia, hypertension and dyslipidaemia. Logistic regression and receiver-operating characteristic (ROC) curve analyses were used to determine optimal cut-off points for BMI, WC and WHR in relation to the area under the curve (AUC), sensitivity and specificity. Over 87% of Omanis had at least one CVD risk factor (38% had hyperglycaemia, 19% hypertension and 34.5% had high total cholesterol). All three indices including BMI (AUC = 0.766), WC (AUC = 0.772) and WHR (AUC = 0.767) predicted prevalent CVD risk factors equally well. The optimal cut-off points for men and women respectively were 23.2 and 26.8 kg m-2 for BMI, 80.0 and 84.5 cm for WC, and 0.91 and 0.91 for WHR. To identify Omani subjects of Arab ethnicity at high risk of CVD, cut-off points lower than currently recommended for BMI, WC and WHR are needed for men while higher cut-off points are suggested for women.

  18. Validity, cut-points, and minimally important differences for two hot flash-related daily interference scales.

    PubMed

    Carpenter, Janet S; Bakoyannis, Giorgos; Otte, Julie L; Chen, Chen X; Rand, Kevin L; Woods, Nancy; Newton, Katherine; Joffe, Hadine; Manson, JoAnn E; Freeman, Ellen W; Guthrie, Katherine A

    2017-08-01

    To conduct psychometric analyses to condense the Hot Flash-Related Daily Interference Scale (HFRDIS) into a shorter form termed the Hot Flash Interference (HFI) scale; evaluate cut-points for both scales; and establish minimally important differences (MIDs) for both scales. We analyzed baseline and postrandomization patient-reported data pooled across three randomized trials aimed at reducing vasomotor symptoms (VMS) in 899 midlife women. Trials were conducted across five MsFLASH clinical sites between July 2009 and October 2012. We eliminated HFRDIS items based on experts' content validity ratings and confirmatory factor analysis, and evaluated cut-points and established MIDs by mapping HFRDIS and HFI to other measures. The three-item HFI (interference with sleep, mood, and concentration) demonstrated strong internal consistency (alphas of 0.830 and 0.856), showed good fit to the unidimensional "hot flash interference factor," and strong convergent validity with HFRDIS scores, diary VMS, and menopausal quality of life. For both scales, cut-points of mild (0-3.9), moderate (4-6.9), and severe (7-10) interference were associated with increasing diary VMS ratings, sleep, and anxiety. The average MID was 1.66 for the HFRDIS and 2.34 for the HFI. The HFI is a brief assessment of VMS interference and will be useful in busy clinics to standardize VMS assessment or in research studies where response burden may be an issue. The scale cut-points and MIDs should prove useful in targeting those most in need of treatment, monitoring treatment response, and interpreting existing and future research findings.

  19. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    NASA Astrophysics Data System (ADS)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  20. Comparison of FRF measurements and mode shapes determined using optically image based, laser, and accelerometer measurements

    NASA Astrophysics Data System (ADS)

    Warren, Christopher; Niezrecki, Christopher; Avitabile, Peter; Pingle, Pawan

    2011-08-01

    Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic measurements. However, limitations of these transducers prevent the accurate measurement of some phenomena. For example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure. Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are sensitive to large displacements and can have lengthy acquisition times due to sequential measurements. Image-based stereo-photogrammetry techniques provide additional measurement capabilities that compliment the current array of measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically difficult to measure with accelerometers and laser vibrometers. Within this paper, digital image correlation, three-dimensional (3D) point-tracking, 3D laser vibrometry, and accelerometer measurements are all used to measure the dynamics of a structure to compare each of the techniques. Each approach has its benefits and drawbacks, so comparative measurements are made using these approaches to show some of the strengths and weaknesses of each technique. Additionally, the displacements determined using 3D point-tracking are used to calculate frequency response functions, from which mode shapes are extracted. The image-based frequency response functions (FRFs) are compared to those obtained by collocated accelerometers. Extracted mode shapes are then compared to those of a previously validated finite element model (FEM) of the test structure and are shown to have excellent agreement between the FEM and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-Orthogonality Check (POC).

  1. Accelerometer method and apparatus for integral display and control functions

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1992-06-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  2. Accelerometer method and apparatus for integral display and control functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  3. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  4. Liebowitz Social Anxiety Scale (LSAS): Optimal cut points for remission and response in a German sample.

    PubMed

    von Glischinski, M; Willutzki, U; Stangier, U; Hiller, W; Hoyer, J; Leibing, E; Leichsenring, F; Hirschfeld, G

    2018-02-11

    The Liebowitz Social Anxiety Scale (LSAS) is the most frequently used instrument to assess social anxiety disorder (SAD) in clinical research and practice. Both a self-reported (LSAS-SR) and a clinician-administered (LSAS-CA) version are available. The aim of the present study was to define optimal cut-off (OC) scores for remission and response to treatment for the LSAS in a German sample. Data of N = 311 patients with SAD were used who had completed psychotherapeutic treatment within a multicentre randomized controlled trial. Diagnosis of SAD and reduction in symptom severity according to the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition, served as gold standard. OCs yielding the best balance between sensitivity and specificity were determined using receiver operating characteristics. The variability of the resulting OCs was estimated by nonparametric bootstrapping. Using diagnosis of SAD (present vs. absent) as a criterion, results for remission indicated cut-off values of 35 for the LSAS-SR and 30 for the LSAS-CA, with acceptable sensitivity (LSAS-SR: .83, LSAS-CA: .88) and specificity (LSAS-SR: .82, LSAS-CA: .87). For detection of response to treatment, assessed by a 1-point reduction in the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition, rating, a reduction of 28% for the LSAS-SR and 29% for the LSAS-CA yielded the best balance between sensitivity (LSAS-SR: .75, LSAS-CA: .83) and specificity (LSAS-SR: .76, LSAS-CA: .80). To our knowledge, we are the first to define cut points for the LSAS in a German sample. Overall, the cut points for remission and response corroborate previously reported cut points, now building on a broader data basis. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Transcutaneous oxygen pressure measurement in diabetic foot ulcers: mean values and cut-point for wound healing.

    PubMed

    Yang, Chuan; Weng, Huan; Chen, Lihong; Yang, Haiyun; Luo, Guangming; Mai, Lifang; Jin, Guoshu; Yan, Li

    2013-01-01

    The purpose of this study was to investigate mean values and cut-point of transcutaneous oxygen pressure (TcPO2) measurement in patients with diabetic foot ulcers. Prospective, descriptive study. Sixty-one patients with diabetes mellitus and foot ulcers comprised the sample. The research setting was Sun Yat-sen Memorial Hospital of SunYat-sen University, Guangzhou, China. Participants underwent transcutaneous oxygen (TcPO2) measurement at the dorsum of foot. Patients were classified into 3 groups according to clinical outcomes: (1) ulcers healed with intact skin group, (2) ulcer improved, and (3) ulcer failed to improve. TcPO2 was assessed and cut-points for predicting diabetic foot ulcer healing were calculated. Thirty-six patients healed with intact skin, 8 experienced improvement, and 17 showed no improvement. Mean TcPO2 levels were significantly higher (P< .001) in healed ulcers with intact skin (32 ± 10 mmHg) when compared to the improvement group (30 ± 7 mmHg) and the nonhealing group (15 ± 12 mmHg). All patients with TcPO2≤ 10 mmHg failed to heal or experienced deterioration in their foot ulcers. In contrast, all patients with TcPO2≥ 40 mmHg achieved wound closure. Measurement of TcPO2 in the supine position revealed a cut-point value of 25 mmHg as the best threshold for predicting diabetic foot ulcer healing; the area under the curve using this cut-point was 0.838 (95% confidence interval = 0.700-0.976). The sensitivity, specificity, positive predictive value, and negative predictive value for TxPO2 were 88.6%, 82.4%, 90.7%, and 72.2%, respectively. TcPO2≥ 40 mmHg was associated with diabetic foot ulcer healing, but a TcPO2≤ 10 mmHg was associated with failure of wound healing. We found that a cut-point of 25 mmHg was most predictive of diabetic foot ulcer healing.

  6. Age-related differences in recommended anthropometric cut-off point validity to identify cardiovascular risk factors in ostensibly healthy women

    PubMed Central

    Björkelund, Cecilia; Guo, Xinxin; Skoog, Ingmar; Bosaeus, Ingvar; Lissner, Lauren

    2014-01-01

    Aim: To investigate validity of widely recommended anthropometric and total fat percentage cut-off points in screening for cardiovascular risk factors in women of different ages. Methods: A population-based sample of 1002 Swedish women aged 38, 50, 75 (younger, middle-aged and elderly, respectively) underwent anthropometry, health examinations and blood tests. Total fat was estimated (bioimpedance) in 670 women. Sensitivity, specificity of body mass index (BMI; ≥25 and ≥30), waist circumference (WC; ≥80 cm and ≥88 cm) and total fat percentage (TF; ≥35%) cut-off points for cardiovascular risk factors (dyslipidaemias, hypertension and hyperglycaemia) were calculated for each age. Cut-off points yielding high sensitivity together with modest specificity were considered valid. Women reporting hospital admission for cardiovascular disease were excluded. Results: The sensitivity of WC ≥80 cm for one or more risk factors was ~60% in younger and middle-aged women, and 80% in elderly women. The specificity of WC ≥80 cm for one or more risk factors was 69%, 57% and 40% at the three ages (p < .05 for age trends). WC ≥80 cm yielded ~80% sensitivity for two or more risk factors across all ages. However, specificity decreased with increasing age (p < .0001), being 33% in elderly. WC ≥88 cm provided better specificity in elderly women. BMI and TF % cut-off points were not better than WC. Conclusions: Validity of recommended anthropometric cut-off points in screening asymptomatic women varies with age. In younger and middle-age, WC ≥80 cm yielded high sensitivity and modest specificity for two or more risk factors, however, sensitivity for one or more risk factor was less than optimal. WC ≥88 cm showed better validity than WC ≥80 cm in elderly. Our results support age-specific screening cut-off points for women. PMID:25294689

  7. Age-related differences in recommended anthropometric cut-off point validity to identify cardiovascular risk factors in ostensibly healthy women.

    PubMed

    Subramoney, Sreevidya; Björkelund, Cecilia; Guo, Xinxin; Skoog, Ingmar; Bosaeus, Ingvar; Lissner, Lauren

    2014-12-01

    To investigate validity of widely recommended anthropometric and total fat percentage cut-off points in screening for cardiovascular risk factors in women of different ages. A population-based sample of 1002 Swedish women aged 38, 50, 75 (younger, middle-aged and elderly, respectively) underwent anthropometry, health examinations and blood tests. Total fat was estimated (bioimpedance) in 670 women. Sensitivity, specificity of body mass index (BMI; ≥25 and ≥30), waist circumference (WC; ≥80 cm and ≥88 cm) and total fat percentage (TF; ≥35%) cut-off points for cardiovascular risk factors (dyslipidaemias, hypertension and hyperglycaemia) were calculated for each age. Cut-off points yielding high sensitivity together with modest specificity were considered valid. Women reporting hospital admission for cardiovascular disease were excluded. The sensitivity of WC ≥80 cm for one or more risk factors was ~60% in younger and middle-aged women, and 80% in elderly women. The specificity of WC ≥80 cm for one or more risk factors was 69%, 57% and 40% at the three ages (p < .05 for age trends). WC ≥80 cm yielded ~80% sensitivity for two or more risk factors across all ages. However, specificity decreased with increasing age (p < .0001), being 33% in elderly. WC ≥88 cm provided better specificity in elderly women. BMI and TF % cut-off points were not better than WC. Validity of recommended anthropometric cut-off points in screening asymptomatic women varies with age. In younger and middle-age, WC ≥80 cm yielded high sensitivity and modest specificity for two or more risk factors, however, sensitivity for one or more risk factor was less than optimal. WC ≥88 cm showed better validity than WC ≥80 cm in elderly. Our results support age-specific screening cut-off points for women. © 2014 the Nordic Societies of Public Health.

  8. Mapping GRACE Accelerometer Error

    NASA Astrophysics Data System (ADS)

    Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.

    2017-12-01

    After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.

  9. The Current Waist Circumference Cut Point Used for the Diagnosis of Metabolic Syndrome in Sub-Saharan African Women Is Not Appropriate

    PubMed Central

    Crowther, Nigel J.; Norris, Shane A.

    2012-01-01

    The waist circumference cut point for diagnosing the metabolic syndrome in sub-Saharan African subjects is based on that obtained from studies in European populations. The aim of this study was to measure the prevalence of obesity and related metabolic disorders in an urban population of African females, a group at high risk for such diseases, and to determine the appropriate waist cut point for diagnosing the metabolic syndrome. Anthropometry and fasting lipid, glucose and insulin levels were measured in a cohort of 1251 African females participating in the Birth to Twenty cohort study in Soweto, Johannesburg. The waist circumference cut points for diagnosing metabolic syndrome (as defined using the new harmonised guidelines), insulin resistance, dysglycaemia, hypertension and dyslipidaemia were obtained using receiver operator characteristic curve analysis. The prevalence of obesity, type 2 diabetes and metabolic syndrome were 50.1%, 14.3% and 42.1%, respectively. The appropriate waist cut point for diagnosing metabolic syndrome was found to be 91.5 cm and was similar to the cuts points obtained for detecting increased risk of insulin resistance (89.0 cm), dysglycaemia (88.4 cm), hypertension (90.1 cm), hypo-high density lipoproteinaemia (87.6 cm) and hyper-low density lipoproteinaemia (90.5 cm). The present data demonstrates that urban, African females have a high prevalence of obesity and related disorders and the waist cut point currently recommended for the diagnosis of the metabolic syndrome (80.0 cm) in this population should be increased to 91.5 cm. This latter finding demonstrates a clear ethnic difference in the relationship between abdominal adiposity and metabolic disease risk. The similar waist cut points identified for the detection of the individual components of the metabolic syndrome and related cardiovascular risk factors demonstrates that the risk for different metabolic diseases increases at the same level of abdominal adiposity suggesting a

  10. Using expired air carbon monoxide to determine smoking status during pregnancy: preliminary identification of an appropriately sensitive and specific cut-point.

    PubMed

    Bailey, Beth A

    2013-10-01

    Measurement of carbon monoxide in expired air samples (ECO) is a non-invasive, cost-effective biochemical marker for smoking. Cut points of 6ppm-10ppm have been established, though appropriate cut-points for pregnant woman have been debated due to metabolic changes. This study assessed whether an ECO cut-point identifying at least 90% of pregnant smokers, and misidentifying fewer than 10% of non-smokers, could be established. Pregnant women (N=167) completed a validated self-report smoking assessment, a urine drug screen for cotinine (UDS), and provided an expired air sample twice during pregnancy. Half of women reported non-smoking status early (51%) and late (53%) in pregnancy, confirmed by UDS. Using a traditional 8ppm+cut-point for the early pregnancy reading, only 1% of non-smokers were incorrectly identified as smokers, but only 56% of all smokers, and 67% who smoked 5+ cigarettes in the previous 24h, were identified. However, at 4ppm+, only 8% of non-smokers were misclassified as smokers, and 90% of all smokers and 96% who smoked 5+ cigarettes in the previous 24h were identified. False positives were explained by heavy second hand smoke exposure and marijuana use. Results were similar for late pregnancy ECO, with ROC analysis revealing an area under the curve of .95 for early pregnancy, and .94 for late pregnancy readings. A lower 4ppm ECO cut-point may be necessary to identify pregnant smokers using expired air samples, and this cut-point appears valid throughout pregnancy. Work is ongoing to validate findings in larger samples, but it appears if an appropriate cut-point is used, ECO is a valid method for determining smoking status in pregnancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets.

    PubMed

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-10-02

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.

  12. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    PubMed Central

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-01-01

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597

  13. Association Between Aerobic Fitness And High Blood Pressure in Adolescents in Brazil: Evidence for Criterion-Referenced Cut-Points.

    PubMed

    Silva, Diego Augusto; Tremblay, Mark; Pelegrini, Andreia; Dos Santos Silva, Roberto Jeronimo; Cabral de Oliveira, Antonio Cesar; Petroski, Edio Luiz

    2016-05-01

    Criterion-referenced cut-points for health-related fitness measures are lacking. This study aimed to determine the associations between aerobic fitness and high blood pressure levels (HBP) to determine the cut-points that best predict HBP among adolescents. This cross-sectional school-based study with sample of 875 adolescents aged 14-19 years was conducted in southern Brazil. Aerobic fitness was assessed using the modified Canadian Aerobic Fitness Test (mCAFT). Systolic and diastolic blood pressure were measured by the oscillometric method with a digital sphygmomanometer. Analyses controlled for sociodemographic variables, physical activity, body mass and biological maturation. Receiver Operating Characteristic (ROC) curves demonstrated that mCAFT measures could discriminate HBP in both sexes (female: AUC = 0.70; male: AUC = 0.63). The cut-points with the best discriminatory power for HBP were 32 mL·kg-1·min-1 for females and 40 mL·kg-1·min-1 for males. Females (OR = 8.4; 95% CI: 2.1, 33.7) and males (OR: 2.5; CI 95%: 1.2, 5.2) with low aerobic fitness levels were more likely to have HBP. mCAFT measures are inversely associated with BP and cut-points from ROC analyses have good discriminatory power for HBP.

  14. C-arm rotation encoding with accelerometers.

    PubMed

    Grzeda, Victor; Fichtinger, Gabor

    2010-07-01

    Fluoroscopic C-arms are being incorporated in computer-assisted interventions in increasing number. For these applications to work, the relative poses of imaging must be known. To find the pose, tracking methods such as optical cameras, electromagnetic trackers, and radiographic fiducials have been used-all hampered by significant shortcomings. We propose to recover the rotational pose of the C-arm using the angle-sensing ability of accelerometers, by exploiting the capability of the accelerometer to measure tilt angles. By affixing the accelerometer to a C-arm, the accelerometer tracks the C-arm pose during rotations of the C-arm. To demonstrate this concept, a C-arm analogue was constructed with a webcam device affixed to the C-arm model to mimic X-ray imaging. Then, measuring the offset between the accelerometer angle readings to the webcam pose angle, an angle correction equation (ACE) was created to properly tracking the C-arm rotational pose. Several tests were performed on the webcam C-arm model using the ACEs to tracking the primary and secondary angle rotations of the model. We evaluated the capability of linear and polynomial ACEs to tracking the webcam C-arm pose angle for different rotational scenarios. The test results showed that the accelerometer could track the pose of the webcam C-arm model with an accuracy of less than 1.0 degree. The accelerometer was successful in sensing the C-arm's rotation with clinically adequate accuracy in the C-arm webcam model.

  15. Proposing a Tentative Cut Point for the Compulsive Sexual Behavior Inventory

    PubMed Central

    Storholm, Erik David; Fisher, Dennis G.; Napper, Lucy E.; Reynolds, Grace L.

    2015-01-01

    Bivariate analyses were utilized in order to identify the relations between scores on the Compulsive Sexual Behavior Inventory (CSBI) and self-report of risky sexual behavior and drug abuse among 482 racially and ethnically diverse men and women. CSBI scores were associated with both risky sexual behavior and drug abuse among a diverse non-clinical sample, thereby providing evidence of criterion-related validity. The variables that demonstrated a high association with the CSBI were subsequently entered into a multiple regression model. Four variables (number of sexual partners in the last 30 days, self-report of trading drugs for sex, having paid for sex, and perceived chance of acquiring HIV) were retained as variables with good model fit. Receiver operating characteristic (ROC) curve analyses were conducted in order to determine the optimal tentative cut point for the CSBI. The four variables retained in the multiple regression model were utilized as exploratory gold standards in order to construct ROC curves. The ROC curves were then compared to one another in order to determine the point that maximized both sensitivity and specificity in the identification of compulsive sexual behavior with the CSBI scale. The current findings suggest that a tentative cut point of 40 may prove clinically useful in discriminating between persons who exhibit compulsive sexual behavior and those who do not. Because of the association between compulsive sexual behavior and HIV, STIs, and drug abuse, it is paramount that a psychometrically sound measure of compulsive sexual behavior is made available to all healthcare professionals working in disease prevention and other areas. PMID:21203814

  16. Proposing a tentative cut point for the Compulsive Sexual Behavior Inventory.

    PubMed

    Storholm, Erik David; Fisher, Dennis G; Napper, Lucy E; Reynolds, Grace L; Halkitis, Perry N

    2011-12-01

    Bivariate analyses were utilized in order to identify the relations between scores on the Compulsive Sexual Behavior Inventory (CSBI) and self-report of risky sexual behavior and drug abuse among 482 racially and ethnically diverse men and women. CSBI scores were associated with both risky sexual behavior and drug abuse among a diverse non-clinical sample, thereby providing evidence of criterion-related validity. The variables that demonstrated a high association with the CSBI were subsequently entered into a multiple regression model. Four variables (number of sexual partners in the last 30 days, self-report of trading drugs for sex, having paid for sex, and perceived chance of acquiring HIV) were retained as variables with good model fit. Receiver operating characteristic (ROC) curve analyses were conducted in order to determine the optimal tentative cut point for the CSBI. The four variables retained in the multiple regression model were utilized as exploratory gold standards in order to construct ROC curves. The ROC curves were then compared to one another in order to determine the point that maximized both sensitivity and specificity in the identification of compulsive sexual behavior with the CSBI scale. The current findings suggest that a tentative cut point of 40 may prove clinically useful in discriminating between persons who exhibit compulsive sexual behavior and those who do not. Because of the association between compulsive sexual behavior and HIV, STIs, and drug abuse, it is paramount that a psychometrically sound measure of compulsive sexual behavior is made available to all healthcare professionals working in disease prevention and other areas.

  17. Silicon microengineering for accelerometers

    NASA Astrophysics Data System (ADS)

    Satchell, D. W.

    Silicon microengineering enables the excellent mechanical properties of silicon to be combined with electronic ones to produce accelerometers of good performance, small size and low cost. The design and fabrication of two types of analogue accelerometer, using this technique, are described. One employs implanted strain gauges to give a dc output, while the other has a strain-sensitive resonant structure which gives a varying frequency signal.

  18. Intensity Classification Accuracy of Accelerometer-Measured Physical Activities in Chinese Children and Youth

    ERIC Educational Resources Information Center

    Zhu, Zheng; Chen, Peijie; Zhuang, Jie

    2013-01-01

    Purpose: Many ActiGraph accelerometer cutoff points and equations have been developed to classify children and youth's physical activity (PA) into different intensity levels. Using a sample from the Chinese City Children and Youth Physical Activity Study, this study was to develop new ActiGraph cutoff points for moderate-to-vigorous physical…

  19. Wearable Accelerometers in High Performance Jet Aircraft.

    PubMed

    Rice, G Merrill; VanBrunt, Thomas B; Snider, Dallas H; Hoyt, Robert E

    2016-02-01

    Wearable accelerometers have become ubiquitous in the fields of exercise physiology and ambulatory hospital settings. However, these devices have yet to be validated in extreme operational environments. The objective of this study was to correlate the gravitational forces (G forces) detected by wearable accelerometers with the G forces detected by high performance aircraft. We compared the in-flight G forces detected by the two commercially available portable accelerometers to the F/A-18 Carrier Aircraft Inertial Navigation System (CAINS-2) during 20 flights performed by the Navy's Flight Demonstration Squadron (Blue Angels). Postflight questionnaires were also used to assess the perception of distractibility during flight. Of the 20 flights analyzed, 10 complete in-flight comparisons were made, accounting for 25,700 s of correlation between the CAINS-2 and the two tested accelerometers. Both accelerometers had strong correlations with that of the F/A-18 Gz axis, averaging r = 0.92 and r = 0.93, respectively, over 10 flights. Comparison of both portable accelerometer's average vector magnitude to each other yielded an average correlation of r = 0.93. Both accelerometers were found to be minimally distracting. These results suggest the use of wearable accelerometers is a valid means of detecting G forces during high performance aircraft flight. Future studies using this surrogate method of detecting accelerative forces combined with physiological information may yield valuable in-flight normative data that heretofore has been technically difficult to obtain and hence holds the promise of opening the door for a new golden age of aeromedical research.

  20. New Matching Method for Accelerometers in Gravity Gradiometer

    PubMed Central

    Wei, Hongwei; Wu, Meiping; Cao, Juliang

    2017-01-01

    The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584

  1. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.

    PubMed

    Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W

    2016-02-01

    This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.

  2. A review of micromachined thermal accelerometers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar

    2017-12-01

    A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.

  3. Fiber Optic Laser Accelerometer

    DTIC Science & Technology

    2007-11-06

    embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by

  4. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  5. Insulin sensitivity indices: a proposal of cut-off points for simple identification of insulin-resistant subjects.

    PubMed

    Radikova, Z; Koska, J; Huckova, M; Ksinantova, L; Imrich, R; Vigas, M; Trnovec, T; Langer, P; Sebokova, E; Klimes, I

    2006-05-01

    Demanding measurement of insulin sensitivity using clamp methods does not simplify the identification of insulin resistant subjects in the general population. Other approaches such as fasting- or oral glucose tolerance test-derived insulin sensitivity indices were proposed and validated with the euglycemic clamp. Nevertheless, a lack of reference values for these indices prevents their wider use in epidemiological studies and clinical practice. The aim of our study was therefore to define the cut-off points of insulin resistance indices as well as the ranges of the most frequently obtained values for selected indices. A standard 75 g oral glucose tolerance test was carried out in 1156 subjects from a Caucasian rural population with no previous evidence of diabetes or other dysglycemias. Insulin resistance/sensitivity indices (HOMA-IR, HOMA-IR2, ISI Cederholm, and ISI Matsuda) were calculated. The 75th percentile value as the cut-off point to define IR corresponded with a HOMA-IR of 2.29, a HOMA-IR2 of 1.21, a 25th percentile for ISI Cederholm, and ISI Matsuda of 57 and 5.0, respectively. For the first time, the cut-off points for selected indices and their most frequently obtained values were established for groups of subjects as defined by glucose homeostasis and BMI. Thus, insulin-resistant subjects can be identified using this simple approach.

  6. Assessment of Differing Definitions of Accelerometer Nonwear Time

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  7. Rectilinear accelerometer possesses self- calibration feature

    NASA Technical Reports Server (NTRS)

    Henderson, R. B.

    1966-01-01

    Rectilinear accelerometer operates from an ac source with a phase-sensitive ac voltage output proportional to the applied accelerations. The unit includes an independent circuit for self-test which provides a sensor output simulating an acceleration applied to the sensitive axis of the accelerometer.

  8. Quasi-Static Calibration Method of a High-g Accelerometer

    PubMed Central

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-01-01

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743

  9. Bronchodilator response cut-off points and FEV 0.75 reference values for spirometry in preschoolers

    PubMed Central

    Burity, Edjane Figueiredo; Pereira, Carlos Alberto de Castro; Jones, Marcus Herbert; Sayão, Larissa Bouwman; de Andrade, Armèle Dornelas; de Britto, Murilo Carlos Amorim

    2016-01-01

    ABSTRACT Objective: To determine the cut-off points for FEV1, FEV0.75, FEV0.5, and FEF25-75% bronchodilator responses in healthy preschool children and to generate reference values for FEV0.75. Methods: This was a cross-sectional community-based study involving children 3-5 years of age. Healthy preschool children were selected by a standardized questionnaire. Spirometry was performed before and after bronchodilator use. The cut-off point of the response was defined as the 95th percentile of the change in each parameter. Results: We recruited 266 children, 160 (60%) of whom were able to perform acceptable, reproducible expiratory maneuvers before and after bronchodilator use. The mean age and height were 57.78 ± 7.86 months and 106.56 ± 6.43 cm, respectively. The success rate for FEV0.5 was 35%, 68%, and 70% in the 3-, 4-, and 5-year-olds, respectively. The 95th percentile of the change in the percentage of the predicted value in response to bronchodilator use was 11.6%, 16.0%, 8.5%, and 35.5% for FEV1, FEV0.75, FEV0.5, and FEF25-75%, respectively. Conclusions: Our results provide cut-off points for bronchodilator responsiveness for FEV1, FEV0.75, FEV0.5, and FEF25-75% in healthy preschool children. In addition, we proposed gender-specific reference equations for FEV0.75. Our findings could improve the physiological assessment of respiratory function in preschool children. PMID:27812631

  10. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  11. Design and implementation of a micromechanical silicon resonant accelerometer.

    PubMed

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-11-19

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  12. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  13. A Simple Accelerometer Calibrator

    NASA Astrophysics Data System (ADS)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  14. Decision-Making Influences Tibial Impact Accelerations During Lateral Cutting.

    PubMed

    Lucas, Logan A; England, Benjamin S; Mason, Travis W; Lanning, Christopher R; Miller, Taylor M; Morgan, Alexander M; Almonroeder, Thomas G

    2018-05-29

    Lower extremity musculoskeletal injuries are common in sports such as basketball and soccer. Athletes competing in sports of this nature must maneuver in response to the actions of their teammates, opponents, etc. This limits their ability to pre-plan movements. The purpose of this study was to compare impact accelerations during pre-planned vs. un-planned lateral cutting. Thirty subjects (15 males, 15 females) performed pre-planned and un-planned cuts while we analyzed impact accelerations using an accelerometer secured to their tibia. For the pre-planned condition, subjects were aware of the movement to perform before initiating a trial. For the un-planned condition, subjects initiated their movement and then reacted to the illumination of one of three visual stimuli which dictated whether they would cut, land, or land-and-jump. A mixed-model ANOVA with a between factor of sex (male, female) and a within factor of condition (pre-planned, un-planned) was used to analyze the magnitude and variability of the impact accelerations for the cutting trials. Both males and females demonstrated higher impact accelerations (p = .010) and a trend toward greater inter-trial variability (p = .073) for the un-planned cutting trials (vs. pre-planned cuts). Un-planned cutting may place greater demands on the musculoskeletal system.

  15. The Effect of the Accelerometer Operating Range on Biomechanical Parameters: Stride Length, Velocity, and Peak Tibial Acceleration during Running

    PubMed Central

    Kiesewetter, Pierre; Milani, Thomas L.

    2018-01-01

    Previous studies have used accelerometers with various operating ranges (ORs) when measuring biomechanical parameters. However, it is still unclear whether ORs influence the accuracy of running parameters, and whether the different stiffnesses of footwear midsoles influence this accuracy. The purpose of the present study was to systematically investigate the influence of OR on the accuracy of stride length, running velocity, and on peak tibial acceleration. Twenty-one recreational heel strike runners ran on a 15-m indoor track at self-selected running speeds in three footwear conditions (low to high midsole stiffness). Runners were equipped with an inertial measurement unit (IMU) affixed to the heel cup of the right shoe and with a uniaxial accelerometer at the right tibia. Accelerometers (at the tibia and included in the IMU) with a high OR of ±70 g were used as the reference and the data were cut at ±32, ±16, and at ±8 g in post-processing, before calculating parameters. The results show that the OR influenced the outcomes of all investigated parameters, which were not influenced by tested footwear conditions. The lower ORs were associated with an underestimation error for all biomechanical parameters, which increased noticeably with a decreasing OR. It can be concluded that accelerometers with a minimum OR of ±32 g should be used to avoid inaccurate measurements. PMID:29303986

  16. The Potential of Established Fitness Cut-off Points for Monitoring Women with Fibromyalgia: The al-Ándalus Project.

    PubMed

    Castro-Piñero, José; Aparicio, Virginia A; Estévez-López, Fernando; Álvarez-Gallardo, Inmaculada C; Borges-Cosic, Milkana; Soriano-Maldonado, Alberto; Delgado-Fernández, Manuel; Segura-Jiménez, Víctor

    2017-05-01

    The aim of the present study was to determinate whether fitness cut-off points discriminate the severity of major fibromyalgia symptoms and health-related quality of life. Additionally, we investigated which American Colleague of Rheumatology (ACR) fibromyalgia criteria (1990 vs. modified 2010) better discriminate fibromyalgia symptomatology. A total of 488 women with fibromyalgia and 200 non-fibromyalgia (control) women participated. All participants underwent both the 1990 and the modified 2010 ACR preliminary criteria (hereinafter 1990c and m-2010c, respectively). We used fitness cut-off points (Senior Fitness Tests Battery plus handgrip strength test) to discriminate between presence and absence of fibromyalgia. Additionally, we employed several instruments to assess fibromyalgia symptoms. Fitness cut-off points discriminated between high and low levels of the main symptoms the disease in all age groups (P from <0.001 to 0.01). Overall, the arm-curl and the 30-s chair stand tests presented the highest effect sizes in all symptoms, reinforcing the inclusion of fitness testing as a complementary tool for fibromyalgia diagnosis and monitoring. Moreover, the effect size of the differences in symptoms between women with fibromyalgia and controls were overall larger using the m-2010c compared with the 1990c, except for the tender points count, reflecting better the polysymptomatic distress condition of fibromyalgia. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Tool enables proper mating of accelerometer and cable connector

    NASA Technical Reports Server (NTRS)

    Steed, C. N.

    1966-01-01

    Tool supports accelerometer in axial alignment with an accelerometer cable connector and permits tightening of the accelerometer to the cable connector with a torque wrench. This is done without damaging the components or permitting them to work loose under sustained, high-level vibrations.

  18. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  19. Application of inertial instruments for DSN antenna pointing and tracking

    NASA Technical Reports Server (NTRS)

    Eldred, D. B.; Nerheim, N. M.; Holmes, K. G.

    1990-01-01

    The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given.

  20. A biomimetic accelerometer inspired by the cricket's clavate hair

    PubMed Central

    Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  1. Hybridizing matter-wave and classical accelerometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lautier, J.; Volodimer, L.; Hardin, T.

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomicmore » accelerometers, namely, the dead times between consecutive measurements.« less

  2. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  3. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  4. Characterizing performance of ultra-sensitive accelerometers

    NASA Technical Reports Server (NTRS)

    Sebesta, Henry

    1990-01-01

    An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.

  5. Electret accelerometers: physics and dynamic characterization.

    PubMed

    Hillenbrand, J; Haberzettl, S; Motz, T; Sessler, G M

    2011-06-01

    Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built. © 2011 Acoustical Society of America

  6. Accuracy and adequacy of waist circumference cut-off points currently recommended in Brazilian adults.

    PubMed

    Vianna, Carolina Avila; da Silva Linhares, Rogério; Bielemann, Renata Moraes; Machado, Eduardo Coelho; González-Chica, David Alejandro; Matijasevich, Alicia Manitto; Gigante, Denise Petrucci; da Silva Dos Santos, Iná

    2014-04-01

    To evaluate the adequacy and accuracy of cut-off values currently recommended by the WHO for assessment of cardiovascular risk in southern Brazil. Population-based study aimed at determining the predictive ability of waist circumference for cardiovascular risk based on the use of previous medical diagnosis for hypertension, diabetes mellitus and/or dyslipidaemia. Descriptive analysis was used for the adequacy of current cut-off values of waist circumference, receiver operating characteristic curves were constructed and the most accurate criteria according to the Youden index and points of optimal sensitivity and specificity were identified. Pelotas, southern Brazil. Individuals (n 2112) aged ≥20 years living in the city were selected by multistage sampling, since these individuals did not report the presence of previous myocardial infarction, angina pectoris or stroke. The cut-off values currently recommended by WHO were more appropriate in men than women, with overestimation of cardiovascular risk in women. The area under the receiver operating characteristic curve showed moderate predictive ability of waist circumference in men (0.74, 95% CI 0.71, 0.76) and women (0.75, 95% CI 0.73, 0.77). The method of optimal sensitivity and specificity showed better performance in assessing the accuracy, identifying the values of 95 cm in men and 87 cm in women as the best cut-off values of waist circumference to assess cardiovascular risk. The cut-off values currently recommended for waist circumference are not suitable for women. Longitudinal studies should be conducted to evaluate the consistency of the findings.

  7. Comparison of self-reported versus accelerometer-measured physical activity.

    PubMed

    Dyrstad, Sindre M; Hansen, Bjørge H; Holme, Ingar M; Anderssen, Sigmund A

    2014-01-01

    The International Physical Activity Questionnaire (IPAQ) is one of the most widely used questionnaires to assess physical activity (PA). Validation studies for the IPAQ have been executed, but still there is a need for studies comparing absolute values between IPAQ and accelerometer in large population studies. To compare PA and sedentary time from the self-administered, short version of the IPAQ with data from ActiGraph accelerometer in a large national sample. A total of 1751 adults (19-84 yr) wore an accelerometer (ActiGraph GT1M) for seven consecutive days and completed the IPAQ-Short Form. Sedentary time, total PA, and time spent in moderate to vigorous activity were compared in relation to sex, age, and education. Men and women reported, on average, 131 min·d (SE = 4 min·d) less sedentary time compared with the accelerometer measurements. The difference between self-reported and measured sedentary time and vigorous-intensity PA was greatest among men with a lower education level and for men 65 yr and older. Although men reported 47% more moderate to vigorous physical activity (MVPA) compared with women, there were no differences between sexes in accelerometer-determined MVPA. Accelerometer-determined moderate PA was reduced from 110 to 42 min·d (62%) when analyzed in blocks of 10 min (P < 0.0001) compared with 1-min blocks. The main correlation coefficients between self-reported variables and accelerometer measures of physical activity were between 0.20 and 0.46. The participants report through IPAQ-Short Form more vigorous PA and less sedentary time compared with the accelerometer. The difference between self-reported and accelerometer-measured MVPA increased with higher activity and intensity levels. Associations between the methods were affected by sex, age, and education, but not body mass index.

  8. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    PubMed Central

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  9. Enhancing efficiency and quality of statistical estimation of immunogenicity assay cut points through standardization and automation.

    PubMed

    Su, Cheng; Zhou, Lei; Hu, Zheng; Weng, Winnie; Subramani, Jayanthi; Tadkod, Vineet; Hamilton, Kortney; Bautista, Ami; Wu, Yu; Chirmule, Narendra; Zhong, Zhandong Don

    2015-10-01

    Biotherapeutics can elicit immune responses, which can alter the exposure, safety, and efficacy of the therapeutics. A well-designed and robust bioanalytical method is critical for the detection and characterization of relevant anti-drug antibody (ADA) and the success of an immunogenicity study. As a fundamental criterion in immunogenicity testing, assay cut points need to be statistically established with a risk-based approach to reduce subjectivity. This manuscript describes the development of a validated, web-based, multi-tier customized assay statistical tool (CAST) for assessing cut points of ADA assays. The tool provides an intuitive web interface that allows users to import experimental data generated from a standardized experimental design, select the assay factors, run the standardized analysis algorithms, and generate tables, figures, and listings (TFL). It allows bioanalytical scientists to perform complex statistical analysis at a click of the button to produce reliable assay parameters in support of immunogenicity studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Operationalizing hippocampal volume as an enrichment biomarker for amnestic MCI trials: effect of algorithm, test-retest variability and cut-point on trial cost, duration and sample size

    PubMed Central

    Yu, P.; Sun, J.; Wolz, R.; Stephenson, D.; Brewer, J.; Fox, N.C.; Cole, P.E.; Jack, C.R.; Hill, D.L.G.; Schwarz, A.J.

    2014-01-01

    Objective To evaluate the effect of computational algorithm, measurement variability and cut-point on hippocampal volume (HCV)-based patient selection for clinical trials in mild cognitive impairment (MCI). Methods We used normal control and amnestic MCI subjects from ADNI-1 as normative reference and screening cohorts. We evaluated the enrichment performance of four widely-used hippocampal segmentation algorithms (FreeSurfer, HMAPS, LEAP and NeuroQuant) in terms of two-year changes in MMSE, ADAS-Cog and CDR-SB. We modeled the effect of algorithm, test-retest variability and cut-point on sample size, screen fail rates and trial cost and duration. Results HCV-based patient selection yielded not only reduced sample sizes (by ~40–60%) but also lower trial costs (by ~30–40%) across a wide range of cut-points. Overall, the dependence on the cut-point value was similar for the three clinical instruments considered. Conclusion These results provide a guide to the choice of HCV cut-point for aMCI clinical trials, allowing an informed trade-off between statistical and practical considerations. PMID:24211008

  11. Ethnicity-specific obesity cut-points in the development of Type 2 diabetes – a prospective study including three ethnic groups in the United Kingdom

    PubMed Central

    Tillin, T; Sattar, N; Godsland, I F; Hughes, A D; Chaturvedi, N; Forouhi, N G

    2015-01-01

    Aims Conventional definitions of obesity, e.g. body mass index (BMI) ≥ 30 kg/m2 or waist circumference cut-points of 102 cm (men) and 88 cm (women), may underestimate metabolic risk in non-Europeans. We prospectively identified equivalent ethnicity-specific obesity cut-points for the estimation of diabetes risk in British South Asians, African-Caribbeans and Europeans. Methods We studied a population-based cohort from London, UK (1356 Europeans, 842 South Asians, 335 African-Caribbeans) who were aged 40–69 years at baseline (1988–1991), when they underwent anthropometry, fasting and post-load (75 g oral glucose tolerance test) blood tests. Incident Type 2 diabetes was identified from primary care records, participant recall and/or follow-up biochemistry. Ethnicity-specific obesity cut-points in association with diabetes incidence were estimated using negative binomial regression. Results Diabetes incidence rates (per 1000 person years) at a median follow-up of 19 years were 20.8 (95% CI: 18.4, 23.6) and 12.0 (8.3, 17.2) in South Asian men and women, 16.5 (12.7, 21.4) and 17.5 (13.0, 23.7) in African-Caribbean men and women, and 7.4 (6.3, 8.7), and 7.2 (5.3, 9.8) in European men and women. For incidence rates equivalent to those at a BMI of 30 kg/m2 in European men and women, age- and sex-adjusted cut-points were: South Asians, 25.2 (23.4, 26.6) kg/m2; and African-Caribbeans, 27.2 (25.2, 28.6) kg/m2. For South Asian and African-Caribbean men, respectively, waist circumference cut-points of 90.4 (85.0, 94.5) and 90.6 (85.0, 94.5) cm were equivalent to a value of 102 cm in European men. Waist circumference cut-points of 84.0 (74.0, 90.0) cm in South Asian women and 81.2 (71.4, 87.4) cm in African-Caribbean women were equivalent to a value of 88 cm in European women. Conclusions In prospective analyses, British South Asians and African-Caribbeans had equivalent diabetes incidence rates at substantially lower obesity levels than the conventional European cut-points

  12. Optimal accelerometer placement on a robot arm for pose estimation

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.

    2017-05-01

    The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.

  13. Comparison of Physical Activity Adult Questionnaire results with accelerometer data.

    PubMed

    Garriguet, Didier; Tremblay, Sylvain; Colley, Rachel C

    2015-07-01

    Discrepancies between self-reported and objectively measured physical activity are well-known. For the purpose of validation, this study compares a new self-reported physical activity questionnaire with an existing one and with accelerometer data. Data collected at one site of the Canadian Health Measures Survey in 2013 were used for this validation study. The International Physical Activity Questionnaire (IPAQ) was administered to respondents during the household interview, and the new Physical Activity for Adults Questionnaire (PAAQ) was administered during a subsequent visit to a mobile examination centre (MEC). At the MEC, respondents were given an accelerometer to wear for seven days. The analysis pertains to 112 respondents aged 18 to 79 who wore the accelerometer for 10 or more hours on at least four days. Moderate-to-vigorous physical activity (MVPA) measured by accelerometer had higher correlation with data from the PAAQ (r = 0.44) than with data from the IPAQ (r = 0.20). The differences between accelerometer and PAAQ data were greater based on accelerometer-measured physical activity accumulated in 10-minute bouts (30-minute difference in MVPA) than on all minutes (9-minute difference). The percentages of respondents meeting the Canadian Physical Activity Guidelines were 90% based on self-reported IPAQ minutes, 70% based on all accelerometer MVPA minutes, 29% based on accelerometer MVPA minutes accumulated in 10-minute bouts, and 61% based on self-reported PAAQ minutes. The PAAQ demonstrated reasonable validity against the accelerometer criterion. Based on correlations and absolute differences between daily minutes of MVPA and the percentages of respondents meeting the Canadian Physical Activity Guidelines, PAAQ results were closer to accelerometer data than were the IPAQ results for the study sample and previous Statistics Canada self-reported questionnaire findings.

  14. Using tri-axial accelerometers to identify wild polar bear behaviors

    USGS Publications Warehouse

    Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.

    2017-01-01

    Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.

  15. Circulating intact and cleaved forms of the urokinase-type plasminogen activator receptor: biological variation, reference intervals and clinical useful cut-points.

    PubMed

    Thurison, Tine; Christensen, Ib J; Lund, Ida K; Nielsen, Hans J; Høyer-Hansen, Gunilla

    2015-01-15

    High levels of circulating forms of the urokinase-type plasminogen activator receptor (uPAR) are significantly associated to poor prognosis in cancer patients. Our aim was to determine biological variations and reference intervals of the uPAR forms in blood, and in addition, to test the clinical relevance of using these as cut-points in colorectal cancer (CRC) prognosis. uPAR forms were measured in citrated and EDTA plasma samples using time-resolved fluorescence immunoassays. Diurnal, intra- and inter-individual variations were assessed in plasma samples from cohorts of healthy individuals. Reference intervals were determined in plasma from healthy individuals randomly selected from a Danish multi-center cross-sectional study. A cohort of CRC patients was selected from the same cross-sectional study. The reference intervals showed a slight increase with age and women had ~20% higher levels. The intra- and inter-individual variations were ~10% and ~20-30%, respectively and the measured levels of the uPAR forms were within the determined 95% reference intervals. No diurnal variation was found. Applying the normal upper limit of the reference intervals as cut-point for dichotomizing CRC patients revealed significantly decreased overall survival of patients with levels above this cut-point of any uPAR form. The reference intervals for the different uPAR forms are valid and the upper normal limits are clinically relevant cut-points for CRC prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  17. Different grades MEMS accelerometers error characteristics

    NASA Astrophysics Data System (ADS)

    Pachwicewicz, M.; Weremczuk, J.

    2017-08-01

    The paper presents calibration effects of two different MEMS accelerometers of different price and quality grades and discusses different accelerometers errors types. The calibration for error determining is provided by reference centrifugal measurements. The design and measurement errors of the centrifuge are discussed as well. It is shown that error characteristics of the sensors are very different and it is not possible to use simple calibration methods presented in the literature in both cases.

  18. An optimal cut-off point for the calving interval may be used as an indicator of bovine abortions.

    PubMed

    Bronner, Anne; Morignat, Eric; Gay, Emilie; Calavas, Didier

    2015-10-01

    The bovine abortion surveillance system in France aims to detect as early as possible any resurgence of bovine brucellosis, a disease of which the country has been declared free since 2005. It relies on the mandatory notification and testing of each aborting cow, but under-reporting is high. This research uses a new and simple approach which considers the calving interval (CI) as a "diagnostic test" to determine optimal cut-off point c and estimate diagnostic performance of the CI to identify aborting cows, and herds with multiple abortions (i.e. three or more aborting cows per calving season). The period between two artificial inseminations (AI) was considered as a "gold standard". During the 2006-2010 calving seasons, the mean optimal CI cut-off point for identifying aborting cows was 691 days for dairy cows and 703 days for beef cows. Depending on the calving season, production type and scale at which c was computed (individual or herd), the average sensitivity of the CI varied from 42.6% to 64.4%; its average specificity from 96.7% to 99.7%; its average positive predictive value from 27.6% to 65.4%; and its average negative predictive value from 98.7% to 99.8%. When applied to the French bovine population as a whole, this indicator identified 2-3% of cows suspected to have aborted, and 10-15% of herds suspected of multiple abortions. The optimal cut-off point and CI performance were consistent over calving seasons. By applying an optimal CI cut-off point to the cattle demographics database, it becomes possible to identify herds with multiple abortions, carry out retrospective investigations to find the cause of these abortions and monitor a posteriori compliance of farmers with their obligation to report abortions for brucellosis surveillance needs. Therefore, the CI could be used as an indicator of abortions to help improve the current mandatory notification surveillance system. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Emilia, Giulio, E-mail: giulio.demilia@univaq.it; Di Gasbarro, David, E-mail: david.digasbarro@graduate.univaq.it; Gaspari, Antonella, E-mail: antonella.gaspari@graduate.univaq.it

    2016-06-28

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behaviormore » if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.« less

  20. Uniaxial angular accelerometers

    NASA Astrophysics Data System (ADS)

    Seleznev, A. V.; Shvab, I. A.

    1985-05-01

    The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.

  1. Physical Activity Questionnaire for children and adolescents: English norms and cut-off points.

    PubMed

    Voss, Christine; Ogunleye, Ayodele A; Sandercock, Gavin R H

    2013-08-01

    The Physical Activity Questionnaire for Children and Adolescents (PAQ-C/-A) provides general estimates of physical activity levels. Following recent expert recommendations for using the PAQ for population surveillance, the aim of this paper was twofold: first, to describe normative PAQ data for English youth; and second, to determine a criterion-referenced PAQ-score cut-off point. Participants (n = 7226, 53% boys, 10-15 years) completed an anglicized version of the PAQ. Peak oxygen uptake (VO2peak ) was predicted from PACER lap count according to latest FITNESSGRAM standards and categorized into "at-risk" and "no-risk" for metabolic syndrome. ROC curves were drawn for each age-sex group to identify PAQ scores, which categorized youth into "sufficiently active" versus "low-active" groups, using cardiorespiratory fitness as the criterion-referenced standard. PAQ scores were higher in boys than in girls and declined with age. Mean PAQ score was a significant, albeit relatively weak (area under the curve < 0.7) discriminator between "at-risk" and "no-risk." PAQ scores of ≥2.9 for boys and ≥2.7 for girls were identified as cut-off points, although it may be more appropriate to use lower, age-specific PAQ scores for girls of 13, 14 and 15 years (2.6, 2.4, 2.3, respectively). The normative and criterion-referenced PAQ values may be used to standardize and categorize PAQ scores in future youth population studies. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  2. Calculation of the ELISA's cut-off based on the change-point analysis method for detection of Trypanosoma cruzi infection in Bolivian dogs in the absence of controls.

    PubMed

    Lardeux, Frédéric; Torrico, Gino; Aliaga, Claudia

    2016-07-04

    In ELISAs, sera of individuals infected by Trypanosoma cruzi show absorbance values above a cut-off value. The cut-off is generally computed by means of formulas that need absorbance readings of negative (and sometimes positive) controls, which are included in the titer plates amongst the unknown samples. When no controls are available, other techniques should be employed such as change-point analysis. The method was applied to Bolivian dog sera processed by ELISA to diagnose T. cruzi infection. In each titer plate, the change-point analysis estimated a step point which correctly discriminated among known positive and known negative sera, unlike some of the six usual cut-off formulas tested. To analyse the ELISAs results, the change-point method was as good as the usual cut-off formula of the form "mean + 3 standard deviation of negative controls". Change-point analysis is therefore an efficient alternative method to analyse ELISA absorbance values when no controls are available.

  3. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  4. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  5. Low G accelerometer testing

    NASA Technical Reports Server (NTRS)

    Vaughan, M. S.

    1972-01-01

    Eight different types of low-g accelerometer tests are covered on the Bell miniature electrostatically suspended accelerometer (MESA) which is known to be sensitive to less than 10 to the minus 7th power earth's gravity. These tests include a mass attracting scheme, Leitz dividing head, Wild theodolite, precision gage blocks, precision tiltmeters, Hilger Watts autocollimator, Razdow Mark 2 autocollimator, and laser interferometer measuring system. Each test is described and a comparison of the results is presented. The output of the MESA was as linear and consistent as any of the available devices were capable of measuring. Although the extent of agreement varied with the test equipment used, it can only be concluded that the indicated errors were attributable to the test equipment coupled with the environmental conditions.

  6. High performance, accelerometer-based control of the Mini-MAST structure

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1992-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  7. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  8. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.

    PubMed

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng

    2017-11-18

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.

  9. Validation of accelerometer wear and nonwear time classification algorithm.

    PubMed

    Choi, Leena; Liu, Zhouwen; Matthews, Charles E; Buchowski, Maciej S

    2011-02-01

    the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001). the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.

  10. Cutting assembly

    DOEpatents

    Racki, Daniel J.; Swenson, Clark E.; Bencloski, William A.; Wineman, Arthur L.

    1984-01-01

    A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.

  11. Validation of the RT3 triaxial accelerometer for the assessment of physical activity.

    PubMed

    Rowlands, Ann V; Thomas, Philip W M; Eston, Roger G; Topping, Rodney

    2004-03-01

    The aims of this study were to assess and compare the validity of the RT3 accelerometer for the assessment of physical activity in boys and men, to compare RT3 and Tritrac accelerometer counts, and to determine count cut-off values for moderate (> or =3 < 6 METs) and vigorous (> or =6 METs) activity. Nineteen boys (age: 9.5 +/- 0.8 yr) and 15 men (age: 20.7 +/- 1.4 yr) walked and ran on a treadmill, kicked a ball to and fro, played hopscotch, and sat quietly. An RT3 was worn on the right hip; boys also wore a Tritrac on the left hip. Oxygen consumption was expressed as a ratio of body mass raised to the power of 0.75 (S VO2). RT3 counts correlated significantly with S VO2 in boys (r = 0.87, P < 0.01) and men (r = 0.85, P < 0.01). However, during treadmill activities, RT3 counts were significantly higher for boys (P < 0.05). RT3 counts corresponding to "moderate" and "vigorous" activity were similar for boys and men for all activities (moderate = 970.2 for boys and 984.0 for men; vigorous = 2333.0 for boys and 2340.8 for men) but approximately 400 counts lower in men when only treadmill activities were considered. Tritrac counts correlated significantly with S VO2 in boys (r = 0.87, P < 0.01), but were significantly lower than RT3 counts across most activities (P < 0.05). The RT3 accelerometer is a good measure of physical activity for boys and men. However, moderate and vigorous intensity count thresholds differ for boys and men when the predominant activities are walking and running. RT3 counts are significantly higher than Tritrac counts for a number of activities. These findings have implications when comparing activity counts between studies using the different instruments.

  12. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    NASA Astrophysics Data System (ADS)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  13. A cautionary note about the cross-national and clinical validity of cut-off points for the Maslach Burnout Inventory.

    PubMed

    Schaufeli, W B; Van Dierendonck, D

    1995-06-01

    In the present study, burnout scores of three samples, as measured with the Maslach Burnout Inventory, were compared: (1) the normative American sample from the test-manual (N = 10,067), (2) the normative Dutch sample (N = 3,892), and (3) a Dutch outpatient sample (N = 142). Generally, the highest burnout scores were found for the outpatient sample, followed by the American and Dutch normative samples, respectively. Slightly different patterns were noted for each of the three components. Probably sampling bias, i.e., the healthy worker effect, or cultural value patterns, i.e., femininity versus masculinity, might be responsible for the results. It is concluded that extreme caution is required when cut-off points are used to classify individuals by burnout scores; only nation-specific and clinically derived cut-off points should be employed.

  14. Superconducting Rebalance Accelerometer

    NASA Technical Reports Server (NTRS)

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  15. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    1996-01-01

    The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.

  16. Assessing Stride Variables and Vertical Stiffness with GPS-Embedded Accelerometers: Preliminary Insights for the Monitoring of Neuromuscular Fatigue on the Field

    PubMed Central

    Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit

    2015-01-01

    The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264

  17. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  18. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments

    PubMed Central

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang

    2017-01-01

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587

  19. WWBT? What Would Ben Think about Killer Apps, Cutting Edges, and Tipping Points in the History of Weather and Climate?

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2006-12-01

    This paper examines the history of weather and climate since 1706 along three intertwined analytical axes: technology (killer apps), science (cutting edges), and social issues (tipping points). For example, Franklin's best-known killer app, the lightning rod, gains added significance when seen in light of his cutting edge contributions to the science of electricity, his lifelong promotion of useful knowledge, and the societal tipping point his work triggered in our relationship to the sky. Subsequently, other major tipping points and conceptual shifts followed the introduction of telegraphy, radio, television, digital computers, and rocketry into meteorology. Following an analysis of the career and contributions of Benjamin Franklin (1706-1790), the paper examines later historical moments and watersheds, not merely in retrospect, but from the perspective of leading participants at the time. It focuses on technologies of significant promise, especially those involving electro- magnetism, up to and including the dawn of the twenty-first century, and asks playfully, "What would Ben think?"

  20. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    NASA Astrophysics Data System (ADS)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  1. Accelerometer-based step initiation control for gait-assist neuroprostheses.

    PubMed

    Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J

    2016-01-01

    Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.

  2. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, Donald J.

    1992-01-01

    A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  3. Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis

    PubMed Central

    Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora

    2017-01-01

    Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760

  4. A novel gamma-fitting statistical method for anti-drug antibody assays to establish assay cut points for data with non-normal distribution.

    PubMed

    Schlain, Brian; Amaravadi, Lakshmi; Donley, Jean; Wickramasekera, Ananda; Bennett, Donald; Subramanyam, Meena

    2010-01-31

    In recent years there has been growing recognition of the impact of anti-drug or anti-therapeutic antibodies (ADAs, ATAs) on the pharmacokinetic and pharmacodynamic behavior of the drug, which ultimately affects drug exposure and activity. These anti-drug antibodies can also impact safety of the therapeutic by inducing a range of reactions from hypersensitivity to neutralization of the activity of an endogenous protein. Assessments of immunogenicity, therefore, are critically dependent on the bioanalytical method used to test samples, in which a positive versus negative reactivity is determined by a statistically derived cut point based on the distribution of drug naïve samples. For non-normally distributed data, a novel gamma-fitting method for obtaining assay cut points is presented. Non-normal immunogenicity data distributions, which tend to be unimodal and positively skewed, can often be modeled by 3-parameter gamma fits. Under a gamma regime, gamma based cut points were found to be more accurate (closer to their targeted false positive rates) compared to normal or log-normal methods and more precise (smaller standard errors of cut point estimators) compared with the nonparametric percentile method. Under a gamma regime, normal theory based methods for estimating cut points targeting a 5% false positive rate were found in computer simulation experiments to have, on average, false positive rates ranging from 6.2 to 8.3% (or positive biases between +1.2 and +3.3%) with bias decreasing with the magnitude of the gamma shape parameter. The log-normal fits tended, on average, to underestimate false positive rates with negative biases as large a -2.3% with absolute bias decreasing with the shape parameter. These results were consistent with the well known fact that gamma distributions become less skewed and closer to a normal distribution as their shape parameters increase. Inflated false positive rates, especially in a screening assay, shifts the emphasis to confirm

  5. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  6. Eutectic-based wafer-level-packaging technique for piezoresistive MEMS accelerometers and bond characterization using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.

    2018-03-01

    We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.

  7. Cutting tool form compensation system and method

    DOEpatents

    Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.

    1993-10-19

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.

  8. Cutting tool form compensaton system and method

    DOEpatents

    Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.

    1993-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.

  9. The location of the tibial accelerometer does influence impact acceleration parameters during running.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro

    2017-09-01

    Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.

  10. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  11. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, D.J.

    1992-11-17

    A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.

  12. The CDC and IOTF cut points show inconsistent prevalence of underweight and overweight in chinese, indonesian, and vietnamese children

    USDA-ARS?s Scientific Manuscript database

    No nationally representative data from middle and low-income countries have been analyzed to compare prevalence of underweight and overweight defined by the Centers for Disease Control and Prevention (CDC) and the International Obesity Task Force (IOTF) BMI cut points. We evaluated the consistency i...

  13. Starting Trees from Cuttings.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1983-01-01

    Describes a procedure for starting tree cuttings from woody plants, explaining "lag time," recommending materials, and giving step-by-step instructions for rooting and planting. Points out species which are likely candidates for cuttings and provides tips for teachers for developing a unit. (JM)

  14. Cut-Off Points for Mild, Moderate, and Severe Pain on the Numeric Rating Scale for Pain in Patients with Chronic Musculoskeletal Pain: Variability and Influence of Sex and Catastrophizing.

    PubMed

    Boonstra, Anne M; Stewart, Roy E; Köke, Albère J A; Oosterwijk, René F A; Swaan, Jeannette L; Schreurs, Karlein M G; Schiphorst Preuper, Henrica R

    2016-01-01

    Objectives: The 0-10 Numeric Rating Scale (NRS) is often used in pain management. The aims of our study were to determine the cut-off points for mild, moderate, and severe pain in terms of pain-related interference with functioning in patients with chronic musculoskeletal pain, to measure the variability of the optimal cut-off points, and to determine the influence of patients' catastrophizing and their sex on these cut-off points. Methods: 2854 patients were included. Pain was assessed by the NRS, functioning by the Pain Disability Index (PDI) and catastrophizing by the Pain Catastrophizing Scale (PCS). Cut-off point schemes were tested using ANOVAs with and without using the PSC scores or sex as co-variates and with the interaction between CP scheme and PCS score and sex, respectively. The variability of the optimal cut-off point schemes was quantified using bootstrapping procedure. Results and conclusion: The study showed that NRS scores ≤ 5 correspond to mild, scores of 6-7 to moderate and scores ≥8 to severe pain in terms of pain-related interference with functioning. Bootstrapping analysis identified this optimal NRS cut-off point scheme in 90% of the bootstrapping samples. The interpretation of the NRS is independent of sex, but seems to depend on catastrophizing. In patients with high catastrophizing tendency, the optimal cut-off point scheme equals that for the total study sample, but in patients with a low catastrophizing tendency, NRS scores ≤ 3 correspond to mild, scores of 4-6 to moderate and scores ≥7 to severe pain in terms of interference with functioning. In these optimal cut-off schemes, NRS scores of 4 and 5 correspond to moderate interference with functioning for patients with low catastrophizing tendency and to mild interference for patients with high catastrophizing tendency. Theoretically one would therefore expect that among the patients with NRS scores 4 and 5 there would be a higher average PDI score for those with low

  15. Cut-Off Points for Mild, Moderate, and Severe Pain on the Numeric Rating Scale for Pain in Patients with Chronic Musculoskeletal Pain: Variability and Influence of Sex and Catastrophizing

    PubMed Central

    Boonstra, Anne M.; Stewart, Roy E.; Köke, Albère J. A.; Oosterwijk, René F. A.; Swaan, Jeannette L.; Schreurs, Karlein M. G.; Schiphorst Preuper, Henrica R.

    2016-01-01

    Objectives: The 0–10 Numeric Rating Scale (NRS) is often used in pain management. The aims of our study were to determine the cut-off points for mild, moderate, and severe pain in terms of pain-related interference with functioning in patients with chronic musculoskeletal pain, to measure the variability of the optimal cut-off points, and to determine the influence of patients’ catastrophizing and their sex on these cut-off points. Methods: 2854 patients were included. Pain was assessed by the NRS, functioning by the Pain Disability Index (PDI) and catastrophizing by the Pain Catastrophizing Scale (PCS). Cut-off point schemes were tested using ANOVAs with and without using the PSC scores or sex as co-variates and with the interaction between CP scheme and PCS score and sex, respectively. The variability of the optimal cut-off point schemes was quantified using bootstrapping procedure. Results and conclusion: The study showed that NRS scores ≤ 5 correspond to mild, scores of 6–7 to moderate and scores ≥8 to severe pain in terms of pain-related interference with functioning. Bootstrapping analysis identified this optimal NRS cut-off point scheme in 90% of the bootstrapping samples. The interpretation of the NRS is independent of sex, but seems to depend on catastrophizing. In patients with high catastrophizing tendency, the optimal cut-off point scheme equals that for the total study sample, but in patients with a low catastrophizing tendency, NRS scores ≤ 3 correspond to mild, scores of 4–6 to moderate and scores ≥7 to severe pain in terms of interference with functioning. In these optimal cut-off schemes, NRS scores of 4 and 5 correspond to moderate interference with functioning for patients with low catastrophizing tendency and to mild interference for patients with high catastrophizing tendency. Theoretically one would therefore expect that among the patients with NRS scores 4 and 5 there would be a higher average PDI score for those with low

  16. Utility of the T-SPOT®.TB test's borderline category to increase test resolution for results around the cut-off point.

    PubMed

    Rego, Karen; Pereira, Kristen; MacDougall, James; Cruikshank, William

    2018-01-01

    Accurate identification of individuals with TB infection, is required to achieve the WHO's End TB Strategy goals. While there is general acceptance that the T-SPOT.TB test borderline category provides an opportunity to increase test resolution of results around the test cut-off point, this has not been investigated. 645,947 tests were analyzed to determine frequency of borderline results, effect of age and time between tests and associations between subjects' clinical risk factors and retest results. 645,947 tests produced 93.5% negatives, 4% positives, 0.6% invalids, and 1.8% borderlines. Within the borderline results, 5044 were repeated, with 59.2%, 20.0% and 20.2% resolving to negative, positive and borderline, respectively. Age of subject did not affect retest results; however, time between tests indicated that retest resolution occurred with greatest frequency after 90 days. TB risk factors were provided for 2640 subjects and 17% of low risk subjects with a high initial borderline resolved to negative while 27.6% of subjects with high risk and an initial low borderline resolved to positive, suggesting that these subjects could have been inappropriately classified if using a single cut-off point test with no borderline category. This study demonstrates the utility of the T-SPOT.TB test's borderline category to increase test resolution around the test cut-off point. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation

    NASA Astrophysics Data System (ADS)

    Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe

    2015-07-01

    Downed dead wood is regarded as an important part of forest ecosystems from an ecological perspective, which drives the need for investigating its spatial distribution. Based on several studies, Airborne Laser Scanning (ALS) has proven to be a valuable remote sensing technique for obtaining such information. This paper describes a unified approach to the detection of fallen trees from ALS point clouds based on merging short segments into whole stems using the Normalized Cut algorithm. We introduce a new method of defining the segment similarity function for the clustering procedure, where the attribute weights are learned from labeled data. Based on a relationship between Normalized Cut's similarity function and a class of regression models, we show how to learn the similarity function by training a classifier. Furthermore, we propose using an appearance-based stopping criterion for the graph cut algorithm as an alternative to the standard Normalized Cut threshold approach. We set up a virtual fallen tree generation scheme to simulate complex forest scenarios with multiple overlapping fallen stems. This simulated data is then used as a basis to learn both the similarity function and the stopping criterion for Normalized Cut. We evaluate our approach on 5 plots from the strictly protected mixed mountain forest within the Bavarian Forest National Park using reference data obtained via a manual field inventory. The experimental results show that our method is able to detect up to 90% of fallen stems in plots having 30-40% overstory cover with a correctness exceeding 80%, even in quite complex forest scenes. Moreover, the performance for feature weights trained on simulated data is competitive with the case when the weights are calculated using a grid search on the test data, which indicates that the learned similarity function and stopping criterion can generalize well on new plots.

  18. Using the GOCE star trackers for validating the calibration of its accelerometers

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.

    2017-12-01

    A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.

  19. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need

  20. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

    PubMed Central

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill

    2018-01-01

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102

  1. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.

    PubMed

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill

    2018-01-17

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.

  2. Microseismic Monitoring of the Mounds Drill Cuttings Injection Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Mahrer, K.D.; Moschovidis, Z.A.

    This paper describes the microseismic mapping of repeated injections of drill cuttings into two separate formations at a test site near Mounds, OK. Injections were performed in sandstone and shale formations at depths of 830 and 595 m, respectively. Typical injection disposal was simulated using multiple small-volume injections over a three-day period, with long shut-in periods interspersed between the injections. Microseismic monitoring was achieved using a 5-level array of wireline-run, triaxial- accelerometer receivers in a monitor well 76 m from the disposed well. Results of the mapped microseismic locations showed that the disposal domti W= generally aligns with the majormore » horizontal stress with some variations in azimuth and that wide variations in height and length growth occurred with continued injections. These experiments show that the cuttings injection process cm be adequately monitored from a downhole, wireline-run receiver array, thus providing process control and environmental assurance.« less

  3. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  4. Micromachined force-balance feedback accelerometer with optical displacement detection

    DOEpatents

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  5. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  6. Redefining Cut-Points for High Symptom Burden of the Global Initiative for Chronic Obstructive Lung Disease Classification in 18,577 Patients With Chronic Obstructive Pulmonary Disease.

    PubMed

    Smid, Dionne E; Franssen, Frits M E; Gonik, Maria; Miravitlles, Marc; Casanova, Ciro; Cosio, Borja G; de Lucas-Ramos, Pilar; Marin, Jose M; Martinez, Cristina; Mir, Isabel; Soriano, Joan B; de Torres, Juan P; Agusti, Alvar; Atalay, Nart B; Billington, Julia; Boutou, Afroditi K; Brighenti-Zogg, Stefanie; Chaplin, Emma; Coster, Samantha; Dodd, James W; Dürr, Selina; Fernandez-Villar, Alberto; Groenen, Miriam T J; Guimarães, Miguel; Hejduk, Karel; Higgins, Victoria; Hopkinson, Nicholas S; Horita, Nobuyuki; Houben-Wilke, Sarah; Janssen, Daisy J A; Jehn, Melissa; Joerres, Rudolf; Karch, Annika; Kelly, Julia L; Kim, Yu-Il; Kimura, Hiroshi; Koblizek, Vladimir; Kocks, Janwillem H; Kon, Samantha S C; Kwon, Namhee; Ladeira, Inês; Lee, Sang-Do; Leuppi, Joerg D; Locantore, Nicholas; Lopez-Campos, José L; D-C Man, William; Maricic, Lana; Mendoza, Laura; Miedinger, David; Mihaltan, Florin; Minami, Seigo; van der Molen, Thys; Murrells, Trevor J; Nakken, Nienke; Nishijima, Yu; Norman, Ian J; Novotna, Barbora; O'Donnell, Denis E; Ogata, Yoshitaka; Pereira, Eanes D; Piercy, James; Price, David; Pothirat, Chaicharn; Raghavan, Natya; Ringbaek, Thomas; Sajkov, Dimitar; Sigari, Naseh; Singh, Sally; Small, Mark; da Silva, Guilherme F; Tanner, Rebecca J; Tsiligianni, Ioanna G; Tulek, Baykal; Tzanakis, Nikolaos; Vanfleteren, Lowie E G W; Watz, Henrik; Webb, Katherine A; Wouters, Emiel F M; Xie, Guogang G; Yoshikawa, Masanori; Spruit, Martijn A

    2017-12-01

    Patients with chronic obstructive pulmonary disease (COPD) can be classified into groups A/C or B/D based on symptom intensity. Different threshold values for symptom questionnaires can result in misclassification and, in turn, different treatment recommendations. The primary aim was to find the best fitting cut-points for Global initiative for chronic Obstructive Lung Disease (GOLD) symptom measures, with an modified Medical Research Council dyspnea grade of 2 or higher as point of reference. After a computerized search, data from 41 cohorts and whose authors agreed to provide data were pooled. COPD studies were eligible for analyses if they included, at least age, sex, postbronchodilator spirometry, modified Medical Research Council, and COPD Assessment Test (CAT) total scores. Receiver operating characteristic curves and the Youden index were used to determine the best calibration threshold for CAT, COPD Clinical Questionnaire, and St. Georges Respiratory Questionnaire total scores. Following, GOLD A/B/C/D frequencies were calculated based on current cut-points and the newly derived cut-points. A total of 18,577 patients with COPD [72.0% male; mean age: 66.3 years (standard deviation 9.6)] were analyzed. Most patients had a moderate or severe degree of airflow limitation (GOLD spirometric grade 1, 10.9%; grade 2, 46.6%; grade 3, 32.4%; and grade 4, 10.3%). The best calibration threshold for CAT total score was 18 points, for COPD Clinical Questionnaire total score 1.9 points, and for St. Georges Respiratory Questionnaire total score 46.0 points. The application of these new cut-points would reclassify about one-third of the patients with COPD and, thus, would impact on individual disease management. Further validation in prospective studies of these new values are needed. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  7. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  8. Description of the three axis low-g accelerometer package

    NASA Technical Reports Server (NTRS)

    Amalavage, A. J.; Fikes, E. H.; Berry, E. H.

    1978-01-01

    The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.

  9. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    NASA Astrophysics Data System (ADS)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  10. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  11. Occupant Motion Sensors : Development and Testing of Piezoresistive Mouthpiece Rotational Accelerometer

    DOT National Transportation Integrated Search

    1973-07-01

    A miniature piezoresistive mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during a simulated vehicle crash. Corrections have been electronically applied to the rotational accelerometer to reduce i...

  12. Accelerometer Measurements in the Amusement Park.

    ERIC Educational Resources Information Center

    Reno, Charles; Speers, Robert R.

    1995-01-01

    Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)

  13. Laser cutting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Thomas J

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  14. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    PubMed

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  15. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    PubMed Central

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  16. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  17. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  18. Dental fear and caries in 6-12 year old children in Greece. Determination of dental fear cut-off points.

    PubMed

    Boka, V; Arapostathis, K; Karagiannis, V; Kotsanos, N; van Loveren, C; Veerkamp, J

    2017-03-01

    To present: the normative data on dental fear and caries status; the dental fear cut-off points of young children in the city of Thessaloniki, Greece. Study Design: This is a cross-sectional study with two independent study groups. A first representative sample consisted of 1484 children from 15 primary public schools of Thessaloniki. A second sample consisted of 195 randomly selected age-matched children, all patients of the Postgraduate Paediatric Dental Clinic of Aristotle University of Thessaloniki. First sample: In order to select data on dental fear and caries, dental examination took place in the classroom with disposable mirrors and a penlight. All the children completed the Dental Subscale of the Children's Fear Survey Schedule (CFSS-DS). Second sample: In order to define the cut-off points of the CFSS-DS, dental treatment of the 195 children was performed at the University Clinic. Children⁁s dental fear was assessed using the CFSS-DS and their behaviour during dental treatment was observed by one calibrated examiner using the Venham scale. Statistical analysis of the data was performed with IBM SPSS Statistics 20 at a statistical significance level of <0.05. First sample: The mean CFSS-DS score was 27.1±10.8. Age was significantly (p<0.05) related to dental fear. Mean differences between boys and girls were not significant. Caries was not correlated with dental fear. Second sample: CFSS-DS< 33 was defined as 'no dental fear', scores 33-37 as 'borderline' and scores > 37 as 'dental fear'. In the first sample, 84.6% of the children did not suffer from dental fear (CFSS-DS<33). Dental fear was correlated to age and not to caries and gender. The dental fear cut-off point for the CFSS-DS was estimated at 37 for 6-12 year old children (33-37 borderlines).

  19. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    PubMed

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  20. Strategies for Dealing with Missing Accelerometer Data.

    PubMed

    Stephens, Samantha; Beyene, Joseph; Tremblay, Mark S; Faulkner, Guy; Pullnayegum, Eleanor; Feldman, Brian M

    2018-05-01

    Missing data is a universal research problem that can affect studies examining the relationship between physical activity measured with accelerometers and health outcomes. Statistical techniques are available to deal with missing data; however, available techniques have not been synthesized. A scoping review was conducted to summarize the advantages and disadvantages of identified methods of dealing with missing data from accelerometers. Missing data poses a threat to the validity and interpretation of trials using physical activity data from accelerometry. Imputation using multiple imputation techniques is recommended to deal with missing data and improve the validity and interpretation of studies using accelerometry. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Laparoscopic surgery skills evaluation: analysis based on accelerometers.

    PubMed

    Sánchez, Alexis; Rodríguez, Omaira; Sánchez, Renata; Benítez, Gustavo; Pena, Romina; Salamo, Oriana; Baez, Valentina

    2014-01-01

    Technical skills assessment is considered an important part of surgical training. Subjective assessment is not appropriate for training feedback, and there is now increased demand for objective assessment of surgical performance. Economy of movement has been proposed as an excellent alternative for this purpose. The investigators describe a readily available method to evaluate surgical skills through motion analysis using accelerometers in Apple's iPod Touch device. Two groups of individuals with different minimally invasive surgery skill levels (experts and novices) were evaluated. Each group was asked to perform a given task with an iPod Touch placed on the dominant-hand wrist. The Accelerometer Data Pro application makes it possible to obtain movement-related data detected by the accelerometers. Average acceleration and maximum acceleration for each axis (x, y, and z) were determined and compared. The analysis of average acceleration and maximum acceleration showed statistically significant differences between groups on both the y (P = .04, P = .03) and z (P = .04, P = .04) axes. This demonstrates the ability to distinguish between experts and novices. The analysis of the x axis showed no significant differences between groups, which could be explained by the fact that the task involves few movements on this axis. Accelerometer-based motion analysis is a useful tool to evaluate laparoscopic skill development of surgeons and should be used in training programs. Validation of this device in an in vivo setting is a research goal of the investigators' team.

  2. GRACE Accelerometer data transplant

    NASA Astrophysics Data System (ADS)

    Bandikova, T.; McCullough, C. M.; Kruizinga, G. L. H.

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) has recently celebrated its 15th anniversary. The aging of the satellites brings along new challenges for both mission operation and science data delivery. Since September 2016, the accelerometer (ACC) onboard GRACE-B has been permanently turned off in order to reduce the battery load. The absence of the information about the non-gravitational forces acting on the spacecraft dramatically decreases the accuracy of the monthly gravity field solutions. The missing GRACE-B accelerometer data, however, can be recovered from the GRACE-A accelerometer measurement with satisfactory accuracy. In the current GRACE data processing, simple ACC data transplant is used which includes only attitude and time correction. The full ACC data transplant, however, requires not only the attitude and time correction, but also modeling of the residual accelerations due to thruster firings, which is the most challenging part. The residual linear accelerations ("thruster spikes") are caused by thruster imperfections such as misalignment of thruster pair, force imbalance or differences in reaction time. The thruster spikes are one of the most dominant high-frequency signals in the ACC measurement. The shape and amplitude of the thruster spikes are unique for each thruster pair, for each firing duration (30 ms - 1000 ms), for each x,y,z component of the ACC linear acceleration, and for each spacecraft. In our approach, the thruster spike model is an analytical function obtained by inverse Laplace transform of the ACC transfer function. The model shape parameters (amplitude, width and time delay) are estimated using Least squares method. The ACC data transplant is validated for days when ACC data from both satellites were available. The fully transplanted data fits the original GRACE-B measurement very well. The full ACC data transplant results in significantly reduced high frequency noise compared to the simple ACC transplant (i.e. without

  3. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    August, R. R.

    1981-01-01

    Low-cost, rugged lightweight accelerometer has been developed that converts mechanical motion into digitized optical outputs and is immune to electromagnetic and electrostatic interferences. Instrument can be placed in hostile environment, such as engine under test, and output led out through miscellany of electrical fields, high temperatures, etc., by optic fiber cables to benign environment of test panel. There, digitized optical signals can be converted to electrical signals for use in standard electrical equipment or used directly in optical devices, such as optical digital computer.

  4. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.

    PubMed

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-08-23

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.

  5. Trend, projection, and appropriate body mass index cut-off point for diabetes and hypertension in Bangladesh.

    PubMed

    Rahman, Md Mizanur; Akter, Shamima; Jung, Jenny; Rahman, Md Shafiur; Sultana, Papia

    2017-04-01

    Rapid increasing of high body mass index (BMI) is a global health concern. Population with high BMI predicts an increased risk of diabetes and hypertension. The objective of the present study is to estimate the trend and prediction of diabetes and hypertension in Bangladesh, to examine the association of BMI with risk of diabetes and hypertension, and to ascertain an appropriate BMI cut-off point for screening diabetes. We searched PubMed from inception to August 2016 and identified studies reporting diabetes and hypertension prevalence in Bangladesh. Bangladesh Demographic and Health Survey 2011 data was also included in this study. Bayesian model was used to estimate trend and projection in diabetes and hypertension prevalence by sex and residence. Receiver operating characteristic curves was used to determine the optimal BMI cut-off point for screening diabetes. Of 535 articles reviewed, 35 studies reported prevalence of diabetes and hypertension. Prevalence of diabetes (95% credible interval) increased between 1992 and 2015 from 3.2% (2.2-4.3) to 12.1% (9.1-15.4) in men, and from 2.5% (1.8-3.5) to 13.4% (9.7-17.6) in women. Diabetes prevalence in 2030 is expected to reach 23.6% (13.6-36.3) for men and 33.5% (19.9-50.9) for women. Hypertension prevalence increased between 1992 and 2015 from 11.0% (8.6-13.7) to 20.4% (18.4-22.4%) in 2015 in men, and from 14.0% (10.3-19.0) to 21.3% (19.0-23.6) in women. Annual average rate of change for diabetes prevalence was higher among women and in rural areas, while for hypertension prevalence it was higher in men and urban areas. Adults with BMI of 22.5kg/m 2 or above had a higher risk of diabetes and hypertension in this study. The optimal BMI cut-off point for screening diabetes was 23kg/m 2 for overall population, 22kg/m 2 for men, and 23kg/m 2 for women. Diabetes is more prevalent among women and rural population groups, while hypertension is more prevalent among men and urban population groups in Bangladesh. A BMI of 22

  6. Chronic defensiveness and neuroendocrine dysfunction reflect a novel cardiac troponin T cut point: The SABPA study.

    PubMed

    Malan, Leoné; Hamer, Mark; von Känel, Roland; Lambert, Gavin W; Delport, Rhena; Steyn, Hendrik S; Malan, Nicolaas T

    2017-11-01

    Sympatho-adrenal responses are activated as an innate defense coping (DefS) mechanism during emotional stress. Whether these sympatho-adrenal responses drive cardiac troponin T (cTnT) increases are unknown. Therefore, associations between cTnT and sympatho-adrenal responses were assessed. A prospective bi-ethnic cohort, excluding atrial fibrillation, myocardial infarction and stroke cases, was followed for 3 years (N=342; 45.6±9.0years). We obtained serum high-sensitive cTnT and exposure measures [Coping-Strategy-Indicator, depression/Patient-Health-Questionnarie-9, 24h BP, 24h heart-rate-variability (HRV) and 24h urinary catecholamines]. Blacks showed moderate depression (45% vs. 16%) and 24h hypertension (67% vs. 42%) prevalence compared to Whites. A receiver-operating-characteristics cTnT cut-point 4.2ng/L predicting hypertension in Blacks was used as binary outcome measure in relation to exposure measures [AUC 0.68 (95% CI 0.60-0.76); sensitivity/specificity 63/70%; P≤0.001]. Bi-ethnic cTnT-incidence was similar (Blacks=27%, Whites=25%) with cTnT-recovery better in Blacks (9%) compared to Whites (5%), P=0.001. In cross-sectional analyses, elevated cTnT was related to DefS [OR 1.08 (95% CI 0.99-1.16); P=0.06]; 24h BP [OR 1.03-1.04 (95% CI 1.01-1.08); P≤0.02] and depressed HRV [OR 2.19 (95% CI 1.09-4.41); P=0.03] in Blacks, but not in Whites. At 3year follow-up, elevated cTnT was related to attenuated urine norepinephrine:creatinine ratio in Blacks [OR 1.46 (95% CI 1.01-2.10); P=0.04]. In Whites, a cut point of 5.6ng/L cTnT predicting hypertension was not associated with exposure measures. Central neural control systems exemplified a brain-heart stress pathway. Desensitization of sympatho-adrenal responses occurred with initial neural- (HRV) followed by neuroendocrine dysfunction (norepinephrine:creatinine) in relation to elevated cTnT. Chronic defensiveness may thus drive the desensitization or physiological depression, reflecting ischemic heart disease

  7. Accelerometer-controlled automatic braking system

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  8. Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.

    PubMed

    Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua

    2015-04-13

    Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.

  9. Identification of the critical depth-of-cut through a 2D image of the cutting region resulting from taper cutting of brittle materials

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo

    2018-05-01

    An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.

  10. Determining the cut-off point of osteoporosis based on the osteoporosis self-assessment tool, body mass index and weight in Taiwanese young adult women.

    PubMed

    Chang, Shu Fang; Yang, Rong Sen

    2014-09-01

    To examine the cut-off point of the osteoporosis self-assessment tool, age, weight and body mass index for osteoporosis among young adult Taiwanese women, using a large-scale health examination database containing bone mineral density tests. The cut-off points of osteoporosis risk factors identified earlier focus on menopausal or senior Caucasian and Asian women. However, young adult Asian women have seldom been identified. A retrospective historical cohort study. Using the 2009-2011 health examination database of a large-scale medical centre in northern Taiwan, this study investigated young adult Asian women (i.e. range in age from 30-49 years) in Taiwan who had received dual-energy X-ray absorptiometry test. This study also explored the cut-off point, sensitivity, specificity and diagnostic accuracy of receiver operating characteristics of osteoporosis among young adult females in Taiwan. This study collected 2454 young adult Asian women in Taiwan. Cochran-Armitage analysis results indicated that the prevalence of osteoporosis increased with decreasing weight, body mass index and osteoporosis self-assessment method quartiles. According to the results of receiver operating characteristics, weight, body mass index and osteoporosis self-assessment tool approaches can generally be used as indicators to predict osteoporosis among young adult Asian women. Results of this study demonstrate that Taiwanese women contracting osteoporosis tend to be young and underweight, as well as having a low body mass index and osteoporosis self-assessment scores. Those results further suggest that the assessment indicators for cut-off points are appropriately suitable for young adult women in Taiwan. Early detection is the only available means of preventing osteoporosis. Professional nurses should apply convenient and accurate assessment procedures to help young adult women to adopt preventive strategies against osteoporosis early, thus eliminating the probability of osteoporotic

  11. Magnetic field `flyby' measurement using a smartphone's magnetometer and accelerometer simultaneously

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2017-12-01

    The spatial dependence of magnetic fields in simple configurations is a common topic in introductory electromagnetism lessons, both in high school and in university courses. In typical experiments, magnetic fields and distances are obtained taking point-by-point values using a Hall sensor and a ruler, respectively. Here, we show how to take advantage of the smartphone capabilities to get simultaneous measures with the built-in accelerometer and magnetometer and to obtain the spatial dependence of magnetic fields. We consider a simple setup consisting of a smartphone mounted on a track whose direction coincides with the axis of a coil. While the smartphone is moving on the track, both the magnetic field and the distance from the center of the coil (integrated numerically from the acceleration values) are simultaneously obtained. This methodology can easily be extended to more complicated setups.

  12. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  13. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    NASA Technical Reports Server (NTRS)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of

  14. The perfectly ideal accelerometer

    NASA Technical Reports Server (NTRS)

    Stuhlinger, Ernst

    1990-01-01

    Given here is a condensed version of the results and conclusions that developed during the Workshop. Upper limits of residual accelerations that can be tolerated during materials processes, presented as acceptable and as desirable limits, are shown. Designs and capabilities of various accelerometers, and their inherent problems, are compared. Results of acceleration measurements on Spacelab flights are summarized, and expected acceleration levels on the Space Station under various conditions are estimated.

  15. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    PubMed

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  16. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    PubMed Central

    Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-01-01

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434

  17. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST

    PubMed Central

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-01-01

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538

  18. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  19. Reproducibility of Accelerometer-Assessed Physical Activity and Sedentary Time.

    PubMed

    Keadle, Sarah Kozey; Shiroma, Eric J; Kamada, Masamitsu; Matthews, Charles E; Harris, Tamara B; Lee, I-Min

    2017-04-01

    Accelerometers are used increasingly in large epidemiologic studies, but, given logistic and cost constraints, most studies are restricted to a single, 7-day accelerometer monitoring period. It is unknown how well a 7-day accelerometer monitoring period estimates longer-term patterns of behavior, which is critical for interpreting, and potentially improving, disease risk estimates in etiologic studies. A subset of participants from the Women's Health Study (N=209; mean age, 70.6 [SD=5.7] years) completed at least two 7-day accelerometer administrations (ActiGraph GT3X+) within a period of 2-3 years. Monitor output was translated into total counts, steps, and time spent in sedentary, light-intensity, and moderate to vigorous-intensity activity (MVPA) and bouted-MVPA (i.e., 10-minute bouts). For each metric, intraclass correlations (ICCs) and 95% CIs were calculated using linear-mixed models and adjusted for wear time, age, BMI, and season. The data were collected in 2011-2015 and analyzed in 2015-2016. The ICCs ranged from 0.67 (95% CI=0.60, 0.73) for bouted-MVPA to 0.82 (95% CI=0.77, 0.85) for total daily counts and were similar across age, BMI, and for less and more active women. For all metrics, classification accuracy within 1 quartile was >90%. These data provide reassurance that a 7-day accelerometer-assessment protocol provides a reproducible (and practical) measure of physical activity and sedentary time. However, ICCs varied by metric; therefore, future prospective studies of chronic diseases might benefit from existing methods to adjust risk estimates for within-person variability in activity to get a better estimate of the true strength of association. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  20. Accuracy of piezoelectric pedometer and accelerometer step counts.

    PubMed

    Cruz, Joana; Brooks, Dina; Marques, Alda

    2017-04-01

    This study aimed to assess step-count accuracy of a piezoeletric pedometer (Yamax PW/EX-510), when worn at different body parts, and a triaxial accelerometer (GT3X+), and to compare device accuracy; and identify the preferred location(s) to wear a pedometer. Sixty-three healthy adults (45.8±20.6 years old) wore 7 pedometers (neck, lateral right and left of the waist, front right and left of the waist, front pockets of the trousers) and 1 accelerometer (over the right hip), while walking 120 m at slow, self-preferred/normal and fast paces. Steps were recorded. Participants identified their preferred location(s) to wear the pedometer. Absolute percent error (APE) and Bland and Altman (BA) method were used to assess device accuracy (criterion measure: manual counts) and BA method for device comparisons. Pedometer APE was below 3% at normal and fast paces despite wearing location, but higher at slow pace (4.5-9.1%). Pedometers were more accurate at the front waist and inside the pockets. Accelerometer APE was higher than pedometer APE (P<0.05); nevertheless, limits of agreement between devices were relatively small. Preferred wearing locations were inside the front right (N.=25) and left (N.=20) pockets of the trousers. Yamax PW/EX-510 pedometers may be preferable than GT3X+ accelerometers to count steps, as they provide more accurate results. These pedometers should be worn at the front right or left positions of the waist or inside the front pockets of the trousers.

  1. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  2. Occupant Motion Sensors : Rotational Accelerometer Development

    DOT National Transportation Integrated Search

    1972-04-01

    A miniature mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during vehicle crash or impact conditions. The device has been tested in the laboratory using a shake table and in the field using dummie...

  3. Cut-off values for classifying active children and adolescentes using the Physical Activity Questionnaire: PAQ-C and PAQ-ACut-off values for classifying active children and adolescents using the Physical Activity Questionnaire: PAQ-C and PAQ-A.

    PubMed

    Benítez-Porres, Javier; Alvero-Cruz, José Ramón; Sardinha, Luis B; López-Fernández, Iván; Carnero, Elvis A

    2016-09-20

    The Physical Activity Questionnaire for children and adolescents (PAQ-C & PAQ-A) has been widely used in research and field settings. However, there is a lack of information about its final score meaning. To determine PAQ-C and PAQ-A score cut-off values using physical activity (PA) thresholds objectively measured as reference criteria. 146 children (n = 83 boys, n = 63 girls) and 234 adolescents (n = 115 boys, n = 119 girls) participated in this study. Accelerometers (Actigraph GT3X) were used to assess objectively PA during one-week, afterwards PAQ was filled by the participants. As participants met or not the international PA recommendations for total, moderate-vigorous (MVPA) or light PA, three categorical variables of two levels were created. ROC curves procedure were carried out to obtain score cut-off points for identifying the positive category recommendation. ROC curves analysis estimated 2.75 and 2.73 score cut-off points to discriminate > 60 minutes of MVPA for PAQ-A and PAQ-C respectively (PAQ-A AUC = 0.68, p < 0.001 and PAQ-C; AUC = 0.55, p > 0.05). Also 60 minutes of MVPA was achieved with a total volume of 10,664 steps/day in children and 9,701 steps/day in adolescents. Our results suggest that PAQ-A can be a useful tool to classify adolescents as active or inactive following international recommendations as criteria. However, we could not find a significant cut-off for PAQ-C score.

  4. Consumer evaluation of palatability characteristics of a beef value-added cut compared to common retail cuts.

    PubMed

    Lepper-Blilie, A N; Berg, E P; Germolus, A J; Buchanan, D S; Berg, P T

    2014-01-01

    The objectives of this study were to educate consumers about value-added beef cuts and evaluate their palatability responses of a value cut and three traditional cuts. Three hundred and twenty-two individuals participated in the beef value cut education seminar series presented by trained beef industry educators. Seminar participants evaluated tenderness, juiciness, flavor, and overall like of four samples, bottom round, top sirloin, ribeye, and a value cut (Delmonico or Denver), on a 9-point scale. The ribeye and the value cut were found to be similar in all four attributes and differed from the top sirloin and bottom round. Correlations and regression analysis found that flavor was the largest influencing factor for overall like for the ribeye, value cut, and top sirloin. The value cut is comparable to the ribeye and can be a less expensive replacement. © 2013.

  5. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses

    PubMed Central

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-01-01

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation. PMID:28788010

  6. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    PubMed

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  7. Determinants of self-reported smoking and misclassification during pregnancy, and analysis of optimal cut-off points for urinary cotinine: a cross-sectional study

    PubMed Central

    Aurrekoetxea, Juan J; Murcia, Mario; Rebagliato, Marisa; López, María José; Castilla, Ane Miren; Santa-Marina, Loreto; Guxens, Mónica; Fernández-Somoano, Ana; Espada, Mercedes; Lertxundi, Aitana; Tardón, Adonina; Ballester, Ferran

    2013-01-01

    Objectives To estimate the prevalence and factors associated with smoking and misclassification in pregnant women from INMA (INfancia y Medio Ambiente, Environment and Childhood) project, Spain, and to assess the optimal cut-offs for urinary cotinine (UC) that best distinguish daily and occasional smokers with varying levels of second-hand smoke (SHS) exposure. Design We used logistic regression models to study the relationship between sociodemographic variables and self-reported smoking and misclassification (self-reported non-smokers with UC >50 ng/ml). Receiver operating characteristic (ROC) curves were used to calculate the optimal cut-off point for discriminating smokers. The cut-offs were also calculated after stratification among non-smokers by the number of sources of SHS exposure. The cut-off points used to discriminate smoking status were the level of UC given by Youden's index and for 50 and 100 ng/ml for daily smokers, or 25 and 50 ng/ml for occasional smokers. Participants At the third trimester of pregnancy, 2263 pregnant women of the INMA Project were interviewed between 2004 and 2008 and a urine sample was collected. Results Prevalence of self-reported smokers at the third trimester of pregnancy was 18.5%, and another 3.9% misreported their smoking status. Variables associated with self-reported smoking and misreporting were similar, including born in Europe, educational level and exposure to SHS. The optimal cut-off was 82 ng/ml (95% CI 42 to 133), sensitivity 95.2% and specificity 96.6%. The area under the ROC curve was 0.986 (95% CI 0.982 to 0.990). The cut-offs varied according to the SHS exposure level being 42 (95% CI 27 to 57), 82 (95% CI 46 to 136) and 106 ng/ml (95% CI 58 to 227) for not being SHS exposed, exposed to one, and to two or more sources of SHS, respectively. The optimal cut-off for discriminating occasional smokers from non-smokers was 27 ng/ml (95% CI 11 to 43). Conclusions Prevalence of smoking during pregnancy in

  8. Determinants of self-reported smoking and misclassification during pregnancy, and analysis of optimal cut-off points for urinary cotinine: a cross-sectional study.

    PubMed

    Aurrekoetxea, Juan J; Murcia, Mario; Rebagliato, Marisa; López, María José; Castilla, Ane Miren; Santa-Marina, Loreto; Guxens, Mónica; Fernández-Somoano, Ana; Espada, Mercedes; Lertxundi, Aitana; Tardón, Adonina; Ballester, Ferran

    2013-01-24

    To estimate the prevalence and factors associated with smoking and misclassification in pregnant women from INMA (INfancia y Medio Ambiente, Environment and Childhood) project, Spain, and to assess the optimal cut-offs for urinary cotinine (UC) that best distinguish daily and occasional smokers with varying levels of second-hand smoke (SHS) exposure. We used logistic regression models to study the relationship between sociodemographic variables and self-reported smoking and misclassification (self-reported non-smokers with UC >50 ng/ml). Receiver operating characteristic (ROC) curves were used to calculate the optimal cut-off point for discriminating smokers. The cut-offs were also calculated after stratification among non-smokers by the number of sources of SHS exposure. The cut-off points used to discriminate smoking status were the level of UC given by Youden's index and for 50 and 100 ng/ml for daily smokers, or 25 and 50 ng/ml for occasional smokers. At the third trimester of pregnancy, 2263 pregnant women of the INMA Project were interviewed between 2004 and 2008 and a urine sample was collected. Prevalence of self-reported smokers at the third trimester of pregnancy was 18.5%, and another 3.9% misreported their smoking status. Variables associated with self-reported smoking and misreporting were similar, including born in Europe, educational level and exposure to SHS. The optimal cut-off was 82 ng/ml (95% CI 42 to 133), sensitivity 95.2% and specificity 96.6%. The area under the ROC curve was 0.986 (95% CI 0.982 to 0.990). The cut-offs varied according to the SHS exposure level being 42 (95% CI 27 to 57), 82 (95% CI 46 to 136) and 106 ng/ml (95% CI 58 to 227) for not being SHS exposed, exposed to one, and to two or more sources of SHS, respectively. The optimal cut-off for discriminating occasional smokers from non-smokers was 27 ng/ml (95% CI 11 to 43). Prevalence of smoking during pregnancy in Spain remains high. UC is a reliable biomarker for classifying

  9. Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, S.L.; Harben, P.E.

    1997-01-07

    The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers withmore » temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.« less

  10. Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction

    NASA Astrophysics Data System (ADS)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav

    2018-07-01

    Swarm, a mission of the European Space Agency, consists of three satellites orbiting the Earth since November 2013. In addition to the instrumentation aimed at fulfilling the mission's main goal, which is the observation of Earth's magnetic field, each satellite carries a geodetic quality GPS receiver and an accelerometer. Initially put in a 500-km altitude, all Swarm spacecraft slowly decay due to the action of atmospheric drag. Atmospheric particles and radiation forces impinge on the satellite's surface and thus create the main part of the nongravitational force, which together with satellite-induced thrusts can be measured by space accelerometers. Unfortunately, the Swarm accelerometer data are heavily disturbed by the varying onboard temperature. We calibrate the accelerometer data against a calibration standard derived from observed GPS positions, while making use of the models to represent the forces of gravity origin. We show that this procedure can be extended to incorporate the temperature signal. The obtained calibrated accelerations are validated in several different ways; namely by (i) physically modelled nongravitational forces, by (ii) intercomparison of calibrated accelerometer data from two Swarm satellites flying side-by-side, and by (iii) good agreement of our calibrated signals with those released by ESA, obtained via a different approach for reducing temperature effects. Finally, the presented method is applied to the Swarm C accelerometer data set covering almost two years (July 2014-April 2016), which ESA recently released to scientific users.

  11. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  12. Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.

    PubMed

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-08-16

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  13. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  14. Accelerometer having integral fault null

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1995-08-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  15. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  16. Micro-Accelerometers Monitor Equipment Health

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  17. Temperature corrected-calibration of GRACE's accelerometer

    NASA Astrophysics Data System (ADS)

    Encarnacao, J.; Save, H.; Siemes, C.; Doornbos, E.; Tapley, B. D.

    2017-12-01

    Since April 2011, the thermal control of the accelerometers on board the GRACE satellites has been turned off. The time series of along-track bias clearly show a drastic change in the behaviour of this parameter, while the calibration model has remained unchanged throughout the entire mission lifetime. In an effort to improve the quality of the gravity field models produced at CSR in future mission-long re-processing of GRACE data, we quantify the added value of different calibration strategies. In one approach, the temperature effects that distort the raw accelerometer measurements collected without thermal control are corrected considering the housekeeping temperature readings. In this way, one single calibration strategy can be consistently applied during the whole mission lifetime, since it is valid to thermal the conditions before and after April 2011. Finally, we illustrate that the resulting calibrated accelerations are suitable for neutral thermospheric density studies.

  18. Appropriate neck circumference cut-off points for metabolic syndrome in Turkish patients with type 2 diabetes.

    PubMed

    Ozkaya, Ismail; Yardimci, Bulent; Tunckale, Aydin

    2017-12-01

    To investigate the association between neck circumference (NC), overweight, and metabolic syndrome (MS) in Turkish patients with type 2 diabetes. A total of 264 diabetic patients (mean age: 52.9±8.1 years) were recruited from two centers in Istanbul to perform anthropometric measurements, including waist and hip circumference, NC, and body mass index. Blood pressure, fasting glucose, and lipid profile (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels) were determined. NC correlated with waist circumference, systolic blood pressure, and triglycerides in men, whereas NC only correlated with waist circumference in women. Additionally, NC was shown to negatively correlate with high-density lipoprotein cholesterol in both men and women. Receiver operating characteristic analysis showed that the area under the curve for NC and overweight was 0.95 for both men and women (P<0.001). Moreover, a NC of 38cm for men and 37cm for women was the best cut-off point for determining overweight. The area under the curve for NC and MS was 0.87 for men and 0.83 for women (P<0.001). A NC of 39cm for men and 37cm for women was the best cut-off point to determine participants with MS. Our findings suggest a positive correlation of NC with MetS in Turkish patients with type 2 diabetes, and could be a useful and accurate tool to identify MS. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter

    NASA Technical Reports Server (NTRS)

    Jakab, I.; Bordas, A.

    1974-01-01

    After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.

  20. 50 CFR Figures 18a, 18b and 18c to... - Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...

  1. 50 CFR Figures 18a, 18b and 18c to... - Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...

  2. 50 CFR Figures 18a, 18b and 18c to... - Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...

  3. High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1991-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  4. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    PubMed Central

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was

  5. Optimal cut-off points for waist circumference in the definition of metabolic syndrome in Brazilian adults: baseline analyses of the Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Cardinal, Thiane Ristow; Vigo, Alvaro; Duncan, Bruce Bartholow; Matos, Sheila Maria Alvim; da Fonseca, Maria de Jesus Mendes; Barreto, Sandhi Maria; Schmidt, Maria Inês

    2018-01-01

    Waist circumference (WC) has been incorporated in the definition of the metabolic syndrome (MetS) but the exact WC cut-off points across populations are not clear. The Joint Interim Statement (JIS) suggested possible cut-offs to different populations and ethnic groups. However, the adequacy of these cut-offs to Brazilian adults has been scarcely investigated. The objective of the study is to evaluate possible WC thresholds to be used in the definition of MetS using data from the Longitudinal Study of Adult Health (ELSA-Brasil), a multicenter cohort study of civil servants (35-74 years old) of six Brazilian cities. We analyzed baseline data from 14,893 participants (6772 men and 8121 women). A MetS was defined according to the JIS criteria, but excluding WC and thus requiring 2 of the 4 remaining elements. We used restricted cubic spline regression to graph the relationship between WC and MetS. We identified optimal cut-off points which maximized joint sensitivity and specificity (Youden's index) from Receiver Operator Characteristic Curves. We also estimated the C-statistics using logistic regression. We found no apparent threshold for WC in restricted cubic spline plots. Optimal cut-off for men was 92 cm (2 cm lower than that recommended by JIS for Caucasian/Europids or Sub-Saharan African men), but 2 cm higher than that recommended for ethnic Central and South American. For women, optimal cut-off was 86, 6 cm higher than that recommended for Caucasian/Europids and ethnic Central and South American. Optimal cut-offs did not very across age groups and most common race/color categories (except for Asian men, 87 cm). Sex-specific cut-offs for WC recommended by JIS differ from optimal cut-offs we found for adult men and women of Brazil´s most common ethnic groups.

  6. Optimal Cut-Off Points of Fasting Plasma Glucose for Two-Step Strategy in Estimating Prevalence and Screening Undiagnosed Diabetes and Pre-Diabetes in Harbin, China

    PubMed Central

    Sun, Bo; Lan, Li; Cui, Wenxiu; Xu, Guohua; Sui, Conglan; Wang, Yibaina; Zhao, Yashuang; Wang, Jian; Li, Hongyuan

    2015-01-01

    To identify optimal cut-off points of fasting plasma glucose (FPG) for two-step strategy in screening abnormal glucose metabolism and estimating prevalence in general Chinese population. A population-based cross-sectional study was conducted on 7913 people aged 20 to 74 years in Harbin. Diabetes and pre-diabetes were determined by fasting and 2 hour post-load glucose from the oral glucose tolerance test in all participants. Screening potential of FPG, cost per case identified by two-step strategy, and optimal FPG cut-off points were described. The prevalence of diabetes was 12.7%, of which 65.2% was undiagnosed. Twelve percent or 9.0% of participants were diagnosed with pre-diabetes using 2003 ADA criteria or 1999 WHO criteria, respectively. The optimal FPG cut-off points for two-step strategy were 5.6 mmol/l for previously undiagnosed diabetes (area under the receiver-operating characteristic curve of FPG 0.93; sensitivity 82.0%; cost per case identified by two-step strategy ¥261), 5.3 mmol/l for both diabetes and pre-diabetes or pre-diabetes alone using 2003 ADA criteria (0.89 or 0.85; 72.4% or 62.9%; ¥110 or ¥258), 5.0 mmol/l for pre-diabetes using 1999 WHO criteria (0.78; 66.8%; ¥399), and 4.9 mmol/l for IGT alone (0.74; 62.2%; ¥502). Using the two-step strategy, the underestimates of prevalence reduced to nearly 38% for pre-diabetes or 18.7% for undiagnosed diabetes, respectively. Approximately a quarter of the general population in Harbin was in hyperglycemic condition. Using optimal FPG cut-off points for two-step strategy in Chinese population may be more effective and less costly for reducing the missed diagnosis of hyperglycemic condition. PMID:25785585

  7. Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.

    2001-01-01

    A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.

  8. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    PubMed Central

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-01-01

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243

  9. Evaluation of the MyWellness Key accelerometer.

    PubMed

    Herrmann, S D; Hart, T L; Lee, C D; Ainsworth, B E

    2011-02-01

    to examine the concurrent validity of the Technogym MyWellness Key accelerometer against objective and subjective physical activity (PA) measures. randomised, cross-sectional design with two phases. The laboratory phase compared the MyWellness Key with the ActiGraph GT1M and the Yamax SW200 Digiwalker pedometer during graded treadmill walking, increasing speed each minute. The free-living phase compared the MyWellness Key with the ActiGraph, Digiwalker, Bouchard Activity cord (BAR) and Global Physical Activity Questionnaire (GPAQ) for seven continuous days. Data were analysed using Spearman rank-order correlation coefficients for all comparisons. laboratory and free-living phases. sixteen participants randomly stratified from 41 eligible respondents by sex (n=8 men; n=8 women) and PA levels (n=4 low, n=8 middle and n=4 high active). there was a strong association between the MyWellness Key and the ActiGraph accelerometer during controlled graded treadmill walking (r=0.91, p<0.01) and in free-living settings (r=0.73-0.76 for light to vigorous PA, respectively, p<0.01). No associations were observed between the MyWellness Key and the BAR and GPAQ (p>0.05). the MyWellness Key has a high concurrent validity with the ActiGraph accelerometer to detect PA in both controlled laboratory and free-living settings.

  10. Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors

    NASA Astrophysics Data System (ADS)

    Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar

    2017-04-01

    This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.

  11. Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.

    2015-12-01

    The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.

  12. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    NASA Astrophysics Data System (ADS)

    Bertolini, Alessandro; DeSalvo, Riccardo; Fidecaro, Francesco; Francesconi, Mario; Marka, Szabolcs; Sannibale, Virginio; Simonetti, Duccio; Takamori, Akiteru; Tariq, Hareem

    2006-01-01

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150 Hz. The very high mechanical quality factor, Q≃3000 at a resonant frequency of 0.5 Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1 nm, integrated over the frequency band from 0.01 to 150 Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10-3 has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  13. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-04-13

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  14. Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements

    NASA Astrophysics Data System (ADS)

    Cristalli, C.; Paone, N.; Rodríguez, R. M.

    2006-08-01

    This paper presents a comparative study between accelerometer and laser vibrometer measurements aimed at on-line quality control carried out on the universal motors used in washing machines, which exhibit defects localised mainly in the bearings, including faults in the cage, in the rolling element and in the outer and inner ring. A set of no defective and defective motors were analysed by means of the acceleration signal provided by the accelerometer, and the displacement and velocity signals given by a single-point laser vibrometer. Advantages and disadvantages of both absolute and relative sensors and of contact and non-contact instrumentation are discussed taking into account the applicability to real on-line quality control measurements and bringing to light the related measurement problems due to the specific environmental conditions of assembly lines and sensor installation constraints. The performance of different signal-processing algorithms is discussed: RMS computation at steady-state proves effective for pass or fail diagnosis, while the amplitude of selected frequencies in the averaged spectra allows also for classification of a variety of special faults in bearings. Joint time-frequency analysis output data can be successfully used for pass or fail diagnosis during transients, thus achieving a remarkable reduction in testing time, which is important for on-line diagnostics.

  15. Cutting Head for Ultrasonic Lithotripsy

    NASA Technical Reports Server (NTRS)

    Angulo, Earl D. (Inventor); Goodfriend, Roger (Inventor)

    1989-01-01

    A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup-shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduces breakage thereof.

  16. Self Diagnostic Accelerometer for Mission Critical Health Monitoring of Aircraft and Spacecraft Engines

    NASA Technical Reports Server (NTRS)

    Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew

    2009-01-01

    A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.

  17. Simplified design of diaphragm-based fiber optic extrinsic Fabry-Perot accelerometer

    NASA Astrophysics Data System (ADS)

    Wang, Zhaogang; Zhang, Wentao; Han, Jing; Huang, Wenzhu; Li, Fang

    2014-11-01

    A fiber optic Fabry-Perot accelerometer (FOFPA) with diaphragm-mass-collimator (DMC) gathered structure is presented. This design makes the structure more compacts and the manufacturing process more controllable. The operation principle based on Fabry-Perot interference is described. Several tests using intensity demodulation scheme which can control the working point of FOFPA were carried out. Experimental results show that: axis sensitivity of the proposed FOFPA is 36.07 dB (re: 0 dB=1 V/g) with a fluctuation less than 0.9 dB in a frequency bandwidth of 10-125 Hz, the resonant frequency is about 350 Hz, measurement range is about 70 dB@100 Hz. which are much close to theoretical values

  18. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women.

    PubMed

    Kinnunen, Tarja I; Tennant, Peter W G; McParlin, Catherine; Poston, Lucilla; Robson, Stephen C; Bell, Ruth

    2011-06-27

    Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Pregnant women (n = 58) with body mass index ≥25 kg/m(2) at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women.

  19. The effectiveness of cut-proof glove liners: cut and puncture resistance, dexterity, and sensibility.

    PubMed

    Salkin, J A; Stuchin, S A; Kummer, F J; Reininger, R

    1995-11-01

    Five types of commercial glove liners (within double latex gloves) were compared to single and double latex gloves for cut and puncture resistance and for relative manual dexterity and degree of sensibility. An apparatus was constructed to test glove-pseudofinger constructs in either a cutting or puncture mode. Cutting forces, cutting speed, and type of blade (serrated or scalpel blade) were varied and the time to cut-through measured by an electrical conductivity circuit. Penetration forces were similarly determined with a scalpel blade and a suture needle using a spring scale loading apparatus. Dexterity was measured with an object placement task among a group of orthopedic surgeons. Sensibility was assessed with Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry using standard techniques and rating scales. A subjective evaluation was performed at the end of testing. Time to cut-through for the liners ranged from 2 to 30 seconds for a rapid oscillating scalpel and 4 to 40 seconds for a rapid oscillating serrated knife under minimal loads. When a 1 kg load was added, times to cut-through ranged from 0.4 to 1.0 second. In most cases, the liners were superior to double latex. On average, 100% more force was required to penetrate the liners with a scalpel and 50% more force was required to penetrate the liners with a suture needle compared to double latex. Object placement task times were not significantly liners compared to double latex gloves. Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry showed no difference in sensibility among the various liners and double latex gloves. Subjects felt that the liners were minimally to moderately impairing. An acclimation period may be required for their effective use.

  20. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  1. Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2002-01-01

    High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.

  2. Comparison of modal test results - Multipoint sine versus single-point random. [for Mariner Jupiter/Saturn spacecraft

    NASA Technical Reports Server (NTRS)

    Leppert, E. L.; Lee, S. H.; Day, F. D.; Chapman, P. C.; Wada, B. K.

    1976-01-01

    The Mariner Jupiter/Saturn (MJS) spacecraft was subjected to the traditional multipoint sine dwell (MPSD) modal test using 111 accelerometer channels, and also to single-point random (SPR) testing using 26 accelerometer channels, and the two methods are compared according to cost, schedule, and technical criteria. A measure of comparison between the systems was devised in terms of the cumulative difference in the kinetic energy distribution of the common accelerometers. The SPR and MPSD method show acceptable agreement with respect to frequencies and mode damping. The merit of the SPR method is that the excitation points are minimized and the test article can be committed to other uses while data analysis is performed. The MPSD approach allows validity of the data to be determined as the test progresses. Costs are about the same for the two methods.

  3. MEMS capacitive accelerometer-based middle ear microphone.

    PubMed

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  4. Physical activity classification using the GENEA wrist-worn accelerometer.

    PubMed

    Zhang, Shaoyan; Rowlands, Alex V; Murray, Peter; Hurst, Tina L

    2012-04-01

    Most accelerometer-based activity monitors are worn on the waist or lower back for assessment of habitual physical activity. Output is in arbitrary counts that can be classified by activity intensity according to published thresholds. The purpose of this study was to develop methods to classify physical activities into walking, running, household, or sedentary activities based on raw acceleration data from the GENEA (Gravity Estimator of Normal Everyday Activity) and compare classification accuracy from a wrist-worn GENEA with a waist-worn GENEA. Sixty participants (age = 49.4 ± 6.5 yr, body mass index = 24.6 ± 3.4 kg·m⁻²) completed an ordered series of 10-12 semistructured activities in the laboratory and outdoor environment. Throughout, three GENEA accelerometers were worn: one at the waist, one on the left wrist, and one on the right wrist. Acceleration data were collected at 80 Hz. Features obtained from both fast Fourier transform and wavelet decomposition were extracted, and machine learning algorithms were used to classify four types of daily activities including sedentary, household, walking, and running activities. The computational results demonstrated that the algorithm we developed can accurately classify certain types of daily activities, with high overall classification accuracy for both waist-worn GENEA (0.99) and wrist-worn GENEA (right wrist = 0.97, left wrist = 0.96). We have successfully developed algorithms suitable for use with wrist-worn accelerometers for detecting certain types of physical activities; the performance is comparable to waist-worn accelerometers for assessment of physical activity.

  5. Cutting head for ultrasonic lithotripsy

    NASA Technical Reports Server (NTRS)

    Anguluo, E. D.; Goodfriend, R. (Inventor)

    1985-01-01

    A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument is described. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduce breakage thereof.

  6. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction

  7. Structural vascular disease in Africans: Performance of ethnic-specific waist circumference cut points using logistic regression and neural network analyses: The SABPA study.

    PubMed

    Botha, J; de Ridder, J H; Potgieter, J C; Steyn, H S; Malan, L

    2013-10-01

    A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fasting bloods (glucose, high density lipoprotein (HDL) and triglycerides) were obtained in a well-controlled setting. The RPWC male model (LR ROC AUC: 0.71, NN ROC AUC: 0.71) was practically equal to the JSC model (LR ROC AUC: 0.71, NN ROC AUC: 0.69) to predict structural vascular -disease. Similarly, the female RPWC model (LR ROC AUC: 0.84, NN ROC AUC: 0.82) and JSC model (LR ROC AUC: 0.82, NN ROC AUC: 0.81) equally predicted CIMT as surrogate marker for structural vascular disease. Odds ratios supported validity where prediction of CIMT revealed -clinical -significance, well over 1, for both the JSC and RPWC models in African males and females (OR 3.75-13.98). In conclusion, the proposed RPWC model was substantially validated utilizing linear and non-linear analyses. We therefore propose ethnic-specific WC cut points (African males, ≥90 cm; -females, ≥98 cm) to predict a surrogate marker for structural vascular disease. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  8. In-Flight Estimation of Center of Gravity Position Using All-Accelerometers

    PubMed Central

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-01-01

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle. PMID:25244585

  9. In-flight estimation of center of gravity position using all-accelerometers.

    PubMed

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-09-19

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle.

  10. Probability distribution of the entanglement across a cut at an infinite-randomness fixed point

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep; Majumdar, Satya N.; Huse, David A.

    2017-03-01

    We calculate the probability distribution of entanglement entropy S across a cut of a finite one-dimensional spin chain of length L at an infinite-randomness fixed point using Fisher's strong randomness renormalization group (RG). Using the random transverse-field Ising model as an example, the distribution is shown to take the form p (S |L ) ˜L-ψ (k ) , where k ≡S /ln[L /L0] , the large deviation function ψ (k ) is found explicitly, and L0 is a nonuniversal microscopic length. We discuss the implications of such a distribution on numerical techniques that rely on entanglement, such as matrix-product-state-based techniques. Our results are verified with numerical RG simulations, as well as the actual entanglement entropy distribution for the random transverse-field Ising model which we calculate for large L via a mapping to Majorana fermions.

  11. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women

    PubMed Central

    2011-01-01

    Background Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Methods Pregnant women (n = 58) with body mass index ≥25 kg/m2 at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Results Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Conclusions Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women. PMID:21703033

  12. Implementation of accelerometer sensor module and fall detection monitoring system based on wireless sensor network.

    PubMed

    Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho

    2007-01-01

    This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.

  13. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at

  14. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.

    PubMed

    Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas

    2013-08-22

    Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.

  15. The analysis of temperature effect and temperature compensation of MOEMS accelerometer based on a grating interferometric cavity

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang

    2016-08-01

    There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.

  16. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions

    PubMed Central

    Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance

  17. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

    PubMed

    Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from

  18. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  19. Vibration transmissibility on rifle shooter: A comparison between accelerometer and laser Doppler vibrometer data

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Casacanditella, L.; Santolini, C.; Martarelli, M.; Tomasini, E. P.

    2014-05-01

    The transmission of mechanical vibrations from tools to human subjects is known to be potentially dangerous for the circulatory and neurological systems. It is also known that such damages are strictly depending on the intensity and the frequency range of the vibrational signals transferred to the different anatomical districts. In this paper, very high impulsive signals, generated during a shooting by a rifle, will be studied, being such signals characterised by a very high acceleration amplitude as well as high frequency range. In this paper, it will be presented an experimental setup aimed to collect experimental data relative to the transmission of the vibration signals from the rifle to the shoulder of subject during the shooting action. In particular the transmissibility of acceleration signals, as well as of the velocity signals, between the rifle stock and the subject's back shoulder will be measured using two piezoelectric accelerometers and a single point laser Doppler vibrometer (LDV). Tests have been carried out in a shooting lab where a professional shooter has conducted the experiments, using different experimental configurations: two different types of stocks and two kinds of bullets with different weights were considered. Two uniaxial accelerometers were fixed on the stock of the weapon and on the back of the shoulder of the shooter respectively. Vibration from the back shoulder was also measured by means of a LDV simultaneously. A comparison of the measured results will be presented and the pros and cons of the use of contact and non-contact transducers will be discussed taking into account the possible sources of the measurement uncertainty as unwanted sensor vibrations for the accelerometer.

  20. Cutting process simulation of flat drill

    NASA Astrophysics Data System (ADS)

    Tamura, Shoichi; Matsumura, Takashi

    2018-05-01

    Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.

  1. Miniature piezoelectric triaxial accelerometer measures cranial accelerations

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Rogallo, V. L.

    1966-01-01

    Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.

  2. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    PubMed Central

    Sabato, Alessandro; Feng, Maria Q.

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003

  3. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    PubMed

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  4. Quantitative Accelerated Life Testing of MEMS Accelerometers

    PubMed Central

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-01-01

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1. PMID:28903265

  5. Identifying walking trips from GPS and accelerometer data in adolescent females

    PubMed Central

    Rodriguez, Daniel; Cho, GH; Elder, John; Conway, Terry; Evenson, Kelly R; Ghosh-Dastidar, Bonnie; Shay, Elizabeth; Cohen, Deborah A; Veblen-Mortenson, Sarah; Pickrell, Julie; Lytle, Leslie

    2013-01-01

    Background Studies that have combined accelerometers and global positioning systems (GPS) to identify walking have done so in carefully controlled conditions. This study tested algorithms for identifying walking trips from accelerometer and GPS data in free-living conditions. The study also assessed the accuracy of the locations where walking occurred compared to what participants reported in a diary. Methods A convenience sample of high school females was recruited (N=42) in 2007. Participants wore a GPS unit and an accelerometer, and recorded their out-of-school travel for six days. Split-sample validation was used to examine agreement in the daily and total number of walking trips with Kappa statistics and count regression models, while agreement in locations visited by walking was examined with geographic information systems. Results Agreement varied based on the parameters of the algorithm, with algorithms exhibiting moderate to substantial agreement with self-reported daily (Kappa = 0.33–0.48) and weekly (Kappa = 0.41–0.64) walking trips. Comparison of reported locations reached by walking and GPS data suggest that reported locations are accurate. Conclusions The use of GPS and accelerometers is promising for assessing the number of walking trips and the walking locations of adolescent females. PMID:21934163

  6. Determination of thermally induced effects and design guidelines of optomechanical accelerometers

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Jiao, Xufen; Han, Dandan; Chen, Peiwen; Liu, Dong; Yang, Yongying; Yang, Guoguang

    2017-11-01

    Thermal effects, including thermally induced deformation and warm up time, are ubiquitous problems for sensors, especially for inertial measurement units such as accelerometers. Optomechanical accelerometers, which contain light sources that can be regarded as heat sources, involve a different thermal phenomenon in terms of their specific optical readout, and the phenomenon has not been investigated systematically. This paper proposes a model to evaluate the temperature difference, rise time and thermally induced deformation of optomechanical accelerometers, and then constructs design guidelines which can diminish these thermal effects without compromising other mechanical performances, based on the analysis of the interplay of thermal and mechanical performances. In the model, the irradiation of the micromachined structure of a laser source is considered a dominant factor. The experimental data obtained using a prototype of an optomechanical accelerometer approximately confirm the validity of the model for the rise time and response tendency. Moreover, design guidelines that adopt suspensions with a flat cross-section and a short length are demonstrated with reference to the analysis. The guidelines can reduce the thermally induced deformation and rise time or achieve higher mechanical performances with similar thermal effects, which paves the way for the design of temperature-tolerant and robust, high-performance devices.

  7. Using open source accelerometer analysis to assess physical activity and sedentary behaviour in overweight and obese adults.

    PubMed

    Innerd, Paul; Harrison, Rory; Coulson, Morc

    2018-04-23

    Physical activity and sedentary behaviour are difficult to assess in overweight and obese adults. However, the use of open-source, raw accelerometer data analysis could overcome this. This study compared raw accelerometer and questionnaire-assessed moderate-to-vigorous physical activity (MVPA), walking and sedentary behaviour in normal, overweight and obese adults, and determined the effect of using different methods to categorise overweight and obesity, namely body mass index (BMI), bioelectrical impedance analysis (BIA) and waist-to-hip ratio (WHR). One hundred twenty adults, aged 24-60 years, wore a raw, tri-axial accelerometer (Actigraph GT3X+), for 3 days and completed a physical activity questionnaire (IPAQ-S). We used open-source accelerometer analyses to estimate MVPA, walking and sedentary behaviour from a single raw accelerometer signal. Accelerometer and questionnaire-assessed measures were compared in normal, overweight and obese adults categorised using BMI, BIA and WHR. Relationships between accelerometer and questionnaire-assessed MVPA (Rs = 0.30 to 0.48) and walking (Rs = 0.43 to 0.58) were stronger in normal and overweight groups whilst sedentary behaviour were modest (Rs = 0.22 to 0.38) in normal, overweight and obese groups. The use of WHR resulted in stronger agreement between the questionnaire and accelerometer than BMI and BIA. Finally, accelerometer data showed stronger associations with BMI, BIA and WHR (Rs = 0.40 to 0.77) than questionnaire data (Rs = 0.24 to 0.37). Open-source, raw accelerometer data analysis can be used to estimate MVPA, walking and sedentary behaviour from a single acceleration signal in normal, overweight and obese adults. Our data supports the use of WHR to categorise overweight and obese adults. This evidence helps researchers obtain more accurate measures of physical activity and sedentary behaviour in overweight and obese populations.

  8. Detecting Human Activity Using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors

    DTIC Science & Technology

    2011-09-01

    Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors by Sarah H. Walker and Geoffrey H. Goldman...Adelphi, MD 20783-1197 ARL-TR-5729 September 2011 Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors...DD-MM-YYYY) September 2011 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Detecting Human Activity using Acoustic

  9. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical

  10. Temperature insensitive all-fiber accelerometer using a photonic crystal fiber long-period grating interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.

  11. Nonlinear dynamics under varying temperature conditions of the resonating beams of a differential resonant accelerometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto

    2018-07-01

    In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.

  12. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior.

    PubMed

    Montoye, Alexander H K; Pivarnik, James M; Mudd, Lanay M; Biswas, Subir; Pfeiffer, Karin A

    2016-01-01

    Recent evidence suggests that physical activity (PA) and sedentary behavior (SB) exert independent effects on health. Therefore, measurement methods that can accurately assess both constructs are needed. To compare the accuracy of accelerometers placed on the hip, thigh, and wrists, coupled with machine learning models, for measurement of PA intensity category (SB, light-intensity PA [LPA], and moderate- to vigorous-intensity PA [MVPA]) and breaks in SB. Forty young adults (21 female; age 22.0 ± 4.2 years) participated in a 90-minute semi-structured protocol, performing 13 activities (three sedentary, 10 non-sedentary) for 3-10 minutes each. Participants chose activity order, duration, and intensity. Direct observation (DO) was used as a criterion measure of PA intensity category, and transitions from SB to a non-sedentary activity were breaks in SB. Participants wore four accelerometers (right hip, right thigh, and both wrists), and a machine learning model was created for each accelerometer to predict PA intensity category. Sensitivity and specificity for PA intensity category classification were calculated and compared across accelerometers using repeated measures analysis of variance, and the number of breaks in SB was compared using repeated measures analysis of variance. Sensitivity and specificity values for the thigh-worn accelerometer were higher than for wrist- or hip-worn accelerometers, > 99% for all PA intensity categories. Sensitivity and specificity for the hip-worn accelerometer were 87-95% and 93-97%. The left wrist-worn accelerometer had sensitivities and specificities of > 97% for SB and LPA and 91-95% for MVPA, whereas the right wrist-worn accelerometer had sensitivities and specificities of 93-99% for SB and LPA but 67-84% for MVPA. The thigh-worn accelerometer had high accuracy for breaks in SB; all other accelerometers overestimated breaks in SB. Coupled with machine learning modeling, the thigh-worn accelerometer should be considered when

  13. Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013)

    DTIC Science & Technology

    2014-06-01

    Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a

  14. The modulation and demodulation module of a high resolution MOEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  15. Evaluation of two-dimensional accelerometers to monitor behavior of beef calves after castration.

    PubMed

    White, Brad J; Coetzee, Johann F; Renter, David G; Babcock, Abram H; Thomson, Daniel U; Andresen, Daniel

    2008-08-01

    To determine the accuracy of accelerometers for measuring behavior changes in calves and to determine differences in beef calf behavior from before to after castration. 3 healthy Holstein calves and 12 healthy beef calves. 2-dimensional accelerometers were placed on 3 calves, and data were logged simultaneous to video recording of animal behavior. Resulting data were used to generate and validate predictive models to classify posture (standing or lying) and type of activity (standing in place, walking, eating, getting up, lying awake, or lying sleeping). The algorithms developed were used to conduct a prospective trial to compare calf behavior in the first 24 hours after castration (n = 6) with behavior of noncastrated control calves (6) and with presurgical readings from the same castrated calves. On the basis of the analysis of the 2-dimensional accelerometer signal, posture was classified with a high degree of accuracy (98.3%) and the specific activity was estimated with a reasonably low misclassification rate (23.5%). Use of the system to compare behavior after castration revealed that castrated calves spent a significantly larger amount of time standing (82.2%), compared with presurgical readings (46.2%). 2-dimensional accelerometers provided accurate classification of posture and reasonable classification of activity. Applying the system in a castration trial illustrated the usefulness of accelerometers for measuring behavioral changes in individual calves.

  16. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  17. Validity and Reliability of Accelerometers in Patients With COPD: A SYSTEMATIC REVIEW.

    PubMed

    Gore, Shweta; Blackwood, Jennifer; Guyette, Mary; Alsalaheen, Bara

    2018-05-01

    Reduced physical activity is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Accelerometers have greatly improved quantification of physical activity by providing information on step counts, body positions, energy expenditure, and magnitude of force. The purpose of this systematic review was to compare the validity and reliability of accelerometers used in patients with COPD. An electronic database search of MEDLINE and CINAHL was performed. Study quality was assessed with the Strengthening the Reporting of Observational Studies in Epidemiology checklist while methodological quality was assessed using the modified Quality Appraisal Tool for Reliability Studies. The search yielded 5392 studies; 25 met inclusion criteria. The SenseWear Pro armband reported high criterion validity under controlled conditions (r = 0.75-0.93) and high reliability (ICC = 0.84-0.86) for step counts. The DynaPort MiniMod demonstrated highest concurrent validity for step count using both video and manual methods. Validity of the SenseWear Pro armband varied between studies especially in free-living conditions, slower walking speeds, and with addition of weights during gait. A high degree of variability was found in the outcomes used and statistical analyses performed between studies, indicating a need for further studies to measure reliability and validity of accelerometers in COPD. The SenseWear Pro armband is the most commonly used accelerometer in COPD, but measurement properties are limited by gait speed variability and assistive device use. DynaPort MiniMod and Stepwatch accelerometers demonstrated high validity in patients with COPD but lack reliability data.

  18. Comparison of pedometer and accelerometer accuracy under controlled conditions.

    PubMed

    Le Masurier, Guy C; Tudor-Locke, Catrine

    2003-05-01

    The purpose of this investigation was to compare the concurrent accuracy of the CSA accelerometer and the Yamax pedometer under two conditions: 1) on a treadmill at five different speeds and 2) riding in a motorized vehicle on paved roads. In study 1, motion sensor performance was evaluated against actual steps taken during 5-min bouts at five different treadmill walking speeds (54, 67, 80, 94, and 107 m.min-1). In study 2, performance was evaluated during a roundtrip (drive 1 and drive 2) motor vehicle travel on paved roads (total distance traveled was 32.6 km or 20.4 miles). Any steps detected during motor vehicle travel were considered error. In study 1, the Yamax pedometer detected significantly (P < 0.05) fewer steps than actually taken at the slowest treadmill speed (54 m.min-1). Further, the pedometer detected fewer steps than the accelerometer at this speed (75.4% vs 98.9%, P < 0.05). There were no differences between instruments compared with actual steps taken at all other walking speeds. In study 2, the CSA detected approximately 17-fold more erroneous steps than the pedometer (approximately 250 vs 15 steps for the total distance traveled, P < 0.05). The magnitude of the error (for either instrument) is not likely an important threat to the assessment of free-living ambulatory populations but may be a problem for pedometers when monitoring frail older adults with slow gaits. On the other hand, CSA accelerometers erroneously detect more nonsteps than the Yamax pedometer under typical motor vehicle traveling conditions. This threat to validity is likely only problematic when using the accelerometer to assess physical activity in sedentary individuals who travel extensively by motor vehicle.

  19. Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus

    2018-05-01

    Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from

  20. Comparison of interferon-γ release assay to two cut-off points of tuberculin skin test to detect latent Mycobacterium tuberculosis infection in primary health care workers.

    PubMed

    de Souza, Fernanda Mattos; do Prado, Thiago Nascimento; Pinheiro, Jair dos Santos; Peres, Renata Lyrio; Lacerda, Thamy Carvalho; Loureiro, Rafaela Borge; Carvalho, Jose Américo; Fregona, Geisa; Dias, Elias Santos; Cosme, Lorrayne Beliqui; Rodrigues, Rodrigo Ribeiro; Riley, Lee Wood; Maciel, Ethel Leonor Noia

    2014-01-01

    An interferon-γ release assay, QuantiFERON-TB (QFT) test, has been introduced an alternative test for the diagnosis of latent Mycobacterium tuberculosis infection (LTBI). Here, we compared the performance of QFT with tuberculin skin test (TST) measured at two different cut-off points among primary health care work (HCW) in Brazil. A cross-sectional study was carried out among HCWs in four Brazilian cities with a known history of high incidence of TB. Results of the QFT were compared to TST results based on both ≥5 mm and ≥10 mm as cut-off points. We enrolled 632 HCWs. When the cut-off value of ≥10 mm was used, agreement between QFT and TST was 69% (k = 0.31), and when the cut-off of ≥5 mm was chosen, the agreement was 57% (k = 0.22). We investigated possible factors of discordance of TST vs QFT. Compared to the TST-/QFT- group, risk factors for discordance in the TST+/QFT- group with TST cut-off of ≥5 mm included age between 41-45 years [OR = 2.70; CI 95%: 1.32-5.51] and 46-64 years [OR = 2.04; CI 95%: 1.05-3.93], BCG scar [OR = 2.72; CI 95%: 1.40-5.25], and having worked only in primary health care [OR = 2.30; CI 95%: 1.09-4.86]. On the other hand, for the cut-off of ≥10 mm, BCG scar [OR = 2.26; CI 95%: 1.03-4.91], being a household contact of a TB patient [OR = 1.72; CI 95%: 1.01-2.92] and having had a previous TST [OR = 1.66; CI 95%: 1.05-2.62], were significantly associated with the TST+/QFT- group. No statistically significant associations were found among the TST-/QFT+ discordant group with either TST cut-off value. Although we identified BCG vaccination to contribute to the discordance at both TST cut-off measures, the current Brazilian recommendation for the initiation of LTBI treatment, based on information gathered from medical history, TST, chest radiograph and physical examination, should not be changed.

  1. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  2. Structural design of high-performance capacitive accelerometers using parametric optimization with uncertainties

    NASA Astrophysics Data System (ADS)

    Teves, André da Costa; Lima, Cícero Ribeiro de; Passaro, Angelo; Silva, Emílio Carlos Nelli

    2017-03-01

    Electrostatic or capacitive accelerometers are among the highest volume microelectromechanical systems (MEMS) products nowadays. The design of such devices is a complex task, since they depend on many performance requirements, which are often conflicting. Therefore, optimization techniques are often used in the design stage of these MEMS devices. Because of problems with reliability, the technology of MEMS is not yet well established. Thus, in this work, size optimization is combined with the reliability-based design optimization (RBDO) method to improve the performance of accelerometers. To account for uncertainties in the dimensions and material properties of these devices, the first order reliability method is applied to calculate the probabilities involved in the RBDO formulation. Practical examples of bulk-type capacitive accelerometer designs are presented and discussed to evaluate the potential of the implemented RBDO solver.

  3. 49 CFR 234.237 - Reverse switch cut-out circuit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Reverse switch cut-out circuit. 234.237 Section....237 Reverse switch cut-out circuit. A switch, when equipped with a switch circuit controller connected... warning system can only be cut out when the switch point is within one-half inch of full reverse position. ...

  4. 49 CFR 234.237 - Reverse switch cut-out circuit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Reverse switch cut-out circuit. 234.237 Section....237 Reverse switch cut-out circuit. A switch, when equipped with a switch circuit controller connected... warning system can only be cut out when the switch point is within one-half inch of full reverse position. ...

  5. 49 CFR 234.237 - Reverse switch cut-out circuit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Reverse switch cut-out circuit. 234.237 Section....237 Reverse switch cut-out circuit. A switch, when equipped with a switch circuit controller connected... warning system can only be cut out when the switch point is within one-half inch of full reverse position. ...

  6. Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

    NASA Astrophysics Data System (ADS)

    Ardentov, Andrei A.; Sachkov, Yuri L.

    2017-12-01

    We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank 2 sub-Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations R+ and a discrete group of reflections Z2 × Z2 × Z2. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.

  7. Detection of falls using accelerometers and mobile phone technology.

    PubMed

    Lee, Raymond Y W; Carlisle, Alison J

    2011-11-01

    to study the sensitivity and specificity of fall detection using mobile phone technology. an experimental investigation using motion signals detected by the mobile phone. the research was conducted in a laboratory setting, and 18 healthy adults (12 males and 6 females; age = 29 ± 8.7 years) were recruited. each participant was requested to perform three trials of four different types of simulated falls (forwards, backwards, lateral left and lateral right) and eight other everyday activities (sit-to-stand, stand-to-sit, level walking, walking up- and downstairs, answering the phone, picking up an object and getting up from supine). Acceleration was measured using two devices, a mobile phone and an independent accelerometer attached to the waist of the participants. Bland-Altman analysis shows a higher degree of agreement between the data recorded by the two devices. Using individual upper and lower detection thresholds, the specificity and sensitivity for mobile phone were 0.81 and 0.77, respectively, and for external accelerometer they were 0.82 and 0.96, respectively. fall detection using a mobile phone is a feasible and highly attractive technology for older adults, especially those living alone. It may be best achieved with an accelerometer attached to the waist, which transmits signals wirelessly to a phone.

  8. A sensitivity analysis on the variability in accelerometer data processing for monitoring physical activity.

    PubMed

    Lee, Paul H

    2015-02-01

    Accelerometers are gaining popularity for measuring physical activity, but there are many different ways to process accelerometer data. A sensitivity analysis was conducted to study the effect of varying accelerometer data processing protocols on estimating the association between PA level and socio-demographic characteristics using the National Health and Nutrition Examination Survey (NHANES) accelerometer data. The NHANES waves 2003-2004 and 2005-2006 accelerometer data (n=14,072) were used to investigate the effect of changing the accelerometer non-wearing time and valid day definitions on the demographic composition of the filtered datasets and the association between physical activity (PA) and socio-demographic characteristics (sex, age, race, educational level, marital status). Under different filtering rules (minimum number of valid day and definition of non-wear time), the demographic characteristics of the final sample varied. The proportion of participants aged 20-29 decreased from 18.9% to 15.8% when the minimum number of valid days required increased from 1 to 4 (p for trend<0.001), whereas that for aged ≥70 years increased from 18.9% to 20.6% (p for trend<0.001). Furthermore, with different filters, the effect of these demographic variables and PA varied, with some variables being significant under certain filtering rules but becoming insignificant under some other rules. The sensitivity analysis showed that the significance of the association between socio-demographic variables and PA could be varied with the definition of non-wearing time and minimum number of valid days. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.

    PubMed

    Imboden, Mary T; Nelson, Michael B; Kaminsky, Leonard A; Montoye, Alexander Hk

    2017-05-08

    Consumer-based physical activity (PA) monitors have become popular tools to track PA behaviours. Currently, little is known about the validity of the measurements provided by consumer monitors. We aimed to compare measures of steps, energy expenditure (EE) and active minutes of four consumer monitors with one research-grade accelerometer within a semistructured protocol. Thirty men and women (18-80 years old) wore Fitbit One (worn at the waist), Fitbit Zip (waist), Fitbit Flex (wrist), Jawbone UP24 (wrist) and one waist-worn research-grade accelerometer (ActiGraph) while participating in an 80 min protocol. A validated EE prediction equation and active minute cut-points were applied to ActiGraph data. Criterion measures were assessed using direct observation (step count) and portable metabolic analyser (EE, active minutes). A repeated measures analysis of variance (ANOVA) was used to compare differences between consumer monitors, ActiGraph, and criterion measures. Similarly, a repeated measures ANOVA was applied to a subgroup of subjects who didn't cycle. Participants took 3321±571 steps, had 28±6 active min and expended 294±56 kcal based on criterion measures. Comparatively, all monitors underestimated steps and EE by 13%-32% (p<0.01); additionally the Fitbit Flex, UP24, and ActiGraph underestimated active minutes by 35%-65% (p<0.05). Underestimations of PA and EE variables were found to be similar in the subgroup analysis. Consumer monitors had similar accuracy for PA assessment as the ActiGraph, which suggests that consumer monitors may serve to track personal PA behaviours and EE. However, due to discrepancies among monitors, individuals should be cautious when comparing relative and absolute differences in PA values obtained using different monitors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct.

    PubMed

    Murphy, Susan L

    2009-02-01

    Accelerometers are being increasingly used in studies of physical activity (PA) among older adults, however the use of these monitors requires some specialized knowledge and up-to-date information on technological innovations. The purpose of this review article is to provide researchers with a guide to some commonly-used accelerometers in order to better design and conduct PA research with older adults. A literature search was conducted to obtain all available literature on commonly-used accelerometers in older adult samples with specific attention to articles discussing research design. The use of accelerometers in older adults requires a basic understanding of the type being used, rationale for their placement, and attention to calibration when needed. The updated technology in some monitors should make study conduct less difficult, however comparison studies of the newer versus the older generation models will be needed. Careful considerations for design and conduct of accelerometer research as outlined in this review should help to enhance the quality and comparability of future research studies.

  11. Operationalizing hippocampal volume as an enrichment biomarker for amnestic mild cognitive impairment trials: effect of algorithm, test-retest variability, and cut point on trial cost, duration, and sample size.

    PubMed

    Yu, Peng; Sun, Jia; Wolz, Robin; Stephenson, Diane; Brewer, James; Fox, Nick C; Cole, Patricia E; Jack, Clifford R; Hill, Derek L G; Schwarz, Adam J

    2014-04-01

    The objective of this study was to evaluate the effect of computational algorithm, measurement variability, and cut point on hippocampal volume (HCV)-based patient selection for clinical trials in mild cognitive impairment (MCI). We used normal control and amnestic MCI subjects from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) as normative reference and screening cohorts. We evaluated the enrichment performance of 4 widely used hippocampal segmentation algorithms (FreeSurfer, Hippocampus Multi-Atlas Propagation and Segmentation (HMAPS), Learning Embeddings Atlas Propagation (LEAP), and NeuroQuant) in terms of 2-year changes in Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and Clinical Dementia Rating Sum of Boxes (CDR-SB). We modeled the implications for sample size, screen fail rates, and trial cost and duration. HCV based patient selection yielded reduced sample sizes (by ∼40%-60%) and lower trial costs (by ∼30%-40%) across a wide range of cut points. These results provide a guide to the choice of HCV cut point for amnestic MCI clinical trials, allowing an informed tradeoff between statistical and practical considerations. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Measurement of peak impact loads differ between accelerometers - Effects of system operating range and sampling rate.

    PubMed

    Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C

    2017-06-14

    A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1990-09-01

    Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.

  14. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    PubMed

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  15. The use of MP3 recorders to log data from equine hoof mounted accelerometers.

    PubMed

    Parsons, K J; Wilson, A M

    2006-11-01

    MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction

  16. 3D sensing for machine guidance in meat cutting applications

    NASA Astrophysics Data System (ADS)

    Daley, Wayne; Britton, Doug; Usher, Colin; Diao, Mamadou; Ruffin, Kevin

    2005-11-01

    Most cutting and deboning operations in meat processing require accurate cuts be made to obtain maximum yield and ensure food safety. This is a significant concern for purveyors of deboned product. This task is made more difficult by the variability that is present in most natural products. The specific application of interest in this paper is the production of deboned poultry breast. This is typically obtained from a cut of the broiler called a 'front half' that includes the breast and the wings. The deboning operation typically consists of a cut that starts at the shoulder joint and then continues along the scapula. Attentive humans with training do a very good job of making this cut. The breast meat is then removed by pulling on the wings. Inaccurate cuts lead to poor yield (amount of boneless meat obtained relative to the weight of the whole carcass) and increase the probability that bone fragments might end up in the product. As equipment designers seek to automate the deboning operation, the cutting task has been a significant obstacle to developing automation that maximizes yield without generating unacceptable levels of bone fragments. The current solution is to sort the bone-in product into different weight ranges and then to adjust the deboning machines to the average of these weight ranges. We propose an approach for obtaining key cut points by extrapolation from external reference points based on the anatomy of the bird. We show that this approach can be implemented using a stereo imaging system, and the accuracy in locating the cut points of interest is significantly improved. This should result in more accurate cuts and with this concomitantly improved yield while reducing the incidence of bones. We also believe the approach could be extended to the processing of other species.

  17. Development of a computer method for predicting lumber cutting yields.

    Treesearch

    Daniel E. Dunmire; George H. Englerth

    1967-01-01

    A system of locating defects in a board by intersecting coordinate points was developed and a computer program devised that used these points to locate all possible clear areas in the board. The computer determined the yields by placing any given size or sizes of cuttings in these clear areas, and furthermore stated the type, location, and number of saw cuts. The...

  18. Swarm- Validation of Star Tracker and Accelerometer Data

    NASA Astrophysics Data System (ADS)

    Schack, Peter; Schlicht, Anja; Pail, Roland; Gruber, Thomas

    2016-08-01

    The ESA Swarm mission is designed to advance studies in the field of magnetosphere, thermosphere and gravity field. To be fortunate on this task precise knowledge of the orientation of the Swarm satellites is required together with knowledge about external forces acting on the satellites. The key sensors providing this information are the star trackers and the accelerometers. Based on star tracker studies conducted by the Denmark Technical University (DTU), we found interesting patterns in the interboresight angles on all three satellites, which are partly induced by temperature alterations. Additionally, structures of horizontal stripes seem to be caused by the unique distribution of observed stars on the charge-coupled device of the star trackers. Our accelerometer analyses focus on spikes and pulses in the observations. Those short term events on Swarm might originate from electrical processes introduced by sunlight illuminating the nadir foil. Comparisons to GOCE and GRACE are included.

  19. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    PubMed

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  20. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  1. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization.

    PubMed

    Camp, Robert L; Dolled-Filhart, Marisa; Rimm, David L

    2004-11-01

    The ability to parse tumors into subsets based on biomarker expression has many clinical applications; however, there is no global way to visualize the best cut-points for creating such divisions. We have developed a graphical method, the X-tile plot that illustrates the presence of substantial tumor subpopulations and shows the robustness of the relationship between a biomarker and outcome by construction of a two dimensional projection of every possible subpopulation. We validate X-tile plots by examining the expression of several established prognostic markers (human epidermal growth factor receptor-2, estrogen receptor, p53 expression, patient age, tumor size, and node number) in cohorts of breast cancer patients and show how X-tile plots of each marker predict population subsets rooted in the known biology of their expression.

  2. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    PubMed

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  3. Validation of cardiac accelerometer sensor measurements.

    PubMed

    Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik

    2009-12-01

    In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.

  4. An Accelerometer as an Alternative to a Force Plate for the Step-Up-and-Over Test.

    PubMed

    Bailey, Christopher A; Costigan, Patrick A

    2015-12-01

    The step-up-and-over test has been used successfully to examine knee function after knee injury. Knee function is quantified using the following variables extracted from force plate data: the maximal force exerted during the lift, the maximal impact force at landing, and the total time to complete the step. For various reasons, including space and cost, it is unlikely that all clinicians will have access to a force plate. The purpose of the study was to determine if the step-up-and-over test could be simplified by using an accelerometer. The step-up-and-over test was performed by 17 healthy young adults while being measured with both a force plate and a 3-axis accelerometer mounted at the low back. Results showed that the accelerometer and force plate measures were strongly correlated for all 3 variables (r = .90-.98, Ps < .001) and that the accelerometer values for the lift and impact indices were 6-7% higher (Ps < .01) and occurred 0.07-0.1 s later than the force plate (Ps < .05). The accelerometer returned values highly correlated to those from a force plate. Compared with a force plate, a wireless, 3-axis accelerometer is a less expensive and more portable system with which to measure the step-up-and-over test.

  5. Physical activity and sedentary behavior during pregnancy and postpartum, measured using hip and wrist-worn accelerometers.

    PubMed

    Hesketh, Kathryn R; Evenson, Kelly R; Stroo, Marissa; Clancy, Shayna M; Østbye, Truls; Benjamin-Neelon, Sara E

    2018-06-01

    Physical activity in pregnancy and postpartum is beneficial to mothers and infants. To advance knowledge of objective physical activity measurement during these periods, this study compares hip to wrist accelerometer compliance; assesses convergent validity (correlation) between hip- and wrist-worn accelerometry; and assesses change in physical activity from pregnancy to postpartum. We recruited women during pregnancy ( n  = 100; 2014-2015), asking them to wear hip and wrist accelerometers for 7 days during Trimester 2 (T2), Trimester 3 (T3), and 3-, 6-, 9- and 12-months postpartum. We assessed average wear-time and correlations (axis-specific counts/minute, vector magnitude counts/day and step counts/day) at T2, T3, and postpartum. Compliance was higher for wrist-worn accelerometers. Hip and wrist accelerometers showed moderate to high correlations (Pearson's r 0.59 to 0.84). Hip-measured sedentary and active time differed little between T2 and T3. Moderate-to-vigorous physical activity decreased at T3 and remained low postpartum. Light physical activity increased and sedentary time decreased throughout the postpartum period. Wrist accelerometers may be preferable during pregnancy and appear comparable to hip accelerometers. As physical activity declines during later pregnancy and may not rebound post birth, support for re-engaging in physical activity earlier in the postpartum period may benefit women.

  6. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    PubMed Central

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  7. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    PubMed

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  8. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice.

    PubMed

    Chang, Kang-Ming; Chun, Yu-Teng; Chen, Sih-Huei; Lu, Luo; Su, Hsiao-Ting Jannis; Liang, Hung-Meng; Santhosh, Jayasree; Ching, Congo Tak-Shing; Liu, Shing-Hong

    2016-07-20

    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20-30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were -0.440, -0.369, and -0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.

  9. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice

    PubMed Central

    Chang, Kang-Ming; Chun, Yu-Teng; Chen, Sih-Huei; Lu, Luo; Su, Hsiao-Ting Jannis; Liang, Hung-Meng; Santhosh, Jayasree; Ching, Congo Tak-Shing; Liu, Shing-Hong

    2016-01-01

    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20–30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were −0.440, −0.369, and −0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice. PMID:27447641

  10. Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth.

    PubMed

    Belcher, Britni R; Moser, Richard P; Dodd, Kevin W; Atienza, Audie A; Ballard-Barbash, Rachel; Berrigan, David

    2015-05-01

    Discrepancies in self-report and accelerometer-measured moderate-to-vigorous physical activity (MVPA) may influence relationships with obesity-related biomarkers in youth. Data came from 2003-2006 National Health and Nutrition Examination Surveys (NHANES) for 2174 youth ages 12 to 19. Biomarkers were: body mass index (BMI, kg/m2), BMI percentile, height and waist circumference (WC, cm), triceps and subscapular skinfolds (mm), systolic & diastolic blood pressure (BP, mmHg), high-density lipoprotein (HDL, mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), insulin (μU/ml), C-reactive protein (mg/dL), and glycohemoglobin (%). In separate sex-stratified models, each biomarker was regressed on accelerometer variables [mean MVPA (min/day), nonsedentary counts, and MVPA bouts (mean min/day)] and self-reported MVPA. Covariates were age, race/ethnicity, SES, physical limitations, and asthma. In boys, correlations between self-report and accelerometer MVPA were stronger (boys: r = 0.14-0.21; girls: r = 0.07-0.11; P < .010) and there were significant associations with BMI, WC, triceps skinfold, and SBP and accelerometer MVPA (P < .01). In girls, there were no significant associations between biomarkers and any measures of physical activity. Physical activity measures should be selected based on the outcome of interest and study population; however, associations between PA and these biomarkers appear to be weak regardless of the measure used.

  11. Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics.

    PubMed

    Lemoyne, Robert; Mastroianni, Timothy; Cozza, Michael; Coroian, Cristian; Grundfest, Warren

    2010-01-01

    The capacity to quantify and evaluate gait beyond the general confines of a clinical environment under effectively autonomous conditions may alleviate rampant strain on limited and highly specialized medical resources. An iPhone consists of a three dimensional accelerometer subsystem with highly robust and scalable software applications. With the synthesis of the integral iPhone features, an iPhone application, which constitutes a wireless accelerometer system for gait quantification and analysis, has been tested and evaluated in an autonomous environment. The acquired gait cycle data was transmitted wireless and through email for subsequent post-processing in a location remote to the location where the experiment was conducted. The iPhone application functioning as a wireless accelerometer for the acquisition of gait characteristics has demonstrated sufficient accuracy and consistency.

  12. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Mississippi Gov. Phil Bryant looks on as Apollo 13 astronaut and INFINITY Science Center Inc. Vice Chairman Fred Haise points out features of the spacesuit he wore on his lunar mission in 1970. The suit is on display at the INFINITY at NASA Stennis Space Center visitor center and museum. The two men toured the facility during ribbon-cutting activities April 11, 2012.

  13. Single-Axis Accelerometer

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  14. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates.

    PubMed

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-22

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7-20 Hz range.

  15. Estimation of the laser cutting operating cost by support vector regression methodology

    NASA Astrophysics Data System (ADS)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  16. An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.

    PubMed

    Hu, Yating; Xu, Yong

    2012-01-01

    This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. The prototype with a resonant frequency of 1100Hz and a total weight of 5 gram is designed, constructed and characterized. The size of the prototype sensor is 35mm×18mm×7.8mm (l×w×t). A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.

  17. Statistical Considerations for Establishing CBTE Cut-Off Scores.

    ERIC Educational Resources Information Center

    Trzasko, Joseph A.

    This report gives the basic definition and purpose of competency-based teacher education (CBTE) cut-off scores. It describes the basic characteristics of CBTE as a yes-no dichotomous decision regarding the presence of a specific ability or knowledge, which necesitates the establishment of a cut-off point to designate competency vs. incompetency on…

  18. Combining global positioning system and accelerometer data to determine the locations of physical activity in children.

    PubMed

    Oreskovic, Nicolas M; Blossom, Jeff; Field, Alison E; Chiang, Sylvia R; Winickoff, Jonathan P; Kleinman, Ronald E

    2012-05-01

    National trends indicate that children and adolescents are not achieving sufficient levels of physical activity. Combining global positioning system (GPS) technology with accelerometers has the potential to provide an objective determination in locations where youth engage in physical activity. The aim of this study was to identify the optimal methods for collecting combined accelerometer and GPS data in youth, to best locate where children spend time and are physically active. A convenience sample of 24 mid-school children in Massachusetts was included. Accelerometers and GPS units were used to quantify and locate childhood physical activity over 5 weekdays and 2 weekend days. Accelerometer and GPS data were joined by time and mapped with a geographical information system (GIS) using ArcGIS software. Data were collected in winter, spring, summer in 2009-2010, collecting a total of 26,406 matched datapoints overall. Matched data yield was low (19.1% total), regardless of season (winter, 12.8%; spring, 30.1%; summer, 14.3%). Teacher-provided, pre-charged equipment yielded the most matched (30.1%; range: 10.1-52.3%) and greatest average days (6.1 days) of data. Across all seasons, children spent most of their time at home. Outdoor use patterns appeared to vary by season, with street use increasing in spring, and park and playground use increasing in summer. Children spent equal amounts of physical activity time at home and walking in the streets. Overall, the various methods for combining GPS and accelerometer data provided similarly low amounts of combined data. No combined GPS and accelerometer data collection method proved superior in every data return category, but use of GIS to map joined accelerometer and GPS data can demarcate childhood physical activity locations.

  19. A field test of cut-off importance sampling for bole volume

    Treesearch

    Jeffrey H. Gove; Harry T. Valentine; Michael J. Holmes

    2000-01-01

    Cut-off importance sampling has recently been introduced as a technique for estimating bole volume to some point below the tree tip, termed the cut-off point. A field test of this technique was conducted on a small population of eastern white pine trees using dendrometry as the standard for volume estimation. Results showed that the differences in volume estimates...

  20. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.

    PubMed

    Cseke, Akos; Heinemann, Robert

    2018-01-01

    The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Medium-high frequency FBG accelerometer with integrative matrix structure.

    PubMed

    Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna

    2015-04-10

    To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200  pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.

  2. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    NASA Astrophysics Data System (ADS)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  3. Activity recognition in planetary navigation field tests using classification algorithms applied to accelerometer data.

    PubMed

    Song, Wen; Ade, Carl; Broxterman, Ryan; Barstow, Thomas; Nelson, Thomas; Warren, Steve

    2012-01-01

    Accelerometer data provide useful information about subject activity in many different application scenarios. For this study, single-accelerometer data were acquired from subjects participating in field tests that mimic tasks that astronauts might encounter in reduced gravity environments. The primary goal of this effort was to apply classification algorithms that could identify these tasks based on features present in their corresponding accelerometer data, where the end goal is to establish methods to unobtrusively gauge subject well-being based on sensors that reside in their local environment. In this initial analysis, six different activities that involve leg movement are classified. The k-Nearest Neighbors (kNN) algorithm was found to be the most effective, with an overall classification success rate of 90.8%.

  4. Assessing Physical Activity in Children with Asthma: Convergent Validity between Accelerometer and Electronic Diary Data

    ERIC Educational Resources Information Center

    Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.

    2009-01-01

    Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…

  5. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  6. The method of attachment influences accelerometer-based activity data in dogs.

    PubMed

    Martin, Kyle W; Olsen, Anastasia M; Duncan, Colleen G; Duerr, Felix M

    2017-02-10

    Accelerometer-based activity monitoring is a promising new tool in veterinary medicine used to objectively assess activity levels in dogs. To date, it is unknown how device orientation, attachment method, and attachment of a leash to the collar holding an accelerometer affect canine activity data. It was our goal to evaluate whether attachment methods of accelerometers affect activity counts. Eight healthy, client-owned dogs were fitted with two identical neck collars to which two identical activity monitors were attached using six different methods of attachment. These methods of attachment evaluated the use of a protective case, positioning of the activity monitor and the tightness of attachment of the accelerometer. Lastly, the effect of leash attachment to the collar was evaluated. For trials where the effect of leash attachment to the collar was not being studied, the leash was attached to a harness. Activity data obtained from separate monitors within a given experiment were compared using Pearson correlation coefficients and across all experiments using the Kruskal-Wallis Test. There was excellent correlation and low variability between activity monitors on separate collars when the leash was attached to a harness, regardless of their relative positions. There was good correlation when activity monitors were placed on the same collar regardless of orientation. There were poor correlations between activity monitors in three experiments: when the leash was fastened to the collar that held an activity monitor, when one activity monitor was housed in the protective casing, and when one activity monitor was loosely zip-tied to the collar rather than threaded on using the provided metal loop. Follow-up, pair-wise comparisons identified the correlation associated with these three methods of attachment to be statistically different from the level of correlation when monitors were placed on separate collars. While accelerometer-based activity monitors are useful

  7. Accelerometer-determined physical activity level among government employees in Penang, Malaysia.

    PubMed

    Hazizi, A S; Aina, Mardiah B; Mohd, Nasir M T; Zaitun, Y; Hamid, Jan J M; Tabata, I

    2012-04-01

    A cross-sectional study was carried out to investigate accelerometer-determined physical activity level of 233 Malay government employees (104 men, 129 women) working in the Federal Government Building Penang, Malaysia. Body weight, height, waist and hip circumference, body fat percentage and blood pressure were measured for each respondent. All the respondents were asked to wear an accelerometer for 3 days. Body mass index (BMI) and waist-hip ratio (WHR) were calculated using a standard formulas. Fasting blood sample was obtained to determine the lipid profile and glucose levels of the respondents. Based on the accelerometer-determined physical activity level, almost 65% of the respondents were categorised as sedentary. Approximately 50.2% of the respondents were overweight or obese. There were negative but significant relationships between body mass index (BMI) (r = -0.353, p < 0.05), body fat percentage (r = -0.394, p < 0.05), waist circumference (WC) (r = -0.198, p < 0.05) and physical activity level. Sedentary individuals had a higher risk than moderate to active individuals of having a BMI more than or equal to 25 kg/m2 (OR = 2.80, 95% CI 1.55-5.05), an-risk classified WC (OR = 1.79, 95% CI 1.01-3.20), and a body fat percentage classified as unhealthy (OR = 3.01, 95% CI 1.41-6.44). The results of this study suggest that accelerometer-determined physical activity level is a significant factor associated with obesity in this study. The high prevalence of physical inactivity and obesity found among respondents of this study indicate a need for implementing intervention programmes among this population.

  8. Effect of the improved accelerometer calibration method on AIUB's GRACE monthly gravity field solution

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Arnold, Daniel; Bentel, Katrin; Jäggi, Adrian

    2017-04-01

    The monthly global gravity field solutions derived using the measurements from the GRACE (Gravity Recovery and Climate Experiment) satellites have been continuously improved by the processing centers. One of the improvements in the processing method is a more detailed calibration of the on-board accelerometers in the GRACE satellites. The accelerometer data calibration is usually restricted to the scale factors and biases. It has been assumed that the three different axes are perfectly orthogonal in the GRACE science reference frame. Recently, it was shown by Klinger and Mayer-Gürr (2016) that a fully-populated scale matrix considering the non-orthogonality of the axes and the misalignment of the GRACE science reference frame and the GRACE accelerometer frame improves the quality of the C20 coefficient in the GRACE monthly gravity field solutions. We investigate the effect of the more detailed calibration of the GRACE accelerometer data on the C20 coefficient in the case of the AIUB (Astronomical Institute of the University of Bern) processing method using the Celestial Mechanics Approach. We also investigate the effect of the new calibration parameters on the stochastic parameters in the Celestial Mechanics Approach.

  9. Point-to-Point Multicast Communications Protocol

    NASA Technical Reports Server (NTRS)

    Byrd, Gregory T.; Nakano, Russell; Delagi, Bruce A.

    1987-01-01

    This paper describes a protocol to support point-to-point interprocessor communications with multicast. Dynamic, cut-through routing with local flow control is used to provide a high-throughput, low-latency communications path between processors. In addition multicast transmissions are available, in which copies of a packet are sent to multiple destinations using common resources as much as possible. Special packet terminators and selective buffering are introduced to avoid a deadlock during multicasts. A simulated implementation of the protocol is also described.

  10. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study.

    PubMed

    Chaix, Basile; Kestens, Yan; Duncan, Scott; Merrien, Claire; Thierry, Benoît; Pannier, Bruno; Brondeel, Ruben; Lewin, Antoine; Karusisi, Noëlla; Perchoux, Camille; Thomas, Frédérique; Méline, Julie

    2014-09-27

    Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations. In 2012-2013, 234 participants of the RECORD GPS Study (French Paris region, median age = 58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate = 57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models. Participants spent a median of 1 h 58 min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation. Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation

  11. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.

    PubMed

    Scott, Joseph J; Rowlands, Alex V; Cliff, Dylan P; Morgan, Philip J; Plotnikoff, Ronald C; Lubans, David R

    2017-12-01

    To determine the comparability and feasibility of wrist- and hip-worn accelerometers among free-living adolescents. 89 adolescents (age=13-14years old) from eight secondary schools in New South Wales (NSW), Australia wore wrist-worn GENEActiv and hip-worn ActiGraph (GT3X+) accelerometers simultaneously for seven days and completed an accelerometry behavior questionnaire. Bivariate correlations between the wrist- and hip-worn out-put were used to determine concurrent validity. Paired samples t-test were used to compare minutes per day in moderate-to-vigorous physical activity (MVPA). Group means and paired sample t-tests were used to analyze participants' perceptions of the wrist- and hip-worn monitoring protocols to assist with determining the feasibility. Wrist-worn accelerometry compared favorably with the hip-worn in average activity (r=0.88, p<0.001) and MVPA (r=0.84 p<0.001, mean difference=3.54min/day, SD=12.37). The wrist-worn accelerometer had 50% fewer non-valid days (75 days, 12%) than the hip-worn accelerometer (n=152, 24.4%). Participants reported they liked to wear the device on the wrist (p<0.01), and that it was less uncomfortable (p=0.02) and less embarrassing to wear on the wrist (p<0.01). Furthermore, that they would be more willing to wear the device again on the wrist over the hip (p<0.01). Our findings reveal there is a strong linear relationship between wrist- and hip-worn accelerometer out-put among adolescents in free-living conditions. Adolescent compliance was significantly higher with wrist placement, with participants reporting that it was more comfortable and less embarrassing to wear on the wrist. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Individual characteristics associated with mismatches between self-reported and accelerometer-measured physical activity.

    PubMed

    Tully, Mark A; Panter, Jenna; Ogilvie, David

    2014-01-01

    Accurate assessment tools are required for the surveillance of physical activity (PA) levels and the assessment of the effect of interventions. In addition, increasing awareness of PA is often used as the first step in pragmatic behavioural interventions, as discrepancies between the amount of activity an individual perceives they do and the amount actually undertaken may act as a barrier to change. Previous research has demonstrated differences in the amount of activity individuals report doing, compared to their level of physical activity when measured with an accelerometer. Understanding the characteristics of those whose PA level is ranked differently when measured with either self-report or accelerometry is important as it may inform the choice of instrument for future research. The aim of this project was to determine which individual characteristics are associated with differences between self-reported and accelerometer measured physical activity. Participant data from the 2009 wave of the Commuting and Health in Cambridge study were used. Quartiles of self-reported and accelerometer-measured PA were derived by ranking each measure from lowest to highest. These quartiles were compared to determine whether individuals' physical activity was ranked higher by either method. Multinomial logistic regression models were used to investigate the individual characteristics associated with different categories of mismatch. Data from 486 participants (70% female) were included in the analysis. In adjusted analyses, the physical activity of overweight or obese individuals was significantly more likely to be ranked higher by self-report than by accelerometer than that of normal-weight individuals (OR = 2.07, 95%CI = 1.28-3.34), particularly among women (OR = 3.97, 95%CI = 2.11-7.47). There was a greater likelihood of mismatch between self-reported and accelerometer measured physical activity levels in overweight or obese adults. Future studies in overweight or obese

  13. The Impact of Accelerometers on Physical Activity and Weight Loss: A Systematic Review

    PubMed Central

    Goode, Adam P.; Hall, Katherine S.; Batch, Bryan C.; Huffman, Kim M.; Hastings, S. Nicole; Allen, Kelli D.; Shaw, Ryan J.; Kanach, Frances A.; McDuffie, Jennifer R.; Kosinski, Andrzej S.; Williams, John W.; Gierisch, Jennifer M.

    2016-01-01

    Background Regular physical activity is important for improving and maintaining health, but sedentary behavior is difficult to change. Providing objective, real-time feedback on physical activity with wearable motion-sensing technologies (activity monitors) may be a promising, scalable strategy to increase physical activity or decrease weight. Purpose We synthesized the literature on the use of wearable activity monitors for improving physical activity and weight-related outcomes and evaluated moderating factors that may have an impact on effectiveness. Methods We searched five databases from January 2000 to January 2015 for peer-reviewed, English-language randomized controlled trials among adults. Random-effects models were used to produce standardized mean differences (SMDs) for physical activity outcomes and mean differences (MDs) for weight outcomes. Heterogeneity was measured with I2. Results Fourteen trials (2,972 total participants) met eligibility criteria; accelerometers were used in all trials. Twelve trials examined accelerometer interventions for increasing physical activity. A small significant effect was found for increasing physical activity (SMD 0.26; 95% CI 0.04 to 0.49; I2=64.7%). Intervention duration was the only moderator found to significantly explain high heterogeneity for physical activity. Eleven trials examined effects of accelerometer interventions on weight. Pooled estimates showed a small significant effect for weight loss (MD −1.65 kg; 95% CI −3.03 to −0.28; I2=81%), and no moderators were significant. Conclusions Accelerometers demonstrated small positive effects on physical activity and weight loss. The small sample sizes with moderate to high heterogeneity in the current studies limit the conclusions that may be drawn. Future studies should focus on how best to integrate accelerometers with other strategies to increase physical activity and weight loss. PMID:27565168

  14. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent

    2014-05-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with

  15. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements.

    PubMed

    Wang, Yiwei; Nickel, Barry; Rutishauser, Matthew; Bryce, Caleb M; Williams, Terrie M; Elkaim, Gabriel; Wilmers, Christopher C

    2015-01-01

    Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) collars to monitor behaviors of free-ranging pumas (Puma concolor), which are difficult or impossible to observe in the wild. We attached collars to twelve pumas in the Santa Cruz Mountains, CA from 2010-2012. By implementing Random Forest models, we classified behaviors in wild pumas based on training data from observations and measurements of captive puma behavior. We applied these models to accelerometer data collected from wild pumas and identified mobile and non-mobile behaviors in captive animals with an accuracy rate greater than 96%. Accuracy remained above 95% even after downsampling our accelerometer data to 16 Hz. We were further able to predict low-acceleration movement behavior (e.g. walking) and high-acceleration movement behavior (e.g. running) with 93.8% and 92% accuracy, respectively. We had difficulty predicting non-movement behaviors such as feeding and grooming due to the small size of our training dataset. Lastly, we used model-predicted and field-verified predation events to quantify acceleration characteristics of puma attacks on large prey. These results demonstrate that accelerometers are useful tools for classifying the behaviors of cryptic medium and large-sized terrestrial mammals in their natural habitats and can help scientists gain deeper insight into their fine-scale behavioral patterns. We also show how accelerometer measurements can provide novel insights on the energetics and predation behavior of wild animals. Lastly we discuss the conservation implications of identifying these behavioral patterns in free-ranging species as natural and anthropogenic landscape features influence animal energy allocation and habitat use.

  16. Multi-cut solutions in Chern-Simons matrix models

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Sugiyama, Kento

    2018-04-01

    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  17. Associations of Accelerometer-Measured and Self-Reported Sedentary Time With Leukocyte Telomere Length in Older Women

    PubMed Central

    Shadyab, Aladdin H.; Macera, Caroline A.; Shaffer, Richard A.; Jain, Sonia; Gallo, Linda C.; LaMonte, Michael J.; Reiner, Alexander P.; Kooperberg, Charles; Carty, Cara L.; Di, Chongzhi; Manini, Todd M.; Hou, Lifang; LaCroix, Andrea Z.

    2017-01-01

    Abstract Few studies have assessed the association of sedentary time with leukocyte telomere length (LTL). In a cross-sectional study conducted in 2012–2013, we examined associations of accelerometer-measured and self-reported sedentary time with LTL in a sample of 1,481 older white and African-American women from the Women's Health Initiative and determined whether associations varied by level of moderate- to vigorous-intensity physical activity (MVPA). The association between sedentary time and LTL was evaluated using multiple linear regression models. Women were aged 79.2 (standard deviation, 6.7) years, on average. Self-reported sedentary time was not associated with LTL. In a model adjusting for demographic characteristics, lifestyle behaviors, and health-related factors, among women at or below the median level of accelerometer-measured MVPA, those in the highest quartile of accelerometer-measured sedentary time had significantly shorter LTL than those in the lowest quartile, with an average difference of 170 base pairs (95% confidence interval: 4, 340). Accelerometer-measured sedentary time was not associated with LTL in women above the median level of MVPA. Findings suggest that, on the basis of accelerometer measurements, higher sedentary time may be associated with shorter LTL among less physically active women. PMID:28100466

  18. Theoretical analysis and concept demonstration of a novel MOEMS accelerometer based on Raman—Nath diffraction

    NASA Astrophysics Data System (ADS)

    Zuwei, Zhang; Zhiyu, Wen; Jing, Hu

    2012-04-01

    The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman—Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fundamental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.

  19. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-29

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  20. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  1. Fractional Flow Reserve: Does a Cut-off Value add Value?

    PubMed Central

    Mohdnazri, Shah R; Keeble, Thomas R

    2016-01-01

    Fractional flow reserve (FFR) has been shown to improve outcomes when used to guide percutaneous coronary intervention (PCI). There have been two proposed cut-off points for FFR. The first was derived by comparing FFR against a series of non-invasive tests, with a value of ≤0.75 shown to predict a positive ischaemia test. It was then shown in the DEFER study that a vessel FFR value of ≥0.75 was associated with safe deferral of PCI. During the validation phase, a ‘grey zone’ for FFR values of between 0.76 and 0.80 was demonstrated, where a positive non-invasive test may still occur, but sensitivity and specificity were sub-optimal. Clinical judgement was therefore advised for values in this range. The FAME studies then moved the FFR cut-off point to ≤0.80, with a view to predicting outcomes. The ≤0.80 cut-off point has been adopted into clinical practice guidelines, whereas the lower value of ≤0.75 is no longer widely used. Here, the authors discuss the data underpinning these cut-off values and the practical implications for their use when using FFR guidance in PCI. PMID:29588700

  2. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  3. Raised BMI cut-off for overweight in Greenland Inuit--a review.

    PubMed

    Andersen, Stig; Fleischer Rex, Karsten; Noahsen, Paneeraq; Sørensen, Hans Christian Florian; Mulvad, Gert; Laurberg, Peter

    2013-01-01

    Obesity is associated with increased morbidity and premature death. Obesity rates have increased worldwide and the WHO recommends monitoring. A steep rise in body mass index (BMI), a measure of adiposity, was detected in Greenland from 1963 to 1998. Interestingly, the BMI starting point was in the overweight range. This is not conceivable in a disease-free, physically active, pre-western hunter population. This led us to reconsider the cut-off point for overweight among Inuit in Greenland. We found 3 different approaches to defining the cut-off point of high BMI in Inuit. First, the contribution to the height by the torso compared to the legs is relatively high. This causes relatively more kilograms per centimetre of height that increases the BMI by approximately 10% compared to Caucasian whites. Second, defining the cut-off by the upper 90-percentile of BMI from height and weight in healthy young Inuit surveyed in 1963 estimated the cut-off point to be around 10% higher compared to Caucasians. Third, if similar LDL-cholesterol and triglycerides are assumed for a certain BMI in Caucasians, the corresponding BMI in Inuit in both Greenland and Canada is around 10% higher. However, genetic admixture of Greenland Inuit and Caucasian Danes will influence this difference and hamper a clear distinction with time. Defining overweight according to the WHO cut-off of a BMI above 25 kg/m(2) in Greenland Inuit may overestimate the number of individuals with elevated BMI.

  4. Accelerometer thresholds: Accounting for body mass reduces discrepancies between measures of physical activity for individuals with overweight and obesity.

    PubMed

    Raiber, Lilian; Christensen, Rebecca A G; Jamnik, Veronica K; Kuk, Jennifer L

    2017-01-01

    The objective of this study was to explore whether accelerometer thresholds that are adjusted to account for differences in body mass influence discrepancies between self-report and accelerometer-measured physical activity (PA) volume for individuals with overweight and obesity. We analyzed 6164 adults from the National Health and Nutrition Examination Survey between 2003-2006. Established accelerometer thresholds were adjusted to account for differences in body mass to produce a similar energy expenditure (EE) rate as individuals with normal weight. Moderate-, vigorous-, and moderate- to vigorous-intensity PA (MVPA) durations were measured using established and adjusted accelerometer thresholds and compared with self-report. Durations of self-report were longer than accelerometer-measured MVPA using established thresholds (normal weight: 57.8 ± 2.4 vs 9.0 ± 0.5 min/day, overweight: 56.1 ± 2.7 vs 7.4 ± 0.5 min/day, and obesity: 46.5 ± 2.2 vs 3.7 ± 0.3 min/day). Durations of subjective and objective PA were negatively associated with body mass index (BMI) (P < 0.05). Using adjusted thresholds increased MVPA durations, and reduced discrepancies between accelerometer and self-report measures for overweight and obese groups by 6.0 ± 0.3 min/day and 17.7 ± 0.8 min/day, respectively (P < 0.05). Using accelerometer thresholds that represent equal EE rates across BMI categories reduced the discrepancies between durations of subjective and objective PA for overweight and obese groups. However, accelerometer-measured PA generally remained shorter than durations of self-report within all BMI categories. Further research may be necessary to improve analytical approaches when using objective measures of PA for individuals with overweight or obesity.

  5. Comparison of IPAQ-SF and Two Other Physical Activity Questionnaires with Accelerometer in Adolescent Boys.

    PubMed

    Rääsk, Triin; Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Jürimäe, Toivo; Vainik, Uku; Konstabel, Kenn

    2017-01-01

    Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively).

  6. Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers

    PubMed Central

    Luu, Loc; Dinh, Anh

    2018-01-01

    The aim of this study is on the investigation of motion noise removal techniques using two-accelerometer sensor system and various placements of the sensors on gentle movement and walking of the patients. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design filters in the motion noise removal techniques and peak signal detection. There are two main techniques of combining signals from the two sensors to mitigate the motion artifact: analog processing and digital processing. The analog processing comprises analog circuits performing adding or subtracting functions and bandpass filter to remove artifact noises before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The two techniques are tested on three placements of accelerometer sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are the best techniques to deal with gentle motion on all sensor placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to traditional methods using only one accelerometer. With walking motion, ADDER and z-axis acceleration are the best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer method. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. PMID:29614821

  7. Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries

    PubMed Central

    Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E.

    2013-01-01

    Purpose This study developed and tested an algorithm to classify accelerometer data as walking or non-walking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods Participants wore an accelerometer and a GPS unit, and concurrently completed a travel diary for 7 consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or non-walking based on a decision-tree algorithm consisting of 7 classification scenarios. Algorithm reliability was examined relative to two independent analysts’ classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results The 706 participants’ (mean age 51 years, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4,702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified physical activity into 8,170 (58.5 %) walking bouts and 5,337 (38.2%) non-walking bouts; 464 (3.3%) bouts were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the non-walking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean duration of PA bouts classified as walking was 15.2 min (SD=12.9). On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or non-walking behavior. PMID:23439414

  8. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals.

    PubMed

    Rhudy, Matthew B; Mahoney, Joseph M

    2018-04-01

    The goal of this work is to compare the differences between various step counting algorithms using both accelerometer and gyroscope measurements from wrist and ankle-mounted sensors. Participants completed four different conditions on a treadmill while wearing an accelerometer and gyroscope on the wrist and the ankle. Three different step counting techniques were applied to the data from each sensor type and mounting location. It was determined that using gyroscope measurements allowed for better performance than the typically used accelerometers, and that ankle-mounted sensors provided better performance than those mounted on the wrist.

  9. Signals and Noises Acting On The Accelerometer Mounted In The Mpo (mercury Planetary Orbiter).

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lucchesi, D.; Milyukov, V.; Nozzoli, S.

    The RadioScience experiments proposed for the BepiClombo ESA CORNERSTONE are aiming at performing planetary measurements such as: the rotation state of Mer- cury, the global structure of its gravity field and the local gravitational anomalies, but also to test some aspects of the General Relativity, to an unprecedented level of accu- racy. A high sensitivity accelerometer will measure the inertial acceleration acting on the MPO; these data, together with tracking data are used to evaluate the purely gravi- tational trajectory of the MPO, by transforming it to a virtual drag-free satellite system. At the Istituto di Fisica dello Spazio Interplanetario (IFSI) a high sensitive accelerom- eter named ISA (Italian Spring Accelerometer)* and considered for this mission has been studied. The main problems concerning the use of the accelerometer are related to the high dynamics necessary to follow the variation of the acceleration signals, with accuracy equal to 10^-9 g/sqr(Hz), and very high at the MPO orbital period and due to thermal noise introduced at the sidereal period of Mercury. The description of the accelerometer will be presented, with particular attention to the thermal problems and to the analysis regarding the choice of the mounting position on the MPO. *Project funded by the Italian Space Agency (ASI).

  10. Cutting

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cutting KidsHealth / For Teens / Cutting What's in this article? ... Getting Help Print en español Cortarse What Is Cutting? Emma's mom first noticed the cuts when Emma ...

  11. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  12. POD improvements of GALILEO satellites through the measurement of their non-gravitational accelerations by means of an onboard accelerometer

    NASA Astrophysics Data System (ADS)

    Peron, Roberto; Lucchesi, David M.; Santoli, Francesco; Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Lucente, Marco; Magnafico, Carmelo; Kalarus, Maciej; Zielinski, Janusz

    2016-04-01

    The Precise Orbit Determination (POD) of the satellites of the Global Navigation Satellite Systems (GNSS) represents the basic prerequisite in order to provide refined ephemerides for their orbit, aimed at providing a precise and accurate positioning on the Earth. An important factor that impacts negatively in the POD of these satellites is the limited modeling of the accelerations produced by the non-gravitational accelerations. These, indeed, are subtle and generally complex to model properly, especially in the case of a complex in shape spacecraft, with solar panels and antennae for microwave link and the mutual shadowing effects among the many surfaces involved. We have to notice that their modeling has an important impact in the determination of a number of geophysical parameters of interest, such as stations coordinates, Earth's geocenter and orientation parameters. In the case of GNSS satellites, the main NGP acceleration is the one produced by the direct solar radiation pressure, with non-negligible contributions due to Earth's albedo, thermal effects and power radiated by the antennae. The models developed so far for these perturbative effects have shown many limits, as pointed out in the literature. Currently, the models developed for the NGPs are mainly based on empirical blind models (with the goal of absorb unknowns quantities) and more recently with the use of wing-box models, that try to provide a finite-elements approach to the modeling. The European Space Agency (ESA) - in the context of the development of the GALILEO constellation, and especially in view of the next generation of GALILEO spacecraft - besides being interested in possible improvements of the NGPs models, is also envisaging the use of an onboard accelerometer to directly measure them in order to improve the POD of each spacecraft of the constellation. We have been involved in this study by means of a proposal to ESA denominated GALileo and ACcelerometry (GALAC) led by the Space

  13. Calibrating Accelerometers Using an Electromagnetic Launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erik Timpson

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering amore » desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.« less

  14. Lightweight fiber optic microphones and accelerometers

    NASA Astrophysics Data System (ADS)

    Bucaro, J. A.; Lagakos, N.

    2001-06-01

    We have designed, fabricated, and tested two lightweight fiber optic sensors for the dynamic measurement of acoustic pressure and acceleration. These sensors, one a microphone and the other an accelerometer, are required for active blanket sound control technology under development in our laboratory. The sensors were designed to perform to certain specifications dictated by our active sound control application and to do so without exhibiting sensitivity to the high electrical voltages expected to be present. Furthermore, the devices had to be small (volumes less than 1.5 cm3) and light (less than 2 g). To achieve these design criteria, we modified and extended fiber optic reflection microphone and fiber microbend displacement device designs reported in the literature. After fabrication, the performances of each sensor type were determined from measurements made in a dynamic pressure calibrator and on a shaker table. The fiber optic microbend accelerometer, which weighs less than 1.8 g, was found to meet all performance goals including 1% linearity, 90 dB dynamic range, and a minimum detectable acceleration of 0.2 mg/√Hz . The fiber optic microphone, which weighs less than 1.3 g, also met all goals including 1% linearity, 85 dB dynamic range, and a minimum detectable acoustic pressure level of 0.016 Pa/√Hz . In addition to our specific use in active sound control, these sensors appear to have application in a variety of other areas.

  15. Linear Acceleration Measurement Utilizing Inter-Instrument Synchronization: A Comparison between Accelerometers and Motion-Based Tracking Approaches

    ERIC Educational Resources Information Center

    Callaway, Andrew J.; Cobb, Jon E.

    2012-01-01

    Where as video cameras are a reliable and established technology for the measurement of kinematic parameters, accelerometers are increasingly being employed for this type of measurement due to their ease of use, performance, and comparatively low cost. However, the majority of accelerometer-based studies involve a single channel due to the…

  16. Using accelerometers to determine the calling behavior of tagged baleen whales.

    PubMed

    Goldbogen, J A; Stimpert, A K; DeRuiter, S L; Calambokidis, J; Friedlaender, A S; Schorr, G S; Moretti, D J; Tyack, P L; Southall, B L

    2014-07-15

    Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A tag deployed on a buoy in the vicinity of calling fin whales and a recording from a tag that had just fallen off a whale were able to detect calls acoustically but did not record corresponding accelerometer signals that were measured on calling individuals. Across the hundreds of calls measured on two tagged fin whales, the accelerometer response was generally anisotropic across all three axes, appeared to depend on tag placement and increased with the level of received sound. These data demonstrate that high-sample rate accelerometry can provide important insights into the acoustic behavior of baleen whales that communicate at low frequencies. This method helps identify vocalizing whales, which in turn enables the quantification of call rates, a fundamental component of models used to estimate baleen whale abundance and distribution from passive acoustic monitoring. © 2014. Published by The Company of Biologists Ltd.

  17. Prediction of energy expenditure and physical activity in preschoolers.

    PubMed

    Butte, Nancy F; Wong, William W; Lee, Jong Soo; Adolph, Anne L; Puyau, Maurice R; Zakeri, Issa F

    2014-06-01

    Accurate, nonintrusive, and feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate (HR) for the prediction of EE using room calorimetry and doubly labeled water (DLW) and established accelerometry cut points for PA levels. Fifty preschoolers, mean ± SD age of 4.5 ± 0.8 yr, participated in room calorimetry for minute-by-minute measurements of EE, accelerometer counts (AC) (Actiheart and ActiGraph GT3X+), and HR (Actiheart). Free-living 105 children, ages 4.6 ± 0.9 yr, completed the 7-d DLW procedure while wearing the devices. AC cut points for PA levels were established using smoothing splines and receiver operating characteristic curves. On the basis of calorimetry, mean percent errors for EE were -2.9% ± 10.8% and -1.1% ± 7.4% for CSTS models and -1.9% ± 9.6% and 1.3% ± 8.1% for MARS models using the Actiheart and ActiGraph+HR devices, respectively. On the basis of DLW, mean percent errors were -0.5% ± 9.7% and 4.1% ± 8.5% for CSTS models and 3.2% ± 10.1% and 7.5% ± 10.0% for MARS models using the Actiheart and ActiGraph+HR devices, respectively. Applying activity EE thresholds, final accelerometer cut points were determined: 41, 449, and 1297 cpm for Actiheart x-axis; 820, 3908, and 6112 cpm for ActiGraph vector magnitude; and 240, 2120, and 4450 cpm for ActiGraph x-axis for sedentary/light, light/moderate, and moderate/vigorous PA (MVPA), respectively. On the basis of confusion matrices, correctly classified rates were 81%-83% for sedentary PA, 58%-64% for light PA, and 62%-73% for MVPA. The lack of bias and acceptable limits of agreement affirms the validity of the CSTS and MARS models for the prediction of EE in preschool-aged children. Accelerometer cut points are satisfactory for the classification of sedentary, light, and moderate

  18. Objective assessment of subjective tinnitus through contralateral suppression of otoacoustic emissions by white noise; suggested cut-off points.

    PubMed

    Riga, M; Komis, A; Maragkoudakis, P; Korres, G; Danielides, V

    2016-12-01

    Normative otoacoustic emission (OAE) suppression values are currently lacking and the role of cochlear efferent innervation in tinnitus is controversial. The aim of this study was to investigate the association between tinnitus and medial olivocochlear bundle (MOCB) malfunction. Potential suppression amplitude cut-off criteria that could differentiate participants with tinnitus from those without were sought. Mean suppression amplitudes of transient evoked OAEs and distortion product OAEs by contralateral white noise (50 dBSL) were recorded. Six mean suppression amplitudes criteria were validated as possible cut-off points. The population consisted of normal hearing (n = 78) or presbycusic adults (n = 19) with tinnitus or without (n = 28 and 13, respectively) chronic tinnitus (in total, n = 138 78 females/60males, aged 49 ± 14 years). Participants with mean suppression values lower than 0.5-1 dBSPL seem to present a high probability to report tinnitus (specificity 88-97%). On the other hand, participants with mean suppression values larger than 2-2.5dBSPL seem to present a high probability of the absence of tinnitus (sensitivity 87-99%). Correlations were stronger among participants with bilateral presence or absence of tinnitus. This study seem to confirm an association between tinnitus and low suppression amplitudes (<1 dBSPL), which might evolve into an objective examination tool, supplementary to conventional audiological testing.

  19. Accelerometer use during field-based physical activity research in children and adolescents with intellectual disabilities: a systematic review.

    PubMed

    McGarty, Arlene M; Penpraze, Victoria; Melville, Craig A

    2014-05-01

    Many methodological questions and issues surround the use of accelerometers as a measure of physical activity during field-based research. To ensure overall research quality and the accuracy of results, methodological decisions should be based on study research questions. This paper aims to systematically review accelerometer use during field-based research in children and adolescents with intellectual disabilities. Medline, Embase, Cochrane Library, Web of Knowledge, PsycINFO, PubMed, and a thesis database (up to May 2013) were searched to identify relevant articles. Articles which used accelerometry-based monitors, quantified activity levels, and included ambulatory children and adolescents (≤ 18 years) with intellectual disabilities were included. Based on best practice guidelines, a form was developed to extract data based on 17 research components of accelerometer use. The search identified 429 articles. Ten full-text articles met the criteria and were included in the review. Many shortcomings in accelerometer use were identified, with the percentage of review criteria met ranging from 12% to 47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. However, a lack of measurement research, e.g., calibration/validation, for children and adolescents with intellectual disabilities is limiting the ability of field-based researchers to make to the most appropriate accelerometer use decisions. The methods of accelerometer use employed can have significant effects on the quality and validity of results produced, which researchers should be more aware of. To allow informed use decisions, there should be a greater focus on measurement research related to children and adolescents with intellectual disabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument.

    PubMed

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng

    2018-04-18

    A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).

  1. Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument

    PubMed Central

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan

    2018-01-01

    A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021

  2. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer

    PubMed Central

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-01-01

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383

  3. Graph cuts via l1 norm minimization.

    PubMed

    Bhusnurmath, Arvind; Taylor, Camillo J

    2008-10-01

    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.

  4. Accuracy of the WHO’s body mass index cut-off points to measure gender- and age-specific obesity in middle-aged adults living in the city of Rio de Janeiro, Brazil

    PubMed Central

    Wollner, Materko; Paulo Roberto, Benchimol-Barbosa; Alysson Roncally, Silva Carvalho; Jurandir, Nadal; Edil, Luis Santos

    2017-01-01

    Introduction. Obesity is defined by the World Health Organization (WHO) as a disease characterized by the excessive accumulation of body fat. Obesity is considered a public health problem, leading to serious social, psychological and physical problems. However, the appropriate cut-off point of body mass index (BMI) based on body fat percentage (BF%) for classifying an individual as obese in middle-aged adults living in Rio de Janeiro remains unclear. Materials and methods. This was a prospective cross-sectional study comprising of 856 adults (413 men and 443 women) living in Rio de Janeiro, Brazil ranging from 30-59 years of age. The data were collected over a two year period (2010-2011), and all participants were underwent anthropometric evaluation. The gold standard was the percentage of body fat estimated by bioelectrical impedance analysis. The optimal sensitivity and specificity were attained by adjusting BMI cut-off values to predict obesity based on the WHO criteria: BF% >25% in men and >35% in women, according to the receiver operating characteristic curve (ROC) analysis adjusted for age and for the whole group. Results. The BMI cut-offs for predicting BF% were 29.9 kg/m2 in men and 24.9 kg/m2 in women. Conclusions The BMI that corresponded to a BF% previously defining obesity was similar to that of other Western populations for men but not for women. Furthermore, gender and age specific cut-off values are recommended in this population. Significance for public health World Health Organization (WHO) defines obesity as a disease characterized by the excessive accumulation of body fat. Obesity is considered a public health problem, leading to serious social, psychological and physical problems. The WHO suggested cut-off point for obesity is a body mass index (BMI) of 30 kg/m2, which is associated with morbidity and mortality. An important issue in the debate over measuring obesity concerns the use of BMI to define obesity across different populations. However

  5. Accelerometer-Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging

    PubMed Central

    Pänkäälä, Mikko; Paasio, Ari

    2014-01-01

    Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563

  6. Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency

    NASA Astrophysics Data System (ADS)

    Zou, Hongshuo; Wang, Jiachou; Chen, Fang; Bao, Haifei; Jiao, Ding; Zhang, Kun; Song, Zhaohui; Li, Xinxin

    2017-07-01

    This paper reports a novel monolithically integrated tri-axis high-shock accelerometer with high resonant-frequency for the detection of a broad frequency-band shock signal. For the first time, a resonant-frequency as high as about 1.4 MHz is designed for all the x-, y- and z-axis accelerometers of the integrated tri-axis sensor. In order to achieve a wide frequency-band detection performance, all the three sensing structures are designed into an axially compressed/stretched tiny-beam sensing scheme, where the p  +  -doped tiny-beams are connected into a Wheatstone bridge for piezoresistive output. By using ordinary (1 1 1) silicon wafer (i.e. non-SOI wafer), a single-wafer based fabrication technique is developed to monolithically integrate the three sensing structures for the tri-axis sensor. Testing results under high-shock acceleration show that each of the integrated three-axis accelerometers exhibit about 1.4 MHz resonant-frequency and 0.2-0.4 µV/V/g sensitivity. The achieved high frequencies for all the three sensing units make the tri-axis sensor promising in high fidelity 3D high-shock detection applications.

  7. Are the same tapes really the same? Ultrasound study of laser-cut and mechanically cut TVT-O post-operative behavior.

    PubMed

    Rusavy, Zdenek; Masata, Jaromir; Svabik, Kamil; Hubka, Petr; Zvara, Karel; Martan, Alois

    2017-11-25

    TVT-O production has been modified to laser cutting from mechanical cutting. We compared the behavior of laser and mechanically cut tension-free vaginal tape-obturator (TVT-O) using ultrasound at various time points after surgery. This is a retrospective analysis of clinical and ultrasound data from two previously reported randomized controlled trials with TVT-O. Behavior of mechanically cut TVT-O implanted in January 2007 to November 2009 and laser-cut TVT-O implanted in May 2010 to May 2012 was assessed by ultrasound at day 1, the 2nd week, the 3rd month, and the 1st and 2nd years post-operatively. Bladder neck and tape margins positions were described by coordinates in the orthogonal system calculated from polar coordinates. Tape mobility was measured as a change in the upper and lower tape margin position from rest to maximal Valsalva. Comparison of 2-year subjective and objective surgery outcomes was also performed. In total, 68 mechanically cut and 50 laser-cut TVT-Os were implanted. Follow-up data were available from 49 and 45 women respectively. No differences in any baseline characteristics or bladder neck mobility were observed. Significantly lower tape mobility was observed on day 1 and week 2 after mechanically cut TVT-O, although subsequent mobility was comparable to laser-cut TVT-O. The subjective and objective surgery outcomes were comparable. Although without clinical significance, early postoperative behavior of the mechanically cut and laser-cut TVT-O tapes differs. The less stiff, mechanically-cut TVT-O loosens within 2 weeks of implantation, whereas the stiffer, laser-cut TVT-O keeps its tension.

  8. A Miniature High-Sensitivity Braodband Accelerometer Based on Electron Tunneling Transducers

    NASA Technical Reports Server (NTRS)

    Rockstad, H.; Kenny, T.; Reynolds, J.; Kaiser, W.; Gabrielson, T.

    1993-01-01

    This paper describes the successful fabrication and demonstration of a new dual-element micromachined silicon tunnel accelerometer that extends the operational bandwidth beyond the resonant frequency of the proof mass.

  9. Ultra-Sensitive Electrostatic Accelerometers and Future Fundamental Physics Missions

    NASA Astrophysics Data System (ADS)

    Touboul, Pierre; Christophe, Bruno; Rodrigues, M.; Marque, Jean-Pierre; Foulon, Bernard

    Ultra-sensitive electrostatic accelerometers have in the last decade demonstrated their unique performance and reliability in orbit leading to the success of the three Earth geodesy missions presently in operation. In the near future, space fundamental physics missions are in preparation and highlight the importance of this instrument for achieving new scientific objectives. Corner stone of General Relativity, the Equivalence Principle may be violated as predicted by attempts of Grand Unification. Verification experiment at a level of at least 10-15 is the objective of the CNES-ESA mission MICROSCOPE, thanks to a differential accelerometer configuration with concentric cylindrical test masses. To achieve the numerous severe requirements of the mission, the instrument is also used to control the attitude and the orbital motion of the space laboratory leading to a pure geodesic motion of the drag-free satellite. The performance of the accelerometer is a few tenth of femto-g, at the selected frequency of the test about 10-3 Hz, i.e several orbit frequencies. Another important experimental research in Gravity is the verification of the Einstein metric, in particular its dependence with the distance to the attractive body. The Gravity Advanced Package (GAP) is proposed for the future EJSM planetary mission, with the objective to verify this scale dependence of the gravitation law from Earth to Jupiter. This verification is performed, during the interplanetary cruise, by following precisely the satellite trajectory in the planet and Sun fields with an accurate measurement of the non-gravitational accelerations in order to evaluate the deviations to the geodesic motion. Accelerations at DC and very low frequency domain are concerned and the natural bias of the electrostatic accelerometer is thus compensated down to 5 10-11 m/s2 thanks to a specific bias calibration device. More ambitious, the dedicated mission Odyssey, proposed for Cosmic Vision, will fly in the Solar

  10. Effect of Slice Error of Glass on Zero Offset of Capacitive Accelerometer

    NASA Astrophysics Data System (ADS)

    Hao, R.; Yu, H. J.; Zhou, W.; Peng, B.; Guo, J.

    2018-03-01

    Packaging process had been studied on capacitance accelerometer. The silicon-glass bonding process had been adopted on sensor chip and glass, and sensor chip and glass was adhered on ceramic substrate, the three-layer structure was curved due to the thermal mismatch, the slice error of glass lead to asymmetrical curve of sensor chip. Thus, the sensitive mass of accelerometer deviated along the sensitive direction, which was caused in zero offset drift. It was meaningful to confirm the influence of slice error of glass, the simulation results showed that the zero output drift was 12.3×10-3 m/s2 when the deviation was 40μm.

  11. Machine learning methods for classifying human physical activity from on-body accelerometers.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2010-01-01

    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.

  12. Development of a Superconducting Six-Axis Accelerometer

    DTIC Science & Technology

    1989-07-01

    COW tH + R"( rkw rRk . (2.35) Recognizing that the components of the Levi - Civita tensor must remain the same in all Cartesian coordinate systems, this...Dynamics of a Rigid Body in a RuLating Accelerated Reference Frame ........ .................................. 10 2.2.3 Accelerometer Equations of Motion...in the Type-I region where currents are more stable. All the parts fit inside a 10.16 cm titanium cube. Two problems were encountered with this

  13. Gravity Compensation Method for Combined Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements.

    PubMed

    Krogh, Magnus Reinsfelt; Nghiem, Giang M; Halvorsen, Per Steinar; Elle, Ole Jakob; Grymyr, Ole-Johannes; Hoff, Lars; Remme, Espen W

    2017-05-01

    A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal. In this study we propose a new method for estimating the gravity, based on strapdown inertial navigation, using a combined accelerometer and gyro. The gyro was used to estimate the orientation of the gravity field and thereby remove it. We compared this method with two previously proposed gravity filtering methods in three experimental models using: (1) in silico computer simulated heart motion; (2) robot mimicked heart motion; and (3) in vivo measured motion on the heart in an animal model. The new method correlated excellently with the reference (r 2  > 0.93) and had a deviation from reference peak systolic displacement (6.3 ± 3.9 mm) below 0.2 ± 0.5 mm for the robot experiment model. The new method performed significantly better than the two previously proposed methods (p < 0.001). The results show that the proposed method using gyro can measure cardiac motion with high accuracy and performs better than existing methods for filtering the gravity component from the accelerometer signal.

  14. Evolution of accelerometer methods for physical activity research.

    PubMed

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Implementation of Steiner point of fuzzy set.

    PubMed

    Liang, Jiuzhen; Wang, Dejiang

    2014-01-01

    This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.

  16. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers.

    PubMed

    García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J

    2015-10-01

    This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.

  17. A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Okada, H.; Masuda, T.; Maeda, R.; Itoh, T.

    2010-10-01

    A digital output piezoelectric accelerometer is proposed to realize an ultra-low power consumption wireless sensor node. The accelerometer has patterned piezoelectric thin films (piezoelectric plates) electrically connected in series accompanied by CMOS switches at the end of some of the piezoelectric plates. The connected piezoelectric plates amplify the output voltage without the use of amplifiers. The CMOS switches turn on when the output voltage of the piezoelectric plates is higher than the CMOS threshold voltage. The piezoelectric accelerometer converts the acceleration into a number of on-state CMOS switches, which can be called the digital output. The proposed digital output piezoelectric accelerometer, using Pb(Zr, Ti)O3 (PZT) thin films as the piezoelectric material, was fabricated through a microelectromechanical system (MEMS) microfabrication process. The output voltage was found to be amplified by the number of connected piezoelectric plates. The DC output voltage obtained by using an AC to DC conversion circuit is proportional to the number of connections. The results show the potential for realizing the proposed digital output piezoelectric accelerometer.

  18. Cognitive function and the agreement between self-reported and accelerometer-accessed physical activity.

    PubMed

    Herbolsheimer, Florian; Riepe, Matthias W; Peter, Richard

    2018-02-21

    Numerous studies have reported weak or moderate correlations between self-reported and accelerometer-assessed physical activity. One explanation is that self-reported physical activity might be biased by demographic, cognitive or other factors. Cognitive function is one factor that could be associated with either overreporting or underreporting of daily physical activity. Difficulties in remembering past physical activities might result in recall bias. Thus, the current study examines whether the cognitive function is associated with differences between self-reported and accelerometer-assessed physical activity. Cross-sectional data from the population-based Activity and Function in the Elderly in Ulm study (ActiFE) were used. A total of 1172 community-dwelling older adults (aged 65-90 years) wore a uniaxial accelerometer (activPAL unit) for a week. Additionally, self-reported physical activity was assessed using the LASA Physical Activity Questionnaire (LAPAQ). Cognitive function was measured with four items (immediate memory, delayed memory, recognition memory, and semantic fluency) from the Consortium to Establish a Registry for Alzheimer's Disease Total Score (CERAD-TS). Mean differences of self-reported and accelerometer-assessed physical activity (MPA) were associated with cognitive function in men (r s  = -.12, p = .002) but not in women. Sex-stratified multiple linear regression analyses showed that MPA declined with high cognitive function in men (β = -.13; p = .015). Results suggest that self-reported physical activity should be interpreted with caution in older populations, as cognitive function was one factor that explained the differences between objective and subjective physical activity measurements.

  19. Implementation of an iPhone wireless accelerometer application for the quantification of reflex response.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa

    2013-01-01

    The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.

  20. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time.

    PubMed

    Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas

    2017-01-16

    To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1-4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to -139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time

    PubMed Central

    Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas

    2017-01-01

    Objectives To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. Methods 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1–4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to −139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. Conclusions This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. PMID:28093433

  2. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection.

    PubMed

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-12-23

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  3. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    PubMed Central

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-01-01

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534

  4. Full-Scale Linear Cutting Tests in Chongqing Sandstone to Study the Influence of Confining Stress on Rock Cutting Forces by TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Pan, Yucong; Liu, Quansheng; Liu, Jianping; Peng, Xingxin; Kong, Xiaoxuan

    2018-06-01

    In order to study the influence of confining stress on rock cutting forces by tunnel boring machine (TBM) disc cutter, full-scale linear cutting tests are conducted in Chongqing Sandstone (uniaxial compressive strength 60.76 MPa) using five equal biaxial confining stressed conditions, i.e. 0-0, 5-5, 10-10, 15-15 and 20-20 MPa; disc cutter normal force, rolling force, cutting coefficient and normalized resultant force are analysed. It is found that confining stress can greatly affect disc cutter resultant force, its proportion in normal and rolling directions and its acting point for the hard Chongqing Sandstone and the confining stress range used in this study. For every confining stressed condition, as cutter penetration depth increases, disc cutter normal force increases with decreasing speed, rolling force and cutting coefficient both increase linearly, and acting point of the disc cutter resultant force moves downward at some extent firstly and then upward back to its initial position. For same cutter penetration depth, as confining stress increases, disc cutter normal force, rolling force, cutting coefficient and normalized resultant force all increase at some extent firstly and then decrease rapidly to very small values (quite smaller than those obtained under the non-stressed condition) after some certain confining stress thresholds. The influence of confining stress on rock cutting by TBM disc cutter can be generally divided into three stages as confining stress increases, i.e. strengthening effect stage, damaging effect stage and rupturing effect stage. In the former two stages (under low confining stress), rock remains intact and rock cutting forces are higher than those obtained under the non-stressed condition, and thus rock cutting by TBM disc cutter is restrained; in the last stage (under high confining stress), rock becomes non-intact and rock slabbing failure is induced by confining stress before disc cutting, and thus rock cutting by TBM disc

  5. Comprehensive Testing of ASL-Owned Accelerometers

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Hutt, C. R.; Ringler, A. T.; de la Torre, T.

    2011-12-01

    The Albuquerque Seismological Laboratory (ASL) of the U.S. Geological Survey (USGS) has undertaken detailed testing of several commercial, off-the-shelf accelerometers to characterize production-standard examples of each instrument. The models tested are the Geotech PA-23, Guralp CMG-5TC, Kinemetrics ES-T (Episensor), Nanometrics Titan (sensor only), and RefTek RT-147-01/3. All are ±4 g accelerometers excepting the CMG-5TC at ±2 g (self noise could be depressed relative to 4-g variant). For dynamic tests, all were recorded on Quanterra Q330 (24-bit) or Q330HR (26-bit) recorders; for static tests high-precision multimeters were used (generally Agilent 3458A 81/2-digit or 34401A 61/2-digit). We also used a translational shake table (Anorad LW10-18-P-E-A-A-B-0) to input controlled test motions. We performed the tests described by Hutt et al. (2010; U.S. Geol. Surv. Open File Rep., 2009-1295, http://pubs.usgs.gov/of/2009/1295/) for these strong-motion sensors (Section 7, Recommended Testing for Strong Motion Acceleration Sensors). These recommended tests result from a public/private effort called "GST2" (the second Guidelines for Seismometer Testing workshop) and represent a consensus of experts in government, academia, and industry (a secondary goal of this work is vetting the tests in this consensus document). The recommended accelerometer tests are: 7.1 Power Demand (Start-up and Steady-State) 7.2 Static Sensitivity, Offset, and Linearity 7.3 Frequency Response and Bandwidth 7.4 Clip Level 7.5 Self Noise and Operating Range 7.6 Distortion 7.7 Orientation (Case to Actual) and Orthogonally 7.8 Translational Cross-Axis Sensitivity 7.9 Temperature Effects (Sensitivity and Offset) 7.10 Power Supply Voltage and Voltage-Noise Effects (Offset and Sensitivity) 7.11 Double Integration (Band-Limited Displacement Square Wave) To the degree the tests and analyses have progressed at this writing, the results are generally good but have revealed a number of issues needing

  6. Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys.

    PubMed

    Watanabe, I; Ohkubo, C; Ford, J P; Atsuta, M; Okabe, T

    2000-11-01

    The purpose of this study was to investigate the cutting efficiency of air-turbine burs on cast free-machining titanium alloy (DT2F) and to compare the results with those for cast commercially pure (CP) Ti, Ti-6Al-4V alloy, and dental casting alloys. The cast metal (DT2F, CP Ti, Ti-6Al-4V, Type IV gold alloy and Co-Cr alloy) specimens were cut with air-turbine burs (carbide burs and diamond points) at air pressures of 138 or 207 kPa and a cutting force of 0.784 N. The cutting efficiency of each bur was evaluated as volume loss calculated from the weight loss cut for 5 s and the density of each metal. The bulk microhardness was measured to correlate the machinability and the hardness of each metal. The amounts of DT2F cut with the carbide burs were significantly (p < 0.05) greater than for the other titanium specimens at either 138 or 207 kPa. The diamond points exhibited similar machining efficiency among all metals except for Type IV gold alloy. The increase in the volume loss of Co-Cr alloy (Vitallium) cut with the diamond points showed a negative value (-29%) with an increase in air pressure from 138 to 207 kPa. There was a negative correlation between the amounts of metal removed (volume loss) and the hardness (r2 = 0.689) when the carbide burs were used. The results of this study indicated that a free-machining titanium alloy (DT2F) exhibited better machinability compared to CP Ti and Ti-6Al-4V alloy when using carbide fissure burs. When machining cast CP Ti and its alloys, carbide fissure burs possessed a greater machining efficiency than the diamond points and are recommended for titanium dental prostheses.

  7. Equating accelerometer estimates among youth: the Rosetta Stone 2

    PubMed Central

    Brazendale, Keith; Beets, Michael W.; Bornstein, Daniel B.; Moore, Justin B.; Pate, Russell R.; Weaver, Robert G.; Falck, Ryan S.; Chandler, Jessica L.; Andersen, Lars B.; Anderssen, Sigmund A.; Cardon, Greet; Cooper, Ashley; Davey, Rachel; Froberg, Karsten; Hallal, Pedro C.; Janz, Kathleen F.; Kordas, Katarzyna; Kriemler, Susi; Puder, Jardena J.; Reilly, John J.; Salmon, Jo; Sardinha, Luis B.; Timperio, Anna; van Sluijs, Esther MF

    2017-01-01

    Objectives Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints. Design Secondary data analysis Methods Data from the International Children’s Accelerometer Database (ICAD; Spring 2014) consisting of 43,112 Actigraph accelerometer data files from 21 worldwide studies (children 3-18 years, 61.5% female) were used to develop prediction equations for six sets of published cutpoints. Linear and non-linear modeling, using a leave one out cross-validation technique, was employed to develop equations to convert MVPA from one set of cutpoints into another. Bland Altman plots illustrate the agreement between actual MVPA and predicted MVPA values. Results Across the total sample, mean MVPA ranged from 29.7 MVPA min.d-1 (Puyau) to 126.1 MVPA min.d-1 (Freedson 3 METs). Across conversion equations, median absolute percent error was 12.6% (range: 1.3 to 30.1) and the proportion of variance explained ranged from 66.7% to 99.8%. Mean difference for the best performing prediction equation (VC from EV) was -0.110 min.d-1 (limits of agreement (LOA), -2.623 to 2.402). The mean difference for the worst performing prediction equation (FR3 from PY) was 34.76 min.d-1 (LOA, -60.392 to 129.910). Conclusions For six different sets of published cutpoints, the use of this equating system can assist individuals attempting to synthesize the growing body of literature on Actigraph, accelerometry-derived MVPA. PMID:25747468

  8. Gyro and accelerometer failure detection and identification in redundant sensor systems

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Deckert, J. C.

    1972-01-01

    Algorithms for failure detection and identification for redundant noncolinear arrays of single degree of freedom gyros and accelerometers are described. These algorithms are optimum in the sense that detection occurs as soon as it is no longer possible to account for the instrument outputs as the outputs of good instruments operating within their noise tolerances, and identification occurs as soon as it is true that only a particular instrument failure could account for the actual instrument outputs within the noise tolerance of good instruments. An estimation algorithm is described which minimizes the maximum possible estimation error magnitude for the given set of instrument outputs. Monte Carlo simulation results are presented for the application of the algorithms to an inertial reference unit consisting of six gyros and six accelerometers in two alternate configurations.

  9. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  10. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  11. Capturing Ultraviolet Radiation Exposure and Physical Activity: Feasibility Study and Comparison Between Self-Reports, Mobile Apps, Dosimeters, and Accelerometers.

    PubMed

    Hacker, Elke; Horsham, Caitlin; Allen, Martin; Nathan, Andrea; Lowe, John; Janda, Monika

    2018-04-17

    Skin cancer is the most prevalent cancer in Australia. Skin cancer prevention programs aim to reduce sun exposure and increase sun protection behaviors. Effectiveness is usually assessed through self-report. It was the aim of this study to test the acceptance and validity of a newly developed ultraviolet radiation (UVR) exposure app, designed to reduce the data collection burden to research participants. Physical activity data was collected because a strong focus on sun avoidance may result in unhealthy reductions in physical activity. This paper provides lessons learned from collecting data from participants using paper diaries, a mobile app, dosimeters, and accelerometers for measuring end-points of UVR exposure and physical activity. Two participant groups were recruited through social and traditional media campaigns 1) Group A-UVR Diaries and 2) Group B-Physical Activity. In Group A, nineteen participants wore an UVR dosimeter wristwatch (University of Canterbury, New Zealand) when outside for 7 days. They also recorded their sun exposure and physical activity levels using both 1) the UVR diary app and 2) a paper UVR diary. In Group B, 55 participants wore an accelerometer (Actigraph, Pensacola, FL, USA) for 14 days and completed the UVR diary app. Data from the UVR diary app were compared with UVR dosimeter wristwatch, accelerometer, and paper UVR diary data. Cohen kappa coefficient score was used to determine if there was agreement between categorical variables for different UVR data collection methods and Spearman rank correlation coefficient was used to determine agreement between continuous accelerometer data and app-collected self-report physical activity. The mean age of participants in Groups A (n=19) and B (n=55) was 29.3 and 25.4 years, and 63% (12/19) and 75% (41/55) were females, respectively. Self-reported sun exposure data in the UVR app correlated highly with UVR dosimetry (κ=0.83, 95% CI 0.64-1.00, P<.001). Correlation between self-reported UVR

  12. Capturing Ultraviolet Radiation Exposure and Physical Activity: Feasibility Study and Comparison Between Self-Reports, Mobile Apps, Dosimeters, and Accelerometers

    PubMed Central

    Allen, Martin; Nathan, Andrea; Lowe, John; Janda, Monika

    2018-01-01

    Background Skin cancer is the most prevalent cancer in Australia. Skin cancer prevention programs aim to reduce sun exposure and increase sun protection behaviors. Effectiveness is usually assessed through self-report. Objective It was the aim of this study to test the acceptance and validity of a newly developed ultraviolet radiation (UVR) exposure app, designed to reduce the data collection burden to research participants. Physical activity data was collected because a strong focus on sun avoidance may result in unhealthy reductions in physical activity. This paper provides lessons learned from collecting data from participants using paper diaries, a mobile app, dosimeters, and accelerometers for measuring end-points of UVR exposure and physical activity. Methods Two participant groups were recruited through social and traditional media campaigns 1) Group A—UVR Diaries and 2) Group B—Physical Activity. In Group A, nineteen participants wore an UVR dosimeter wristwatch (University of Canterbury, New Zealand) when outside for 7 days. They also recorded their sun exposure and physical activity levels using both 1) the UVR diary app and 2) a paper UVR diary. In Group B, 55 participants wore an accelerometer (Actigraph, Pensacola, FL, USA) for 14 days and completed the UVR diary app. Data from the UVR diary app were compared with UVR dosimeter wristwatch, accelerometer, and paper UVR diary data. Cohen kappa coefficient score was used to determine if there was agreement between categorical variables for different UVR data collection methods and Spearman rank correlation coefficient was used to determine agreement between continuous accelerometer data and app-collected self-report physical activity. Results The mean age of participants in Groups A (n=19) and B (n=55) was 29.3 and 25.4 years, and 63% (12/19) and 75% (41/55) were females, respectively. Self-reported sun exposure data in the UVR app correlated highly with UVR dosimetry (κ=0.83, 95% CI 0.64-1.00, P

  13. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    PubMed

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  14. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    PubMed Central

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  15. Analyzing Body Movements within the Laban Effort Framework Using a Single Accelerometer

    PubMed Central

    Kikhia, Basel; Gomez, Miguel; Jiménez, Lara Lorna; Hallberg, Josef; Karvonen, Niklas; Synnes, Kåre

    2014-01-01

    This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong—Light, Free—Bound and Sudden—Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh) simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting Strong—Light body movements using the Random Forest classifier. The wrist placement was also the best location for classifying Bound—Free body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting Sudden—Sustained body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement. PMID:24662408

  16. Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test.

    PubMed

    Doheny, Emer P; Walsh, Cathal; Foran, Timothy; Greene, Barry R; Fan, Chie Wei; Cunningham, Clodagh; Kenny, Rose Anne

    2013-09-01

    The five-times-sit-to-stand test (FTSS) is an established assessment of lower limb strength, balance dysfunction and falls risk. Clinically, the time taken to complete the task is recorded with longer times indicating increased falls risk. Quantifying the movement using tri-axial accelerometers may provide a more objective and potentially more accurate falls risk estimate. 39 older adults, 19 with a history of falls, performed four repetitions of the FTSS in their homes. A tri-axial accelerometer was attached to the lateral thigh and used to identify each sit-stand-sit phase and sit-stand and stand-sit transitions. A second tri-axial accelerometer, attached to the sternum, captured torso acceleration. The mean and variation of the root-mean-squared amplitude, jerk and spectral edge frequency of the acceleration during each section of the assessment were examined. The test-retest reliability of each feature was examined using intra-class correlation analysis, ICC(2,k). A model was developed to classify participants according to falls status. Only features with ICC>0.7 were considered during feature selection. Sequential forward feature selection within leave-one-out cross-validation resulted in a model including four reliable accelerometer-derived features, providing 74.4% classification accuracy, 80.0% specificity and 68.7% sensitivity. An alternative model using FTSS time alone resulted in significantly reduced classification performance. Results suggest that the described methodology could provide a robust and accurate falls risk assessment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Raised BMI cut-off for overweight in Greenland Inuit – a review

    PubMed Central

    Andersen, Stig; Fleischer Rex, Karsten; Noahsen, Paneeraq; Sørensen, Hans Christian Florian; Mulvad, Gert; Laurberg, Peter

    2013-01-01

    Background Obesity is associated with increased morbidity and premature death. Obesity rates have increased worldwide and the WHO recommends monitoring. A steep rise in body mass index (BMI), a measure of adiposity, was detected in Greenland from 1963 to 1998. Interestingly, the BMI starting point was in the overweight range. This is not conceivable in a disease-free, physically active, pre-western hunter population. Objective This led us to reconsider the cut-off point for overweight among Inuit in Greenland. Design and findings We found 3 different approaches to defining the cut-off point of high BMI in Inuit. First, the contribution to the height by the torso compared to the legs is relatively high. This causes relatively more kilograms per centimetre of height that increases the BMI by approximately 10% compared to Caucasian whites. Second, defining the cut-off by the upper 90-percentile of BMI from height and weight in healthy young Inuit surveyed in 1963 estimated the cut-off point to be around 10% higher compared to Caucasians. Third, if similar LDL-cholesterol and triglycerides are assumed for a certain BMI in Caucasians, the corresponding BMI in Inuit in both Greenland and Canada is around 10% higher. However, genetic admixture of Greenland Inuit and Caucasian Danes will influence this difference and hamper a clear distinction with time. Conclusion Defining overweight according to the WHO cut-off of a BMI above 25 kg/m2 in Greenland Inuit may overestimate the number of individuals with elevated BMI. PMID:23986904

  18. Analysis and amelioration about the cross-sensitivity of a high resolution MOEMS accelerometer based on diffraction grating

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan

    2016-10-01

    Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.

  19. MSL-2 accelerometer data results

    NASA Technical Reports Server (NTRS)

    Henderson, Fred

    1990-01-01

    The Materials Science Laboratory-2 (MSL-2) mission flew the Marshall Space Flight Center-developed Linear Triaxial Accelerometer (LTA) on the Space Transportation System (STS) 61-C Shuttle mission launched January 21, 1986. Flight data were analyzed to verify the quietness of the MSL carrier and to characterize the acceleration environment for future MSL users. The MSL was found to introduce no significant experiment acceleration; and the effects of crew treadmill exercise, Orbiter vernier engine firings, and other routine flight occurrences were established. The LTA was found to be well suited for measuring nominal to very quiet STS acceleration levels at frequencies below 50 Hz. Special processing was used to examine the low-frequency spectrum and to establish the effective rms amplitude associated with dominant frequencies.

  20. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014

  1. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-on Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.

    2014-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The

  2. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer.

    PubMed

    Zhou, Wu; He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping

    2018-01-20

    The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.

  3. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer

    PubMed Central

    He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping

    2018-01-01

    The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures. PMID:29361685

  4. Feasibility of heart sounds measurements from an accelerometer within an ICD pulse generator.

    PubMed

    Siejko, Krzysztof Z; Thakur, Pramodsingh H; Maile, Keith; Patangay, Abhilash; Olivari, Maria-Teresa

    2013-03-01

    The feasibility of detecting heart sounds (HS) from an accelerometer sensor enclosed within an implantable cardioverter defibrillator (ICD) pulse generator (PG) was explored in a noninvasive pilot study on heart failure (HF) patients with audible third HS (S3). Accelerometer circuitry enhanced for HS was incorporated into non-functional ICDs. A study was conducted on 30 HF patients and 10 normal subjects without history of cardiac disease. The devices were taped to the skin surface over both left and right pectoral regions to simulate subcutaneous implants. A lightweight reference accelerometer was taped over the cardiac apex. Waveforms were recorded simultaneously with a surface electrocardiogram for 2 minutes. Algorithms were developed to perform off-line automatic detection of HS and HS time intervals (HSTIs). S1, S2, and S3 vibrations were detected in all accelerometer locations for all 40 subjects, including 16 subjects without an audible S3. A substantial proportion of S3 energy was infrasonic (<20 Hz). Extending the signal bandwidth accordingly increased HS amplitudes and the ability of S3 to separate HF patients from the normal subgroup. HSTIs also separated the subgroups and were less susceptible to patient-dependent acoustic propagation properties than amplitude measures. HS, including S3 amplitude and HSTIs, may be measured using PG-embedded circuitry at implant sites without special purpose leads. Further study is warranted to determine if relative changes in heart sounds measurements can be effective in applications such as remote ambulatory monitoring of HF progression and the detection of the onset of HF decompensation. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  5. A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element

    PubMed Central

    Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili

    2016-01-01

    This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089

  6. Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-03-01

    The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.

  7. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G.; Wu, S. C.; Zhou, Z. B.

    2013-12-15

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10{sup −8} m/s{sup 2}/Hz{sup 1/2} at 0.1 Hz, while the high-voltage coupling noise is one-order ofmore » magnitude lower.« less

  9. Interest of the MICROSTAR Accelerometer to improve the GRASP Mission.

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Lebat, V.; Foulon, B.; Christophe, B.; Liorzou, F.; Huynh, P. A.

    2015-12-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept proposed by JPL to improve the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). By taking advantage of the new testing possibilities offer by the catapult facility at the ZARM drop tower, the ONERA's space accelerometer team proposes an up-dated version, called MICROSTAR, of its ultra sensitive electrostatic accelerometers which have contributed to the success of the last Earth's gravity missions GRACE and GOCE. Built around a cubic proof-mass, it provides the 3 linear accelerations with a resolution better than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz and the 3 angular accelerations about its 3 orthogonal axes with 5´10-10 rad.s-2/Hz1/2 resolution. Integrated at the centre of mass of the satellite, MICROSTAR improves the Precise Orbit Determination (POD) by accurate measurement of the non-gravitational force acting on the satellite. It offers also the possibility to calibrate the change in the position of the satellite center of mass with an accuracy better than 100 μm as demonstrated in the GRACE mission. Assuming a sufficiently rigid structure between the antennas and the accelerometer, its data can participate to reach the mission objective of 1 mm precision for the TRF position.

  10. Characterizing coarse bedload transport during floods with RFID and accelerometer tracers, in-stream RFID antennas and HEC-RAS modeling

    NASA Astrophysics Data System (ADS)

    Olinde, L.; Johnson, J. P.

    2013-12-01

    By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the

  11. Estimating Energy Expenditure with the RT3 Triaxial Accelerometer

    ERIC Educational Resources Information Center

    Maddison, Ralph; Jiang, Yannan; Vander Hoorn, Stephen; Mhurchu, Cliona Ni; Lawes, Carlene M. M.; Rodgers, Anthony; Rush, Elaine

    2009-01-01

    The RT3 is a relatively new triaxial accelerometer that has replaced the TriTrac. The aim of this study was to validate the RT3 against doubly labeled water (DLW) in a free-living, mixed weight sample of adults. Total energy expenditure (TEE) was measured over a 15-day period using DLW. Activity-related energy expenditure (AEE) was estimated by…

  12. Statistical approaches to account for missing values in accelerometer data: Applications to modeling physical activity.

    PubMed

    Yue Xu, Selene; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki

    2018-04-01

    Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.

  13. The effect of cutting conditions on power inputs when machining

    NASA Astrophysics Data System (ADS)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  14. Investigating the CO 2 laser cutting parameters of MDF wood composite material

    NASA Astrophysics Data System (ADS)

    Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.

    2011-04-01

    Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.

  15. Material Behavior At The Extreme Cutting Edge In Bandsawing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Mohammed; Haider, Julfikar; Persson, Martin

    2011-01-17

    In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 {mu}m-50 {mu}m) being smaller than or equal to the cutting edge radius (5 {mu}m-15 {mu}m). This situation can leadmore » to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.« less

  16. Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer

    PubMed Central

    Gomes, Edimar Pedrosa; Reboredo, Maycon Moura; Carvalho, Erich Vidal; Teixeira, Daniel Rodrigues; Carvalho, Laís Fernanda Caldi d'Ornellas; Filho, Gilberto Francisco Ferreira; de Oliveira, Julio César Abreu; Sanders-Pinheiro, Helady; Chebli, Júlio Maria Fonseca; de Paula, Rogério Baumgratz; Pinheiro, Bruno do Valle

    2015-01-01

    Different factors can contribute to a sedentary lifestyle among hemodialysis (HD) patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity. PMID:26090432

  17. Dynamic Fluid in a Porous Transducer-Based Angular Accelerometer

    PubMed Central

    Cheng, Siyuan; Fu, Mengyin; Wang, Meiling; Ming, Li; Fu, Huijin; Wang, Tonglei

    2017-01-01

    This paper presents a theoretical model of the dynamics of liquid flow in an angular accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic permeability of the transducer are considered to describe the relation between angular acceleration and the differential pressure on the transducer. The permeability and streaming potential coupling coefficient of the transducer are determined in the experiments, and special prototypes are utilized to validate the theoretical model in both the frequency and time domains. The model is applied to analyze the influence of structural parameters on the frequency response and the transient response of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer and the cross-section radius of the circular tube can be used to control the transient performance. The proposed model provides the basic techniques to achieve the optimization of the angular accelerometer together with the methodology to control the wave speed and the hydrodynamic resistance of the transducer. PMID:28230793

  18. Cutting thin glass by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  19. Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut

    NASA Astrophysics Data System (ADS)

    Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef

    2015-12-01

    This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).

  20. Accelerometer-Measured Physical Activity and Mortality in Women Aged 63 to 99.

    PubMed

    LaMonte, Michael J; Buchner, David M; Rillamas-Sun, Eileen; Di, Chongzhi; Evenson, Kelley R; Bellettiere, John; Lewis, Cora E; Lee, I-Min; Tinker, Lesly F; Seguin, Rebecca; Zaslovsky, Oleg; Eaton, Charles B; Stefanick, Marcia L; LaCroix, Andrea Z

    2018-05-01

    To prospectively examine associations between accelerometer-measured physical activity (PA) and mortality in older women, with an emphasis on light-intensity PA. Prospective cohort study with baseline data collection between March 2012 and April 2014. Women's Health Initiative cohort in the United States. Community-dwelling women aged 63 to 99 (N = 6,382). Minutes per day of usual PA measured using hip-worn triaxial accelerometers, physical functioning measured using the Short Physical Performance Battery, mortality follow-up for a mean 3.1 years through September 2016 (450 deaths). When adjusted for accelerometer wear time, age, race-ethnicity, education, smoking, alcohol, self-rated health, and comorbidities, relative risks (95% confidence intervals) for all-cause mortality across PA tertiles were 1.00 (referent), 0.86 (0.69, 1.08), 0.80 (0.62, 1.03) trend P = .07, for low light; 1.00, 0.57 (0.45, 0.71), 0.47 (0.35, 0.61) trend P < .001, for high light; and, 1.00, 0.63 (0.50, 0.79), 0.42 (0.30, 0.57) trend P < .001, for moderate-to-vigorous PA (MVPA). Associations remained significant for high light-intensity PA and MVPA (P < .001) after further adjustment for physical function. Each 30-min/d increment in light-intensity (low and high combined) PA and MVPA was associated, on average, with multivariable relative risk reductions of 12% and 39%, respectively (P < .01). After further simultaneous adjusting for light intensity and MVPA, the inverse associations remained significant (light-intensity PA: RR = 0.93, 95% CI = 0.89-0.97; MVPA: RR = 0.67, 95% CI = 0.58-0.78). These relative risks did not differ between subgroups for age or race and ethnicity (interaction, P ≥ .14, all). When measured using accelerometers, light-intensity and MVPA are associated with lower mortality in older women. These findings suggest that replacing sedentary time with light-intensity PA is a public health strategy that could benefit an aging society and warrants further investigation

  1. High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts

    NASA Astrophysics Data System (ADS)

    Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.

    Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of

  2. Cut-point for Ki-67 proliferation index as a prognostic marker for glioblastoma.

    PubMed

    Wong, Eugene; Nahar, Najmun; Hau, Eric; Varikatt, Winny; Gebski, Val; Ng, Thomas; Jayamohan, Jayasingham; Sundaresan, Puma

    2018-01-16

    Ki-67 proliferation index (Ki-67 index) is used to quantify cell proliferation during histopathological assessment of various tumors including glioblastoma (GB). We aimed to assess correlation between Ki-67 index and overall survival in patients with GB and determine a cut-point for Ki-67 index that predicts for poorer survival. Records of adult patients diagnosed with GB on histopathological specimens at a tertiary cancer center in Sydney between 1 January 2002 and 30 July 2012 were retrieved. Specimens of these patients were examined for quantification of Ki-67 staining by two independent pathologists. Patient, disease, treatment, and survival data were collected from hospital and cancer care service records. Statistical analysis was performed using proportional hazards models, Kaplan-Meier curves, and the minimum P-value approach. Of the eligible 71 patients, 58% were males with median age of 58 (range 18-87). Seventy-three percent of patients were of ECOG performance status 0-1. There was a statistically significant correlation between Ki-67 index and overall survival. In patients with Ki-67 > 22% (n = 36), 5-year survival was approximately 30% compared to 5% in those with Ki-67 ≤ 22% (n = 35; log-rank P-value = 0.04; hazard ratio (HR) = 0.53; 95% confidence intervals (CI), 0.29-0.97). This study demonstrates a positive correlation between Ki-67 index and overall survival in patients with GB. Percentage staining of Ki-67 < 22% appears to predict for poorer survival in GB. © 2018 John Wiley & Sons Australia, Ltd.

  3. Investigation on a fiber optic accelerometer based on FBG-FP interferometer

    NASA Astrophysics Data System (ADS)

    Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao

    2014-12-01

    A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.

  4. Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys.

    PubMed

    Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M; Sebastião, Luís

    2017-06-08

    This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper.

  5. Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.

    2017-01-01

    In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.

  6. Factors influencing laser cutting of wood

    Treesearch

    V.G. Barnekov; C.W. McMillin; H.A. Huber

    1986-01-01

    Factors influencing the ability of lasers to cut wood may be generally classified into these three areas: 1) characteristics of the laser beam; 2) equipment and processing variables; and 3) properties of the workpiece. Effects of beam power, mode, polarization, and stability are discussed as are aspects of optics, location of focal point, feed speed, gas-jet assist...

  7. Effect of Cut Quality on Hybrid Laser Arc Welding of Thick Section Steels

    NASA Astrophysics Data System (ADS)

    Farrokhi, F.; Nielsen, S. E.; Schmidt, R. H.; Pedersen, S. S.; Kristiansen, M.

    From an industrial point of view, in a laser cutting-welding production chain, it is of great importance to know the influence of the attainable laser cut quality on the subsequent hybrid laser arc welding process. Many studies have been carried out in the literature to obtain lower surface roughness values on the laser cut edge. However, in practice, the cost and reliability of the cutting process is crucial and it does not always comply with obtaining the highest surface quality. In this study, a number of experiments on 25 mm steel plates were carried out to evaluate the influence of cut surface quality on the final quality of the subsequent hybrid laser welded joints. The different cut surfaces were obtained by different industrial cutting methods including laser cutting, abrasive water cutting, plasma cutting, and milling. It was found that the mentioned cutting methods could be used as preparation processes for the subsequent hybrid laser arc welding. However, cut quality could determine the choice of process parameters of the following hybrid laser arc welding.

  8. Evaluation of low-cost, objective instruments for assessing physical activity in 10-11-year-old children.

    PubMed

    Hart, Teresa L; Brusseau, Timothy; Kulinna, Pamela Hodges; McClain, James J; Tudor-Locke, Catrine

    2011-12-01

    This study compared step counts detected by four, low-cost, objective, physical-activity-assessment instruments and evaluated their ability to detect moderate-to-vigorous physical activity (MVPA) compared to the ActiGraph accelerometer (AG). Thirty-six 10-11-year-old children wore the NL-1000, Yamax Digiwalker SW 200, Omron HJ-151, and Walk4Life MVP concurrently with the AG during school hours on a single day. AG MVPA was derived from activity count data using previously validated cut points. Two of the evaluated instruments provided similar group mean MVPA and step counts compared to AG (dependent on cut point). Low-cost instruments may be useful for measurement of both MVPA and steps in children's physical activity interventions and program evaluation.

  9. Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms.

    PubMed

    Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline

    2014-01-01

    Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel.

  10. Research on subsurface deformed layer in ultra-precision cutting of single crystal copper by focused ion beam etching method

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Huang, X. J.; Kong, J. X.

    2018-03-01

    In this paper, the focused ion beam was used to study the subsurface deformed layer of single crystal copper caused by the nanoscale single-point diamond fly cutting, and the possibility of using nanometer ultra-precision cutting to remove the larger deformation layer caused by traditional rough cutting process was explored. The maximum cutting thickness of single-point diamond cutting was about 146 nm, and the surface of the single-crystal copper after cutting was etched and observed by using the focused ion beam method. It was found that the morphology of the near-surface layer and the intermediate layer of the copper material were larger differences: the near-surface of the material was smaller and more compact, and the intermediate material layer of the material was more coarse sparse. The results showed that the traditional precision cutting would residual significant subsurface deformed layer and the thickness was on micron level. Even more, the subsurface deformed layer was obviously removed from about 12μm to 5μm after single-point diamond fly cutting in this paper. This paper proved that the large-scale subsurface deformed layer caused by traditional cutting process could be removed by nanometer ultra-precision cutting. It was of great significance to further establish the method that control of the deformation of weak rigid components by reducing the depth of the subsurface deformed layers.

  11. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.

    PubMed

    Godfrey, A; Culhane, K M; Lyons, G M

    2007-10-01

    The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.

  12. Signal processing of bedload transport impact amplitudes on accelerometer instrumented plates

    USDA-ARS?s Scientific Manuscript database

    This work was performed to help establish a data processing methodology for relating accelerometer signals caused by impacts of gravel on steel plates to the mass and size of the transported material. Signal processing was performed on impact plate data collected in flume experiments at the Nationa...

  13. Comparison of home and away-from-home physical activity using accelerometers and cellular network-based tracking devices.

    PubMed

    Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S

    2012-08-01

    Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.

  14. Cutting the Cord

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  15. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency

    PubMed Central

    Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong

    2016-01-01

    For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers. PMID:26861343

  16. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency.

    PubMed

    Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong

    2016-02-06

    For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  17. Mechanical design optimization of a single-axis MOEMS accelerometer based on a grating interferometry cavity for ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang

    2016-08-01

    The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.

  18. Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-05-01

    The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.

  19. Effect of Moisture Content of Paper Material on Laser Cutting

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  20. Video and accelerometer-based motion analysis for automated surgical skills assessment.

    PubMed

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Essa, Irfan

    2018-03-01

    Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data). We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment. We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment. Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.

  1. Generation Mechanism of Work Hardened Surface Layer in Metal Cutting

    NASA Astrophysics Data System (ADS)

    Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru

    Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.

  2. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  3. Accelerometer-based wireless body area network to estimate intensity of therapy in post-acute rehabilitation

    PubMed Central

    Choquette, Stéphane; Hamel, Mathieu; Boissy, Patrick

    2008-01-01

    Background It has been suggested that there is a dose-response relationship between the amount of therapy and functional recovery in post-acute rehabilitation care. To this day, only the total time of therapy has been investigated as a potential determinant of this dose-response relationship because of methodological and measurement challenges. The primary objective of this study was to compare time and motion measures during real life physical therapy with estimates of active time (i.e. the time during which a patient is active physically) obtained with a wireless body area network (WBAN) of 3D accelerometer modules positioned at the hip, wrist and ankle. The secondary objective was to assess the differences in estimates of active time when using a single accelerometer module positioned at the hip. Methods Five patients (77.4 ± 5.2 y) with 4 different admission diagnoses (stroke, lower limb fracture, amputation and immobilization syndrome) were recruited in a post-acute rehabilitation center and observed during their physical therapy sessions throughout their stay. Active time was recorded by a trained observer using a continuous time and motion analysis program running on a Tablet-PC. Two WBAN configurations were used: 1) three accelerometer modules located at the hip, wrist and ankle (M3) and 2) one accelerometer located at the hip (M1). Acceleration signals from the WBANs were synchronized with the observations. Estimates of active time were computed based on the temporal density of the acceleration signals. Results A total of 62 physical therapy sessions were observed. Strong associations were found between WBANs estimates of active time and time and motion measures of active time. For the combined sessions, the intraclass correlation coefficient (ICC) was 0.93 (P ≤ 0.001) for M3 and 0.79 (P ≤ 0.001) for M1. The mean percentage of differences between observation measures and estimates from the WBAN of active time was -8.7% ± 2.0% using data from M3 and

  4. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models

    PubMed Central

    Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni

    2018-01-01

    In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006

  5. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  6. Noncontact Capacitive Clearance Control System For Laser Cutting Machines

    NASA Astrophysics Data System (ADS)

    Topkaya, Ahmet; Schmall, Karl-Heinz; Majoli, Ralf

    1989-03-01

    For a continuous high quality laser cut, it is necessary among other things to position the focal point of the laser beam correctly. This means that a constant clearance between the cutting head and the workpiece with a tolerance of +/- 0.Imm must he ensured. When cutting corrugated automobile bodysheet for example, a good quality cut can only be achieved with automatic clearance control. In the following, a method of automatic clearance control is described using the assistance of a noncontact capacitive sensor system. The copper nozzle of the laser cutting head acts as the electrode of the clearance sensor. The nozzle electrode and the workpiece build a small variable capacitance depending on the clearance. A change of clearance also changes the capacitance, which in turn influences a high frequency oscillator circuit. This shift in frequency is then converted into an analogue DC signal, which can be used to operate a servo motor control for the positioning of the laser cutting head in a closed loop servo system. Laser cutting heads with clearance sensor nozzles of different shapes, suited fur most applications in the industry, with focal lengths from 2.5" to 5" have been developed. They are capable to cut metal sheet from 0.2 to 12 mm of thickness, using CO2-lasers with output power up to 2.5 kW. For special applications involving difficult workpiece topographies in automobile production applications special "trunk" nozzles have been developed. For 5-axis cutting machines and robots, new laser cutting heads with integrated nozzle sensors in combination with a high dynamic Z-axis motor drive are in a stage of development.

  7. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  8. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    PubMed Central

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  9. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis.

    PubMed

    Ruiz, Jonatan R; Cavero-Redondo, Ivan; Ortega, Francisco B; Welk, Gregory J; Andersen, Lars B; Martinez-Vizcaino, Vicente

    2016-09-26

    Poor cardiorespiratory fitness is associated with cardiovascular disease risk factors. To perform a systematic review and meta-analysis of the relationship between poor cardiorespiratory fitness and cardiovascular disease risk in children and adolescents. Systematic literature search (1980 to 11 April 2015) for studies that determined a cardiorespiratory fitness cut point that predicted cardiovascular disease risk in children and adolescents. We identified 7 studies that included 9280 children and adolescents (49% girls) aged 8-19 years from 14 countries. Cardiovascular disease risk was already present in boys (6-39%) and girls (6-86%). Boys with low fitness (<41.8 mL/kg/min) had a 5.7 times greater likelihood of having cardiovascular disease risk (95% CI 4.8 to 6.7). The comparable diagnostic OR for girls with low fitness (<34.6 mL/kg/min) was 3.6 (95% CI 3.0 to 4.3). The 95% confidence region of cardiorespiratory fitness associated with low cardiovascular disease risk ranges, 41.8-47.0 mL/kg/min in boys (eg, stages 6-8 for a boy aged 15 years) and 34.6-39.5 mL/kg/min in girls (eg, stages 3-5 for a girl aged 15 years). The cardiorespiratory fitness cut point to avoid cardiovascular disease risk ranged 41.8 mL/kg/min in boys and was 34.6 mL/kg/min in girls. Fitness levels below 42 and 35 mL/kg/min for boys and girls, respectively, should raise a red flag. These translate to 6 and 3 stages on the shuttle run test for a boy and a girl, both aged 15 years, respectively. These cut points identify children and adolescents who may benefit from primary and secondary cardiovascular prevention programming. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. The BepiColombo mission to Mercury: state of the art of the ISA accelerometer implementation onboard the Mercury Planetary Orbiter

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D.; Fiorenza, E.; Lefevre, C.; Lucente, M.; Magnafico, C.; Peron, R.; Santoli, F.; Nozzoli, S.; Argada, A.

    2012-04-01

    The Italian Spring Accelerometer (ISA) has been selected by ESA to fly onboard the Mercury Planetary Orbiter (MPO) of the BepiColombo space mission. Mercury's exploration represents one of the most important challenges of modern planetary sciences and the mission aims to reach a much better understanding of the internal structure and composition of the planet, which in turn are needed for a deeper comprehension of the formation of the terrestrial planets, hence of that of our solar system. Moreover, because of its proximity to the Sun, Mercury represents a unique opportunity to test Einstein's theory for the gravitational interaction with respect to other proposed theories of gravitation. The BepiColombo Radio Science Experiments (RSE) are devoted to reach the above ambitious goals and the measurements of the onboard accelerometer are necessary to remove (a posteriori) the very complex to model, strong and subtle, non-gravitational accelerations due to the very strong radiation environment around Mercury. We focus on the accelerometer characteristics and performance, on the functional tests that are necessary for its implementation onboard the MPO and in the procedures that are necessary for the reduction of the accelerometer measurements in order to be used in the context of the RSE. We finally introduce the description of the accelerometer proof-masses non linearities, their impact in the measurements and the way to handle such effects.

  11. Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys †

    PubMed Central

    Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M.; Sebastião, Luís

    2017-01-01

    This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper. PMID:28594342

  12. How many days of accelerometer monitoring predict weekly physical activity behaviour in obese youth?

    PubMed

    Vanhelst, Jérémy; Fardy, Paul S; Duhamel, Alain; Béghin, Laurent

    2014-09-01

    The aim of this study was to determine the type and the number of accelerometer monitoring days needed to predict weekly sedentary behaviour and physical activity in obese youth. Fifty-three obese youth wore a triaxial accelerometer for 7 days to measure physical activity in free-living conditions. Analyses of variance for repeated measures, Intraclass coefficient (ICC) and regression linear analyses were used. Obese youth spent significantly less time in physical activity on weekends or free days compared with school days. ICC analyses indicated a minimum of 2 days is needed to estimate physical activity behaviour. ICC were 0·80 between weekly physical activity and weekdays and 0·92 between physical activity and weekend days. The model has to include a weekday and a weekend day. Using any combination of one weekday and one weekend day, the percentage of variance explained is >90%. Results indicate that 2 days of monitoring are needed to estimate the weekly physical activity behaviour in obese youth with an accelerometer. Our results also showed the importance of taking into consideration school day versus free day and weekday versus weekend day in assessing physical activity in obese youth. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms

    PubMed Central

    Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline

    2014-01-01

    Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. Methods: We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Conclusion: Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel. PMID:24795875

  14. Combining a Disturbance Observer with Triple-Loop Control Based on MEMS Accelerometers for Line-of-Sight Stabilization

    PubMed Central

    Huang, Yongmei; Deng, Chao; Ren, Wei; Wu, Qiongyan

    2017-01-01

    In the CCD-based fine tracking optical system (FTOS), the whole disturbance suppression ability (DSA) is the product of the inner loop and outer position loop. Traditionally, high sampling fiber-optic gyroscopes (FOGs) are added to the platform to stabilize the line-of-sight (LOS). However, because of the FOGs’ high cost and relatively big volume relative to the back narrow space of small rotating mirrors, we attempt in this work to utilize a cheaper and smaller micro-electro-mechanical system (MEMS) accelerometer to build the inner loop, replacing the FOG. Unfortunately, since accelerometers are susceptible to the low-frequency noise, according to the classical way of using accelerometers, the crucial low-frequency DSA of the system is insufficient. To solve this problem, in this paper, we propose an approach based on MEMS accelerometers combining disturbance observer (DOB) with triple-loop control (TLC) in which the composite velocity loop is built by acceleration integration and corrected by CCD. The DOB is firstly used to reform the platform, greatly improving the medium-frequency DSA. Then the composite velocity loop exchanges a part of medium-frequency performance for the low-frequency DSA. A detailed analysis and experiments verify the proposed method has a better DSA than the traditional way and could totally substitute FOG in the LOS stabilization. PMID:29149050

  15. Discrete and continuum modelling of soil cutting

    NASA Astrophysics Data System (ADS)

    Coetzee, C. J.

    2014-12-01

    Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.

  16. Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Rostamsowlat, Iman

    2018-06-01

    The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.

  17. Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters: Part II

    PubMed Central

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y.; Fernández, Eduardo

    2010-01-01

    In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579

  18. Screening of inorganic gases released from firework-rockets by a gas chromatography/whistle-accelerometer method.

    PubMed

    Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang

    2013-08-30

    The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The prevalence rate of internet addiction among Japanese college students: two cross-sectional studies and reconsideration of cut-off points of Young's internet addiction test in Japan.

    PubMed

    Tateno, Masaru; Teo, Alan R; Shiraishi, Masaki; Tayama, Masaya; Kawanishi, Chiaki; Kato, Takahiro A

    2018-05-30

    Due to variation in estimates of the prevalence of internet addiction (IA) in prior research, we conducted two cross-sectional studies over two years and investigated the prevalence rate of IA in college students in Japan, and reconsidered appropriate cut-off points of self-rating scale to screen possible IA. This study is composed of two parts: survey I in 2014 and survey II in 2016, which were conducted in the same schools with an interval of two years. The study questionnaire included questions about demographics and internet use, and the Young's Internet Addiction Test (IAT). Additionally, the subjects in survey II were asked about self-reported IA. There were 1,005 respondents in total with a mean age of 18.9±1.3. The mean IAT scores remained stable between 2014 and 2016: 45.2±12.6 in survey I and 45.5±13.1 in survey II (overall mean IAT score of 45.4±13.0). With respect to self-reported IA in survey II, a total of 21.6% agreed (score of 5 or 6 on a 6-point Likert scale). We categorized these subjects as IA, and the remainder as non-IA. The mean IAT score showed significant difference between these two groups (57.8±14.3 vs 42.1±10.7, p<0.001). The severity of symptoms of IA among Japanese college students appears stable in recent years, with a mean IAT scores of over 40. Our results suggest that a screening score cut-off of 40 on the IAT could be reconsidered and that of 50 might be proposed for the cut-off. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Teacher Education Budget Cuts in Romania and the US: Points of Contrast and Comparison

    ERIC Educational Resources Information Center

    Ives, B.; Alama, M.; Mosora, C. L.

    2013-01-01

    Background: Budgets for teacher education programmes have been substantially reduced as a result of the global economic crisis. Purpose: The purpose of this study was to compare the teacher education budget cutting processes and procedures for universities in Romania versus one university in the United States. Sample: The data were collected from…

  1. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    NASA Astrophysics Data System (ADS)

    Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin

    2017-06-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.

  2. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift

    PubMed Central

    Li, Bo; Zhao, Yulong; Li, Cun; Cheng, Rongjun; Sun, Dengqiang; Wang, Songli

    2017-01-01

    Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs) and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM) under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB) which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C. PMID:28106798

  3. Complications after LP related to needle type: pencil-point versus Quincke.

    PubMed

    Aamodt, A; Vedeler, C

    2001-06-01

    We studied the incidence of complications after diagnostic lumbar puncture (LP) related to needle type. A 5 months' observational study of routine diagnostic LP in 83 patients was conducted. Significantly more headache was observed after LP using thicker cutting needles (20G Quincke) compared with thinner cutting or non-cutting needles (22G Quincke or pencil-point). No significant difference in complications after LP was found between the 22G Quincke and pencil-point needles. The size of the needle and not the needle shape seems to be the main determinant for post-dural puncture headache (PDPH).

  4. Patch-based iterative conditional geostatistical simulation using graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas

    2016-08-01

    Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to

  5. ACCELEROMETERS IN FLOW FIELDS: A STRUCTURAL ANALYSIS OF THE CHOPPED DUMMY INPILE TUBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, T. K.; Marcum, W. R.; Latimer, G. D.

    2016-06-01

    Four tests characterizing the structural response of the Chopped-Dummy In-Pile tube (CDIPT) experiment design were measured in the Hydro-Mechanical Fuel Test Facility (HMFTF). Four different test configurations were tried. These configurations tested the pressure drop and flow impact of various plate configurations and flow control orifices to be used later at different reactor power levels. Accelerometers were placed on the test vehicle and flow simulation housing. A total of five accelerometers were used with one on the top and bottom of the flow simulator and vehicle, and one on the outside of the flow simulator. Data were collected at amore » series of flow rates for 5 seconds each at an acquisition rate of 2 kHz for a Nyquist frequency of 1 kHz. The data were then analyzed using a Fast Fourier Transform (FFT) algorithm. The results show very coherent vibrations of the CDIPT experiment on the order of 50 Hz in frequency and 0.01 m/s2 in magnitude. The coherent vibrations, although small in magnitude pose a potential design problem if the frequencies coincide with the natural frequency of the fueled plates or test vehicle. The accelerometer data was integrated and combined to create a 3D trace of the experiment during the test. The merits of this data as well as further anomalies and artifacts are also discussed as well as their relation to the instrumentation and experiment design.« less

  6. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  7. Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.

  8. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.

    PubMed

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-02-17

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 10⁷ and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10-1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors.

  9. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect

    PubMed Central

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-01-01

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 107 and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10–1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors. PMID:28218642

  10. Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method

    PubMed Central

    Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang

    2014-01-01

    In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556

  11. The cutting of metals via plastic buckling

    PubMed Central

    Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan

    2017-01-01

    The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components—sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces. PMID:28690406

  12. The cutting of metals via plastic buckling.

    PubMed

    Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan

    2017-06-01

    The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.

  13. The cutting of metals via plastic buckling

    NASA Astrophysics Data System (ADS)

    Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan

    2017-06-01

    The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.

  14. Cost minimizing of cutting process for CNC thermal and water-jet machines

    NASA Astrophysics Data System (ADS)

    Tavaeva, Anastasia; Kurennov, Dmitry

    2015-11-01

    This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.

  15. Gait Characteristic Analysis and Identification Based on the iPhone's Accelerometer and Gyrometer

    PubMed Central

    Sun, Bing; Wang, Yang; Banda, Jacob

    2014-01-01

    Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer, and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed for gait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects. PMID:25222034

  16. Validation study of Polar V800 accelerometer.

    PubMed

    Hernández-Vicente, Adrián; Santos-Lozano, Alejandro; De Cocker, Katrien; Garatachea, Nuria

    2016-08-01

    The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Eighteen Caucasian active people (50% women) aged between 19-23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson's correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. The devices significantly differed from each other on all outcomes (P<0.05), except for Polar V800's alerts vs. ActiTrainer's 1 hour sedentary bouts (P=0.595) and Polar V800's walking time vs. ActiTrainer's lifestyle time (P=0.484). Heteroscedasticity analyses were significant for all outcomes, except for Kcal and sitting time. The ROC-AUC value was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding "1 hour sedentary bouts" and "V800's walking time vs. ActiTrainer's lifestyle time" in young adults.

  17. Improvement of cutting performance for thick stainless steel plates by step-like cutting speed increase in high-power fiber laser cutting

    NASA Astrophysics Data System (ADS)

    Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-07-01

    A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.

  18. Sinuous Flow in Cutting of Metals

    NASA Astrophysics Data System (ADS)

    Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan

    2017-11-01

    Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.

  19. Making the cut: Depression screening in urban general hospital clinics for culturally diverse Latino populations.

    PubMed

    Gutnick, Damara; Siegel, Carole; Laska, Eugene; Wanderling, Joseph; Wagner, Ellen Cogen; Haugland, Gary; Conlon, Mary K

    We examined whether the cut-point 10 for the Patient Health Questionnaire-9 (PHQ9) depression screen used in primary care populations is equally valid for Mexicans (M), Ecuadorians (E), Puerto Ricans (PR) and non-Hispanic whites (W) from inner-city hospital-based primary care clinics; and whether stressful life events elevate scores and the probability of major depressive disorder (MDD). Over 18-months, a sample of persons from hospital clinics with a positive initial PHQ2 and a subsequent PHQ9 were administered a stressful life event questionnaire and a Structured Clinical Interview to establish an MDD diagnosis, with oversampling of those between 8 and 12: (n=261: 75 E, 71 M, 51 PR, 64 W). For analysis, the sample was weighted using chart review (n=368) to represent a typical clinic population. Receiver Operating Characteristics analysis selected cut-points maximizing sensitivity (Sn) plus specificity (Sp). The optimal cut-point for all groups was 13 with the corresponding Sn and Sp estimates for E=(Sn 73%, Sp 71%), M=(76%, 81%), PR=(81%, 63%) and W=(80%, 74%). Stressful life events impacted screen scores and MDD diagnosis. Elevating the PHQ9 cut-point for inner-city Latinos as well as whites is suggested to avoid high false positive rates leading to improper treatment with clinical and economic consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review.

    PubMed

    Jeran, S; Steinbrecher, A; Pischon, T

    2016-08-01

    Activity-related energy expenditure (AEE) might be an important factor in the etiology of chronic diseases. However, measurement of free-living AEE is usually not feasible in large-scale epidemiological studies but instead has traditionally been estimated based on self-reported physical activity. Recently, accelerometry has been proposed for objective assessment of physical activity, but it is unclear to what extent this methods explains the variance in AEE. We conducted a systematic review searching MEDLINE database (until 2014) on studies that estimated AEE based on accelerometry-assessed physical activity in adults under free-living conditions (using doubly labeled water method). Extracted study characteristics were sample size, accelerometer (type (uniaxial, triaxial), metrics (for example, activity counts, steps, acceleration), recording period, body position, wear time), explained variance of AEE (R(2)) and number of additional predictors. The relation of univariate and multivariate R(2) with study characteristics was analyzed using nonparametric tests. Nineteen articles were identified. Examination of various accelerometers or subpopulations in one article was treated separately, resulting in 28 studies. Sample sizes ranged from 10 to 149. In most studies the accelerometer was triaxial, worn at the trunk, during waking hours and reported activity counts as output metric. Recording periods ranged from 5 to 15 days. The variance of AEE explained by accelerometer-assessed physical activity ranged from 4 to 80% (median crude R(2)=26%). Sample size was inversely related to the explained variance. Inclusion of 1 to 3 other predictors in addition to accelerometer output significantly increased the explained variance to a range of 12.5-86% (median total R(2)=41%). The increase did not depend on the number of added predictors. We conclude that there is large heterogeneity across studies in the explained variance of AEE when estimated based on accelerometry. Thus

  1. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer.

    PubMed

    van Hees, Vincent T; Renström, Frida; Wright, Antony; Gradmark, Anna; Catt, Michael; Chen, Kong Y; Löf, Marie; Bluck, Les; Pomeroy, Jeremy; Wareham, Nicholas J; Ekelund, Ulf; Brage, Søren; Franks, Paul W

    2011-01-01

    Few studies have compared the validity of objective measures of physical activity energy expenditure (PAEE) in pregnant and non-pregnant women. PAEE is commonly estimated with accelerometers attached to the hip or waist, but little is known about the validity and participant acceptability of wrist attachment. The objectives of the current study were to assess the validity of a simple summary measure derived from a wrist-worn accelerometer (GENEA, Unilever Discover, UK) to estimate PAEE in pregnant and non-pregnant women, and to evaluate participant acceptability. Non-pregnant (N = 73) and pregnant (N = 35) Swedish women (aged 20-35 yrs) wore the accelerometer on their wrist for 10 days during which total energy expenditure (TEE) was assessed using doubly-labelled water. PAEE was calculated as 0.9×TEE-REE. British participants (N = 99; aged 22-65 yrs) wore accelerometers on their non-dominant wrist and hip for seven days and were asked to score the acceptability of monitor placement (scored 1 [least] through 10 [most] acceptable). There was no significant correlation between body weight and PAEE. In non-pregnant women, acceleration explained 24% of the variation in PAEE, which decreased to 19% in leave-one-out cross-validation. In pregnant women, acceleration explained 11% of the variation in PAEE, which was not significant in leave-one-out cross-validation. Median (IQR) acceptability of wrist and hip placement was 9(8-10) and 9(7-10), respectively; there was a within-individual difference of 0.47 (p<.001). A simple summary measure derived from a wrist-worn tri-axial accelerometer adds significantly to the prediction of energy expenditure in non-pregnant women and is scored acceptable by participants.

  2. Exposure to Upper Arm Elevation During Work Compared to Leisure Among 12 Different Occupations Measured with Triaxial Accelerometers.

    PubMed

    Palm, Peter; Gupta, Nidhi; Forsman, Mikael; Skotte, Jørgen; Nordquist, Tobias; Holtermann, Andreas

    2018-06-26

    Regarding prevention of neck and shoulder pain (NSP), unsupported arm elevation is one factor that should be taken into account when performing work risk assessment. Triaxial accelerometers can be used to measure arm elevation over several days but it is not possible to differentiate between supported and unsupported arm elevation from accelerometers only. Supported arm elevation is more likely to exist during sitting than standing. The aim of the study was to evaluate the use of whole workday measurements of arm elevation with accelerometers to assess potentially harmful work exposure of arm elevation, by comparing arm elevation at work with arm elevation during leisure, in a population with diverse work tasks, and to assess how the exposure parameters were modified when upper arm elevation during sitting time was excluded. The participants, 197 workers belonging to 12 occupational groups with diverse work tasks, wore triaxial accelerometers on the dominant arm, hip, and back for 1-4 days to measure arm elevation and periods of sitting. None of the groups were found to have higher exposure to arm elevation during work compared to leisure. Even though some occupations where known to have work tasks that forced them to work with elevated arms to a large extent. A high proportion of arm elevation derived from sitting time, especially so during leisure. When arm elevation during sitting time was excluded from the analysis, arm elevation was significantly higher at work than during leisure among construction workers, garbage collectors, manufacturing workers, and domestic cleaners. Together this illustrates that it is not suitable to use whole workday measurments of arm elevation with accelerometer as a sole information source when assessing the risk for NSP due to arm elevation. Information on body posture can provide relevant contextual information in exposure assessments when it is known that the potential harmful exposure is performed in standing or walking.

  3. Should We Believe Atmospheric Temperatures Measured by Entry Accelerometers Traveling at "Slow" Near-Sonic Speeds?

    NASA Technical Reports Server (NTRS)

    Withers, Paul

    2005-01-01

    Mars Pathfinder's Accelerometer instrument measured an unexpected and large temperature inversion between 10 and 20 kilometer altitude. Other instruments have failed to detect similar temperature inversions. I test whether this inversion is real or not by examining what changes have to be made to the assumptions in the accelerometer data processing to obtain a more "expected" temperature profile. Changes in derived temperature of up to 30K, or 15%, are necessary, which correspond to changes in derived density of up to 25% and changes in derived pressure of up to 10%. If the drag coefficient is changed to satisfy this, then instead of decreasing from 1.6 to 1.4 from 20 kilometers to 10 kilometers, the drag coefficient must increase from 1.6 to 1.8 instead. If winds are invoked, then speeds of 60 meters per second are necessary, four times greater than those predicted. Refinements to the equation of hydrostatic equilibrium modify the temperature profile by an order of magnitude less than the desired amount. Unrealistically large instrument drifts of 0.5-1.0 meters per square second are needed to adjust the temperature profile as desired. However, rotational contributions to the accelerations may have the necessary magnitude and direction to make this correction. Determining whether this hypothesis is true will require further study of the rigid body equations of motion, with detailed knowledge of the positions of all six accelerometers. The paradox concerning this inversion is not yet resolved. It is important to resolve it because the paradox has some startling implications. At one extreme, are temperature profiles derived from accelerometers inherently inaccurate by 20K or more? At the other extreme, are RS temperature profiles inaccurate by this same amount?

  4. Activity recognition using a single accelerometer placed at the wrist or ankle.

    PubMed

    Mannini, Andrea; Intille, Stephen S; Rosenberger, Mary; Sabatini, Angelo M; Haskell, William

    2013-11-01

    Large physical activity surveillance projects such as the UK Biobank and NHANES are using wrist-worn accelerometer-based activity monitors that collect raw data. The goal is to increase wear time by asking subjects to wear the monitors on the wrist instead of the hip, and then to use information in the raw signal to improve activity type and intensity estimation. The purposes of this work was to obtain an algorithm to process wrist and ankle raw data and to classify behavior into four broad activity classes: ambulation, cycling, sedentary, and other activities. Participants (N = 33) wearing accelerometers on the wrist and ankle performed 26 daily activities. The accelerometer data were collected, cleaned, and preprocessed to extract features that characterize 2-, 4-, and 12.8-s data windows. Feature vectors encoding information about frequency and intensity of motion extracted from analysis of the raw signal were used with a support vector machine classifier to identify a subject's activity. Results were compared with categories classified by a human observer. Algorithms were validated using a leave-one-subject-out strategy. The computational complexity of each processing step was also evaluated. With 12.8-s windows, the proposed strategy showed high classification accuracies for ankle data (95.0%) that decreased to 84.7% for wrist data. Shorter (4 s) windows only minimally decreased performances of the algorithm on the wrist to 84.2%. A classification algorithm using 13 features shows good classification into the four classes given the complexity of the activities in the original data set. The algorithm is computationally efficient and could be implemented in real time on mobile devices with only 4-s latency.

  5. High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology.

    PubMed

    Tian, W; Wu, S C; Zhou, Z B; Qu, S B; Bai, Y Z; Luo, J

    2012-09-01

    High precision accelerometer plays an important role in space scientific and technical applications. A quartz-flexure accelerometer operating in low frequency range, having a resolution of better than 1 ng/Hz(1/2), has been designed based on advanced capacitive sensing and electrostatic control technologies. A high precision capacitance displacement transducer with a resolution of better than 2 × 10(-6) pF/Hz(1/2) above 0.1 Hz, is used to measure the motion of the proof mass, and the mechanical stiffness of the spring oscillator is compensated by adjusting the voltage between the proof mass and the electrodes to induce a proper negative electrostatic stiffness, which increases the mechanical sensitivity and also suppresses the position measurement noise down to 3 × 10(-10) g/Hz(1/2) at 0.1 Hz. A high resolution analog-to-digital converter is used to directly readout the feedback voltage applied on the electrodes in order to suppress the action noise to 4 × 10(-10) g/Hz(1/2) at 0.1 Hz. A prototype of the quartz-flexure accelerometer has been developed and tested, and the preliminary experimental result shows that its resolution comes to about 8 ng/Hz(1/2) at 0.1 Hz, which is mainly limited by its mechanical thermal noise due to low quality factor.

  6. Coal-shale interface detection system

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  7. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-01-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  8. Portable cutting apparatus

    DOEpatents

    Gilmore, R.F.

    1984-07-17

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engagable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  9. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-04-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  10. Wear-Time Compliance with a Dual-Accelerometer System for Capturing 24-h Behavioural Profiles in Children and Adults.

    PubMed

    Duncan, Scott; Stewart, Tom; Mackay, Lisa; Neville, Jono; Narayanan, Anantha; Walker, Caroline; Berry, Sarah; Morton, Susan

    2018-06-21

    To advance the field of time-use epidemiology, a tool capable of monitoring 24 h movement behaviours including sleep, physical activity, and sedentary behaviour is needed. This study explores compliance with a novel dual-accelerometer system for capturing 24 h movement patterns in two free-living samples of children and adults. A total of 103 children aged 8 years and 83 adults aged 20-60 years were recruited. Using a combination of medical dressing and purpose-built foam pouches, participants were fitted with two Axivity AX3 accelerometers—one to the thigh and the other to the lower back—for seven 24 h periods. AX3 accelerometers contain an inbuilt skin temperature sensor that facilitates wear time estimation. The median (IQR) wear time in children was 160 (67) h and 165 (79) h (out of a maximum of 168 h) for back and thigh placement, respectively. Wear time was significantly higher and less variable in adults, with a median (IQR) for back and thigh placement of 168 (1) and 168 (0) h. A greater proportion of adults (71.6%) achieved the maximum number of complete days when compared to children (41.7%). We conclude that a dual-accelerometer protocol using skin attachment methods holds considerable promise for monitoring 24-h movement behaviours in both children and adults.

  11. High-Sensitivity Encoder-Like Micro Area-Changed Capacitive Transducer for a Nano-g Micro Accelerometer

    PubMed Central

    Zheng, Panpan; Liu, Jinquan; Li, Zhu; Liu, Huafeng

    2017-01-01

    Encoder-like micro area-changed capacitive transducers are advantageous in terms of their better linearity and larger dynamic range compared to gap-changed capacitive transducers. Such transducers have been widely applied in rectilinear and rotational position sensors, lab-on-a-chip applications and bio-sensors. However, a complete model accounting for both the parasitic capacitance and fringe effect in area-changed capacitive transducers has not yet been developed. This paper presents a complete model for this type of transducer applied to a high-resolution micro accelerometer that was verified by both simulations and experiments. A novel optimization method involving the insertion of photosensitive polyimide was used to reduce the parasitic capacitance, and the capacitor spacing was decreased to overcome the fringe effect. The sensitivity of the optimized transducer was approximately 46 pF/mm, which was nearly 40 times higher than that of our previous transducer. The displacement detection resolution was measured as 50 pm/√Hz at 0.1 Hz using a precise capacitance detection circuit. Then, the transducer was applied to a sandwich in-plane micro accelerometer, and the measured level of the accelerometer was approximately 30 ng/√Hz at 1Hz. The earthquake that occurred in Taiwan was also detected during a continuous gravity measurement. PMID:28930176

  12. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  13. Cutting the Cord-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  14. Heart-type fatty acid binding protein (H-FABP) in patients in an emergency department setting, suspected of acute coronary syndrome: optimal cut-off point, diagnostic value and future opportunities in primary care.

    PubMed

    Willemsen, Robert T A; van Severen, Evie; Vandervoort, Pieter M; Grieten, Lars; Buntinx, Frank; Glatz, Jan F C; Dinant, Geert Jan

    2015-01-01

    Most patients presenting chest complaints in primary care are referred to secondary care facilities, whereas only a few are diagnosed with acute coronary syndrome (ACS). The aim is to determine the optimal cut-off value for a point-of-care heart-type fatty acid binding protein (H-FABP) test in patients presenting to the emergency department and to evaluate a possible future role of H-FABP in safely ruling out ACS in primary care. Serial plasma H-FABP (index test) and high sensitivity troponin T (hs-cTnT) (reference test) were determined in patients with any new-onset chest complaint. In a receiver operating characteristic (ROC) curve, the optimal cut-off value of H-FABP for ACS was determined. Predictive values of H-FABP for ACS were calculated. For 202 consecutive patients (prevalence ACS 59%), the ROC curve based on the results of the first H-FABP was equal to the ROC curve of hs-cTnT (AUC 0.79 versus 0.80). Using a cut-off value of 4.0 ng/ml for H-FABP, sensitivity for ACS of the H-FABP (hs-cTnT) tests was 73.9% (70.6%). Negative predictive value (NPV) of H-FABP for ACS in a population representative for primary care (incidence of ACS 22%) thus could reach 90.8%. In patients presenting chest pain, plasma H-FABP reaches the highest diagnostic value when a cut-off value of 4 ng/ml is used. Diagnostic values of an algorithm combining point-of-care H-FABP measurement and a score of signs and symptoms should be studied in primary care, to learn if such an algorithm could safely reduce referral rate by GPs.

  15. Cutting boards in Salmonella cross-contamination.

    PubMed

    Cliver, Dean O

    2006-01-01

    Cutting boards are commonly perceived as important fomites in cross-contamination of foods with agents such as Salmonella spp., despite the lack of supporting epidemiological data. A variety of woods and plastics have been used to make work surfaces for cutting. In general, wood is said to dull knives less than plastic, and plastic is seen as less porous than wood. Research to model the hypothetical cross-contamination has been done in a variety of ways and has yielded a variety of results. At least some of the work with knife-scarred plastic indicates that the surface is very difficult to clean and disinfect, although this may vary among the polymers used. High-density polyethylene, which is most used in commercial applications, has been shown to delaminate in response to knife scarring. Wood is intrinsically porous, which allows food juices and bacteria to enter the body of the wood unless a highly hydrophobic residue covers the surface. The moisture is drawn in by capillary action until there is no more free fluid on the surface, at which point immigration ceases. Bacteria in the wood pores are not killed instantly, but neither do they return to the surface. Destructive sampling reveals infectious bacteria for hours, but resurrection of these bacteria via knife edges has not been demonstrated. Small plastic cutting boards can be cleaned in a dishwasher (as can some specially treated wooden boards), but the dishwasher may distribute the bacteria onto other food-contact surfaces. Most small wooden boards (i.e., those with no metal joiners in them) can be sterilized in a microwave oven, but this should be unnecessary if accumulation of food residues is prevented. However, 2 epidemiological studies seem to show that cutting board cleaning habits have little influence on the incidence of sporadic salmonellosis. Further, one of these studies indicated that use of plastic cutting boards in home kitchens is hazardous, whereas use of wooden cutting boards is not.

  16. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.

    PubMed

    Della Mea, Vincenzo; Quattrin, Omar; Parpinel, Maria

    2017-12-01

    Obesity and physical inactivity are the most important risk factors for chronic diseases. The present study aimed at (i) developing and testing a method for classifying household activities based on a smartphone accelerometer; (ii) evaluating the influence of smartphone position; and (iii) evaluating the acceptability of wearing a smartphone for activity recognition. An Android application was developed to record accelerometer data and calculate descriptive features on 5-second time blocks, then classified with nine algorithms. Household activities were: sitting, working at the computer, walking, ironing, sweeping the floor, going down stairs with a shopping bag, walking while carrying a large box, and climbing stairs with a shopping bag. Ten volunteers carried out the activities for three times, each one with a smartphone in a different position (pocket, arm, and wrist). Users were then asked to answer a questionnaire. 1440 time blocks were collected. Three algorithms demonstrated an accuracy greater than 80% for all smartphone positions. While for some subjects the smartphone was uncomfortable, it seems that it did not really affect activity. Smartphones can be used to recognize household activities. A further development is to measure metabolic equivalent tasks starting from accelerometer data only.

  17. Critical analysis of forensic cut-offs and legal thresholds: A coherent approach to inference and decision.

    PubMed

    Biedermann, A; Taroni, F; Bozza, S; Augsburger, M; Aitken, C G G

    2018-07-01

    In this paper we critically discuss the definition and use of cut-off values by forensic scientists, for example in forensic toxicology, and point out when and why such values - and ensuing categorical conclusions - are inappropriate concepts for helping recipients of expert information with their questions of interest. Broadly speaking, a cut-off is a particular value of results of analyses of a target substance (e.g., a toxic substance or one of its metabolites in biological sample from a person of interest), defined in a way such as to enable scientists to suggest conclusions regarding the condition of the person of interest. The extent to which cut-offs can be reliably defined and used is not unanimously agreed within the forensic science community, though many practitioners - especially in operational laboratories - rely on cut-offs for reasons such as ease of use and simplicity. In our analysis, we challenge this practice by arguing that choices made for convenience should not be to the detriment of balance and coherence. To illustrate our discussion, we will choose the example of alcohol markers in hair, used widely by forensic toxicologists to reach conclusions regarding the drinking behaviour of individuals. Using real data from one of the co-authors' own work and recommendations of cut-offs published by relevant professional organisations, we will point out in what sense cut-offs are incompatible with current evaluative guidelines (e.g., [31]) and show how to proceed logically without cut-offs by using a standard measure for evidential value. Our conclusions run counter to much current practice, but are inevitable given the inherent definitional and conceptual shortcomings of scientific cut-offs. We will also point out the difference between scientific cut-offs and legal thresholds and argue that the latter - but not the former - are justifiable and can be dealt with in logical evaluative procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. 6. SEAWARD VIEW OF BOAT LANDING CUT INTO ROCK, ALSO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SEAWARD VIEW OF BOAT LANDING CUT INTO ROCK, ALSO SHOWING CEMENT POURED ATOP TUNNEL. - Mile Rock Tunnel, Under Forty-eighth Avenue from Cabrillo Street to San Francisco Bay at Point Lobos, San Francisco, San Francisco County, CA

  19. Assessing normative cut points through differential item functioning analysis: an example from the adaptation of the Middlesex Elderly Assessment of Mental State (MEAMS) for use as a cognitive screening test in Turkey.

    PubMed

    Tennant, Alan; Küçükdeveci, Ayse A; Kutlay, Sehim; Elhan, Atilla H

    2006-03-23

    The Middlesex Elderly Assessment of Mental State (MEAMS) was developed as a screening test to detect cognitive impairment in the elderly. It includes 12 subtests, each having a 'pass score'. A series of tasks were undertaken to adapt the measure for use in the adult population in Turkey and to determine the validity of existing cut points for passing subtests, given the wide range of educational level in the Turkish population. This study focuses on identifying and validating the scoring system of the MEAMS for Turkish adult population. After the translation procedure, 350 normal subjects and 158 acquired brain injury patients were assessed by the Turkish version of MEAMS. Initially, appropriate pass scores for the normal population were determined through ANOVA post-hoc tests according to age, gender and education. Rasch analysis was then used to test the internal construct validity of the scale and the validity of the cut points for pass scores on the pooled data by using Differential Item Functioning (DIF) analysis within the framework of the Rasch model. Data with the initially modified pass scores were analyzed. DIF was found for certain subtests by age and education, but not for gender. Following this, pass scores were further adjusted and data re-fitted to the model. All subtests were found to fit the Rasch model (mean item fit 0.184, SD 0.319; person fit -0.224, SD 0.557) and DIF was then found to be absent. Thus the final pass scores for all subtests were determined. The MEAMS offers a valid assessment of cognitive state for the adult Turkish population, and the revised cut points accommodate for age and education. Further studies are required to ascertain the validity in different diagnostic groups.

  20. Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.

    PubMed

    DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K

    2015-01-01

    Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals.